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A WEAK NONSMOOTH PALAIS-SMALE CONDITION
AND COERCIVITY

NIKOLAOS C. KOUROGENIS - NIKOLAOS S. PAPAGEORGIOU

In this paper we show that a generaly nonsmooth locally Lipschitz function
which satisfies the nonsmooth C-condition (nonsmooth Cerami condition) and is
bounded from below, is coercive. The Cerami condition is a weak form of the
well-known Palais-Smale condition, which suffices to prove minimax principles.

1. Introduction.

The Palais-Smale condition (“PS-condition” for short) plays a critical
rolein optimization theory and in the variational analysis of elliptic boundary
value problems. The PS-condition is a compactness-type condition which
guarantees the convergence of minimizing sequences of a particular type,
thereby proving the existence of an actual minimizer. In the smooth case
the PS-condition has the following form: Let Y be a Banach space and
¢ : Y — R a Frechet differentiable function. We say that ¢ satisfies
the PS-condition, if any sequence {Xn}n-=1 € Y such that {¢(Xn)}n>1 IS
bounded and ¢’(xy) =<0, possesses a strongly convergent subsequence.
This condition was extended by Chang [4] to nonsmooth, locally Lipschitz
functionals ¢ : Y — R. In this case the PS-condition has the following
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form: Any sequence {Xp}n=1 € Y such that {¢(Xn)}n>1 iS bounded and
m(xn) = min{[[x*]| : X* € 3¢ (X))} —> 0, has a strongly convergent
subsequence. Here by d¢ (xn) we denote the subdifferential at x, in the sense
of Clarke [5] of f. Recall that if ¢ € C1(Y, R), then 3¢ (X)) = {¢’(Xn)} for
al x € Y. Using this condition Chang [4] developed acritical point theory for
variational problems with nonsmooth, localy Lipschitz energy functionals.
A weaker form of the smooth PS-condition was introduced by Cerami [3].
In the more general nonsmooth, locally Lipschitz setting, Cerami’s condition
has the following form: Any sequence {Xn}n>1 € Y such that {¢ (Xpn)}n>1 iS
bounded and (14| Xn ) M(Xn) iy 0, hasastrongly convergent subsequence.
In what follows, we call this condition the “nonsmooth C-condition”. This
weaker condition can give us either via Ekeland's variational principle or
via a deformation lemma, various minimax principles (see Bartolo-Benci-
Fortunato [1] (smooth case) and Zhong [9], Kourogenis-Papageorgiou [7]
(nonsmooth cases)).

It has been observed that in the differentiable case, the PS-condition
implies coercivity for afunctional which is bounded below. This was proved
by Costa-Silva [6] (for a Frechet differentiable functional) and by Calcovic-
Li-Willen [2] (for a Gateaux differentiable functional which is also lower
semicontinuous). In this note we extend this result to nonsmooth locally
Lipschitz functionals which satisfy the nonsmooth C-condition.

In the proof of our main result we will need the following recent
generalization of the Ekeland variationa principle, due to Zhong [9].

PROPOSITION 1. If h : Ry — R, is a continuous nondecreasing

[o@]

1

function such that _/ —dr = +o00, (Y,d) is a complete metric
o l+h(r)

space, X € Y isfixed, ¢ : Y - R = RU {400} is lower semicontinuous
function not identically +oo0 which is bounded from below,

then for any given A > 0, e > 0 and y € Y such that ¢(y) < igf¢+s,
we can find x € Y such that

(@ ¢(x) < o(y);

&
() ¢(x) <) + A A0 d(u, x) for al ueY; and

(©) d(x, Xp) < d(y, Xp) + T, where F > 0 is such that
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d(y.xo)+f

2. Main result.

The next theorem and its corollary extend the results of Costa-Silva
[6] and Calkovic-Li-Willem [2] to nonsmooth, locally Lipschitz functionals
which are bounded from below and satisfy only the nonsmooth C-condition.

THEOREM 2. If Y is a Banach space, ¢ : Y — R is locally Lipschitz
and bounded below and c = |im ¢(y) is finite,

lyll—o0
then there exists a sequence {Xn}n=1 € Y such that ||x,|| — oo,
¢ (Xn) — € and || Xp||Mm(X,) — 0 as n — oo.

Proof. Let n = inf[¢(y) : y € Y]. Because ¢ (-) is bounded below, 7 is
finite. By the definition of ¢ we can find M,, > 0 such that for any x € Y

1

with [[X]| = Mp, ¢(X) = Cc— Nz 1, Mnt1 > My +2, My > 1. We dso
. 1

can find {yn}n>1 such that ¢(yn) < c+ o and

1/1\2
2 \n

I1¥nll > Z_ n>1
L 1/1\2
2 \n
n—oo

From the definition of {yn}n>1 we have that |y,| > My +2 — 0.

Now, we define ¢y : Y — R, n > 1 such that ¢n(X) = ¢(X)
when [[x]| > Mn + 1, ¢n(X) = ¢(X) + (€ — n)(Mn + 1 — [Ix]}) when
Mn < [IX]l £ My +1 and ¢n(X) = ¢(X) + ¢ —n when [[x]| < Mn. Then

N|—

1
¢n, N > 1, are locally Lipschitz and n, = inf[¢n(y) iy e Y] >cCc— -

1
Apply proposition 1 with h(r) = [[Yall, Xo = Yn, & = &n = C+ — —1n
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1
1 /1\>2 .
andk:knz - . We can find x, € Y, n> 1, such that

1
dn(Xn) < dn(Yn) = @(Yn) <C+ T

N

¢(x><¢an+<3) % x—ul
e = n) 14yl

foral ueyY and

1
1\2 liynll+1
Xn — < J— -
1 W”—(n) >

for all n > 1.
Let u=x,+tv witht >0 and v € Y. Then we have

On(Xn +1v) — Pn(Xn)
t

—&nllvll <

N

4

1
where &, = (F) — | 0asn— oco. Letting t | O we obtain

1+ {Iynll

—&nlv]l < ¢2(Xn;v) foral n>1 andal ve.

But [IXall = Iyl = lIXn = ¥nll = [I¥nll — (F 5

1
1)2 Iyl +1

>

Mn+2

(from the choice of y,). SO ¢2(Xn; v) = ¢%(Xy;v) for Al v € Y. Let
1
Yn(v) = —¢°(Xn; v). Then ¥ (-) is sublinear, continuous with v (0) = 0

and —||v|| % Yn(v) for al v € Y. Invoking lemma 1.3 of Szulkin [8], we
can find y* € Y*, n> 1, such that |y;|| <1 and (Y, v) < ¥n(v) for all

n>1andal veY. Thenif x} =&y, we have

(x5, v) < p°(Xn,v) fordln>1anddl ve,

=X € dp(Xp) foradl n> 1

1
Hm&”mM)SHﬁ”i&nﬁ%1+ﬂwmmm05§4cﬁ)

N~

n—oo
— 0.
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1

1
7 |lynll +1
On the other hand [xal| < llynll + 1% — Yall < Iyall + (-) Wl 1

n 2

n—oo

S0, [IXallm(xn) —> O.

Findly, [Xal = Mn 4+ 2 =5 00 = ¢(X) —> c. Therefore
{Xn}n=1 C Y is the desider sequence. |

Animmediate consequence of this proposition isthe following corollary.

COROLLARY 3. 1f Y isa Banach space, ¢ : Y — R islocally Lipschitz,
bounded below and satisfies the nonsmooth C-condition,

then ¢(-) is coercive.
Now we are ready to prove our last theorem.

THEOREM 4. If Y is a Banach space, ¢ : Y — R islocally Lipschitz,
bounded below and satisfies the nonsmooth C-condition,

then ¢(-) also satisfies the nonsmooth PS-condition.

Proof. Let ¢ : Y — R alocaly Lipschitz, bounded below functional
which satisfies the non-smooth C-condition. Let also {Xp}hn=1 € Y aong
which ¢ is bounded and m(x,) —> 0. It is easy to see that {Xyln=1 iS
bounded because of the coercivity of ¢(-) (see Corollary 3). So, indeed
(1 + [IXalH)mM(Xn) 0 and as ¢ () satisfies the nonsmooth C-condition
we can extract from {Xp}n>1 a strongly convergent subsequence. |

Remark. From the last theorem it follows trivialy that the Min-Max
theorems for locally Lipschitz and bounded below functionals which satisfy
the PS-condition are expanded to the case of C-condition.
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