
8UPPLE]KENTO AL VOLU~IE IX,  8ERIE IX  DEL NUOVO CIMENTO N. 3, 1 9 5 2  

Super-Gain Antennas and Optical Resolving Power. 

G. TORALDO DI FtCANCIA 

Istituto Nazionale di Ottica - Arcetri, Firenze 

Introduction. 

According to r a y  optics there  should be no l imit  to the  resolving power 
of a perfect  optical  system, i.e. of a sys tem tha t  images ma themat i ca l  points 
into ma themat i ca l  points. However  it is well known tha t  wave optics modifies 
considerably the  si tuation,  in t ha t  i t  shows tha t  the  image of a point  source 
is always cons t i tu ted  by  a diffraction pa t t e rn  of non-zero dimensions. For  
instance in the  case of a circular pupil  of d iameter  D, uni formly  i l luminated,  
the pa t t e rn  consists of a centra l  disk (Airy disk) of angular  radius 1,22 1/D, 

surrounded by  m a n y  a l te rna t ive ly  dark  and br ight  rings. The rings are very  
faint,  so th,~t the  resolving power depends main ly  on the  size of the disk. Of 
course, in evaluat ing the  net  resolving power one mus t  t ake  into account  the  
propert ies  of the  receptor.  But,  no m~t te r  how fine the  receptor  m a y  be, 
the  upper  l imit  of the  resolving power cannot  be far  f rom tha t  given b y  the 
well-known rule of Rayleigh, according to which the  smallest  distance between 
two points t ha t  can be seen as distinct is equal to the  radius of the Ai ry  disk. 

There has always been much  speculat ion as to whe ther  this s i tuat ion can 
be improved  b y  a suitable depar tu re  f rom the condition of the  uni form pupil, 
t h a t  is b y  mak ing  the  complex ampl i tude  a funct ion of the  coordinates in the  
plane of the  pupil. I t  is well known to opticians, however ,  t ha t  every  a t t e m p t  
to  reduce the  size of the  disk bears  as a consequence an increase in the brightness 
of the  rings a t  the  expense of the  sharpness of details in the  image. This 
result  m a y  be t e rm ed  as classical, i n  recent  years an extensive discussion 
of it  has been given b y  LUNEBEtCG (1). After  going th rough  his beaut i ful  
theorems  on this  subject,  one cannot  escape the  conclusion t ha t  it is impossible, 
for theoret ical  reasons, to amel iorate  the  performance of an optical sys tem 
b y  means  of any  type  of coating on the  pupil, i. e. b y  any  depar ture  f rom the 
un i form pupil. 

(1) R. K. LUNEBERG: Mathematical Theory o/ Optics (ProvideIlce, 1944) p. 391. 
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I n  this si tuution uny serious a t t e m p t  to reduce the  size of the central  disk 
was given up ~nd workers in the  field of optics set  themselves  the  much  
less ambit ious t ask  of s t r ipping the  disk of its rings. This is feasible and m a n y  
authors  h~ve recent ly  given methods  for calculating the  corresponding distri- 
bution on the  pupil  (2). 

Super-gain antennas. 

After  the  appeurance of microwave techniques ~nd the i r  applications, a 
problem closely Ie la ted  to tha t  of resolving power was t~ckled by  theoreticians 
in thei r  search for highly directive ~ntenna arrays.  F r o m  the mathemat ica l  

point of view an antenna  a r ray  is a given spat ial  dis tr ibution of radia t ing  
currents ,  i . e .  of their  complex ampli tudes.  ~ o w  it  is well known tha t  any  
distr ibution of a l te rna t ing  currents  is equivalent  to a distr ibution of electric 
dipoles; and the  same is t rue  for the  pupil of an optical  ins t rument ,  as we 
know f rom the t h eo ry  of e lect romagnet ic  diffraction U). Thus the  ma themat i ca l  
formulat ion of the  problem should be identical  in the  two cases. 

For tunu te ly  i t  appeurs t ha t  microwave researchers were not ve ry  much  
concerned, or perhaps  even acquainted,  with the  old and well-established 
theorems  of wave optics, according to which no mater ia l  improvemen t  over  
the  uni form pupil  should huve been possible. As a result ,  an ent irely new 
theory  has been set  up, which contains m a n y  revo lu t ionary  implications. 

The pioneer  work in this field was t ha t  of SC~ELK~OFF (4). I t  W~S based 
on the  r e m a r k  tha t ,  apar t  f rom a fo rm fnctor, the  ampl i tude  rad ia ted  b y  
a l inear end-fire a r ray  of n e lements  can be represented  b y  the polynomial  

(1) Ao + A~ exp [iyJ] + A. exp [2iyJ] + ... -~ A~_~ exp [ ( n -  1)i~] = 

= Ao T A l z  ~ A2z 2 + ... + An-1 z n-l, 

where Ao, A~ ... are complex ampli tudes,  z=exp[i~?],  ~ =  (2zd/A) cos0--~ ,  1 being 
the  spacing between the elements,  0 the angle made by  a typical  direction 
with the  line of sources, and ~ a progressive phase delay. In  the  complex 
plane z v~ries on the  uni t  circle; consequent ly  of the n - - 1  zeros of the poly- 
nomial  (1) only  those lying on the  uni t  circle m a y  represent  cones of silence. 
Fur ther ,  of these cones of silence only those corresponding to l cos 0 I ~  1 have  
a physical  existence, the  others being imaginary.  

(3) For history and literature see: B. DOSSIER, P. BOU(;IION and P. JACQUINOT: 
Jouru. des Rech. C.N.R.S., n. l l  (1950). 

(3) For comprehensive discussions and literature see: G. TORALDO DI FRANCIA'. 
Nuovo Cime~do, 7, 967 (1950). 

(4) S. A. SCtlELKUNOFF: Bell. Syst. Teeh~. Journ.. 22, 80 (1943). 
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A u n i f o r m  a r r a y  has  t h e  zeros  of z equ i spa c e d  on the  whole un i t  c i rc le ;  

bu t  SCHELKUNOFF was ab le  to  show t h a t  a r e m a r k a b l e  i n l p r o v e m e n t  in t h e  

ga in  can  be  o b t a i n e d  b y  p l a c i n g  t h e  , t t -  1 zeros a l l  ins ide  t h e  a c t u a l  r a n g e  of 

z, t h a t  is on  t h e  arc  of t h e  un i t  c i rc le  c o r r e s p o n d i n g  to  I cos 0 ~ 1 .  This  is 

i l l u s t r a t e d  for  i n s t a n c e  in  fig. 1, where  t h e  d i r ec t i ve  p r o p e r t i e s  of two  six- 

e l e m e n t  a r r a y s  w i t h  1 ~ / l / 8  a re  r e p r e s e n t e d ;  cu rve  A refers  to  a un i fo rm  a r r a y  

a n d  c u r v e  B to  an  a r r a y  w i th  i t s  nul ls  equ i spa e e d  in t h e  a c t u a l  r ange  of z. 

The  c o m p a r i s o n  b e t w e e n  t h e  two cu rves  is r e a l l y  as tonishing ' .  

0.6 - '"~' B a 

Fig. 1. - Directive properties of two six-elemeut eml-firc arrays with the spacing 1 = ,~/8; 
curve A refers to a uniform ar ray  and curve B to au array with it,~ nulls equispaced in 

the actual  range of z. (From SCHELKUNOFF), 

The  r e v o l u t i o n a r y  r e su l t  of SCHELKUNOFF a r o u s e d  g r e a t  i n t e r e s t  a n d  

peop le  b e g a n  t o  a sk  t h e m s e l v e s  w h e t h e r  the  bes t  d i s t r i b u t i o n  of c u r r e n t s  on 

an  a n t e n n a  of g i v e n  over -a l l  l e n g t h  cou ld  be f o u n d  ou t  b y  m a t h e m a t i c s .  Bu t  

v e r y  soon BOUWKA)fP a n d  DE BI~UIJN (~) were  ab le  to  p r o v e  for  a l i nea r  a n t e n n a  

t h e  a m a z i n g  t h e o r e m  t h a t  no such o p t i n m m  d i s t r i b u t i o n  ex i s t s  and  t h a t ,  as 

a consequence ,  t h e r e  is no u p p e r  l i m i t  to  t he  ga in  o b t a i n e d .  The ex t ens ion  

of  such  re su l t s  to  t w o - d i m e n s i o n a l  c u r r e n t  d i s t r i b u t i o n s  was cons ide red  b y  

RraLET (% 
A f t e r  t h e  a p p e a r a n c e  of t he  s t a r t l i n g  p a p e r  b y  BOVWKA,MP a n d  de BRUIJN 

t h e  ques t i on  a rose  a m o n g  worke r s  in t h e  a n t e n n a  f ield of how to  ca l cu l a t e  

a c t u a l  c u r r e n t  d i s t r i b u t i o n s  y i e l d i n g  a r b i t r a r y  h igh  ga ins .  A v e r y  i n t e r e s t i n g  

m e t h o d ,  a p p l y i n g  to  t h e  case of b r o a d s i d e  a r r a ys ,  was p o i n t e d  ou t  b y  DoLerr  U) 

(a) C. J. BOUWKA)IP and N. G. DE BRU[JN: Philit)s Res. Rep.. 1. 135 (1946). 
(6) H. J. RIBLET: Proc. I .R.E. .  36. 620 (1948). 
(~) C. L. DOLPH: Proe. I .R.E.,  34, 335 (1946). 
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and  ]~IBLET (s); the latter showed tha t  by  choosing the polynomial (1) equal 

to  ~ suitable combination of Tchebyscheff polynomials one could obtain as 

great a directivity as desired. However,  a numerical application of this method, 

made by  YARU U) brought  a disheartening result:  the reactive currents 

required were enormous, so as to render the practical realization of the array 

absolutely impossible. 

The role of the evanescent  waves.  

At this point another question seems to be unavoidable. Apart from the 

m a n y  difficulties of a practical nature,  the theoretical existence of complex 

ampli tude distributions yielding any  desired directivity with a pupil of finite 

.size is established beyond any doubt.  What  is wrong then with the old argu- 

ments of wave optics? 
In  order to answer this question we must  first recall some results obtained 

b y  the present author  in the theory  of diffraction. The problems of optical 
diffraction can be dealt with either by nleans of the well-known principle of 
I tuygens-Fresnel,  or by means of a superposition of diffracted waves, whose 
interference on the surface of the pupil gives rise to the actual distribution 

of complex amplitude. The latter procedure was given the name of principle 
of reverse interference (10). I n  the case of a plane pupil this principle can 

be applied by choosing as diffracted waves a set of plane waves. Euch of them 

is ctmracterized by  its complex amplitude and by the first two direction 

cosines of its direction of propagation. However, on the basis of well-known 

properties of the Fourier transform, it is easy to show that ,  if the pupil has 
finite size, some of the diffracted waves must  have at least one direction cosine 

greater than  unity.  Consequently they  cannot be ordinary plane waves: they  

are instead evanescent waves~ a t tenuated  in the direction perpendicular to 

the pupil. 
The existence of evanescent waves was known in the case of total  re- 

flection (~x). Their presence in diffraction phenomena was first postulated by 
the present author  (~) and met with some scepticism, until  it was revealed 

experimental ly beyond any doubt with the aid of nlicrowaves (13). 

(8) H. J. RIBLET: Proc. I.R.E.. 35. 489 (1947). 
(9) •. YARU: Proc. 1.R.E.. 39. 1081 (1951). 
(lo) G. TORALDO DI FRANCIA: Ottica. 7. 117 (1942). 
(11) See, for instance: J. A. STRATTON: Electromag~tetic Theory (New York. 1941). 

p. 499. 
(12) G. TORALDO D[ FRANCIA: Ottica. 7, 197 (1942). 
(la) hi. SCIIAFFNER an(1 G. TORALDO DI FRANCIA: Nt4ovo ('ime~to, 6. 125 (1949). 
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I t  is now easy to remove the apparen t  contradiction between the new resul ts  
on super-gain antennas  and the  s ta tements  of conventional  wave optics. I t  
is t rue  that ,  if we a t t em p t  to reduce the  angular  size of the  central  beam of 
diffracted waves, the ampl i tude  of some other  side waves must  necessari ly 
increase. But  these waves of increased ampl i tude  m a y  very  well be evanescent  
waves;  they  contr ibute  nothing to the  radiat ion pa t t e rn  and correspond to  

a mere ly  react ive  power. 
The above explanat ion was first pointed out by  WOODWARI) and LAWSON (~4). 

for the  case of a radiat ing aerial;  but ,  of course, i t  applies equally well to the  

case of diffraction through an aper ture .  
Classical wave optics seems to have  missed the  discovery of super-direct ive 

pupils, because it  overlooked the  role of evanescent  waves in diffraction. A n d  
this in tu rn  was due to the  use of the  Huygens-Fresnel  principle, which can 
very  well be applied to the  solution of diffraction problems in the radiat ion 
zone, but  fails to tell us what  happens near  the surf~ee of the aperture.  

I t  is easy also to unders tand  the significance of the a l ready men t ioned  
procedure of SCHELKU~0FF (4). A uni form a r ray  has its cones of silence equi- 

spaced in the region of rad ia t ing  waves (I cos 0 I~< 1) as well as in the  region 
of evanescent, waves ( I cos 01 > 1) ; SCHEL~:U~OrF removes  the null points f rom 
the region of evanescent  waves, where they  are of no use, and transfers  t h e m  
to the region of r~diat ing waves, so tha t  the over-all  in tens i ty  is reduced,  

though leaving the  principal m a x i m u m  unaltered.  

Super-resolving pupils. 

Let  us now t ry  to t ransfer  the  results  obta ined  in the  field of an tennas  

to the  problem of ameliorat ing the  resolving power of an optical  system. The  
major  difficulty we are now confronted with is the  enormous size of the  pupil .  
The size of a microwave an tenna  is of the  order of magni tude  of the  wavelength ,  
while, general ly  speaking, the  size of an optical pupil  exceeds the  wave length  
by  m a n y  powers of ten. I n  this s i tuat ion the  r equ i rement  of keeping v e r y  

low the  in tens i ty  of all diffracted waves around a sharp central  m a x i m u m  u p  
to the region of evanescent  w,~ves leads to unbel ievably  bu lky  calculations. For -  
t una te ly  it  seems unnecessary to pu t  such a s tr ingent  condition. Remova l  of t he  
luminous rings f rom the central  m a x i m u m  as far out as the  region of evanescent  
waves would be necessary for an in s t rumen t  having a 180o angular  field; in prac-  
tice it is sufficient to have the  rings well outside the field of the  ins t rument .  This 

(la) p. M. WOODWARD and J. D. LAWSON: Journ. I .E.E. ,  95, 363 (1948). 
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is illustrated in fig. 2, where 
the illumination curve of an 
ideal diffraction pat tern  is 

drawn close to the field dia- 

phragm of the instrument.  

The field diaphragm stops the 

luminous rings, thus leaving 

only the central maximum. 

We shall now describe a 

simple method for obtaining 

the desired diffraction pat tern  

from a circular pupil of dia- 

meter D. 

First  we stop all the light 

impinging on the pupil, except 
for a thin ring of diameter D. 
As is well known, if we call 0 

Fig. 2 . -  Arrangement screening out the large 
luminous rings of an ideal diffraction pattern. 

the angle made by a typical direction with the optical axis, the amplitude 
of the diffraction pattern,  apart  from an arbi t rary  factor, is given by 

(2) A(x) =~go(x), 

where x ~ z D  sin 0/4. I t  is also well known that  this diffra~'tion pat tern  has 

a smaller central disk than that  

corresponding to the uniform 

: '. pupil. This is shown in fig. 3, 

,' ', where curve A gives the dif- 

:' , fraction pa t t e rn  (squared am- 
plitude) of the ring-shaped 

aperture and curve B the dif- 
fract, ion pat tern  of the uniform 

pupil of equal diameter. The 

, ', constant  factors are so adjusted 

.~ !8 tha t  the two central maxima 
, have the same value. Curve A 

! l i  has its first zero at x ~--2,40 
: ' and curve B at x ~ 3 , 8 3 .  

, , However, in agreement with 

the general rule of wave optics, 
o 2,4 3.0 a ieduction in the size of the 

disk has brought  about an in- Fig. 3. - Diffraction pattern of a ring-shaped 
aperture (curve A) and a uniform pupil of equal crease in the brightness of the 

diameter (curve B). rings. 
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lJ.J 
0 2,4 3~8 

- r  

Fig. 4. - Diffraction pattern obtained with 
three ring apertures. 

We begin now to shift the lumi- 
nous rings, removing  them f rom the 
v ic in i ty  of the  disk. To this end we 
add to the thin r ing aper ture  of dia- 
mete r  D on the pupil two other  ring 
apertures of d iameter  D/3 and 2D/3 
respectively. The ampl i tude in the 
diffraction p a t t e l n  will now be gi- 

ven by  

(3) A ( x )  = 

--~_4~Jo (~ x) --Ao:Jo(:X)~-AJo(x). 

where the factors A~, A2, A3 depend 
on the dimensions and on t he t r anspa -  
rency of each ring. We then put  the  
conditions A(0) : 1, and A(x) ~ 0 
at x z 2 , 4 0  a n d x ~ - - 3 , 8 3 .  The first 

zero is still t ha t  of curve A of fig. 3, 
while the  second zero is placed at  the first secondary m a x i m u m  of the same 
curve. With  these conditions Eq. (3) 
yields a sys tem of three equations,  
which can be solved with respect  to 
A1, As, A3. Thus we find (t~): 

At : 0 , 9 5 ,  A ~ - - - - - 1 , 7 7 ,  A3~--1,82. 

The resul t ing diffraction pa t t e rn  is 
represented in fig. 4. Around the  
central  m a x i m u m  there is a large 
ring of near ly  zero intensity.  

We pass now to the case of four 
r ing aper tures  on the pupil, with the 
diameters  equal respect ively to D/4, 
2D/4, 3D/4, D. The result ing am- 
pl i tude will be 

( 1 x) + (4) A(x) - -  AtJo \ 21 

3 x) --Ar]o(x). 

0 2.4 5,5 

Fig. 5. Diffraction pattern obtained with 
four ring apertures. 

(ts) Of course, a negative coefficient mean.~ that the corresponding ring aperture 
:has reversed phase. 
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-We now put the conditions A ( 0 ) =  1, and A ( x ) =  0 at .r = 1,40. 3,83, 5,52, 

the last being the second zero of Jo(x). We find ~J system of four equations 
a n d  solve it, with the result 

A1 -~ - -  2,84, A2 = 7,73, A3 --  - -  7,67, At = 3,77. 

The corresponding diffraction pat tern  is represented in fig. 5. The dark ring 
surrounding the central disk has become larger. 

Final ly we t r y  with five ring apertures, having the diameters D/5, 2D/5. 
.3D/5, 4D/5. D respectively. The resulting amplitude will be 

VVe put the conditions A ( 0 ) - - i  and A(a; )= 0 at a ' =  'J,40, 3,83, 5,52, 7,02, 
the last value representing tile third maximum of Jo(x). We find the coefficients 

(6) Aj = 12,43, A: = - - 3 4 , 1 1 ,  A3 ~- 40,03, A~ = - - 2 5 , 3 1 ,  A~ = 7,96. 

The diffraction pa t te rn  is represented in fig. 6. These examples are sufficient 
for i l lustrating the method and for ,~howing how it is possible, by increasing 
the number  of ring apertures, 

to make the near ly  dark zone 

surrounding the central  disk as 

large as desired. The only draw- 
back from the practical point of 

view is tha t  the coefficients A~, 

A2... become larger and larger. 
This means that  a smaller and [ 

smaller percentage of the luminous 
flux passino' through the pupil is 

utilized in the central disk; the 

fraction of this flux, wasted in the 
ou te r  rings very  soon becomes 

p n o r n l o u s .  

I t  is also interesting to investi- 

gate the influence on the eoeffi- ~ ~ 
() 2,4 7,0 

cients of reducing' the size of the 
disk. For instance let us choose Fig. 6. - Diffraction pattern obtained with 
for the first zero x = 2,00, ins- five ring apertures and coefficients (6). 

tend of x =  2,40; to this end we 
again use five terms, as in Eq. (5), with the conditions A ( 0 ) -  1 and 

A(x) = 0 at . r - - 2 , 0 ,  3,5, 5,0, 6,0. We obtain the coefficients 

{7) At = 55,73, A2 = - - 1 4 6 , 8 1 ,  Aa = 158,31, A, = - - 8 9 , 4 2 ,  A~ = 23,18. 
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The diffraction pat tern  is represented in fig. 7 and seems to be very promising, 

I f  we apply to it the Rayleigh rule, we find it possible to resolve a cluster of  

seven stars, whose mutual  distances have nearly half the value required in 

2 6 

Fig. 7. - Diffraction p~ttern obt.~ined with 
five ring ~pertures and coefficients (7). 

the ease of the uniform pupil. B u t  

a comparison of the coefficients (6). 

and (7) shows that  a smull re- 
duction of the disk has been pai4 

for with a remarkable increase i~ 

the luminous flux required to obta in  

A(0) = 1. 

Conclusion. 

The preceding results show t h a t  

it is necessary to give up some old 
ideas concerning the resolving power 

of an optical system. 

First  of all we notice tha t  the~ 

classical limit of 1,22 ~/D, which has 
always been accepted as a theoretical 
limit, proves instead to be only 

a practical limit. Theoretically a~ 
optical ins t rument  with a pupil of given size can at tain us high ~. resolv- 

ing power as desired. The only limitation, if any, is set by  the amoun t  

of luminous flux that  we have at our disposal. Thus once more we find 

an argument  in favour of the energetic theory of resolving power, developed 
by the optical school of Arcetri, according to which it should be absurd to 

speak of resolving power, without  speeifiying the amount  of energy that  is 
available. 

In  the second place we find support  for the views concerning resolving 

power that  were expressed some t ime ago by the present author (16). Ac- 

eorindg to the modern theory  of communication,  the only limitation set b y  
the wave nature  of light on the performance of an optical system should concern 

the maximum number  Nof in fo rma t ions  tha t  the system can t ransmit  at a time. 

As a crude approximation, this number  is equal to the area of the pupil, divided 
by  the square of the half wavelength, tha t  is 2V= zD~/22. If  we want all 

these informations to be equally distributed among all the directions of a half  

space (as is the  case for an ideal optical system), the e lementary solid angle 

(16) G. TORALDO DI FRANCIA: Atti Fond. G. Ronchi, 6, 73 (1951). 
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cor responding  to each of them will be 2 ~ / N =  222/D 2. This gives 1,41 )./D 
for the e l e m e n t a r y  plane angle, t h a t  is something ve ry  close to  the  classical 

:1,22 2/D. But  if we consent  to reducing the angular  field, there  should be 

no theore t ica l  reason prevent ing  the  a t t a i n m e n t  of a higher  resolving power. 

2 h i s  seems to be in agreement  wi th  the  results  conta ined  in the  present  paper.  

F ina l l y  we mus t  point  out  a puzzl ing consequence of the  preceding inve- 

.stigations. I t  is well known tha t  one of the  most  e l e m e n t a r y  a rguments  used 

for der iving the  unce r t a in ty  principle of Heisenbe~g is based  on the l imi ted  

resolving power of an opt ical  sys tem of finite pupil  (17). Therefore our findings 

would seem to be in contradic t ion wi th  the  unce r t a in ty  principle. I t  is outside 

t h e  scope of the  present  ar t ic le  to en ter  into this del icate question. We shall 

dea l  wi th  i t  in a for thcoming paper .  

A k n o w l e d g e m e n t .  

Thanks are due to A. SAEZ of the  In s t i t u t e  of Optics of Madr id  for many  
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Nazionale di Ot t ica  of Arce t r i  for the i r  in te l l igent  a id  in the  computat ions .  

(17) See, for instance, L. I. SCHIFF: Quantum Mechanics (New York, 1949), p. l[.  

INTERVENTI E DISCUS~IONI 

F .  B R U I N  : 

In the example given by HEISENBERG he calculates the probability of the photon 
hitt ing the plane of observation after it  has passed a slit, the total probability being 
one. Now if with the ring system the central disk is made smaller in diameter the 
probability that this disk will be hit also becomes smaller. Will this probability not 
become zero in the case that  infinite resolution is reached? 

- -  F. J. ZUCKER: 
There are two practical limitations which prevent the unlimited increase of antenna 

gain or optical resolving power. One of them has been brought out by Dr. TORALDO 
in his comments on the surface waves, which create large storage fields in the vicinity 
of the aperture. This suggests the alternative point of view of saying that supergainiug 
involues a high Q with the attendant high ohmic losses and narrow band width (first 
pointed out by L. CHu in 1947, in the Proceedings o] the I.t~.E.). As a result of this 
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limitation, the slightest amount of supergaining (or ,, super-resolving ,~) must be paiff 
for with ~ very rapid increase in i~e~eie~ey. 

The second l imitation ties not yet been mentioned: it is of a statistieM nature. 
If we try to build a , super ,  device, we must adhere to inhumanely close tolerances 
to produce the rapid and steep variations in phase and amplitude required along the 
aperture. This unfortunately means that  supergaining must be paid for by the need 
to fabricate hundreds or thousands of units before one will be found with the desired 
characteristics. A general proof of this assertion will be found in the paper pre~ented 
by Mr. Ruz~; (1). 

i would now like to ('omment on the question raised by Dr. TOmaLDO with respect 
to the uncertainty principle, viz.. what becomes of that  principle when supergaining 
is Mlowed~.~ Let me reverse the question and ask: just why do we think there is any 
connection at all between the lvieertainty principle and the limit of optical resolution? 
~[any textbooks ,~ deduce ,, the lat ter  from the former, and this undoubtedly cause4 
the query. But the , deduction ,) only works fortuitously, and, in my opinion, is not 
based on an inherent link between optics and the Heisenberg principle. 

We can see this in the following way: as soon as we are told that  the q-space and 
the p-space of the calmnieal v~riables are related via. the Fourier transform, the Hei- 
senberg principle immediately follows. I t  simply states ~hat the product of the mo- 
ments of inertia in the two spaces is a constant. Now it so happens that  in physical 
optics we also have a Fourier-transform relation, namely between the ~in 0 of the  
Fraunhofer pa t te rn  and the wave number in the aperture. Consequently there results 
a moment-of-inertia relation (i.e. the l imit  of resolution) which is formally analogous 
to the uncertainty principle. We have a metaphoric relation between the two rather 
than an intrinsic one, a circumstance already suggested by the fact that in the text-  
book deductions from the Heisenberg principle we may cancel out Planek's constant 
in the very first step, a sure indication that  our end-result cannot be deeply connected 
with quantum-meehenieM notions. 

You will object and insist that  Heisenberg's principle nmst be applicable to the  
photon. This is true, but then let us define the photon eleetromagnetically; and not 
from the approximate optical point of view. This is absolutely necessary in one 
problem, because as soon as we permit  supergaining, we leave the domain of ordinary 
wave optics. The reason lies in the storage fields which cannot be defined in optics. 
To put it differently: the existence of surface waves implies tha t  the wave number iu 
the aperture is no longer restricted to the ram domain, so that  the moment-of-inertia 
relation changes entirely ; we can l imit  sin 0 at will, paying for it  with rapidly inereasing 
sidelobes in the imaginary region. If we now wish to ask what limitations the Heisen- 
berg principle imposes on the eleetromagnetically defined photon, we are led to a 
much more subtle problem than the relation we played with before. We are in fact i11 
the field of quantum-eleetrodynamics,  a different story altogether. 

- -  P .  A I G R A I N :  

As regards Mr. ZUCKE~'S remark tha t  the study of the light scattering experiment 
i s  not a good way to demonstrate Heisenberg's principle, and that  a good demonstration 
of this principles rests on the properties of the wave function, as such, one can say 
that  there are two forms of Heisenberg's principle. 

1) I t  is impossible to construct a wave function such that  ApAq <~/2, the 
theorem referred to by Mr. ZUCKEn. 

(~) I n  this  i ssue ,  p e g  364.  
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2) This is not a serious limitation in w~ve mechanie~, because it is not possible 
to measure Ap and Llq with more precision anyway, even in the old quantum theory. 
The difficulty indicated by Dr. TORALD0 concerns this second form. 

- -  R. ~[ALVANO : 

I may be wrong, anyway I think that  all of the question proposed by Prof. TORALDO 
lies in the fact that  we are only faced with a deduction from 5[axwell's equations; and 
from Maxwell equations we cannot deduce the Heisenberg principle because this prin- 
ciple starts from the finite value of the P1anek's constant h. In the limiting case of 
1, -+ 9 we have no uncertainty principle. 

- -  P. AIt~RAIN: 

It  looks like one should look for the answer to Dr. TORALDO'S remurk about Heisen- 
berg's principle in the fact that  super-directive pupils have a very high (< Q ,, f a c t o r -  
that  is small band width and a correspondingly long response time. 

- -  G .  TOtCALDO D I  F R A N C I A :  

I t  had not been my intention to discuss here the question of Heisenberg principle, 
which I considered only as a by-product of the preceding investigation. However, 
the many interesting interventions on the subject induce me to express my point 
of view. 

I quite agree with those who have remarked that  the theory of optical resolving 
power cannot serve as a proof of the tteisenberg principle. As was pointed out, the 
simplest mathematical  proof is that  no wave function can have ApAq << h. But let 
us suppose that  we know the p of a particle and the p of a photon with an extremely 
high accuracy (ira matter  how uncertain their q's must consequently be). The photon 
is scattered by the particle and enters a super-resolving microscope. There is a very 
high probability that  the photon is absorbed by the coating of the pupil (high reactive 
power) ; still it is not impossible that  it goes into the central maximum and is revealed. 
What happens in this case? The Ap of the particle after the collision is practically 
that  of the photon, the q can be read off in the microscope, and we have ApAq << h! 
How are we to interpret the result of this experiment? 

Something must certainly be wrong, because the uncertainty principle is beyond 
question to-day and a single exception would be sufficient to invalidate it. The way 
out of the difficulty may be looked for in more than one direction. Some possible 
explanations have already been mentioned in the preceding interventions. I should 
want to add that  perhaps Kirchhoff's approximation is not sufficient for a super- 
resolving pupil. In that  case the angular separation of two point sources would no t  
necessarily be equal to the angular separation of their images; in other words the 
uncertainty in the position of a point source would not necessarily be equal to the~ 
dimensions of the diffraction pattern. 

However all these explanations need to be investigated in much more detail. 

- -  F. J. ZUCK]~R: 

The only safe way, in my opinion, to apply tho uncertainty principle to photons 
is to refer to quantum electrodynamics. For it  is in this theory only that  the a t tempt  
is made to apply the quantum principles of particle mechanics to the vector ]ields 
of electromagnetism. This leads to a quantizat ioa of the field variables, and i t  can  
be shown that,  in the general case, they  are then no longer simple functions of spae~ 
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and t ime but quantities which are canonically related and do not commute. I.e., if 
we pick any two of the canonical field variables, (electric or magnetic field strength, 
phase, momentum, etc.), it is no longer true that  A B - - B A  = 0. The commutation 
function A B -  B A  ~ C (where C always involves Planck's constant h) gives rise to 
the uncertainty relation 

A A A B  >~C. 

This  equation, which is obeyed by the field variables in various possible combinations, 
has however no immediate physical significance. It  does not imply, for example, that  
A E A H  are always > C and therefore can never be known accurately. The reason 
for this is that  the only E and H which can be measured are average values over a 
small space-time region. This is obvious if we merely consider that  no matter  how 
small the dipole length, it is still finite. To obtain relations for these average values, 
the uncertainty equation (in operator form) must be integrated. The result depends 
on  whether or not the space-time regions of AAav" and ABav" can be connected by a 
light signal. If they cannot, then AAav" and ABav" commute and are thus not limited 
by an uncertainty relation. This will be the case, for instance, if we measure two 
linear components of the E or H field at the same t ime but in different locations; or 
if  we measure a component of E and a component of H at the same point but not in 
the same moment. 

The upshot is that  I have not been able to find a case relevant to diffraction field 
probing in which quantum electrodynamics imposes a l imitation on the attainable 
accuracy of measurement. 

I t  seems to me therefore that  the answer to Professor TORALDO di FRANCIA'S question 
as to what becomes of the Heisenberg principle when (~ super-resolving ), is allowed 
should be: Nothing, since the only correct, quantum-electrodynamical version of this 
principle imposes no relevant restrictions on resolving power to begin with. 


