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S u m m a r y .  -~  A method is establ ished to solve the  Einstein equat ions  
for a system of freely grav i ta t ing  pole part icles,  b y  successive approxi-  
mations.  I t  is shown how one can choose the  solution t ha t  represents  
purely outgoing waves. I t  is then found t ha t  the  fifth order correct ion 
to the acceleration involves a non-conservat ive  te rm:  energy is lost,  
by gravi ta t ional  radiat ion,  in an amount  exac t ly  equal to tha t  p red ic ted  
by the l inearized theory.  This can also be shown by  direct ly  comput ing  
the loss of mass of the  system. W e  then turn  to examine the  va l id i ty  
of the linearized theory :  i t  is shown t h a t  i t  cannot  correct ly describe 
the field at  very large distances from the sources, but  nevertheless i t  
gives the right result for the rad ia ted  energy. 

1 .  - I n t r o d u c t i o n .  

Since  t h e  e a r l y  y e a r s  of t h e  G e n e r a l  R e l a t i v i t y  T h e o r y ,  i t  h a s  b e e n  k n o w n  

t h a t  t h e  l i n e a r i z e d  f ie ld e q u a t i o n s  h a v e  w a v e l i k e  solutions~ a n d  t h a t  t h e  cor-  

r e s p o n d i n g  e n e r g y - m o m e n t u m  p s e u d o t e n s o r  of t h e  g r a v i t a t i o n a l  f ie ld  has  com-  

p o n e n t s  r e p r e s e n t i n g  an  e n e r g y  f lux  (1). Th i s  result~ h o w e v e r ,  was  t r e a t e d  

w i t h  caution~ s ince  t h e  f ie ld e q u a t i o n s  a r e  r e a l l y  n o n - l i n e a r .  L a t e r ,  a p p r o x -  

i m a t i o n  m e t h o d s  were  discovered~ w h i c h  t o o k  a c c o u n t  of t h e  n o n - l i n e a r i t y ~  

a n d  g a v e  t h e  e q u a t i o n  of m o t i o n  of p a r t i c l e s .  T h e  s i t u a t i o n  t h e n  b e c a m e  q u i t e  

chao t i c .  S o m e  a u t h o r s  (2.~) c l M m e d  t h a t  t h e r e  w a s  no  r a d i a t i o n  reae t ion~  

(') Pa r t ly  suppor ted  by  the U.S. Air  Force,  th rough  ARDC. 
(1) L. LANDAU and E. LIFSHITZ: The Classical Theory o] Fields (Cambridge,  

Mass., 1951), p. 331. 
(2) L. IN~'~LD and A. E. SCHEIDEGG~.I~: Can. Journ. Math., 3, 195 (1951). 
(s) A. E. SCREIDEGG],.~: Phys. Rev., 82, 883 (1951); Rev. Mod. Phys., 9,5, 451 (1953). 
(4) L. INFELD: Ann. Phys., 6, 341 (1959). 
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others (5.~) found a g rav i t a t iona l  d a m p i n g - - w h i c h  agreed~ b u t  only qual i ta-  
t ively,  wi th  the l inearized t h e o r y - - a n d  still others (7.s) found  a g rav i t a t i ona l  

(~ an t idamping  ~, i.e. an energy ga in!  
One of the  ma in  causes of this t rouble  doubtless  was the  complex i ty  of the  

field equat ions :  when  ex t r eme ly  cumbersome  expressions have  to be  handled,  
the  physical  mean ing  of the  var ious  t e rms  becomes unclear .  The  first s tep 
toward  the  solution of this p rob lem is therefore  to develop an a p p r o x i m a t i o n  
technique which minimizes the c o m p u t a t i o n a l  labour,  and  thus  also t h e  r isk 
of errors. The m e t hod  t h a t  w~s recen t ly  developed b y  the  au thor  seems well 
f i t ted for this purpose.  I t  needs~ however ,  some modificat ions,  as wi l lbe  shown 
in Sect ion 4. For  the  sake of completeness ,  le t  us brief ly recal l  it. 

2 .  - A p p r o x i m a t i o n  p r o c e d u r e .  

One takes  as field var iables  the  c o n t r a v a r i a n t  densities g ~  and  one expands  

t h e m  into a series (*) 

o 1 2 

where each t e rm  is b.y one order  of magn i tude  smal ler  t h a n  the  previous  one. 
One choose quasi-Gali lean co-ordinates  (.q"~= ~"~) sub jec ted  to the ha rmonic  

o 
condi t ion f i u ~ =  O. The solution behav ing  as pure ly  outgoing  waves  is then  

unique (g). 
The Eins te in  equat ions how read,  in na tu r a l  uni ts :  

where g =  ( - - D e t .  6~)  ½ and 0 ~ is quadra t i c  in (g~--~/u~).  W h e n  (1) is ex- 
panded  into the  var ious orders (in order to  compute  ~") ,  0 u~ thus  depends  

only on ~ ,  m < n, and is a known  q u a n t i t y .  The compa t ib i l i t y  of (1) wi th  

the  ha rmonic  condit ion ~ g .~- -0  follows f r o m  the equat ions  of mo t ion  (,0), 

which are mos t  convenient ly  wr i t t en  as (~u ' ) :~  ~ 0, or 

where q , ,  = ~ - - i ~ .  

(5) p. HAVAS: Phys. Rev., 108, 1351 (1957). 
(6) A. TRAUTMAN: Bull. Acad. Polon. Sc., 6, 627 (1958). 
(7) N. HE: Proc. Roy. Irish Acad., A 51, 87 (1947). 
(s) A. PERES: Nuovo Cimento, l l ,  644 (1959). 
(*) Greek indices run from 0 to 3, Latin indices from 1 to 3. 
(g) V. A. FOCK: Teoria Proctranstva, Vremeni i Tyagotenia (Moscow, 1955), p. 441. 

(10) F. tIE}cNEQVI~: Th$se (Paris, 1956). 



G R A V I T A T I O N A L  R A D I A T I O N  353 

~ (~,) F o r  pole part icles,  local ized a t  ~ =  ~ (t), one t akes  

(3) 
A . At - - - ~ - - ) -  

where  v ~ = d~" /d t  a nd  M is a f u n c t i o n  of t ime.  (We cull M the  (~ effect ive  g rav -  

i t a t iona l  mass  ~). I t  can  be shown  (n) t h a t  the  (( in t r ins ic  mass  ) ) m o = M ~ - ~ d s / d t  

is cons tan t ) .  The  equa t ions  of  m o t i o n  t h e n  r ead  

(4) M?~ ~ [ ~ y ~  ,p 

where  the  b r acke t  has  to  be c o m p u t e d  a t  the  pos i t ion  of the  par t i c le  u n d e r  
considera t ion,  and  all the  s ingular  t e rms  in i t  h a v e  to  be neglec ted .  

All t h a t  r ema ins  now to do is to solve (1) a t  t he  va r ious  orders ,  so as to  

ge t  the  f l~ which  a p p e a r  in the  r i gh t  h a n d  side of (4). F o r  this  purpose ,  i t  

is conven ien t  t o  wri te  

where  

(5) V % " - -  i~," = - -  1 6 n ~  .~ 

is read i ly  solved b y  the  use of L i 6 n a r d - W i e c h e r t  potentials~ and  

(6) V ~  ~ '~ -  ~'" = 0 ~" . 

One now has  to  choose the  expans ion  p a r a m e t e r :  t he  n los t  su i tab le  one 

wou ld  be the  rec iproca l  ve loc i ty  of l ight ,  b u t  i t  has  a l r e a d y  been  t a k e n  as 
un i t y .  A n  equ iva l en t  choice is to  a s sume  t h a t  the  veloci t ies  are  smal l  quan-  

t i t ies  of the  first  order .  Acce le ra t ions  a n d  masses  are  the re fo re  of the  second  
order.  As the  on ly  dependence  of the  field quan t i t i e s  on t ime  is t h r o u g h  the  
posi t ions and  velocit ies of the  sources,  i t  follows t h a t  a t ime  de r iva t i ve  of a 

field q u a n t i t y  is b y  one order  of m a g n i t u d e  smal ler  t h a n  a space  de r iva t ive .  

One thus  expands  (~) 

. ,~_0/[(2n)! dt 2- .~ Mv~'v"R2'~-'  + ~ (2n + 1)! at  2,~+, ~ M v , , v ~ R  . .  , 

where  s is an  a r b i t r a r y  c o n s t a n t  (for pure  r e t a r d e d  po ten t ia l s ,  s = -  ] ) .  H e r e  
R = ~ / R k R  ~ and  R ~" = x k - -  ~k. 

(11) W. TULCZYJEW: .Bull. Acad.  Polon. Sc., 5, 279 (1957). 
Q~) A. P~g]~s: Nuovo Cime,~.to, l l ,  617 (1959). 
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I n  this expression,  we suppose  t h a t  the  eo-ordin:~tes ~k :~nd veloci t ies  l, ~ 
a rc  k n o w n  (initial condi t ions)  a nd  t h a t  the  masses  and  accc le ra t ions  h a v e  to  

be c o m p u t e d  

M = m + m + m + . . . ,  

~ = a~ + a~ + a~ + . . . .  

N o t e  t h a t  m and  a~ are smal l  quan t i t i e s  of o rder  (n~-2).  
n 

3. - Non-radiat ive  approximat ions .  

Le t  us now work  s tep  b y  s tep.  The  lowest  order  t e r m  in 6~' is 

c3oo = ~)oo =_  4 ~ (re~R), 
2 

I n t r o d u c i n g  this in to  (4) one gets  the  N e w t o n i a n  a p p r o x i m a t i o n  

a k ~ _  ~ m ~:o ,  ~ ' ~ .  

:Next, one has  fl0o _ O~z= O, a n d  fl0k : ~0k =_ 4 ,~ (mvk /R) ,  w h e n c e  i t  fol lows 
8 8 3 8 

t h a t  the re  is no  first order  co r rec t ion  to  the  5Tewtonian a p p r o x i m a t i o n  

( m - -  a~ = O) and  t h a t  t he  second  order  co r rec t ion  to  mass  is (~) 

m = ½mv' + 3m y '  (re~R). 

~ o n - l i n e a r  con t r ibu t ions  to  the  field a p p e a r  a t  t he  fou r th  o rder  (1~). One  ha s  

where  

a n d  

m 2 . ~ ?  A B 
8 ° ° :  7 ~ + 1 4  r a m s  kk, 
4 . A , B  

~Ok : 0 
4 

~ . , = .  ~ ~ m. [ ~  - ( log R) k, + ~.~ # ~ ( 2 ~ " ' S - -  - -  ~S k') , 

~ x B 

A ~ l o g ( R + R + D ) ,  

D = ~/D~D ~, D ~ = ~-- ~. 
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This has to be ' ldded to 

 oo= + 
4 

~ ) 0 k =  0 ,  
4 

mVkV ~ 

F r o m  this, we can compute  the  second order correct ion to the  accelera- 
t ion  a ~ which leads, in the  t wo-body  problem,  to the  perihel ion advance  (s). 

2 

4 .  - R a d i a t i o n  f i e l d .  

The radia t ion  field--i .e,  t h a t  p a r t  of .q~ which is p ropor t iona l  to s - - a p -  
pears in the fifth order. (Terms p ropor t iona l  to ~* a p p e a r  only  in the  n in th  
order,  and  we shall not  have  to  deal  wi th  them).  F r o m  (7), one has  

5 

As O°°= OkZ-=-0, one is t e m p t e d  to wri te  goo~gk~=0 .  This is indeed 
b 5 IS g 

wha t  we have  done in our previous  pape r  (and wha t  has  also been  done b y  
other  authors) .  As a m a t t e r  of fact ,  the  s i tua t ion  is no t  so s imple;  as c lear ly  
s t a t ed  b y  SCI-YEIDEGGEK (13), the  p rob lem is no t  to find non-conse rva t ive  equa-  
t ions of motion,  bu t  to show t h a t  these solutions indeed  cor respond to Jree 
particles,  i.e. to pure ly  outgoing waves .  Unless this is proved,  i t  m a y  a lways  
be objec ted  t h a t  the  energy change of the  system,  or p a r t  of it, is due to the  
in te rac t ion  with  some ex te rna l  r ad ia t ion  field. 

The difficulty is essential ly due to the  non- l inear i ty  of the  field equa t ions :  
one cannot  s ta te  t h a t  a g iven t e rm,  in the  field, is due to  a cer ta in  source, 
because the  field does not  depend l inear ly  on the  sources. There  is therefore  
a danger  of introducing into th~ solut ion some ex t e rna l  field (pure rad ia t ion)  
t h a t  is not  caused b y  the sources under  considerat ion,  b u t  t h a t  influences 
their  mot ion.  

I n  pract ice,  the  difficulty appears  in the  following w a y :  a t  each s tage  of 
the  app rox ima t ion  procedure,  one has to solve a Poisson equat ion,  and  there  

(13) A .  E .  S C t I E I D E G G E R :  P h y s .  Rev., 99, 1883 (1955). 



is }~ considerable freedom of (.hoi{'e of solutions, ea('h representill~ a t)ossit}h * 
motion and a gravi ta t ional  field belonging thereto (in). Only one of these 

solutions beh'~ves at infinity as purely outgoing waves (9); the remaining' ones 

contain also incoming waves. I t  is in general difficult to determine whi~.h 
solution is the c01rect one, because the n- th  term of a series expansion in 

powers of (v/c) behaves in the wave zone as R "-2, and no b o u n d a r y  condit ions 

for each stage of the procedure are known. 
As far as ~ "  is concerned, the difficulty can be obvia ted  by  direct ly t ak ing  

the expansion of the Ligna,rd-Wiechert potentials,  i.e. eq. (7). However ,  it 
is much more difficult to determine the radia t ive  par t  of g~" (~4). Some infor- 

mat ion can however be obtained by  the  following a rgument :  
A solution behaving ~t infinity like f ( t - - R / v ) / R  has an expansion 

] ( t ) / R - - / ' ( t ) / c ÷  . . . .  I t  is therefore reasonable to st ipulate t h a t  if a te rm such 
',~s ](t)/R occurs at  some approximat ion  stage, one mus t  add - - ] ' ( t )  - -  or, 

more generally, eft(t) ~ at the next  stage (15). (Note t h a t  this is a solution 
of the Laplace equation).  I n  the ease tha t  f(t) is a const 'mt ,  this vanishes, 

but  two approximat ions  higher there will be ~ term d_R2/6. (l~ote t ha t  this  
also is solution of the Laplace equation.)  For  instance, ~ k , _  4 ~ (revive~R) 

4 ' ' 

is followed by  bk*= 4s ~ m(v~'v*), and l~ °° = 4 ~ (re~R) is followed, in the th i rd  
2 

place (i.e. in b °°) by  4s ~ m R * / 6 .  

Now it is e~sily shown t h a t  for large R 

so tha t  

and 

_ 6~ + D~D~/D " 
2 D R  

A B 
14 m m  

~oo4 ~ - - R  ~r___D ~ 

. 

We thus have 

and 

goo = __ 14e ~ '  m m  
5 

( 1 4 )  I ~m indebted to Dr. D. W. SCIA_~A for c~lling my a.ttention to this point. 
(15) A. PERES: 2V~tovo Cimen$o, 13, 670 (1959). 
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Fur ther  one has (~) 

[ v~ 1 m(v~R) ] 

[ -  ,,(log 5 ~ m '  15 + 

At large distnnces~ this l~st expression behaves as 

~ O k  ~ _ _  

Taking into account t ha t  ~ma~-~ O, one gets 

which has to be added to 
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A,B 

~z D~Dz~ 

° 

oo .Q0k = 0 as it  should be. The difficulties t l :~t  (I t  is easily verified t ha t  ~ .o~-.~ .~ 

previously arose concerning this point were due to a different choice of the  
radiat ive fields in the two expressions.) 

5. - Lorentz - inva r i a nc e .  

If  i t  can be shown tha t  the method  developed in the previous sections is 
Lorentz-invari~nt,  we can be assured t h a t  i t  gives the  correct result  because 
of Fock's  mfiqueness theorem (9). 

We have supposed up to now tha t  velocities were small quanti t ies  of the  
first order. This is equivalent  to the  assumption t h a t  the  reciprocal velocity 
of light (which has been taken here as uni ty)  is small of the first order. As 
the velocity ot l ight is Lorentz-inv~rinnt  by de]inition, our approximat ion 
method should also be Lorentz- invariant .  This has to be unders tood in the, 
following way : 

Le t  us perform a Lorentz t ransformat ion 

x t k  ~ X ,  k - -  flkt _~_[fl 1 1] t,_t--flZx~ 
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of ~dl the  quant i t ies  t h a t  appea r  in our equat ions .  The ve loc i ty  fl~ is an 
a.rbi trary constant~ subjec t  only  to  the l imi ta t ion  of being small  of the first 

order.  
I n  general,  ..~''~ will now depend on all the  ~ ,  m ~ n. We require ~'"~ to 

depend in the wame way on the trans]ormed sources, as .q~ on the original sources. 

This r equ i rement  m a y  fu r the r  l imi t  the  f reedom of choice of solut ions t h a t  
still remains  a f te r  the rules g iven in the previous  section. I n  pract ice,  i t  m a y  
be ve ry  difficult to app ly  it, because the  R k are not  the  spa t i a l  componen t s  
of ~ four vec tor  ( they are defined for equal times of the  source and  field point) .  
The i r  t r ans fo rmat ion  law is therefore  ve ry  compl ica ted :  i t  involves  not  only  
fik ~nd v k, bu t  also all higher t ime  der iva t ives  of v k. 

For tuna te ly ,  the  rules of the  previous  section are sufficient to give un- 
ambiguous  results  up  to the seven th  order, and  we shall have  no need to tes t  
the Lorentz - invar iance  of our formulae .  We shall  t ake  it  for g ran ted ,  because  
they  seem to be the only reasonable  solution of Loren tz - inv~r ian t  equat ions .  

6 .  - R a d i a t i o n  r e a c t i o n .  

We can a l ready compu te  the  fifth order  r ad i a t ive  correct ion to the  mass .  
F r o m  (4), one has m~= m(~fis°°--~]kk), o. I t  can be shown, however ,  t h a t  

fl ak -=-- 3fl °°, so t h a t  m-~  0. 
$ 5 5 

The fifth order rad ia t ive  correct ion to the  accelerat ion is g iven b y  (4), as 

a k ok fl~'~' k _1,~oo,.,oo __ ¼fl~qOO __ Vktlkl 
= g  . o + }  - - . ~ . ,  , .~ • .~ . o ,  

6 7 5 2 5 2 5 

where ~ "  ~oo+6kk .  We thus  still need ~"a.k. One has, f rom (7) 

I ° ] = + + + -54 (v v'ZR ) . 

M:oreover, one has, f rom (6) 

o , .  

7 7 5 ~ ~ o o  _ _  1 4 e  

. . °  

=- ~ - -  r a m \  D3 ] ,  
7 5 
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W h e l l C e  

(s) 

F r o m  the rules of Section 4, we m u s t  also know the a s y m p t o t i c  behav io r  
of d'~ in order to solve (8). One has, f rom (6) 

6 

~2 

6 6 - ~  4 4 

= O""+ 8 + ~ '  
A ° 

D R  

Here,  O ~" is an ex t r eme ly  cumbersome  expression.  Tt is sufficient for our 
6 

purpose  to know tha t  i t  falls off, a t  large distances,  like R -4, and  therefore  
its cont r ibut ion  to ~ ' "  falls off as / ( t ) / R .  This produces  ,~ t e r m  like e/'(t)  in 

6 

~"" which does not  concern us, however,  because  only the  spat ia l  der iva t ives  
7 

of this expression are needed. The  curled b r acke t  in (9) gives a con t r ibu t ion  

to ~ :  
6 

Uuless all I ) =  0, this expression behaves  a t  large dis tances  like R, and  there  
corresponds to it, in @~, a t e r m  behav ing  as R ~. This can readi ly  be verified 

f rom the solution of (8): 
A *°" B 

All the  quant i t ies  needed to compu te  a ~ are thus  known.  

7 .  - R a d i a t e d  e n e r g y .  

We define the rad ia ted  energy,  per  uni t  t ime,  as the  r a t e  of work  of the  

part icles  against  their  own rad ia t ion  field: 

U - - - -  ~ m a~v k . 

For  the  sake of simplicity,  we shall  res t r ic t  ourselves  to the  case of two 
part icles revolv ing  on circular orbi ts  (in the  Newton ian  app rox ima t ion )  a t  a 

• floo adn  ~ k  vanish.  N e x t  we choose, dis tance D f rom each other.  ~n this case, m,  

for converdence, a sys tem of co-ordinates  where  the  center  of mass  is a t  r e s t :  
, m v k :  0. As a consequence, we can neglect  all the  spa t ia l  cons tan ts  which 
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appea r  in the  first four  t e rms  of ak as t hey  give equa l  cont r ibu t ions  to t h e  
5 ? 

accelerat ions of b o t h  particles~ and  will therefore  cancel  in the  c o m p u t a t i o n  
of U. Thus the  only re levan t  t e r m  of l? "~ is 4e ~ m"Ri /5!  and  the  only rel-  

T 

0~: is - -  4s ~ m(v'~R2)/31 Moreover  i t  can be shown (s) t h a t  evan t  t e r m  of - - g  ,o 
6 

the cont r ibu t ion  f rom g"" exac t ly  cancels the  four th  t e r m  of a ~. One thus  gets  
7 5 

~ - v ~ o +  ~ ~ m .  ( v ~ )  +gO (R~R~) , 
5 5 

where the  ~ sign recaEs t h a t  some spa t ia l  cons tan ts  have  been omitted~ a n d  
where the  r ight  hand  m e m b e r  h~s to be c o m p u t e d  a t  the  posi t ion of the  pa r -  
tiele under  considerat ion.  A s t r a igh t fo rward  c o m p u t a t i o n  Nves  

g W%V k 
a k ~  (m -~ M) ( 4 6 1 M - -  269m) ,  

g 0 ~  

where M is the  mass  of the  other  part icle.  I t  follows t h a t  

32 m~M2(m + M )  
(10) ~ :  -- ~ -5- /)~ 

For  pure ly  outgoing waves  (e : - - 1 ) ,  this agrees wi th  the  resul t  of tile 
l inearized theory  (1). (The fac t  t h a t  one has p rev ious ly  ob ta ined  a nega t ive  
r ad ia t ed  energy  should be ascr ibed to the  presence of incoming  g rav i t a t i ona l  

waves~ which were absorbed  b y  the  part icles) .  
The physical  rea l i ty  of this phenomenon  can be conf i rmed b y  c o m p u t i n g  

the  ra te  of change of the  to ta l  mass .  One finds (16) 

Zm; = - U ,  

as one should expect .  

8. - Behavior  of the  field at very large dis tances .  

Hencefor th  we tak% for the sake of simplicity~ m - - M .  
of the  sys tem is ruled b y  the  equat ions  

d 2 

2mv 2 m s 

i) D ~ ' 

= - - U = - - - - - -  

Qa) A. PERES: •UOVO Cimento, 13, 439 (1959). 

64 m 5 

5 D 5~ 

The ew~}iJtio~ 
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w ] l e n c e  

512 ,(11) D 4 --  - -  m 3 ( T - -  t). 
5 

7' is the  t ime  ,~t which rad ia t ive  cap tu re  would occur, if the  las t  equa t ions  were 
r igorously correct.  Actual ly,  all the  previous  t heo ry  is val id  only for low veloc- 
ities, i.e. as long as D >>m. For  ve ry  small  D, cap tu re  occurs even  if radia-  
t ive effects are discarded (~7). 

F r o m  (10) ":nd (11), one gets 

~7(t) = ~ \T-t /" 

I t  follows tha t ,  at  a dis tance R, the average  energy  flux and  energy  densi ty  
of the g rav i t a t iona l  waves  are abou t  

(12) 
y _  U ( t - -  R)  __ 1 ( [m )~ 

47~R ~ 320~R 2 T ~ t + R 

For  R << T - - t  5D~/512 m a, this varies as R -2, bu t  for ve ry  large R, 

one has 

D 4 

R >  m--a, 

m~ ~ ~ R  -'3/4 . 

As ~ is proport ion,f i  to the square  of the  ~mpl i tude  of the rad ia t ion  field, i t  

follows tha t  the l a t t e r  falls as R -13/8. 
On the other  hand,  the energy  densi ty  e produces  an addi t iona l  field (1~), 

the poten t ia l  of which varies,  a t  large distances,  like R -~14, i.e. more  slowly 
than  the ampl i tude  of the  rad ia t ion  field. This addi t iona l  field, however ,  is 
quasi-s tat ic ,  as shown b y  (12): its t ime  ~nd space der iva t ives  beh~ve  like R-gt4~ 
i.e., they  fall off fas ter  t h a n  those of the  radin t ion  field. Therefore  the  energy  
dens i ty  of this ~ddit ional  field can be  neglected wi th  respect  to g. 

Le t  us summar ize :  a t  ve ry  l~rge dis tances  (R > D~/m3), the  field conta ins  
a s ta t ic  pa r t  behav ing  as (m/R), a quas i -s ta t ic  p a r t  behav ing  as (re~R) 514 ~nd 
v/ dynamic  pa r t  behav ing  as (m/R) ~~Is. (This resul t  does not  con t rad ic t  

(17) C. DARWIN: Proc. Roy. Soc., A 249, 180 (1959). 
(is) A. P ~ E S  and N. RosEN: Phys. Rev. 115, 1085 (1959). 
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t heo rem of Papat )c t rou  (~") a('( 'ording to which the  field can be a s y m p t o t i c a l l y  
Eucl idean a t  infinity only if it is a s ta t ic  bo th  for t - > + c o  and t - ~ - - c ~ ,  
because the va l id i ty  of this t heo rem is l imi ted  to the  cases where there  exis ts  
some cons tan t  radius  Ro such t h a t  space  is e m p t y  for R > Ro a t  all t imes t. 
I n  our case, however,  i t  is easy  to see f rom (11) t h a t  no such Ro exists.)  

The fac t  t h a t  the energy  dens i ty  of the  g rav i t a t i ona l  field behaves  a t  large 
dis tances like R -~3~4 has the  i m p o r t a n t  consequence t h a t  the to t a l  energy  of 
the  g rav i t a t iona l  field is bounded.  (~t would not  be  bounded  if the  ene rgy  
densi ty  behaved  like R -2, or even R-3.) I t  is therefore  possible to define a 
to ta l  energy  of the part icles and  the  field. This is cons tan t ,  because  the  well- 
known conservat ion theo rem 

can  be wr i t t en  

(13)  

+t  )L=O 

dffl(~°°+t°°)dV=fot°~dS,, 
a n d  the r ight  hand  m e m b e r  behaves  like R -~/* for  ve ry  large d is tances  
(R:> Da/m 3) and thus a s y m p t o t i c a l l y  vanishes a t  infinity.  I n  fact ,  b y  con- 
s ider ing the s i tuat ion when the part icles were ve ry  fa r  apar t ,  one gets 

f l (~oo+ po) d V :  ~ m .  

all sI)a~ e 

This fac t  was incorrect ly  i n t e rp re t ed  b y  I•FELD (~) aS a proof  t h a t  gravi-  
t a t i o n a l  rad ia t ion  does not  exist.  Actual ly ,  only the  sum f~7£°°dV+f~P°dV 
i~ constant ,  while energy is cons tan t ly  p u m p e d  f r o m  the  m a t t e r  to  the  rad ia-  
t ion  field. Indeed,  if we l imit  the domain  of in tegra t ion  to the  wave  zone, i.e., 
to distances such t h a t  

(14) R << m-- ~ , 

bo th  member s  of (]3) are posi t ive  and  a p p r o x i m a t e l y  independen t  of R, as 
will be shown in the  nex t  section. 

All the  previous a rgumen t s  are va l id  only in the  case of r e t a rded  po ten t ia l s  
(outgoing waves,  e = - - l ) .  I n  the  case of ha l f - re ta rded ,  ha l f - advanced  po- 
tent ia ls  (s tanding waves,  s = 0), no energy  is r ad i a t ed  and  the  mo t ion  is 
t ru ly  periodic. The field then  diverges logar i thmica l ly  a t  spa t ia l  inf ini ty (ls,20). 

(19) A. PAeAP~TROU: Ann. Phys., 2, 87 (I958). 
(20) A. t)APAPETROU: Ann. Phys., 20, 399 (1957); l ,  186 (1958). 
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9. - Validity of the  l inear  approximat ion .  

We ~lready know tha t  the linear approximat ion  is valid neither at  very  

small distances from the sources (of the order of the Schwarzschild radius), 
nor at very  large distances (R ~> .Dd/m a) where the quasi-stat ic field caused 
by e is more impor tan t  than  the radia t ion field. I t s  domain  of validity, if it 

exists, must  therefore be l imited to the wave zone, defined b y  (14). 
I t  is therefore impor tan t  to examine in detail how the linearized theory  

ca, n itevertheless correct ly give the rad ia ted  energy.  We here follow the proof 
of I~ANDAU and ]JIFSHITZ (1). The <, solution ,) of (1) is 

where the curled bracket  has to be computed  at  a re ta rded  time. Let  

1 

For  large R, one can write 

Moreover, 

whence 
it follows from (1) and 

3 9 0 . 0  ~ - -  ~*Okk , 

Let us mult iply  the first 
sphere of radius R. One 

d 

We shall now show tha t  

Now z~k varies as R -2 (in 

diverges as R. This is not  

the harmonic  condit ion tha t  T~.~ = 0, 

~'kO,o ~ - -  T k l ~  • 

of these equations by  x ~ and integrate  over a large 

gets 

the last integral  can be neglected. One has 

f (vo x,).,dV=f  .o x,dS  . 

the wave zone) so tha t  it seems tha t  this expression 

the case, however,  as the  following a rguments  shows:  



it is possible to consider~ instead of "m infinite wave  train,  ~t shor t  pulse of 
g rav i t a t iona l  waves  (2~). One can t ake  the  surface in tegra l  a t  a ve ry  large 
distance,  so t h a t  the  pulse has still no t  r eached  it. I t  t hen  vanishes,  and  the  
vo lume in tegra l  vanishes also. The  o ther  integrals  in eq. (15), however ,  r e m a i n  
finite. 

Le t  us note  t ha t  this a r g u m e n t  is correct  only  if there  is a poss ibi l i ty  of 
deal ing wi th  l inear wave  trains,  i . e .  those t h a t  can be a rb i t r a r i ly  decomposed  
into independen t  pulses. I n  real i ty ,  there  is an in te rac t ion  be tween  the  var ious  
par t s  of a w a v e  train,  due to the  non- l inear i ty  of the Einste ins  equat ions .  
The  previous a rg um en t  is therefore  val id  only inasmuch  one can neglec t  the  
g rav i t a t iona l  influence of the  energy  densi ty  of the  waves .  I t  is therefore  
correct  in the  wave  zone, bu t  not  for R > D a / m  a. 

Thus, in the wave  zone 

 tfe°x dr=fv°'dV. 
I n  a s imilar  fashion, one can show t h a t  

whence 

(16) 

1 d 2 

2 d 2 / "  2 
- -  j v ° ° x ~ x Z d V =  ~ ,  m ( ~ ' ~ z )  g~Z_ 

• t ~ b  R " 

This is indeed equal  to the l imi t  of fi~*, for large R, as found  in Sect ion 3. 
4 

The  only difference is t h a t  the  r igh t  hand  m e m b e r  is now to be c o m p u t e d  a t  
t ime ( t - - R ) ,  r a the r  t han  t. (Hencefor th ,  i t  will a lways  be unders tood  t h a t  

sources have  to be considered a t  a r e t a rded  t ime.)  

1 0 .  - T h e  w a v e  z o n e .  

The wave  zone  is character ized,  in the  case of outgoing waves,  b y  

:Let 

__  n k  = n~ = R k / R ,  - -  n o = - -  no = 1 , 

(21) D. GEISSL]~R, A. PAPAPETROU and H. TR~D]~I¢: A n n . . P h y s . ,  2, 344 (1959). 
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w h e n c e  

(17) n~n s = 0 . 

One  eun w r i t e  (~)  

( lS )  ~ fl ,,, - -  a ~ ' n  ,,/ R 

w h e r e  a ~' m a y  d e p e n d  on nk, b u t  is a l m o s t  i n d e p e n d e n t  of R ( e x c e p t  t h r o u g h  

t h e  r e t a r d a t i o n  of t ime) .  

T h e  h a r m o n i c  c o n d i t i o n  n o w  r e a d s  

(19) "~ a n ~  0 r 

w h e n c e  

(20) a °k ~ a k ~ n ~  

a n d  

(21) a o° ~-- a°~nk ~ a~Znkn ~ . 

The  e n e r g y - m o m e n t u m  p s e u d o t e n s o r  of t h e  g r a v i t a t i o n a l  f ie ld  is g i v e n  b y  (is) 

W i t h  t h e  he lp  of (17) a n d  (18)~ one ge ts ,  i n  t h e  l i n e a r  a p p r o x i m a t i o n  

w h e r e  

1 
(22) ~ - -  64~R 2 (2~Tan~flO - -  ~ . ~ ) a O , ~ a , e .  

I n t r o d u c i n g  

one  gets~ w i t h  t h e  he lp  of (20) a n d  (21) 

1 
a - -  64~R 2 (2b  ~ b ~ -  4b ~ b~qn~n~ + b ~ b~qn~n~n~nq)  

(22) A. TRAV~AN: B u l l .  A c a d .  Po~on.  Sc . ,  6, 407 (1958). 

24: - I I  N u o v o  C t m e n t o .  
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Moreover ,  one has  (~) 

n~n~ = ~ o ,  

whence  

1 

i 
--  bk~ b~ .  

8 0 z R  ~ 

This is a lways  ~ pos i t ive  q u a n t i t y .  I t  follows 

u ==f t°~dSk = f  an~dSk = 4¢rR:a = ~ b~ b k~. 

I n  the  case of free part icles ,  one has, f r o m  (16) and  (18) 

(23) 

whence  

° , ,  

This is the  usua l  f o r m u l a  for  g r a v i t a t i o n a l  r a d i n t i o n  (~). As i t  has  been  

independently checked  b o t h  for  free par t ic les  (Sect ion 7) a n d  for  c o n s t r a i n e d  
m o t i o n  (24)~ we can  say  t h a t  the existence of gravitational radiation is now well 
established. 

F r o m  (20), (21) a nd  (23), i t  fol lows t h a t  the  f o r m  of fioo nnd  ~o~, in t h e  

w a v e  zone~ is (2~): 

4 2 

4 2 

W h e n  we c o m p a r e  these fo rmu lae  wi th  the  a s y m p t o t i c  va lues  of a °°  and  .Q0~ 
s 

t h a t  are g iveu  in Sect ion 4, we find t h a t  t h e y  do no t  agree.  This  f ac t  shou ld  

no t  surpr ise  us, because  we h~ve used  in the  first sect ions of this  p a p e r  an  

(~a) L. LANDAU ~nd E. LIFSHITZ: IOC. cir., p. 206. 
(*t) W. B. BO~NOZ" Nat,tore, 181, 1196 (1958); Phil Trans. t~oy. Soc., A 251, 233 

(1959); A. PERES ~nd N. ROSEN: Ann. Phys. (to be published). 
(~5) V. A. FOCK: loc. cir., p. 4t7. 
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approximat ion  method  based on the assumpt ion  t h a t  t ime deriwttives arc nmeh 
smaller than  space derivatives. This is indeed correct in the vicini ty  of the 

particles, bu t  in the wave zone, t ime derivatives are of the same order as 

radial  space derivatives, and much  larger than  tangent ia l  space derivatives.  
The various orders of approximat ion  are therefore completely different:  quan- 
tities of the n- th  order in one region contain also contr ibut ions f rom all lower 

orders in the other region, and no direct comparison can be made.  The agree- 

ment  for g~*, tha t  we have found in the previous section, should be ascribed 
to the fact  tha t  in both methods we were dealing with the lowest approxi-  
mat ion to gkZ. 

1 1 .  - U n i q u e n e s s  o f  a .  

FOCK has shown (9) tha t  the harmonic  sys tem of co-ordinates behaving  at  

infinity as pure outgoing waves is unique (up to a Lorentz  t ransformat ion) .  
We have found~ however 7 tha t  the dominan t  te rm at very  large distances has 

not  the form of outgoing waves. 
We now intend to show tha t  it is sufficient to require t ha t  the system be 

harmonic  and behave as outgoing waves in the wave zone (but not  neces- 
sarily near the sources nor at  infinity) in order to get a unique value fora .  

We thus assume only (18) and (19). Under  an infinitesimal co-ordinate  

t ransformat ion x " :  x~4-$ ", the g~  t ransform according to 

As the fi't'" are also to behave as outgoing waves, one mus t  have 

c~n~ 

where the c ~ themselves satisfy 

Thus 

I t  follows tha t  a '"~n~= 0, i.e. the new sys tem is also harmonic .  

Let  us now go back to eq. (22) which defines a. A s t rMghtforward com- 

puta t ion  shows tha t  

1 
O J : _  _ 

647cR2 (2~]~=~e - -  ~ = o )  a'~'~ a'=°, 



368 a. ~ERES 

is e x a c t l y  e q u a l  to  a. 

w r i t t e n  as  

Th i s  c o u l d  b e  f o r e s e e n  b y  n o t i n g  t h a t  (24) c a n  b e  

a'VV ~ aW ÷ cv'v ÷ CV"u-- *t v ,~ 

i.e. %,, b e h a v e s  as a t e n s o r  d e n s i t y  w o u l d  u n d e r  a t r a n s f o r m a t i o n  x '~ = x ~ +  e ~. 

One m a y  also def ine  a w i t h  t h e  h e l p  of  t h e  E i n s t e i n  p s e u d o t e n s o r  (~6) 

w h e r e  

2Cow 

w h e n c e  

W i t h  t h e  he lp  of ( 1 7 ) a n d  (18), one gets~ in  t h e  l i n e a r  a p p r o x i m a t i o n  

t{__ 1 
64~R ~ n~' n, (2~:,~1~ ~ - -  ~ ~,,Q) a"~ a ~° . 

W e  t h u s  g e t  e x a c t l y  t h e  s a m e  r e s u l t  as  w i t h  t h e  t ~ of L a n d a u  a n d  L i f s h i t z .  

A t  l a s t ,  l e t  us n o t e  t h a t  a v e r y  s i m p l e  exact f o r m u l a  for  a c a n  b e  o b t a i n e d  
f r o m  

16ze~o ~ (~-~oo __ ~o~,~o~).~ 

w h i c h  ho lds  in vacuo ( ~ o ~  0). Th is  c a n  b e  w r i t t e n  

gO~ g° Z l l 
(25) 16=gpo = [(--g)gOO (gkZ-- ~o -]]a~ 

(20) 1~. C. TOLMAN: Relativity Thermodynamics and Cosmology (Oxford, 1934), p. 224. 
(37) p .  A. M. D m a c :  Proe. Roy. Soc., A246,  333 (1958). 
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9ok gO ~ 

"rod 

( _  g)gOO ~: _ Det  (gkt) • 

Therefore  the square  b racke t  in (25) is s imply  minus  the  co-factor  of gl:z in 
the de t e rminan t  <,f the gm~: 

1 iJk? lmn+ 16~fl t00 ~ - -  2 r] ] ( g , ' , , g k , d , i Z  " 

One thus sees t h a t  only  the six gk~ give a con t r ibu t ion  to the  energy  den- 
s i ty of the gravitat ional  field. This is related to the fact that  they  are canon- 
ical variables,  while the  four go, are not  (27). 

$ # $ 

I am grea t ly  indeb ted  to Professor  N. I~osE~ for m~ny  s t imula t ing  dis- 
cussions and much helpful criticism. 

R I A S S U N T O  t') 

Si espone un metodo ad approssimazioni successive per risolvere le equazioni di 
Einstein per un sistema di particelle polari che gravi tano liberamente. Si dimostra che 
si pub scegliere la soluzione che r~ppresenta soltanto onde uscenti. Si t rova c h e l a  
correzione di 5o ordine all '~ccelerazione comporta  un termine non conservat ivo:  
l 'energia si perde, per radiazione gravitazionale,  in quanti t~ esa t tamente  uguale a 
quella predet ta  della teoria lineari~zata. Questo pub essere dimostrato cMcolando la 
perdita di massa del sistema. Poi si passa ad esaminare la validit£ della teoria lineariz- 
zata:  si dimostr~ che non pub descrivere corre t tamente  il campo a distanze molto grandi 
dall'origine, ma ciononostante da un risultato corretto per l 'energia irradiata.  

(*) T r a d u z ~ o t t e  a c u r a  d e l l a  l t e d a z i o n e .  


