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Introduction.

According to ray optics there should be no limit to the resolving power
of a perfect optical system, i.e. of a system that images mathematical points
into mathematical points. However it is well known that wave optics modifies
considerably the situation, in that it shows that the image of a point source
is always constituted by a diffraction pattern of non-zero dimensions. TFor
instance in the case of a circular pupil of diameter D, uniformly illuminated,
the pattern consists of a central disk (Airy disk) of angular radius 1,22 /D,
surrounded by many alternatively dark and bright rings. The rings are very
faint, so that the resolving power depends mainly on the size of the disk. Of
course, in evaluating the net resolving power one must take into account the
properties of the receptor. But, no matter how fine the receptor may be,
the upper limit of the resolving power cannot be far from that given by the
well-known rule of Rayleigh, according to which the smallest distance between
two points that can be seen as distinet is equal to the radius of the Airy disk.

There has always been much speculation as to whether this situation can
be improved by a suitable departure from the condition of the uniform pupil,
that is by making the complex amplitude a function of the coordinates in the
plane of the pupil. It is well known to opticians, however, that every attempt
to reduce the size of the disk bears as a consequence an increase in the brightness
of the rings at the expense of the sharpness of details in the image. This
result may be termed as classical. In recent years an extensive discussion
of it has been given by LUNEBERG (). After going through his beautiful
theorems on this subject, one cannot escape the conclusion that it is impossible,
for theoretical reasons, to ameliorate the performance of an optical system
by means of any type of coating on the pupil, i. e. by any departure from the
uniform pupil.

(") R. K. LUNEBERG: Mathematical Theory of Optics (Providence, 1944) p. 391.
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In this situation any serious attempt to reduce the size of the central disk
was given up and workers in the field of optics set themselves the much
less ambitious task of stripping the disk of its rings. This is feasible and many
authors have recently given methods for calculating the corresponding distri-
bution on the pupil (2).

Super-gain antennas.

After the appearance of microwave techniques and their applications, a
problem closely related to that of resolving power was tackled by theoreticiang
in their search for highly directive antenna arrays. From the mathematical
point of view an antenna array is a given spatial distribution of radiating
currents, i.e. of their complex amplitudes. Now it is well known that any
distribution of alternating currents is equivalent to a distribution of electric
dipoles; and the same is true for the pupil of an optical instrument, as we
know from the theory of electromagnetic diffraction (3). Thus the mathematical
formulation of the problem should be identical in the two cases.

Fortunately it appears that microwave researchers were not very much
concerned, or perhaps even acquainted, with the old and well-established
theorems of wave optics, according to which no material improvement over
the uniform pupil should have been possible. As a result, an entirely new
theory has been set up, which contains many revolutionary implications.

The pioneer work in this field was that of SCHELKUNOFF (4). It was based
on the remark that, apart from a form factor, the amplitude radiated by
a linear end-fire array of n elements can be represented by the polynomial

(1) Ay + A, exp [ip] + A, exp [2ip] 4 ... - A, exp [(r — 1)ip] =
= A, + 41z + A2 + ... A, 2

where 4,, 4, ... are complex amplitudes, z=exp[iy], y= (27l/4) cosf— ¢, | being
the spacing between the elements,  the angle made by a typical direction
with the line of sources, and ¢ a progressive phase delay. In the complex
plane 2z varies on the unit circle; consequently of the n-—1 zeros of the poly-
nomial (1) only those lying on the unit circle may represent cones of silence,
Further, of these cones of silence only those corresponding to |cos §|<<1 have
a physical existence, the others being imaginary.

(2) For history and literature see: B. Dossier. P. BouauoN and P. JACQUINOT:
Journ. des Rech. C.N.E.S., n. 11 (1950).

(®) For comprehensive discussions and literature see: G. TORALDO DI FRANCIA:
Nuovo Oimento, 7, 967 (1950).

(4) S. A. SCHELKUNOFF: Bell. Syst. Techn. Jouwrn.. 22, 80 (1943).
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A uniform array has the zeros of z equispaced on the whole unit circle;
but ScHELKUNOFF was able to show that a remarkable improvement in the
gain can be obtained by placing the #» —1 zeros all inside the actual range of
#, that is on the arc of the unit circle corresponding to lcos # < 1. This is
illustrated for instance in fig. 1, where the directive properties of two six-
element arrays with [ = 1/8 are represented: curve A refers to a uniform array
and curve B to an array with its nulls equispaced in the actual range of =.
The comparison between the two curves is really astonishing,
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Fig. 1. — Directive properties of two six-element end-fire arrays with the spacing I = 1/8;
curve .| refers to a uniform array and curve B to an array with its nulls equispaced in
the actual range of :. (From SCHELKUNOFF).

The revolutionary result of SCHELKUNOFF aroused great interest and
people began to ask themselves whether the best distribution of currents on
an antenna of given c¢ver-all length could he found out by mathematics. But
very soon BOUWKAMP and DE BRUIJN (°) were able to prove for a linear antenna
the amazing theorem that no such optimum distribution exists and that, as
a consequence, there is no upper limit to the gain obtained. The extensgion
of such results to two-dimensional current distributions was considered by
RIBLET (°).

After the appearance of the startling paper by Bouvwxkamp and de BRUIJN
the question arose among workers in the antenna field of how to calculate
actual current distributions yielding arbitrary high gains. A very interesting
method, applying to the case of broadside arrays, was pointed out by DorLprH (7)

(¢) C. J. BouwkaMp and N. . DE BRUWN: Philips Res. Rep.. 1. 135 (1946).
(¢) H. J. RiBLET: Proc. I.R.E., 36, 620 (1948).
(") C. L. DorpH: Proe. I.R.E., 34. 335 (1946).
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and RIBLET (8); the latter showed that by choosing the polynomial (1) equal
to a suitable combination of Tchebyscheff polynomials one could obtain as
great a directivity as desired. However, a numerical application of this method,
made by YARU (®) brought a disheartening result: the reactive currents
required were enormous, $o as to render the practical realization of the array
absolutely impossible.

The role of the evaneseent waves.

At this point another question seems to be unavoidable. Apart from the
many difficulties of a practical nature, the theoretical existence of complex
amplitude distributions yielding any desired directivity with a pupil of finite
size is established beyond any doubt. What is wrong then with the old argu-
ments of wave optics?

In order to answer this question we must first recall some results obtained
by the present author in the theory of diffraction. The problems of optical
diffraction can be dealt with either by means of the well-known principle of
Huygens-Fresnel, or by means of a superposition of diffracted waves, whose
interference on the surface of the pupil gives rise to the actual distribution
of complex amplitude. The latter procedure was given the name of principle
of reverse interference (1°). In the case of a plane pupil this principle can
be applied by choosing as diffracted waves a set of plane waves. Each of them
is characterized by its complex amplitude and by the first two direction
cosines of its direction of propagation. However, on the basis of well-known
properties of the Fourier transform, it is easy to show that, if the pupil has
finite size, some of the diffracted waves must have at least one direction cosine
greater than unity. Consequently they cannot be ordinary plane waves: they
are instead evanescent waves, attenuated in the direction perpendicular to
the pupil.

The existence of evanescent waves was known in the case of total re-
flection (). Their presence in diffraction phenomena was first postulated by
the present author (12) and met with some scepticism, until it was revealed
experimentally beyond any doubt with the aid of microwaves (1?).

(8) H. J. RiBLET: Proc. I.R.E.. 35. 489 (1947).

(®) N. Yaru: Proc. 1.R.E.. 39, 1081 (1951).

(1) G. ToraLpo b1 Fravcia: Oftica. 7. 117 (1942).

(11) See, for instance: J. A. STRATTON: Electromagnetic Theory (New York. 1941),

(1?) G. ToraLDO DI FRANCIA: Ofttca. 7, 197 (1942).
(13) M. ScoarFrNER and G. TORALDO DI FRANCIA: Nuoro (imento, 6. 125 (1949).
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It is now easy to remove the apparent contradiction between the new results
on guper-gain antennas and the statements of conventional wave optics. It
is true that, if we attempt to reduce the angular size of the central beam of
diffracted waves, the amplitude of some other side waves must necessarily
increase. But these waves of increased amplitude may very well be evanescent
waves; they contribute nothing to the radiation pattern and correspond to
a merely reactive power.

The above explanation was first pointed out by WoopwARD and LAwSON (14}
for the case of a radiating aerial; but, of course, it applies equally well to the
case of diffraction through an aperture.

(lassical wave optics seems to have missed the discovery of super-directive
pupils, because it overlooked the role of evanescent waves in diffraction. And
this in turn was due to the use of the Huygens-Fresnel principle, which can
very well be applied to the solution of diffraction problems in the radiation
zone, but fails to tell us what happens near the surface of the aperture.

Tt is easy also to understand the significance of the already mentioned
procedure of SCHELKUNOFF (4). A uniform array has its cones of silence equi-
spaced in the region of radiating waves (|cos 0]<1) as well as in the region
of evanescent waves (|cos §|>1); SCHELKUNOFF removes the null points from
the region of evanescent waves, where they are of no use, and transfers them
to the region of radiating waves, so that the over-all intensity is reduced,
though leaving the principal maximum unaltered.

Super-resolving pupils.

Let us now try to transfer the results obtained in the field of antennas
to the problem of ameliorating the resolving power of an optical system. The
major difficulty we are now confronted with is the enormous size of the pupil.
The size of a microwave antenna is of the order of magnitude of the wavelength,
while, generally speaking, the size of an optical pupil exceeds the wavelength
by many powers of ten. In this situation the requirement of keeping very
low the intensity of all diffracted waves around a sharp central maximum up
to the region of evanescent waves leads to unbelievably bulky calculations. For-
tunately it seems unnecessary to put such a stringent condition. Removal of the
luminous rings from the central maximum as far out as the region of evanescent
waves would be necessary for an instrument having a 180° angular field; in prac-
tice it is sufficient to have the rings well outside the field of the instrument. This

(%) P. M. WoopwaRD and J. D. LawsoN: Journ. 1.E.E., 95, 363 (1948).
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is illustrated in fig. 2, where
the illumination curve of an
ideal diffraction pattern is lens
drawn close to the field dia-
phragm of the instrument.
The field diaphragm stops the
lumincus rings, thus leaving
only the central maximum,
We shall now describe a
simple method for obtaining

. . . tield diffraction
the desired diffraction pattern diaphragm pattern
from a circular pupil of dia- /\\/\ﬁ
meter D.

First we stop all the light ————
impinging on the pupil, except  Fig. 2. — Arrangement screening out the large
for a thin ring of diameter D. luminous rings of an ideal diffraction pattern.

As is well known, if we call §
the angle made by a typical direction with the optical axis, the amplitude
of the diffraction pattern, apart from an arbitrary factor, is given by

(2) A(w) = J (),

where = 7D sin 6/4. It is also well known that this diffraction pattern has
a smaller central disk than that
corresponding to the uniform.
pupil. This is shown in fig. 3,
where curve A gives the dif-
fraction pattern (squared am-
plitude) of the ring-shaped
aperture and curve B the dif-
fraction pattern of the uniform
pupil of equal diameter. The
constant factors are so adjusted
that the two central maxima
have the same value. Curve A
has its first zero at x = 2,40
and curve B at 2z = 3,83.
However, in agreement with
the general rule of wave opties,
a reduction in the size of the
Fig. 3. — Diffraction pattern of a ring-shaped disk has brought about an in-

aperture (curve .1) and a uniform pupil of equal Crease in the brightness of the
diameter (curve B). rings.
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Fig. 4. — Diffraction pattern obtained with

three ring apertures.

We begin now to shift the lumi-
nous rings, removing them from the
vicinity of the disk. To this end we
add to the thin ring aperture of dia-
meter D on the pupil two other ring
apertures of diameter D/3 and 2D/3
respectively. The amplitude in the
diffraction pattern will now be gi-
ven by

() Aw) —
1 D
— 4, (§ a:) AT, (3 .r) AT

where the factors 4., 4,, 4; depend
on the dimensions and on the transpa-
rency of each ring. We then put the
conditions 4(0) =1, and A(x) =0
at » = 2,40 and o = 3,83. The first
zero is still that of curve A of fig. 3,

while the second zero is placed at the first secondary maximum of the same

curve. With these conditions Eq. (3)
yields a system of three equations,
which can be solved with respect to
A, A,, A;. Thus we find (*5):

A4, = 0,95, 4, ——1,77, A, —1,82.

The resulting diffraction pattern is
represented in fig. 4. Around the
central maximum there is a large
ring of nearly zero intensity.

We pass now to the case of four
ring apertures on the pupil, with the
diameters equal respectively to D/4,
2D/1, 3D/4, D. The resulting am-
plitude will be

(4) Ay = Ay, (i '77) +

| X

0 24 55

four ring apertures.

2 3 I ~ . . . .
o4, (_I w) A, ( : m)+‘44']0(w). Fig. 5. — Diffraction pattern obtained with

(13) Of course. a negative coefficient means that the corresponding ring aperture

thas reversed phase.
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‘We now put the conditions 4(0) =1, and A(x) =0 at » = 1,10. 3,83, 5,52,
the last being the second zero of Jy(x). We find a system of four equations
and solve it, with the result

4, =—284, A, =773,  Ay-=—171,67,  A,—3,77.

The corresponding diffraction pattern is represented in fig. 5. The dark ring
-surrounding the central disk has become larger.

Finally we try with five ring apertures, having the diameters D5, 2D/5.
3D/3, 4D/5. D respectively. The resulting amplitude will be

} 1 2 3 TN
() Alr) = A [ ) SEPAL JJ) - Aol [ JJ) n ;14,]0(5 J’) AT

We put the conditions 4(0) =1 and A(x) =0 at » = 2,40, 3,83, 5,52, 7,02,
the last value representing the third maximum of Jy(x). We find the coefficients

(6) A, =12,43, A, — —3411, A, — 40,03, A, — —25,31. .4, — 7,96.

The diffraction pattern is represented in tig. 6. These examples are sufticient
for illustrating the method and for showing how it is pessible, by increasing
the number of ring apertures,
to make the nearly dark zone
surrounding the central disk as
large as desired. The only draw-
‘back from the practical point of
~view is that the coefficients 4,
A, ... become larger and larger.
This means that a smaller and
smaller percentage of the luminous
flux passing through the pupil is
utilized in the central disk; the
fraction of this flux, wasted in the
outer rings very soon becomes
enormous.
It is also interesting to investi-
gate the influence on the coeffi- . x
cients of reducing the size of the ° o "
disk. For instance let us choose Fig. 6. — Diffraction pattern obtained with
for the first zero x = 2,00, ins- five ring apertures and coefficients (6).
tead of x = 2,40; to this end we
again use five terms, as in Eq.(5), with the conditions A4(0) =1 and
Ax) =0 at »r = 2,0, 3,5, 5,0, 6,0, We obtain the coefficients

{7) A, =553, A, =—14681, A, =15831, A, =—8942, A, —23,18.
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The diffraction pattern is represented in fig. 7 and seems to be very promising,
If we apply to it the Rayleigh rule, we find it possible to resolve a cluster of
seven stars, whose mutual distances have nearly half the value required in
the case of the uniform pupil. But
a comparison of the coefficients (6)
and (7) shows that a small re-
duction of the disk has been paid
for with a remarkable increase in
the luminous flux required to obtain
A(0) = 1.

Coneclusion.

The preceding results show that
it is necessary to give up some old
ideas concerning the resolving power
of an optical system.

First of all we notice that the

i x
ooz & classical limit of 1,22 1/D, which has
Fig. 7. - Diffraction pattern obtained with always been accepted as a theoretical
five ring apertures and coefficients (7). limit, proves instead to be only

a practical limit. Theoretically an
optical instrument with a pupil of given size can attain as high a resolv-
ing power as desired. The only limitation, if any, is set by the amount
of luminous flux that we have at our disposal. Thus once more we find
an argument in favour of the energetic theory of resolving power, developed
by the optical school of Arcetri, according to which it should be absurd to
speak of resolving power. without specifiying the amount of energy that is
available.

In the second place we find support for the views concerning resolving
power that were expressed some time ago by the present author (2¢). Ac-
corindg to the modern theory of commuuication, the only limitation set by
the wave nature of light on the performance of an optical system should concern
the maximum number N of informations that the system can transmit at a time.
As a crude approximation, this number is equal to the area of the pupil, divided
by the square of the half wavelength, that is N—=aD?/A2. Tf we want all
these informations to be equally distributed among all the directions of a half
space (as is the case for an ideal optical system), the elementary solid angle

(1) G. ToraLpo prI FraNcia: A#ti Fond. G. Ronchi, 6, 73 (1951).
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corresponding to each of them will be 27x/N=212/D?. This gives 1,41 A/D
for the elementary plane angle, that is something very close to the classical
1,22 2/D. But if we consent to reducing the angular field, there should be
no theoretical reason preventing the attainment of a higher resolving power.
‘This seems to be in agreement with the results contained in the present paper.

Finally we must point out a puzzling consequence of the preceding inve-
stigations. It is well known that one of the most elementary arguments used
for deriving the uncertainty principle of Heisenberg is based on the limited
resolving power of an optical system of finite pupil (7). Therefore our findings
would seem to be in contradiction with the uncertainty principle. It is outside
the scope of the present article to enter into this delicate question. We shall
deal with it in a forthcoming paper.

Aknowledgement.

Thanks are due to A. SAEzZ of the Institute of Optics of Madrid for many
interesting discussions; and to him and to Miss M. T. Zori of the Istituto
Nazionale di Ottica of Arcetri for their intelligent aid in the computations.

(17) See, for instance, I.. I. ScHIFF: Quantum Mechanics (New York. 1949), p. IL.

INTERVENTI E DISCUSSIONI

— F. Bruin:

In the example given by HEISENBERG he calculates the probability of the photon
hitting the plane of observation after it has passed a slit, the total probability being
one. Now if with the ring system the central disk is made smaller in diameter the
probability that this disk will be hit also becomes smaller. Will this probability not
become zero in the case that infinite resolution is reached?

~— F. J. ZUCKER:

There are two practical limitations which prevent the unlimited increase of antenna
gain or optical resolving power. One of them has been brought out by Dr. ToraLDO
in his comments on the surface waves, which create large storage fields in the vicinity
of the aperture. This suggests the alternative point of view of saying that supergaining
involues a high @ with the attendant high ohmic losses and narrow band width (first
pointed out by L. CuU in 1947, in the Proceedings of the I.R.E.). As a result of this
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limitation. the slightest amount of supergaining (or « super-resolving ») must he paid
for with a very rapid increase in ineficiency.

The second limitation has not yet heen mentioned: it is of a statistical nature.
If we try to build a «super » device, we must adhere to inhumanely close tolerances
to produce the rapid and steep variations in phase and amplitude required along the
aperture. This unfortunately means that supergaining must be paid for by the need
to fabricate hundreds or thousands of units before one will be found with the desired
characteristics. A general proof of this assertion will be found in the paper presented
by Mr. Ruze (}).

I would now like to comment on the question raised by Dr. ToraLDO with respect
to the uncertainty principle, viz.. what becomes of that prineiple when supergaining
is allowed? Let me reverse the guestion and ask: just why do we think there is any
connection at all between the nncertainty principle and the limit of optical resolution?
Many textbooks «deduce » the latter from the former, and this undoubtedly caused
the query. But the « deduction » only works fortuitously, and, in my opinion, is not
based on an inherent link between optics and the Heisenherg principle.

We can see this in the following way: ax soon as we are told that the g-space and
the p-space of the canonical variables are related via the Fourier transform, the Hei-
senberg principle immediately follows. It simply stutes that the product of the mo-
ments of inertia in the two spaces is a constant. Now it so happens that in physical
opiies we also have a Fourier-transform relation, namely between the sin # of the
Fraunhofer pattern and the wave number in the aperture. Consequently there results
a moment-of-inertia relation (i.e. the limit of resolution) which it formally analogous
to the uncertainty principle. We have a metaphoric relation between the two rather
than an intrinsic one, a circumstance already suggested by the fact that in the text-
book deductions from the Heisenberg prineciple we wmay cancel out Planek's constant
in the very first step, a sure indication that our end-result cannot he deeply connected
with quantum-mechanical notions,

You will object and insist that Heisenberg’s principle must be applicable to the
photon. This is true, but then let us define the photon electromagnetically; and not
from the approximate optical point of view. This is absolutely necessary in our
problem, because as soon as we permit supergaining, we leave the domain of ordinary
wave optics. The reason lies in the storage fields which cannot be defined in optics.
To put it differently: the existence of surface waves implies that the wave number in
the aperture is no longer restricted to the real domain, so that the moment-of-inertia
relation changes entirely; we can limit sin 6 at will, paying for it with rapidly increasing
gidelobes in the imaginary region. If we now wish to ask what limitations the Heisen-
berg principle imposes on the electromagnetically defined photon, we are led to a
much more subtle problem than the relation we played with before. We are in fact in
the field of quantum-electrodynamics, a different story altogether.

— P. AIGRAIN:

As regards Mr. ZUckER’s remark that the study of the light scattering experiment
is not a good way to demonstrate Heisenberg’s principle, and that a good demonstration
of this principles rests on the properties of the wave function, as such, one can say
that there are two forms of Heisenberg’s principle.

1) It is impossible to construct a wave function such that ApAdq <#/2, the
theorem referred to by Mr. ZUCKER.

{3y In this issue, pag 364.
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2) This is not a serious limitation in wave mechanics, because it is not possible
to measure Ap and Aq with more precision anyway, even in the old quantum theory.
The difficulty indicated by Dr. ToraLDoO concerns this second form.

— R. MALvANO:

I may be wrong, anyway I think that all of the question proposed by Prof. TorALDO
lies in the fact that we are only faced with a deduetion from Maxwell’s equations; and
from Maxwell equations we cannot deduce the IHeisenberg principle because this prin-
ciple starts from the finite value of the Planck’s constant 2. In the limiting case of
h — 0 we have no uncertainty principle.

— P. AlGgraIN:

It looks like one should look for the answer to Dr. ToraLDO's remark about Heisen-
berg's principle in the fact that super-directive pupils have a very high « @ » factor —
that is small band width and a correspondingly long response time.

— (. ToraLDO DI FRANCIA:

It had not been my intention to disenss here the question of Heisenberg principle,
which I considered only as a by-product of the preceding investigation. However,
the many interesting interventions on the subject induce me to express my point
of view.

I quite agree with those who have remarked that the theory of optical resolving
power cannot serve as a proof of the Heisenberg principle. As was pointed out, the
simplest mathematical proof is that no wave function can have pAg < #. But let
us suppose that we know the p of a particle and the p of a photon with an extremely
high accuracy (no matter how uncertain their ¢’s must consequently be). The photon
is scattered by the particle and enters a super-resolving microscope. There is a very
high probability that the photon is absorbed by the coating of the pupil (high reactive
power); still it is not impossible that it goes into the central maximum and is revealed.
What happens in this case? The Ap of the particle after the collision is practically
that of the photon, the q can be read off in the microscope, and we have ApAq K #!
How are we to interpret the result of this experiment?

Something must certainly be wrong, because the uncertainty principle is beyond
question to-day and a single exception would be sufficient to invalidate it. The way
out of the difficulty may be looked for in more than one direction. Some possible
explanations have already been mentioned in the preceding interventions. I should
want to add that perhaps Kirchhoff’s approximation is not sufficient for a super-
resolving pupil. In that case the angular separation of two point sources would not.
necessarily be equal to the angular separation of their images; in other words the
uncertainty in the position of a point source would not necessarily be equal to the
dimensions of the diffraction pattern.

However all these explanations need to be investigated in muech more detail.

— F. J. ZUCKER:

The only safe way, in my opinion, to apply the uncertainty principle to photons.
is to refer to quantum electrodynamics. For it is in this theory only that the attempt
is made to apply the quantum principles of pariicle mechanics to the vector fields
of electromagnetism. This leads to a quantization of the field variables, and it can.
be shown that, in the general case, they are then no longer simple functions of space
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and time but quantities which are canonically related and do not commute. I.e., if
we pick any two of the canonical field variables, (electric or magnetic field strength,
phase, momentum, ete.), it is no longer true that AB — BA = 0. The commutation
function AB— BA = ¢ (where (' always involves Planck’s constant h) gives rise to
the uncertainty relation

AA 4B > 0.

"This equation, which is obeyed by the field variables in various possible combinations,
has however no immediate physical significance. It does not imply, for example, that
AE AH are always > O and therefore can never be known accurately. The reason
for this is that the only ¥ and H which can be measured are average values over a
small space-time region. This is obvious if we merely consider that no matter how
small the dipole length, it is still finite. To obtain relations for these average values,
the uncertainty equation (in operator form) must be integrated. The result depends
.on whether or not the space-time regions of 44,, and 4B, can be connected by a
light signal. If they cannot, then A4, and AB,, commule and are thus not limited
by an uncertainty relation. This will be the case, for instance, if we measure two
linear components of the E or H field at the same time but in different locations; or
if we measure a component of E and a component of H at the same point but not in
the same moment.

The upshot is that I have not been able to find a case relevant to diffraction field
probing in which quantum electrodynamics imposes a limitation on the attainable
accuracy of measurement.

It seems to me therefore that the answer to Professor ToraLpo di FrRANCIA'S question
as to what becomes of the Heisenberg principle when «super-resolving » is allowed
.should be: Nothing, since the only correct, quantum-electrodynamical version of this
principle imposes no relevant restrictions on resolving power to begin with.



