RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Tomo XLIX (2000), pp. 521-526

A WEAK NONSMOOTH PALAIS-SMALE CONDITION AND COERCIVITY

NIKOLAOS C. KOUROGENIS - NIKOLAOS S. PAPAGEORGIOU

In this paper we show that a generally nonsmooth locally Lipschitz function which satisfies the nonsmooth C-condition (nonsmooth Cerami condition) and is bounded from below, is coercive. The Cerami condition is a weak form of the well-known Palais-Smale condition, which suffices to prove minimax principles.

1. Introduction.

the PS-condition, if any sequence $\{x_n\}_{n\geq 1} \subseteq Y$ such that $\{\phi(x_n)\}_{n\geq 1}$ is n, if any sequence $\{x_n\}_{n\geq 1} \subseteq Y$ such that $\{\varphi(x_n)\}_n$
 $\langle (x_n) \longrightarrow^{\infty} 0$, possesses a strongly convergent subsequent bounded and $\phi'(x_n) \stackrel{n \to \infty}{\longrightarrow} 0$, possesses a strongly convergent subsequence. the PS-condition has the following form: Let Y be a Banach space and ϕ : $Y \rightarrow \mathbf{R}$ a Frechet differentiable function. We say that ϕ satisfies functionals $\phi: Y \to \mathbf{R}$. In this case the PS-condition has the following The Palais-Smale condition ("PS-condition" for short) plays a critical role in optimization theory and in the variational analysis of elliptic boundary value problems. The PS-condition is a compactness-type condition which guarantees the convergence of minimizing sequences of a particular type, thereby proving the existence of an actual minimizer. In the smooth case This condition was extended by Chang [4] to nonsmooth, locally Lipschitz

¹⁹⁹¹ AMS Subject Classification: 47H99, 49J52.

Key words and phrases : Palais-Smale condition, nonsmooth Palais-Smale condition, nonsmooth C-condition, Ekeland variational prinicple, locally Lipschit function, Clarke's subdifrential, coercive function.

of Clarke [5] of f. Recall that if $\phi \in C^1(Y, \mathbf{R})$, then $\partial \phi(x_n) = {\phi'(x_n)}$ for form: Any sequence $\{x_n\}_{n\geq 1} \subseteq Y$ such that $\{\phi(x_n)\}_{n\geq 1}$ is bounded and equence $\{x_n\}_{n\geq 1} \subseteq Y$ such that $\{\phi(x_n)\}_{n\geq 1}$ λ_n) = min{ $||x^*||$: $x^* \in \partial \phi(x_n)$ } $\stackrel{n \to \infty}{\longrightarrow}$ $m(x_n) = \min\{\Vert x^* \Vert : x^* \in \partial \phi(x_n)\} \stackrel{n \to \infty}{\longrightarrow} 0$, has a strongly convergent subsequence. Here by $\partial \phi(x_n)$ we denote the subdifferential at x_n in the sense $n \parallel$ *ym* (x_n) *n* all $x \in Y$. Using this condition Chang [4] developed a critical point theory for ${x_n}_{n>1} \subseteq Y$ such that $\{\phi(x_n)\}$ $+\Vert x_n \Vert m(x_n) \xrightarrow{n \to \infty}$ $\phi(x_n)$ $(1 + ||x_n||) m(x_n)$ x_n _{$n\geq 1$} \subseteq *Y* such that { $\phi(x)$ x_n ||)*m*(*x* variational problems with nonsmooth, locally Lipschitz energy functionals. A weaker form of the smooth PS-condition was introduced by Cerami [3]. In the more general nonsmooth, locally Lipschitz setting, Cerami's condition has the following form: Any sequence $\{x_n\}_{n\geq 1} \subseteq Y$ such that $\{\phi(x_n)\}_{n\geq 1}$ is bounded and $(1 + ||x_n||)m(x_n) \longrightarrow^{\infty} 0$, has a strongly convergent subsequence. In what follows, we call this condition the "nonsmooth C-condition". This weaker condition can give us either via Ekeland's variational principle or via a deformation lemma, various minimax principles (see Bartolo-Benci-Fortunato [1] (smooth case) and Zhong [9], Kourogenis-Papageorgiou [7] (nonsmooth cases)).

It has been observed that in the differentiable case, the PS-condition implies coercivity for a functional which is bounded below. This was proved by Costa-Silva [6] (for a Frechet differentiable functional) and by Calcovic-Li-Willen [2] (for a Gateaux differentiable functional which is also lower semicontinuous). In this note we extend this result to nonsmooth locally Lipschitz functionals which satisfy the nonsmooth C-condition.

In the proof of our main result we will need the following recent generalization of the Ekeland variational principle, due to Zhong [9].

Z ROPOSITION 1. If h : $\mathbf{R}_{+} \rightarrow \mathbf{R}$ space, $x_0 \in Y$ is fixed, $\phi: Y \to \overline{\mathbf{R}} = \mathbf{R} \cup \{+\infty\}$ is lower semicontinuous 0 $\underset{\infty}{\text{If }} h : \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$ $+$ $\frac{d}{dx}(r) = +\infty$, (Y, d) f unction not identically $+\infty$ which is bounded from below, *If* $h : \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$ *is a continuous nondecreasing* function such that $\int_0^{\infty} \frac{1}{1+h(r)} dr = +\infty$, (Y, d) is a complete metric PROPOSITION 1. If h : 1 1

then for any given $\lambda > 0$, $\varepsilon > 0$ *and* $y \in Y$ *such that* $\phi(y) \le \inf_{Y} \phi + \varepsilon$, $we can find x \in Y$ such that

(a) $\phi(x) \leq \phi(y)$;

(b)
$$
\phi(x) \le \phi(u) + \frac{\varepsilon}{\lambda(1 + h(d(x_0, x)))} d(u, x)
$$
 for all $u \in Y$; and

(c) $d(x, x_0) \leq d(y, x_0) + \overline{r}$, where $\overline{r} > 0$ is such that

$$
\int_{d(y,x_0)}^{d(y,x_0)+\bar{r}} \frac{1}{1+h(r)} dr \geq \lambda.
$$

2. Main result.

The next theorem and its corollary extend the results of Costa-Silva [6] and Calkovic-Li-Willem [2] to nonsmooth, locally Lipschitz functionals which are bounded from below and satisfy only the nonsmooth C-condition.

THEOREM 2. If Y is a Banach space, $\phi: Y \to \mathbf{R}$ is locally Lipschitz $||y|| \rightarrow \infty$ and bounded below and $c = \lim_{h \to 0} \phi(y)$ is finite,

then there exists a sequence $\{x_n\}_{n\geq 1} \subseteq Y$ such that $||x_n|| \to \infty$, $\phi(x_n) \to c$ and $||x_n|| m(x_n) \to 0$ as $n \to \infty$.

 $||x|| \ge M_n$, $\phi(x) \ge c - \frac{1}{n}$, $n \ge 1$, $M_{n+1} \ge M_n + 2$, $M_1 \ge$ ${y_n}_{n \geq 1}$ such that $\phi(y_n) < c +$ finite. By the definition of c we can find $M_n > 0$ such that for any $x \in Y$ *Proof.* Let $\eta = \inf[\phi(y) : y \in Y]$. Because $\phi(\cdot)$ is bounded below, η is *n* with $||x|| \ge M_n$, $\phi(x) \ge c - \frac{1}{n}$, $n \ge 1$, $M_{n+1} \ge M_n + 2$, M *n* 1 , $n \ge 1$, $M_{n+1} \ge M_n + 2$, $M_1 \ge 1$. We also can find $\{y_n\}_{n\geq 1}$ such that 1 and

$$
||y_n|| > \frac{M_n + 2 + \frac{1}{2} \left(\frac{1}{n}\right)^{\frac{1}{2}}}{1 - \frac{1}{2} \left(\frac{1}{n}\right)^{\frac{1}{2}}}, \ n \ge 1.
$$

1 ≥ $\rightarrow \infty$ $n \nvert n \geq 1$ we have that $||y_n|| > M_n$ From the definition of $\{y_n\}_{n\geq 1}$ we have that $||y_n|| > M_n + 2 \stackrel{n \to \infty}{\longrightarrow} 0$.

 $h(r) = ||y_n||, x_0 = y_n, \varepsilon = \varepsilon_n = c + \frac{1}{r} - \eta_n$ Now, we define $\phi_n : Y \to \mathbf{R}, n \geq 1$ such that $\phi_n(x) = \phi(x)$ when $||x|| > M_n + 1$, $\phi_n(x) = \phi(x) + (c - \eta)(M_n + 1 - ||x||)$ when $M_n < ||x|| \le M_n + 1$ and $\phi_n(x) = \phi(x) + c - \eta$ when $||x|| \le M_n$. Then ϕ_n , $n \ge 1$, are locally Lipschitz and $\eta_n = \inf[\phi_n(y) : y \in Y] \ge c$ *n n* , $n \ge 1$, are locally Lipschitz and $\eta_n = \inf[\phi_n(y) : y \in Y] \ge c - \frac{1}{\cdot}$. Apply proposition 1 with $h(r) = ||y_n||$, $x_0 = y_n$, 1

 $(1)^{\frac{1}{2}}$ $(1)^{\frac{1}{2}}$ $n\overline{2}\left(\overline{n}\right)$ we can lind x_n $\phi_n(x_n) \leq \phi_n(y_n) = \phi(y_n) \leq c$ $\phi_n(x_n) \leq \phi_n(u) + \left(\frac{1}{n}\right)$ $\frac{1}{1 + ||y_n||} ||x_n||$ and $\lambda = \lambda_n \frac{1}{\alpha} \left(\frac{1}{n} \right)$. We can find $x_n \in Y$, $n \ge$ $\phi_n(x_n) \leq \phi_n(y_n) = \phi(y_n) \leq c + \frac{1}{n},$ *n y* $\phi_n(x_n) \leq \phi_n(u) + \left(\frac{1}{n}\right)^{\frac{1}{2}} \frac{4}{1 + ||y_n||} ||x_n - u||$ 1 2 1 . We can find $x_n \in Y$, $n \geq 1$, such that 1

for all $u \in Y$ and

$$
||x_n - y_n|| \le \left(\frac{1}{n}\right)^{\frac{1}{2}} \frac{||y_n|| + 1}{2}
$$

for all $n \geq 1$.

Let $u = x_n + tv$ with $t > 0$ and $v \in Y$. Then we have

$$
-\xi_n\|v\| \le \frac{\phi_n(x_n + tv) - \phi_n(x_n)}{t}
$$

 $-\xi_n \|v\| \le \phi_n^0(x_n; v)$ for all $n \ge 1$ and all $v \in Y$. $(1)^{\frac{1}{2}}$ $n = \left(\frac{n}{n}\right)$ $\frac{1 + ||y_n||}{1 + ||y_n||}$ where $\xi_n = \left(\frac{1}{n}\right)^{\frac{1}{2}} \frac{4}{1 + ||y_n||} \downarrow 0$ as $n \to \infty$. Letting $t \downarrow$ $\frac{1}{1 + ||y_n||} \downarrow 0$ as $n \to \infty$. Letting $t \downarrow 0$ we obtain

 $0(r \cdot v) - \phi^0$ $\psi_n(v) = \frac{1}{\xi_n} \phi^0(x_n; v)$. Then $\psi(\cdot)$ is sublinear, continuous with $\psi(0) =$ can find $y_n^* \in Y^*$, $n \ge 1$, such that $||y_n^*|| \le 1$ and $(y_n^*, v) \le \psi_n(v)$ for all $n \geq 1$ and all $v \in Y$. Then if $x_n^* = \xi_n y_n^*$, we have $||x_n|| \ge ||y_n|| - ||x_n - y_n|| \ge ||y_n|| - \left(\frac{1}{n}\right)^{\frac{1}{2}} \frac{||y_n|| + 1}{2} \ge M_n$ *n n* **b** $\varphi_n^{\circ}(x_n; v) = \varphi^{\circ}(x_n)$ and $-\|v\| \leq \psi_n(v)$ for all $v \in Y$. Invoking lemma 1.3 of Szulkin [8], we $||x_n|| \ge ||y_n|| - ||x_n - y_n|| \ge ||y_n||$ *n* $\frac{y_n\|+1}{2} \geq M$ *y_n*). So $\phi_n^0(x_n; v) = \phi_0^0(x_n; v)$ for all $v \in Y$ $||x_n|| \ge ||y_n|| - ||x_n - y_n|| \ge ||y_n|| - \left(\frac{1}{2}\right)^{\frac{1}{2}} \frac{||y_n|| + 1}{2} \ge M_n +$ $; v) = \phi^{0}(x_{n}; v)$ for all $v \in$ But $1 \n\begin{bmatrix} \frac{1}{2} & ||y_n|| + 1 \end{bmatrix}$ 2 2 (from the choice of y_n). So $\phi_n^0(x_n; v) = \phi_0^0(x_n; v)$ for all $v \in Y$. Let . Then $\psi(\cdot)$ is sublinear, continuous with $\psi(0) = 0$

$$
(x_n^*, v) \le \phi^0(x_n, v)
$$
 for all $n \ge 1$ and all $v \in Y$,
 $\Rightarrow x_n^* \in \partial \phi(x_n)$ for all $n \ge 1$.

Hence
$$
m(x_n) \le ||x_n^*|| \le \xi_n \Rightarrow (1 + ||y_n||)m(x_n) \le 4\left(\frac{1}{n}\right)^{\frac{1}{2}} \stackrel{n \to \infty}{\longrightarrow} 0.
$$

524

 $||x_n|| \le ||y_n|| + ||x_n - y_n|| \le ||y_n|| + \left(\frac{1}{n}\right)^{\frac{1}{2}} \frac{||y_n||}{||y_n||}$ So, $||x_n|| m(x_n) \xrightarrow{n \to \infty} 0$. $||x_n|| \le ||y_n|| + ||x_n - y_n|| \le ||y_n|| + \left(\frac{1}{2}\right)^{\frac{1}{2}} \frac{||y_n|| +}{2}$ *n y* On the other hand $1 \n\begin{bmatrix} \frac{1}{2} & ||y_n|| + 1 \end{bmatrix}$

1 $\rightarrow \infty$ $n \rightarrow \infty$ ≥ $\phi(x_n)$ $n \parallel \geq M_n$ *n n n n n* $||x_n|| \geq M_n + 2 \stackrel{n \to \infty}{\longrightarrow} \infty \Rightarrow \phi(x_n) \stackrel{n \to \infty}{\longrightarrow}$ ${x_n}_{n>1} \subseteq$ $x_n \parallel \geq M_n + 2 \stackrel{n \to \infty}{\longrightarrow} \infty \Rightarrow \phi(x_n) \stackrel{n \to \infty}{\longrightarrow} c$ $\{x_n\}_{n\geq 1} \subseteq Y$ Finally, $||x_n|| \geq M_n + 2 \stackrel{n \to \infty}{\longrightarrow} \infty \Rightarrow \phi(x_n) \stackrel{n \to \infty}{\longrightarrow} c$. Therefore is the desider sequence.

An immediate consequence of this proposition is the following corollary.

COROLLARY 3. If Y is a Banach space, $\phi: Y \to \mathbf{R}$ is locally Lipschitz, *bounded below and satisfies the nonsmooth C-condition,*

then $\phi(\cdot)$ *is coercive.*

 $n \parallel m(x_n)$

Now we are ready to prove our last theorem.

THEOREM 4. If Y is a Banach space, $\phi: Y \to \mathbf{R}$ is locally Lipschitz, then $\phi(\cdot)$ also satisfies the nonsmooth PS-condition. *bounded below and satisfies the nonsmooth C-condition,*

Proof. Let $\phi: Y \to \mathbf{R}$ a locally Lipschitz, bounded below functional which satisfies the non-smooth C-condition. Let also $\{x_n\}_{n\geq 1} \subseteq Y$ along 1 we can extract from $\{x_n\}_{n\geq 1}$ a strongly convergent subsequence. condition. Let also $\{x_n\}_{n\geq}$ ϕ is bounded and $m(x_n) \stackrel{n \to \infty}{\longrightarrow} 0$. It is easy to see that $\{x_n\}_{n \geq 0}$ $(1 + ||x_n||)m(x_n) \stackrel{n \to \infty}{\longrightarrow} 0$ and as $\phi(\cdot)$ bounded because of the coercivity of $\phi(\cdot)$ (see Corollary 3). So, indeed *n* which ϕ is bounded and $m(x_n) \stackrel{n \to \infty}{\longrightarrow} 0$. It is easy to see that $\{x_n\}_{n \geq 1}$ is $1 + ||x_n||$) $m(x_n) \stackrel{n \to \infty}{\longrightarrow} 0$ and as $\phi(\cdot)$ satisfies the nonsmooth C-condition

Remark. From the last theorem it follows trivially that the Min-Max theorems for locally Lipschitz and bounded below functionals which satisfy the PS-condition are expanded to the case of C-condition.

REFERENCES

- Anal.-TMA, 9 (1983), 981-10122. [1] Bartolo P., Benci V., Fortunato D., Abstract critical point theorems and appli*cations to some nonlinear problems with"strong resonance" at infinity* , Nonl.
- Dif. Integral Eqns, 3 (1990), 799-800 [2] Calcovic L., Li S., Willem M., A note on Palais-Smale condition and coercivity,
- Istituto Lombardo Sci. Let., 112 (1978), 332-336. [3] Cerami G., Un criterio di esistenza per i punti critici su varietà illimitate, Rend.

 $\frac{1}{2}$.

- applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), [4] Chang K.-C., *Variational methods for non-differentiable functionals and their* 102-129.
- [5] Clarke F. H., *Optimization and Nonsmooth Analysis*, WIley, New York (1983).
- Anal.-TMA, 16 (1991), 371-381. [6] Costa D., Silva E. A., de B., *The Palais-Smale condition versus coercivity*, Nonl.
- [7] Kourogenis N. C., Papageorgiou N. S., *Nontrivial solutions for nonlinear resonant* elliptic problems with discontinuities, Colloq. Math; to appear.
- tions to nonlinear boundary value problems, Ann. Inst. H. Poincaré, 3 (1986), [8] Szulkin A., *Minimax principles for lower semicontinuous functions and applica-*77-109.
- Anal. Appl., 205 (1997), 239-250. [9] Zhong C. K., On Ekeland's variational principle and a minimax theorem, J. Math.

Pervenuto il 28 aprile 1999.

National Technical University Department of Mathematics Zografou Campus Athens 157 80, Greece