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Summary. — A method is established to solve the Einstein equations
for a system of freely gravitating pole particles, by successive approxi-
mations. It is shown how one can choose the solution that represents
purely outgoing waves. It is then found that the fifth order correetion
to the acceleration involves a non-conservative term: energy is lost,
by gravitational radiation, in an amount exactly equal to that predicted
by the linearized theory. This can also be shown by directly computing
the loss of mass of the system. We then turn to examine the validity
of the linearized theory: it is shown that it cannot correctly deseribe
the field at very large distances from the sources, but nevertheless it
gives the right result for the radiated energy.

1. — Introduction.

Since the early years of the General Relativity Theory, it has been known
that the linearized field equations have wavelike solutions, and that the cor-
responding energy-momentum pseudotensor of the gravitational field has com-
ponents representing an energy flux (). This result, however, was treated
with caution, since the field equations are really non-linear. Later, approx-
imation methods were discovered, which took account of the non-linearity,
and gave the equation of motion of particles. The situation then became quite
chaotic. Some authors (**) claimed that there was no radiation reaction,

(*) Partly supported by the U.S. Air Force, through ARDC.
(M) L. Laxpau and E. Larsuitz: The Olassical Theory of Fields (Cambridge,
Mass., 1951), p. 331.
(2) L. InFELD and A. E. SCHEIDEGGER: Can. Journ. Math., 8, 195 (1951).
(3) A. E. SCHEIDEGGER: Phys. Rev., 82, 883 (1951); Rev. Mod. Phys., 25, 451 (1953).
() L. INFELD: Ann. Phys., 8, 341 (1959).
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others (%) found a gravitational damping—which agreed, but only qualita-
tively, with the linearized theory—and still others (*) found a gravitational
« antidamping », t.e. an energy gain!

One of the main causes of this trouble doubtless was the complexity of the
field equations: when extremely cumbersome expressions have to be handled,
the physical meaning of the various terms becomes unclear. The first step
toward the solution of this problem is therefore to develop an approximation
technique which minimizes the computational labour, and thus also the risk
of errors. The method that was recently developed by the author seems well
fitted for this purpose. It needs, however, some modifications, as will be shown
in Section 4. For the sake of completeness, let us briefly recall it.

2. — Approximation procedure.

One takes as field variables the contravariant densities g¢*” and oneexpands
them into a series (*)

g =g"+g"+ 8"+ ...,
0 1 2

where each term is by one order of magnitude smaller than the previous one.
One choose quasi-Galilean co-ordinates (g = %"’} subjected to the harmonic
0

condition g#, = 0. The solution behaving as purely outgoing waves is then

unique (°).
The Einstein equations how read, in natural units:

(l) Vzgyv_ :q'yv — 16ng$‘“’—l— @/w ,

where g = (— Det. g*))! and @* is quadratic in (g* — %*”). When (1) is ex-
panded into the various orders (in order to compute g*), @* thus depends
only on g*, m < n, and is a known -quantity. The con’;patibﬂity of (1) with
the haranonic condition g** =0 follows from the equations of motion (*),
which are most conveniently written as (g&*%),, =0, or

(2) (@T"), = 6T(q,,8"" 5+ 38" 7 (48,58 06— 810828, 1 5

where g,,= 878,

(3) P. Havas: Phys. Rev., 108, 1351 (1957).

(%) A. Traut™MaN: Bull. Acad. Polon. Sc., 6, 627 (1958).

(") N. Hu: Proc. Roy. Irish Acad., A 51, 87 (1947).

(3) A. PrrEs: Nuove Cimento, 11, 644 (1959).

(*) Greek indices run from 0 to 3, Latin indices from 1 to 3.

(®) V. A. Fock: Teoria Proctranstva, Vremeni ¢ Tyagotenia (Moscow, 1955), p. 441.
(*) F. HENNEQUIN: Thése (Paris, 1956).
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For pole particles, localized at 2"”: g’“(t), one takes (11)
4 4 -
3) 0T = S Mbetd(w 3,
A

where v = d&/dt and M is a function of time. (We eall M the « effective grav-
itational mass ». It can be shown (1) that the «intrinsic mass » my=Mg-'ds/d¢
is constant). The equations of motion then read

(4) (Mv*) = Mo*eP[g,.8" 5+ 38" (38,40 0 — 8408 5008%, 1 5

where the bracket has to be computed at the position of the particle under
consideration, and all the singular terms in it have to be neglected.

All that remains now to do is to solve (1) at the various orders, so as to
get the g*” which appear in the right hand side of (4). For this purpose, it
is convenient to write

g = B+ 87,
where

(5) VIp® — H* = — 16729T
is readily solved by the use of Liénard-Wiechert potentials, and
(6) VI BE — @,

One now has to choose the expansion parameter: the most suitable one
would be the reciprocal velocity of light, but it has already been taken as
unity. An equivalent choice is to assume that the velocities are small quan-
tities of the first order. Accelerations and masses are therefore of the second
order. As the only dependence of the field quantities on time is through the
positions and velocities of the sources, it folows that a time derivative of a
fleld quantity is by one order of magnitude smaller than a space derivative.

One thus expands ('2)

: 4 2 1 dqz Mot o'R 1 dzn+1 % R
7 B — [ b R2n—1 — v n
© . f ng:o [(2%)! dge» z v } T [(2n 4 1)} dizett 2 v 1 ’
where ¢ is an arbitrary constant (for pure retarded potentials, ¢ = —1). Here

R= VEE and Rr— o5 &,

(') W. TurczYJEW: Bull. Acad. Polon. Sc., 5, 279 (1957).
(*2) A. Prrus: Nuovo Cimento, 11, 617 (1959).



3$hd A. PERES

In thix expression, we suppose that the co-ordinates & and velocities ©*
are known (initial conditions) and that the masses and accelerations have to

be computed
M:m+7p—f—4gb+...,

O = at 4 g+ g

Note that m and g* are small quantities of order (n4-2).

3. — Non-radiative approximations.

Let us now work step by step. The lowest order term in g* is
g = [)oo: 4 z (m/R) ,
2 2

Introducing this into (4) one gets the Newtonian approximation
. 0 <, m
m=20 s ak = 8_57‘ 2 E .
Next, one has g% = gt'=0, and g°* = h°* =4 Y (mv*/R), whence it follows
3 3 3 3 :
that there is no first order correction to the Newtonian approximation
(m= ¢*=0) and that the second order correction to mass is (?)
m = }mv? + 3m 3’ (m/R) .

Noun-linear contributions to the field appear at the fourth order (32). One has

m? ; AR
00 —. kk
? =1 ERz+1‘.1;§.B mmS¥e,

%()k: 0,
1 ot 1 4 B LI ;
gi=5 T m l’E% — (log R"“} + 3 o — 48,
where
o 0 A B
Sit=— — log (R+ R+ D),
0* p&
and

D= VDDF, Dr=E—
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This has to be added to

- ”gla ﬁ..
b _4Z<R+2R ’
E)Ok:()’

mokpt
El
? -42 R -

From this, we can compute the second order correction to the accelera-
tion @ which leads, in the two-body problem, to the perihelion advance (®).

4. — Radiation field.

The radiation field—i.e. that part of g*” which is proportional to e—ap-
pears in the fifth order. (Terms proportional to & appear only in the ninth
order, and we shall not have to deal with them). From (7), one has

b =4s3 {m + ('R"")} ,
b= de S m(vko?) .

As ?"":: ?“:O, one is tempted to write %"“:%“:0. This is indeed
what we have done in our previous paper (and what has also been done by
other authors). As a matter of fact, the situation is not so simple; as clearly
stated by SCHEIDEGGER (!3), the problem is not to find non-conservative equa-
tions of motion, but to show that these solutions indeed correspond to free
particles, i.e. to purely outgoing waves. Unless this is proved, it may always
be objected that the energy change of the system, or part of it, is due to the
interaction with some external radiation field.

The difficulty is essentially due to the non-linearity of the field equations:
one cannot state that a given term, in the field, is due to a certain source,
because the field does not depend linearly on the sources. There is therefore
a danger of introducing into the solution gome external field (pure radiation)
that is not caused by the sources under consideration, but that influences
their motion.

In practice, the difficulty appears in the following way: at each stage of
the approximation procedure, one has to solve a Poisson equation, and there

(3¥) A. E. SCHEIDEGGER: Phys. Rev., 99, 1883 (1955).
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is a considerable freedom of choice of solutions, each representing a possible
motion and a gravitational field belonging thercto ('3). Only one of these
solutions behaves at infinity as purely outgoing waves (°); the remaining ones
contain also incoming waves. It is in general difficult to determine which
solution is the correct one, because the n-th term of a series expansion in
powers of (v/¢) behaves in the wave zone as R"2, and no boundary conditions
for each stage of the procedure are known.

As far as h** is concerned, the difficulty can be obviated by directly taking
the expansion of the Liénard-Wiechert potentials, i.e. eq. (7). However, it
is much more difficult to determine the radiative part of 3#* (14). Some infor-
mation can however be obtained by the following argument:

A solution behaving at infinity like jf(f — R/¢)/R has an expansion
f&)) R —f'(t)je+.... It is therefore reasonable to stipulate that if a term such
as f(t)/R occurs at some approximation stage, one must add —f(t) — or,
more generally, £f'(f) — at the next stage (1%). (Note that this is a solution
of the Laplace equation). In the case that f(f) is a constant, this vanishes,
but two approximations higher there will be a term sfR?/6. (Note that this
also is solution of the Laplace equation.) For instance, E)“:4E(m@kv"/1?)

is followed by fs)’“: 4e Zm(vk‘vl), and h* =4 > (m/R) is followed, in the third
.o 2
place (i.e. in ?90) by 4¢3 mR?/6.
Now it is easily shown that for large R

__6kl+ Dk_Dl/D‘
kit
Bt > 2DR ’
50 that
A B
300 _.}il Z'Z”’m
4 D’
and
2 <, 4 8 D*D?
R
We thus have
o a1
8 14e > mm (D)’
and
i 9.5 Al (DD
f =—2¢>'m ( D)

(**) I am indebted to Dr. D. W. Sciama for calling my attention to this point.
(%) A. PERES: Nuovo Cimento, 18, 670 (1959).
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Further one has (%)
pE 1 .
E)Ok: 4 z [/’;@R -+ 3 m(v’fR)} )
1 34
%"k =~§zm2 [15;; —vl(log R), m} + 16 z nin ( piQe 4 ka”—v‘S“) .

At large distances, this last expression behaves as

£ DrDv
@Lémzqn(}_vu‘m+§si%?*w 2.

Taking into account that > ma*= 0, one gets

‘ . 4 2 [viDED!
Bk — — 2¢ > mm<f— e ) ,

which has to be added to
. . m oo
ok = 4e > [(gnvk) + mat+ = (@kRz)} .

It is easily verified that a ,+a%, = 0 as it should be. The difficulties that
5 0 P &

previously arose concerning this point were due to a different choice of the
radiative fields in the two expressions.)

5. — Lorentz-invariance.

If it can be shown that the method developed in the previous sections is
Lorentz-invariant, we can be assured that it gives the correct result because
of Fock’s uniqueness theorem (°).

‘We have supposed up to now that velocities were small quantities of the
first order. This is equivalent to the assumption that the reciprocal velocity
of light (which has been taken here as unity) is small of the first order. As
the velocity of light is Lorentz-invariant by definition, our approximation
method should also be Lorentz-invariant. This has to be understood in the
following way:

Let us perform a Lorentz transformation

e mk __ ﬂkt 1 kR 1Inl /:t—ﬂlml
! $‘ﬂéﬂ+&W1ﬁzﬂPﬁ% RV e
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of all the quantities that appear in our equations. The velocity f* is an
arbitrary constant, subject only to the limitation of being small of the first
order.

In general, a' " will now depend on all the g**, m <<n. We require a'® to
depend in the wo?me way on the transformed sowceg‘, as q* on the original sorqiwces.

This requirement may further limit the freedom 0% choice of solutions that
still remains after the rules given in the previous section. In practice, it may
be very difficult to apply it, because the R* are not the spatial components
of a four vector (they are defined for equal times of the source and field point).
Their transformation law is therefore very complicated: it involves not only
A% and %, but also all higher time derivatives of o

Fortunately, the rules of the previous section are sufficient to give un-
ambiguous results up to the seventh order, and we shall have no need to test
the Lorentz-invariance of our formulae. We shall take it for granted, because
they seem to be the only reasonable solution of Lorentz-invariant equations.

6. — Radiation reaction.

We can already compute the fifth order radiative correction to the mass.
From (4), one has vg'b:m(%ps;““—igkk),o. It can be shown, however, that

g“ = 3%0", so that m=0.
The fifth order radiative correction to the acceleration is given by (4), as

gk — g(”c.o + i_gﬁw'k_ %gwgoo,k_ &gugood — /vkgkl.o,
[ ? 5 2 5 2 5
where g** g% +g*. We thus still need (_:;""_k. One has, from (7)

9

E)kz = 4¢ z {m(,ukgl_‘_ /Ulglk) -+ (@bk”l) + _;i@_' (vklez)} .
Moreover, one has, from (6)

Vzéoo — 7@oo_l_ %oo — %kzgoo'kl — 14¢ z mm (ﬁ) ,

Sont s 48 (DD
V¢'73 = gl — qezmm(z)s ,
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whence
25, A B 1
{8) \% ?7»//4 = %“%"OM —16e Y’ mm (1—)) .

From the rules of Section 4, we must also know the asymptotic behavior
of 8#* in order to solve (8). One has, from (6)
L]

(9) Vigur — Gu + (9300 + 84 =

Here, Q"" is an extremely cumbersome expression. It is sufficient for our

purpose to know that it falls off, at large distances, like E-4, and therefore
its contribution to %”"” falls off as f(t)/R. This produces a term like ef'(f) in

8%, which does not concern us, however, hecause only the spatial derivatives
of this expression are needed. The curled bracket in (9) gives a contribution
to 34
L
o B+ R
A B
SE{ZmZIOgR_y_Z’ ﬁﬁz[log (BR+R+D)— %ﬂ .

Unless all )= 0, this expression behaves at large distances like R, and there
corresponds to it, in §”“, a term behaving as R?. This can readily be verified

from the solution of (8):

e,
2 2
mRR) s ML(R +R

§"”=2(g”2~ 92 "% D )+6f/(t).

All the quantities needed to compute ¢* are thus known.

7. — Radiated energy.

We define the radiated energy, per unit time, as the rate of work of the
particles against their own radiation field:

U=—— zmgmﬂ“.

For the sake of simplicity, we shall restrict ourselves to the case of two
particles revolving on circular orbits (in the Newtonian approximation) at a
distance D from each other. In this case, /%, q"" adn gkk vanish. Next we choose,
for convenience, a system of co- ordmates Where the center of mass is at rest:
> mv¥=0. As a consequence, we can neglect all the spatial constants which
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appear in the first four terms of @*, as they give equal eontributions to the

accelerations of both particles, and will therefore cancel in the computation

of U. Thus the only relevant term of H* is 4¢ > m Eé/5! and the only rel-
?

evant term of — g%  is *432m(15’5f€2)/3! Moreover it can be shown (®) that
6

the contribution from gur exactly cancels the fourth term of g*. One thus gets

where the a sign recalls that some spatial constants have been omitted, and
where the right hand member has to be computed at the position of the par-
ticle under consideration. A straightforward computation gives

£ mok
k/\l-———- —_—
g ~ 25 D (m + M) (461 M — 269m},

where M is the mass of the other particle. It follows that

32 m2M2*(m + M)
(10) U=—c¢ = T
For purely outgoing waves (¢ =—1), this agrees with the result of the
linearized theory (}). (The fact that one has previously obtained a negative
radiated energy should be ascribed to the presence of incoming gravitational

waves, which were absorbed by the particles).
The physical reality of this phenomenon can be confirmed by computing

the rate of change of the total mass. One finds (**)

Z@Z_Uv

as one should expect.

8. — Behavior of the field at very large distances.

Henceforth we take, for the sake of simplicity, m = M. The evolution
of the system is ruled by the equations

d me 64 mb
—_ 2 — = — = e e
dt(m” D) v 5 D’
2mu? m2

D D’

(1%) A. PERES: Nuovo Cimento, 13, 439 (1959).
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whence

(11) Dt = % m3(T —1) .

T is the time at which radiative capture would occur, if the last equations were
rigorously correct. Actually, all the previous theory is valid only for low veloe-
ities, 4.e. as long as D >»>m. For very small D, capture occurs even if radia-

tive effects ave discarded (17).
From (10) and (11), one gets

1 $
o = %(%) :

It follows that, at a distance R, the average energy flux and energy density
of the gravitational waves are about

Ui—R) 1 ( §m )%

12 = - .
(12) = "inRr  320aR:\T—iL R

For R T—1t=>5D1/5312 m?, this varies as R~% but for very large R,

one has

As @ is proportional to the square of the amplitude of the radiation field, it
follows that the latter falls as R~

On the other hand, the energy density & produces an additional field (**),
the potential of which varies, at. large distances, like R™*"* i.e. more slowly
than the amplitude of the radiation field. This additional field, however, is
quasi-static, as shown by (12): its time and space derivatives behave like R™°",
i.e., they fall off faster than those of the radiation field. Therefore the energy
density of this additional field can be neglected with respect to @.

Let us summarize: at very large distances (R > D*/m?®), the field contains
a static part behaving as (m/R), a quasi-static part behaving as (m/R)%* and
a dynamic part behaving as (m/R)*™®. (This result does not contradict a

(*") C. DArRWIN: Proc. Roy. Soc., A 249, 180 (1959).
(*®) A. Perss and N. RoseN: Phys. Rev. 115, 1085 (1959).
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theorem of Papapetrou ('*) according to which the tield can be asymptotically
Euclidean at infinity only if it is a static both for ¢ — 4-co and t— — co,
because the validity of this theorem is limited to the cases where there exists
some constant radius B, such that space is empty for R > R, at all times ¢.
In our case, however, it is easy to see from (11) that no such R, exists.)

The fact that the energy density of the gravitational field behaves at large
distances like R~'* has the important consequence that the total energy of
the gravitational field is bounded. (It would not be bounded if the energy
density behaved like B2, or evern R"%) It is therefore possible to define a
total energy of the particles and the field. This is constant, because the well-
known conservation theorem

[6(T* +17)], =0

can be written

(13) —(% (T + 1) dV:jgt"dek,

and the right hand member behaves like R~** for very large distances
(R> D"'/m* and thus asymptotically vanishes at infinity. In fact, by con-
sidering the situation when the particles were very far apart, one gets

fg($°°+t°°)dV: Sm.

all space

This fact was incorrectly interpreted by INFELD (%) as a proof that gravi-
tational radiation does not exist. Actually, only the sum J' gEeedv+ J' gteedV
iy constant, while energy is constantly pumped from the matter to the radia-
tion fleld. Indeed, if we limit the domain of integration to the wave zone, i.e.,
to distances such that

Da\# 1
(14) () <r<g,
both memhers of (13) are positive and approximately independent of R, as
will be shown in the next section.

All the previous arguments are valid only in the case of retarded potentials
(outgoing waves, ¢=—1). In the case of half-retarded, half-advanced po-
tentials (standing waves, ¢ = 0), no energy is radiated and the motion is
truly periodic. The field then diverges logarithmically at spatial infinity (%2°).

(**) A. PaPAPETROU: Ann. Phys., 2, 87 (1958).
(?®) A. PaPAPETROU: Ann. Phys., 20, 399 (1957); 1, 186 (1958).
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9. — Validity of the linear approximation.

We already know that the linear approximation is valid neither at very
small distances from the sources (of the order of the Schwarzschild radius),
nor at very large distances (R > D*/m®) where the quasi-static field caused
by @ is more important than the radiation field. Its domain of validity, if it
exists, must therefore be limited to the wave zone, defined by (14).

It is therefore important to examine in detail how the linearized theory
can nevertheless correctly give the radiated energy. We here follow the proof
of LANDAU and LirsHITZ (}). The «solution » of (1) is

{gZH — (1/167) O}

g =+ 4 ;

av,
where the curled bracket has to be computed at a retarded time. T.et

i
T = g — — O,
6% 167

For large R, one can write

gy =y | %{fﬁ”dl’} .

Moreover, it follows from (1) and the harmonic condition that z**, =0,
whence

0 0k W ki
T 0 ="—"T"4%, T = —7T";.

Let us multiply the first of these equations by x‘ and integrate over a large
sphere of radiug R. One gets

(15) %f’z’“m’dV: ——/r"",kw’dV:fr“’dV—f(T‘”‘x’),de.

‘We shall now show that the last integral can be neglected. One has
f(r”kwl),dez *ptdS; .

Now ¢ varies as R~? (in the wave zone) so that it seems that this expression
diverges as R. This is not the case, however, as the following arguments shows:
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it is possible to consider, instead of an infinite wave train, s short pulse of
gravitational waves (21). One can take the surface integral at a very large
distance, so that the pulse has still not reached it. It then vanishes, and the
volume integral vanishes also. The other integrals in eq. (15), however, remain
finite.

Let us note that this argument is correct only if there is a possibility of
dealing with linear wave trains, i.e. those that can be arbitrarily decomposed
into independent pulses. In reality, there is an interactionbetween the various
parts of a wave train, due to the non-linearity of the Einsteins equations.
The previous argument is therefore valid only inasmuch one can neglect the
gravitational influence of the energy density of the waves. It is therefore
correct in the wave zone, but not for R > D*/m?

Thus, in the wave zone

d

— [zt dV =[rdV.

dtjr °td
In a similar fashion, one can show that

dz
fr’”dV——— % ) TrkptdV,

whence

16 g = 28 fogpiay = 23 m (e
R dr B

This is indeed equal to the limit of %“, for large R, as found in Section 3.

The only difference is that the right hand member is now to be computed at
time (! — R), rather than ¢. (Henceforth, it will always be understood that
gsources have to be considered at a refarded time.)

10. — The wave 2zone,

The wave zone is characterized, in the case of outgoing waves, by

G e 0 0
A A A~ 0 ().

ot or rod  rop
Let

—nk =n, = R*/R, —=—my =1,

(?31) D. GEISSLER, A. ParapETROU and H. TREDER: Ann. Phys., 2, 344 (1959).
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whence

(17) nfn, = 0.
One can write (22)
(18) 8", = a¥n R,

where a*" may depend on #n,, but is almost independent of R (except through
the retardation of time).
The harmonie condition now reads

(19) a’n, =0,
whence

(20) a’* = akn,,

and

(21) a’ = a%n, = a¥'n;n,; .

The energy-momentum pseudotensor of the gravitational field is given by (%)
16agt” = g g™ [g"" ($07078 5, — 1370 ,a8 4, + —lgg”ga,gg,,e) +
+ 050,87 g, + 658,0707 — 046, 6%67 — 046%87 g, —
— 80,0088, + 36878, 85— 18787 8.59,,] -
With the help of (17) and (18), one gets, in the linear approximation
" = on*n”,
where
26O —_ 1 2 o8 o
(22) G *m ( Wan"?ﬁe—naﬁnng)a’ a’= .
Introducing
bkl == gkl — L §kignn ,

one gets, with the help of (20) and (21)

1

7= $dnk?

(2D bk — 4b*P bR, m, + DFLbMn M, nLM,) .
(22) A. TrRAUTMAN: Bull. Acad. Polon. Sc., 6, 407 (1958).

24 - Il Nuovo Cimento.
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Moreover, one has (2°)

mom. — 1
NyNg =3 611!1 9

_ 1
My By N, B == T5 (5klépa+ 6lc7)61(1 + 6hq(sh) ’

whence
_ 1

o = bklbkl.

807 R?

This is always a positive quantity. It follows
_ 1
U:ft"de,c :fcnkd&c = 4nR’0c = 20 brL bk,
In the case of free particles, one has, from (16) and (18)

(23) Akt — — 23 m(EEY,
whence

[Z m(3ERE— 6kl§n§n)]

This is the usual formula for gravitational radiation (*). As it has been
independently checked both for free particles (Section 7) and for constrained
motion (24), we can say that the existence of gravitational radiation is now awell
established.

From (20), (21) and (23), it follows that the form of ¢° and g%, in the
wave zone, is (°):

gre=1+— zm+~nkn12m (EFE

4 2 Y
q :Ez/m'u +Rnlzm“:§)

When we compare these formulae with the asymptotic values of a°° and q“

that are given in Section 4, we find that they do not agree. This fact should
not surprise us, because we have used in the first sections of this paper an

(3*) L. LaNpAvu and E. LirsuIiTzZ: loc. cit., p. 206.

(2t W. B. Boxnor: Nature, 181, 1196 (1958); Phil. Trans. Roy. Soc., A 251, 233
(1959); A. PrrEs and N. ROSEN: Ann. Phys. (to be published).

(2%) V. A. Fock: loc. cit., p. 417.
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approximation method based on the agsumption that time derivatives are much
smaller than space derivatives. This is indeed correct in the vicinity of the
particles, but in the wave zone, time derivatives are of the same order as
radial space derivatives, and much larger than tangential space derivatives.
The various orders of approximation are therefore completely different: quan-
tities of the n-th order in one region contain also contributions from all lower
orders in the other region, and no direct comparison can be made. The agree-
ment for g, that we have found in the previous section, should be ascribed
to the fact that in both methods we were dealing with the lowest approxi-
mation to gt

11. — Uniqueness of o.

Focox has shown (°) that the harmonic system of co-ordinates behaving at
infinity as pure outgoing waves is unique (up to a Lorentz transformation).
We have found, however, that the dominant term at very large distances hay
not the form of outgoing waves.

We now intend to show that it is sufficient to require that the system be
harmonic and behave as outgoing waves in the wave zone (but not neces-
sarily near the sources nor at infinity) in order to get a unique value foro.

‘We thus assume only (18) and (19). Under an infinitesimal co-ordinate
transformation «'# = x*-+£¥, the g* transform according to

] )
g = gl T B e
As the g'*” are also to behave as outgoing waves, one must have

0“%3

éo‘:ﬁ = R’
where the ¢* themselves satisfy
o g=1"ng.
Thus
(24) a'® = a® 4 " + Pt — g7fn,

It follows that a'#*n,= 0, i.e. the new system is also harmoniec.
Let us now go back to eq. (22) which defines o. A straightforward com-
putation shows that

I3

o (29anpe — Naptmg) @' *P '™,

- 1
" 4mRe2
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is exactly equal to ¢. This could be foreseen by noting that (24) can be
written as

a' P = a/1v+ (;”‘v—]— P 7/441» ©

i.e. a,, behaves as a tensor density would under a transformation #'* = 2* 4 ¢*.

One may also define ¢ with the help of the Einstein pseudotensor (2¢)

o L (6‘:8 g8, 8 )

167 70597"3—” ’
where
8= g%, 0%, ( 0408 Goun— 7 9 ¥ Qur Qe 1+ % 8" Gasp g,,e> .
Now
agcT%'” = % g™, {gut (gm 8o — % Bag g,,e) — 0504 8po — 05 gag} ;
whence

R ST P 1 1 1
tlv == ﬁ}; a ﬂ,yg Q,z [6¢ (5 619/6; gau_z g? An gﬁg + "8‘ Qv gaﬂ Qng) +
1 v Rt 1 HT T AR T Qi
T 500 07 Ban 8p0 — 5 8" 8oy Gne — 0202850 — 05020, )| -
With the help of (17) and (18), one gets, in the linear approximation

1 a
= GinEe W0y (20027 g — Nop ) &P 07 .

We thus get exactly the same result as with the {** of Landau and Lifshitz.
At last, let us note that a very simple exact formula for ¢ can be obtained
from

167t — (g*Pg® — g**g%)

which holds in vacuo (T°®=0). This can be written

gOkyOl
(25) 1678t = [ (—g)g™ | 9*' — )
g00
(*) R. C. ToLman: Relativity Thermodynamics and Cosmology (Oxford, 1934), p. 224.
(*") P. A. M. Dirac: Proc. Roy. Soc., A 246, 333 (1958).
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However

4 gohgo!
(g“—_”goo Gim = 6;;,

and
(— g)g" = — Det (g4,) -

Therefore the square bracket in (25) is simply minus the co-factor of g,, in
the determinant of the g,.,:

167Tgt00 — %niiknlmn(gjmgk")’“ .

One thus sees that only the six g, give a contribution to the energy den-
sity of the gravitational field. This is related to the fact that they are canon-
ical variables, while the four g, are not (*7).

* K ok

I am greatly indebted to Professor N. RosEN for many stimulating dis-
cussions and much helpful ecriticism.

RIASSUNTO )

Si espone un metodo ad approssimazioni successive per risolvere le equazioni di
Einstein per un sistema di particelle polari che gravitano liberamente. Si dimostra che
si pud scegliere la soluzione che rappresenta soltanto onde uscenti. Si trova che la
correzione di 5° ordine all'accelerazione comporta un termine non conservativo:
Venergia si perde, per radiazione gravitazionale, in quantity esattamente uguale a
quella predetta della teoria linearizzata. Questo pud essere dimostrato caleolando la
perdita di massa del sistema. Poi si passa ad esaminare la validitd della teoria lineariz-
zata: si dimostra che non pud descrivere correttamente il campo a distanze molto grandi
dall’origine, ma ciononostante da un risultato corretto per 'energia irradiata.

* Traduzione a cura della Reduzione.



