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In this paper we show that a generally nonsmooth locally Lipschitz function
which satisfies the nonsmooth C-condition (nonsmooth Cerami condition) and is
bounded from below, is coercive. The Cerami condition is a weak form of the
well-known Palais-Smale condition, which suffices to prove minimax principles.
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nonsmooth C-condition, Ekeland variational prinicple, locally Lipschit function, Clarke’s
subdifrential, coercive function.
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The Palais-Smale condition (“PS-condition” for short) plays a critical
role in optimization theory and in the variational analysis of elliptic boundary
value problems. The PS-condition is a compactness-type condition which
guarantees the convergence of minimizing sequences of a particular type,
thereby proving the existence of an actual minimizer. In the smooth case
the PS-condition has the following form: Let be a Banach space and

: a Frechet differentiable function. We say that satisfies
the PS-condition, if any sequence such that is

bounded and 0, possesses a strongly convergent subsequence.
This condition was extended by Chang [4] to nonsmooth, locally Lipschitz
functionals : . In this case the PS-condition has the following
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If h is a continuous nondecreasing

function such that
h r

dr , Y d is a complete metric

space, x Y is fixed, Y is lower semicontinuous
function not identically which is bounded from below,

then for any given , and y Y such that y ,

we can find x Y such that

(a) x y ;

(b) x u
h d x x

d u x for all u Y ; and

(c) d x x d y x r , where r is such that
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form: Any sequence such that is bounded and

min : 0, has a strongly convergent
subsequence. Here by we denote the subdifferential at in the sense
of Clarke [5] of . Recall that if , then for
all . Using this condition Chang [4] developed a critical point theory for
variational problems with nonsmooth, locally Lipschitz energy functionals.
A weaker form of the smooth PS-condition was introduced by Cerami [3].
In the more general nonsmooth, locally Lipschitz setting, Cerami’s condition
has the following form: Any sequence such that is

bounded and 1 0, has a strongly convergent subsequence.
In what follows, we call this condition the “nonsmooth C-condition”. This
weaker condition can give us either via Ekeland’s variational principle or
via a deformation lemma, various minimax principles (see Bartolo-Benci-
Fortunato [1] (smooth case) and Zhong [9], Kourogenis-Papageorgiou [7]
(nonsmooth cases)).

It has been observed that in the differentiable case, the PS-condition
implies coercivity for a functional which is bounded below. This was proved
by Costa-Silva [6] (for a Frechet differentiable functional) and by Calcovic-
Li-Willen [2] (for a Gateaux differentiable functional which is also lower
semicontinuous). In this note we extend this result to nonsmooth locally
Lipschitz functionals which satisfy the nonsmooth C-condition.

In the proof of our main result we will need the following recent
generalization of the Ekeland variational principle, due to Zhong [9].

P 1. :
1

1
:

0 0 inf

1

0
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1

1

The next theorem and its corollary extend the results of Costa-Silva
[6] and Calkovic-Li-Willem [2] to nonsmooth, locally Lipschitz functionals
which are bounded from below and satisfy only the nonsmooth C-condition.

T 2. :
lim

0

Let inf[ : ]. Because is bounded below, is
finite. By the definition of we can find 0 such that for any

with ,
1

, 1, 2, 1. We also

can find such that
1

and

2
1

2

1

1
1

2

1
1

From the definition of we have that 2 0.

Now, we define : , 1 such that
when 1, 1 when

1 and when . Then

, 1, are locally Lipschitz and inf[ : ]
1

.

Apply proposition 1 with , ,
1
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and
1

2

1
. We can find , 1, such that

1

1 4

1

for all and

1 1

2

for all 1.

Let with 0 and . Then we have

where
1 4

1
0 as . Letting 0 we obtain

for all 1 and all

But
1 1

2
2

(from the choice of ). So for all . Let
1

. Then is sublinear, continuous with 0 0

and for all . Invoking lemma 1.3 of Szulkin [8], we
can find , 1, such that 1 and for all

1 and all . Then if , we have

for all 1 and all ,

for all 1

Hence 1 4
1

0.
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On the other hand
1 1

2
.

So, 0.

Finally, 2 . Therefore
is the desider sequence.

An immediate consequence of this proposition is the following corollary.

C 3. :

Now we are ready to prove our last theorem.

T 4. :

Let : a locally Lipschitz, bounded below functional
which satisfies the non-smooth C-condition. Let also along

which is bounded and 0. It is easy to see that is
bounded because of the coercivity of (see Corollary 3). So, indeed
1 0 and as satisfies the nonsmooth C-condition

we can extract from a strongly convergent subsequence.

From the last theorem it follows trivially that the Min-Max
theorems for locally Lipschitz and bounded below functionals which satisfy
the PS-condition are expanded to the case of C-condition.
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