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Summary. — A new approach to the description of the nuclear inter-
action of nucleons with finite even-even nuclei is outlined. The radial
and energy dependence of the optical potential describing the interaction
of nucleons with ‘He, 12C and %0 is extensively investigated.

PACS. 21.10. — General and average properties of nuclei; properties
of nuclear energy levels.
PACS. 21.60. — Nuclear-structure models and methods.

1. — Introduction.

As remarked by SINHA () «the early sixties in the history of the optical
potential unfortunately turned out like a blind man’s survey of the param-
eter jungle and quite a lot of the work, although useful as a straightforward
guide-line for the prediction of scattering data, did not serve any fruitful
purpose in furthering understanding of the underlying theoretical concepts ».
The situation is now only moderately improved and fundamental dark cor-
ners still exist, which need exploring. The goal of setting up a physically
reliable, analytically simple and numerically manageable theoretical tool for
constructing the optical potential has been missed, mainly because of the
ambitious aim of developing formally rigorous treatments which, unfortunately,
are not practicable. A stringent critical analysis of the optical-model predic-

() B. Sizxua: Phys. Rep. C, 20, 1 (1975), p. 3.
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tions cannot be carried out because most of the available results have been
obtained by means of approximate calculations which are far from being
transparent and are not controllable numerically. None of the innumer-
able investigations on the scattering of nucleons from nueclei (2) has so far
been conceived with the aim of giving a clear-cut answer to the following
questions: a) How can an optical model be constructed with the hope of being
a correct model? b) How can one avoid putting tremendous efforts into cal-
culations on empirical models which have no connection with reality? ¢) How
can the experimental data be used to discard erroneous models and enable
the research to converge towards the correct one?

As a firgt step towards the goal of giving an answer to these questions,
we shall outline an unconventional approach to the problem of constructing
optical potential V(r, E) for finite even-even nuclei. Our program is to deduce
the radial and energy dependence of V(r, E) consistently with the stability
of the target nucleus and in such a way that the potential be exploitable for
incident nucleons of whatever energy £. The potential is assumed to be the
sum of a real and an imaginary part, i.e.

(1.1) Vir, B) = V(r, E) 4+ iV (r, B);

both potentials V (r, E) and V (r, E) can be split into a central and a spin-
orbit contribution

(1.2a) Va(r, B) = Vy(r, B) + V(r, B)
(1.2b) Vir, B) =Vi(r, E) 4+ Vi, E) .

We generalize Fermi’s conjecture (3) and define the spin-orbit contributions
to the optical potential as Thomas terms, namely

(1.3a) VSo(y, E) = (A%/r)(a-LY{dV§(r, E)/dr},

(1.3b) VSo(r, E) = (2/r)(e- L){dV{(r, E)/dr},

where lengths A, and 1, have to be determined by fitting the scattering data.

The only experimental data used to evaluate V(r, E) are the binding energy
and the r.m.s. radius of the target nucleus and the observed energy dependence
of the total neutron-proton cross-section. Such minimal experimental informa-

(?2) P.E. HopesoN: Nuclear Reactions and Nuclear Structure (Clarendon Press, Oxford,
1971); see also P. E. Hopagsox: Annu. Rev. Nucl. Sei., 17, 1 (1967); Nuovo Cimento A,
81, 250 (1984).

(®) E. FErMI: Nuovo Cimento, 11, 407 (1954).
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tion is sufficient for predicting the radial and energy deperderce of V(r, E):
the achievement of this goal is made possible primarily by the extension to
finite even-even nuclei of the differential equation of infinite nuclear matter,
discussed in a previous paper (*).

2. — Extension of the differential equation of infinite nuclear matter to finite
even-even nuclei.

2°1. The differential equation of finite nuclear matter. — It has been shown
in I, sect. 5, that the potential energy v, (p, ) of a nucleon having momen-
tum p in the infinitely extended Fermi sea obeys the hyperbolic partial differ-
ential equation

¢ 2¢ c¢r 2
(2.1) { LT RT3 rienly ;"}1’00(1’,%):0,

where the limiting momentum x is defined as

o

(2.

) x = (3n2 A gof2)" —= (978 (AYR,) .
The total energy of the nucleus is (p<#)

(2.3) W) = (34 He) [{(p?220) + J oo (p, %)} dp 5
the saturation properties of nuclear forces require that

(2.4) {dW (/A =0, W, (%) =b. 4,

where by is the average volume energy and x, is the Fermi momentum obtained
by putting in eq. (2.2) R, = r,A'. Equation (2.1) expresses in differential
form the analytical constraints of the single-particle potential energy arising
from the total antisymmetry of the nuclear wave function. It is remarkable
that all particular integrals v (p, ), specified according to saturation prescrip-
tions (2.4), exactly fulfil the relation

(2.5) by = &p 4 0, (3, #g) = 10, (%, 2,)

whereEF = #3/2M is the Fermi energy and w_(p, ) is the single-particle total

(*) C. ViLLr: Nuove Cimento .1, T4, 37 (1983); hereafter this paper will be referred
to as I.
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energy. Relation (2.5) expresses the Hugenholtz and Van Hove theorem (%):
at the density minimizing the total energy of infinite nuclear matter, the average
volume energy is equal to the total energy of the most energetic nucleon.

The following remarks will better explain the role of eq. (2.1) in nuclear-
matter problems. Let us represent the ground state of a nucleus by a totally
antisymmetrized wave funetion @, built up in determinantal form from 4
individual functions ¥, = y,m, for single particles, and assnme that the nuecl-
eons, described by space, spin and isobaric spin co-ordinates, interact via
two-body forces through the potential v(1, 2) = O, f(ry,), whose exchange prop-
erties and radial behaviour will be left completely unspecified. Then, if the
nuclear interaction is treated as a perturbation and the A4/4 spatial wave func-
tions y, (r,) = Q-#(x) exp [¢p,-r,] are associated in turn with all four spin
and isobaric-spin wave functions w,, the expectation value ¥V (x) of the poten-
tial energy of the nucleus is given by the second term appearing in eq. (2.3),
where (p =p,, ¢ =)

HUSSY

(2.6a) va(py) = ¥ [adjlIflid> — odjiflin],

i=1

Gj|flify and (ij|f)je> being the ordinary and exchange matrix elements of
f(r1), .e.

(2.66) <ilflify = [ flr) dry drs,

(2.60) <l:’|f|ﬂ) '—‘—'J‘W;(rl) w:(r:z) f(712) u)q(rl) w,,(rz) dr, dr, ;

the two constants ¢, and ¢, are given by

4 4
(2.6d) a= 2 {wiOulp), = 2 (|0l .

16,1 1#yvy=1

Equation (2.6a) is easily worked out and finally yields (p <#x; #=1y,)

(2.70) 0a(Dy %) = 52 [17C — Cyloer) ol pr) uloer) ()
0
(2.7b) G=24—1)¢/3*4, G = (A4 —1)c/in4 ,

jo(x) and j,(x) being spherical Bessel functions. The single-particle potential
energy (2.7) is a particular integral of eq. (2.1). A different way to evaluate
v.(p, %) is based on an ingenious modification of the Hartree-Fock theory,

(®) N.M. Hveexmortz and L. Vax Hove: Physica, 24, 363 (1958).
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namely in replacing potential v by the t-matrix, and then expressing {ijt|ij)
and (jjtjiy in terms of nucleon-nucleon scattering amplitudes. In this case,
instead of eq. (2.7), one has for p<ux

x—p) Y(x+p)
. 1
(2.8)  twlpyx)=— o F(q)qztiq—2nMp fF(q)[xz—wq—p)”]qdq,
[] - p)

where F(q) is a complicated function of the nucleon momentum, expressed as
a sum of scattering amplitudes, classified according to spin and isobaric-spin
substates of the two-nucleon system (°). No reliable results can be obtained
from eq. (2.8) because of the insufficient knowledge of the nucleon-nucleon
agymptotic phase shifts. It is, nevertheless, worthwhile pointing out that the
single-particle potential (2.8) is a particular integral of eq. (2.1).

It is seen that the momentum dependence of potential (2.7) is entirely
brought about by the total antisymmetry of the nuclear wave function, whereas
that of potential (2.8) arises from energy-momentum conservation under the
constraints imposed by the Pauli principle. A different source of momentum
dependence has to be searched for in the nucleon-nucleon correlations existing
in nuclear matter. The presence of a nucleon at point r influences the proba-
bility of finding another nucleon at a point r' in the neighbourhood of r.
Although in the neighbourhood of a nucleon there may be considerable flue-
tuations in the density of other particles, the nuclear-matter distribution pre-
serves its homogeneous character. This situation, however, affects the energy
of a nucleon at r so that the energy operator is no longer diagonal in co-ordinate
space. Consequently, the nucleon-nucleon correlations can be conceived of
as being due to a nonlocal nucleon-nucleon potential u(r, r’'). The Schrodinger
equation is

(2.9) — (1/2M) Vey(r) +fu(]r —r|)p(r) dr'= Ey(r) .

Using plane waves of constant momentum p, the effective two-nucleon poten-
tial, evaluated as Fourier transform of u(|r — r'|), reads

(2.10) Vir, p) :fu(|r— r'|) exp [ip+(r — r')] dr’ .
Let us assume a separable form for u(jr—r'}), ..

(2.11a) u(lr—r')) = uy( Ir + ') G([r —r'Y)

() X.A. BRUECKNER, (.A. LEvinsoN and H.M. Manvmup: Phys. Rev., 95, 219
(1954); K. A. BRUECKNER: Phys. Rev., 96, 508 (1954); N. Fukupa and R. G. NEWTON:
Phys. Rev., 103, 1558 (1956).
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where G(|r—r’]) is the Gaussian function normalized to 1,

G(lr—r'|)={1/rvVaad}exp[— |r—r|a],

2.11b
( ) fG(r) dr=1,

2, being the nonlocality length; at the limit a, — 0 G(|r —r']) operates under
integral sign as the delta-function d(r — r'): in this case potential V becomes
local and the momentum dependence disappears. Let us now identify V with
the two-body potential used to deduce eq. (2.7). The eftect of the nonlocality
{2, # 0) modifies the momentum dependence of the exchange matrix element
(ij|V[jiy and generates a p-dependence also of the ordinary matrix element
Ef|\V|igy. It is found that

@

Voo (Py %) = ”SJ‘T‘Z[C; gi(r, p; ) — C; Salr, P; )] dr,

0

(2.12)

gilry p; 0) = f(r), gx(ry P35 0) = (2er) ™2 jo(pr) juler) f(7) 5

the explicit expressions of g,(r, p; a) (i =1, 2) will not be given. It is never-
theless clear that the resulting momentum dependence of v, (p, ) is & combined
effect of the total antisymmetry of the nuclear wave function and of the non-
local nature of the two-body potential. The single-particle potential energy
(2.12) is a particular solution of eq. (2.1). In coneclusion, eq. (2.1) accounts
for the momentum dependence of the single-particle potential without any
specification of the two-body forces involved, nor of the type of nucleon-
nucleon correlations (clusters of three or more nucleons), nor of the effective
role played by the intrinsic or apparent nonlocality of the two-body potential.

A more refined theory of infinitely extended nuclear matter is based on
a detailed description of nucleon-nucleon scattering in the Fermi sea. The
difference in behaviour inside and outside nuclear matter is due to the exclu-
sion principle. When two nucleons of arbitrary initial momenta collide as an
isolated pair, the momentum of the final state may be divided between the
particles in many ways, with probabilities determined solely by the inter-
nucleon potential. In nuclear matter the number of possible final states is
greatly reduced since so many of the states available for isolated nucleons
are already oczupied by other nucleons. Hence, the scattering in nuclear matter
is greatly different from that in vacuoe. Clearly, in nuclear matter only nucleon-
nucleon collisions are allowed for which the final state of both particles have
momenta above the Fermi level: starting from two levels below Fermi’s,
such collisions would defy the conservation of energy. Hence, there is no
real scattering and the asymptotic wave functions contain no phage shifts.
However, the possibility of a virtual scattering state outside the Fermi sea
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has the effect of distorting the wave function at distances of the order of the
Fermi wave length (corresponding approximately to the value of the non-
locality parameter a;). The effect of nucleon-nucleon interactions by causing
transitions from occupied states into occupied ones is to spread the momentum
distribution of the single nuecleons in the neighbourhood of the limiting mo-
mentum » = x,, calculated at equilibrium density, namely by lowering the
density in momentum space below », and giving rise to a tail above this value.
In spite of this, most of the scattering effects due to the internucleon potential
are eliminated: as is well known, this is the intimate reason why shell model
works. Brueckner’s theory provides the mathematical tool for handling such
a complicated problem. The exact solutions of the nonlinear system of equa-
tions, expressing the reaction matrix, are unknown and the approximations
used to obtain numerical results give rise to complications and ambiguities
which outweigh the heuristic value of the theory. Serious mathematical com-
plexities discourage one from going into the details of the self-consistency
problem. It will suffice fo point out that the density dependence of the reac-
tion matrix gives rise to the so-called re-arrangement energy, which consti-
tutes an additional confribution to the single-particle potential (*). Conse-
quently, the Hugenholtz and Van Hove theorem is violated. Since the validity
of this theorem is strictly related to eq. (2.1), which predicts that the re-
arrangement energy is equal to zero, we conclude that v (p, %), calculated ac-
cording to Brueckner’s theory, does not fulfil eq. (2.1). So far no clear-cut
computational evidence exists for sharing the opinion according to which the
nonzero magnitude of the re-arrangement energy is a characteristic many-
body effect which manifests itselt through high-order effects in the reaction
matrix. Indeed, it can be shown that the appearance of re-arrangement
energies is strictly bound to the criterion adopted in the application of varia-
tional methods, which—in turn—influences the choice of the single-particle
potential, One might suspect either that the re-arrangement energy is a sort
of «ghost» energy created by mathematical procedures (and/or approxima-
tions) or that it would probably disappear in an exact formulation of Brueckner’s
theory. Anyway, eq. (2.1) seems to offer a powerful guide to an overall descrip-
tion of infinitely extended nuclear matter.

With this theoretical scheme in mind, we have been tempted to extend
the validity of the mathematical structure of eq. (2.1) to finite even-even
nuelei by replacing the limiting momentum » with the function y(»), obtained
by the self-explanatory generalization of definition (2.2) to nuclei characterized
by & nonuniform density distribution o(r) (normalized to 1), i.e.

(2.13) ' () = {(3n2[2) Ap()} 5

() K.A. BrRUECKNER: Phys. Rev., 110, 597 (1958).
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definition (2.13) is valid only for even-even nuclei (4 = 2Z = 2N). The new
differential equation is

6r  2¢ @ 2 @
2.1 o, =c Gt 2 _
=1 {8])2 + pcp  ox(r)? + 2(7) ax(r)}v{p’ Z(T)} 0.

Equation (2.14) is the spring board for a substantial improvement of the
Thomas-Fermi model. Let us define dA"(r, p) as the number of nucleons with
momentum p at point r in a small volume element of phase space. Then,
the basic assumption is that all states are filled equally as long as a certain
momentum y(r) is not exceeded, after which they are all empty.

Assuming £ = ¢=:1, one has

dA'(r, p) = 2 drdp/(2n)*, p<y(r);
(2.15)
dVV(r’P):Oy P>X(7');

factor 2 comes from the fact that the number of states is doubled by the
presence of the spin. By integrating (2.15) over p one obtains eq. (2.13),
which is the fundamental relationship between nuclear density o(r) and local
maximum momentum y(r).

The Hartree-Fock approach to finite nuclei is extremely difficult (¥). The
short-range correlations have to be treated by a ladder summation through
the introduction of a reaction matrix conceived of as a functional of the lccal
density. The semi-classical approximation of such a funetional in powers of
the density gradient turns out to be disastrous: the shell structure of the
nucleus is lost! Calculating a self-consistent single-particle potential is based
upon multi-step iterations which require enormously long computer times and
make a systematic investigation practically impossible. This discouraging
situation stimmlates one to ascertain whether eq. (2.14) is capable, at least for
finite even-even nuclei, of playing the «steering » role played by eq. (2.1) for
infinite nuclear matter.

2'2. The density distribution of even-even nuclei with A <16. — Several em-
pirical forms of density funetion g(r} have been considered in the literature (°),

(®) P. HomENBERG and W. Koux: Phys. Kev. B, 136, 864 (1966); L. 1. Suam and W,
Koux: Phys. Rev., 145, 561 (1966); K. A. BRUECENER, J. L. GaAMMFL and M. WErrz-
NER: Phys. Rev., 110, 431 (1958); K. T. R. Daviks, 8. J. KrIEGER and M. BERANGER:
Nucl. Phys., 84, 545 (1966); J. P. SWENNE, A. K. KErvan and F. ViLrars: Phys. Eev.,
147, 710 (1966).

() K.A. BRUECKNER, J. R. BUCHLER, S. JorNA and R. LoMBARD: Phys. Rev., 171,
1188 (1968). See also C. W. DE Jacer, H. Dx VRIEs and C. D VRiEs:Ai. Date
Nucl. Data Tables, 14, 479 (1974).
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Neglecting the small differences between the radial distribution of protons and
neutrons, the simplest analytic form of g(r) is

(2.16) o(r) = ZJ'E PH(ryy ooy PO — 1) P(ry, ey 1) dry ... drs,

where ¥(ry, ..., r,) is the totally antisymmetrized ground-state nuclear wave

funetion expressed as a Slater determinant and » indicates the summation
F 4
over all permutations. Assuming that the ground states of the even-even

nuclei with 4 <16 can be adequately described by the lowest shell model con-
figuration, it can be shown quite generally that o(r) is independent of the
mode of coupling in the shell model, and depends only on the shape of the
common potential well. Assuming an infinite parabolic well, density func-
tion (2.16) becomes

o(r) = oo{1 + n(r/s)} exp [— (r/s)*],

217
1T 00=2[nV/7(2 4 3p) s,

(2.17d) f@(?‘) dr—1;

(2.17¢) R = R(s, n) = s{3(2 + 59)/2(2 + 3p)}t.

Information on the shape of the central potential, on the strength of the
spin-orbit coupling and on the type, shape and strength of the residual
two-nucleon interaction is concealed in the two unknown parameters s and 7;
In particular, length s is related to the curvature of the well and to the
energy interval between two successive levels of the harmonic oscillator.
Parameters s and # will be determined according to the stability preserip-
tions of the considered even-even nuclei: it will be shown that this goal
can be achieved provided one also puts simultaneously into play optical-model
requirements and consistency constraints arising from the theory of infin-
itely extended nuclear matter.

The analytic form (2.17) is used for describing the charge density of nuclei
with two protons in the s-shell and Z — 2 protons in the p-shell (19): in this
case, using appropriate harmonic well wave functions, it is found that

(2.18) n=(Z—2)3.

Remarkable fits of the elastic-scattering data of high-energy clectrons from

(*) R.L.B. Erton: Nuclear Sizes (Oxford University Press, Oxford, 1961).
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e, 12C and %O have been obtained (1!) using a charge distribution having
the form (2.17), namely

0a(r) = () {1 + 7(r/5.,)2} exp [— (r/s.,)]
(2.19q) _

(Oo)ch - ‘)/n\/n(Z + 3nch) S?h b
(2.19) foatnar=1,
(2.19¢) R}, = 5,{3(2 +5n,)[2(2 -+ 31,1 .

(2.20) New = 3(Z —2);

which gives 7, = 0 for *He, 5,=% for 2C and #,= 2 for 0. For our
purposes it is essential to clarify the relation existing between nuclear den-
sity (2.17) and charge density (2.19), namely between the set of param-
eters (s,n) and (s,,”.,)- A clear-cut starting point is the following: a) den-
sity (2.17) expresses the radial distribution of the centre of mass of the
nucleons (and—in particular—of the protons) bound in the nuclear sys-
tem; b) the inecident electron feels the combined electromagnetic effects
arising both from the nonuniform centre-of-mass distribution of the protons
and from the individual charge density distribution o (r) characterizing each
proton. Consequently, the charge distribution g (r) used in the analyses of
the electron-nucleus scattering data is related to o (r) and ofr) through the
folding integral

(2.21) 0 (7) = 0u(Ir — %)) o(@) A
Let us introduce the veector X -=r — x; taking into account that

(2.22) r—z|<X<r+o,
equation (2.21) becomes

r w
2n

0alr) == [ f aI,(x, )o(x) dr + f 21, )olz) dx] ,
r+a:0 ' zir

Ip(x,7) = f Yo (X)AX,  Ix,r) = f Xo,(X)dX .

r—x x—r

(*') H.F. EHreNBERG, R. Ho¥sTaDTER, U. MAYER-BERKHOUT, D. G. RAVENHALL
and 8. S0BOTKA: Phys. Rev., 113, 666 (1959). See also R. HOFSTADTER: Annu. Rev.
Nucl. Sci., 7, 231 (1957).
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In order to perform transparent calculations, we resort to the Gaussian proton
model which, although inadequate in accounting for the electron-proton scat-
tering data, nevertheless gives suitable qualitative results of general validity.
The considered proton model is expressed by the charge density normalized
to 1

0,(r) == (1/avas}) exp [— (r/s,)],

(2.24q)
fgp(r) dr =1

the r.m.s. radius is

(2.24b) R,=sV3.

Equation (2.23) becomes

0.,(1) = (2/\/7—:8p r) F(ryexp [— (r/s))*],

(2.25) ©
F(r) = [r sinh (2ra/s?) o(x) exp [— (®/s))?] dz .

Density (2.19) is obtained from eq. (2.25) assuming for g{r) the form (2.17);
the parameters characterizing p_(r) are found to be
(0o)ew = {2 -1 B(s,[) m}/n V(2 - By) sy

(2.206)
sfh =87 4 812; ’ Nen = [2(s/soh)2/{2 + 3(81)/81:11)2}] n.

It is readily ascertained that the following equality holds:
(2.27) R, =R 4 R;.

The form factor corresponding to density (2.19) is

(2.28) F(*) = [1— {na/2(2 + 37,)} s5.0°] exp [— (s,0/2)2]

where ¢ = q(F, 0) is the relativistic momentum transfer. The angular posi-
tion of the zero of F(q?) is a surprisingly close guide to the narrow diffraction
minimum of the differential electron-nucleus cross-section. The fit of the
angular position provides an accurate determination of parameters s, and #,,.
The fit is improved by taking into account that the origin of the co-ordinates
is the centre of masg of the nueclear system and not the centre of the well as
is assumed in the usual shell model treatment; the correction is

(2.29) st = {(4 —1)[A}s* +s2.
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The validity of eq. (2.20) (concerning finite-size protons) and noet that of
eq. (2.18) (concerning pointlike nucleons) possesses strong experimental evi-
dence. It is astonishing that this circumstance has never been specifically
stressed. For our purposes it is sufficient to have given

(2'30) s < Sch ’ 1] > nch .
A deeper insight into density function (2.17) will be given in subsect. 9°2.

2'3. An ansatz on the nuclear radius. — In order to make as much use as
possible of nuclear-matter results in describing finite nuclei, we adopt the fol-
lowing ansatz: the r.m.s. radius E(s,7) of a nonuniform density distribution
o(r), calcnlated for an even-even nucleus at the minimum of the total energy
of the nucleus ground state, is equal to the length R_ = r,A? characterizing
the infinite nuclear matter at the minimum W (x,) = b4, i.e.

(2.31) R(s,n) = roA¥;
from eq. (2.31) one expresses s as a function of #, namely
(2.32) s = 1, AY2(2 + 3)[3(2 + B)I* .

The empirical « nuclear radius » Fy = rooA*, crudely determined in the frame-
work of phenomenological theories, is related to the r.m.s. radius RE(s, ) by
the relation

(2.33) roo = (3)i75 .

Ansatz (2.31) does not contradict the approximation intrinsic to the nuclear
Thomas-Fermi model, namely that the energy and density dependence is
locally the same as that of a homogeneous medium in its ground state: of
course, this is equivalent to assuming that the correlations between the nucleons
in finite nuclei are the same as in nuclear matter. Should ansaiz (2.31) be
groundless, then the results achieved through nuclear-matter caleulations ought
to be considered not only heuristically meaningless but also conceptually mis-
leading. This is, in fact, not the case! By means of the hydrodynamical effec-
tive-mass approximation, introduced in subsect. 54, we shall pour into the
theory of finite nuclei some crucial information obtained from the overall
description of infinitely extended nuclear matter, based upon the differen-
tial equation (2.1): this will make it possible to determine the nuclear param-
eters s and 7 and then to construct the optical potential.
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3. — The momentum-density dependence of the single-particle potential energy.

3’1, The single-particle potential deduced by series integration. — We shall
seek for solutions of eq. (2.14) by expanding v{p, x(r)} in power series of p,
1.2,

(3.1) olpy 10} = 2, S z}p"

where Ja/,,{x('r)} are unknown functions of the local maximum momentum y(r).
Following the procedure outlined in I, it is found that

(3.2) A {x(r)} =0,

and that only even powers of the nucleon momentum p appear in expansion
(3.1). The general integrals of eq. (2.14) in N approximation read

N

(3.3) v p, x(0} = 2B {3(r)}p*,

n—=0

where all terms corresponding to #» > N are assumed to be zero, i.c.

(34) B} =0
for » =1, 2, .... Functions #Z{y(r)} satisfy the recurrence relations
(3.5) (20 4 2)(2n - ) B )} = DA )

where ® is the differential operator
(3.6) D=7, —{2/xn}e, .

The determination of functions Z{y(r)} is carried out by solving the system
of differential equations

68, {5(r)} = BA7{x(n)} ,

(3.7

2N@2N + 1)EP{1(r)} = DB {41}, 0 = DBI y(r)}.
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The solutions of the system are

g(m{x(r (g(v)“xs( )_{ (g(\)

2N )

o) | B0} = NN+ D6, 720) — €070 + 365, 0 + 6L,

where €Y., are 2N + 1 arbitrary integration constants. Any physically signif-
icant solution of eq. (2.14) must fulfil for p>0 the condition

(3.9) v{p, x(00)} =0
it follows that

(3.10) EN =D — .. =0.

2N¥—2

It is worthwhile to remark that function v*{p, 4(r)} depends only on the odd
powers of the local maximum momentum y(r).

The N = 0 approximation is not significant. Function Z"{y(r)} obeys the
differential equation

(3.11a) DB 1N} =03
the momentum dependence of the single-particle potential is lost, i.e.
(3.11d) vO{p, 7(r)} = LE (1) p(r) .

The N = 1 approximation is obtained by solving the system of differential
equations

(3.12) DB (1)} = 6B 4(n)}, DA 4(r)} =0
it is found that

(3.13a) v{p, 1)} = By (1)} + B3 ()} p?
g:}nr } __ 3 (gu) ) 4+ gtll)xa(,«) ,

(3.13b) . .
391 {;{(7’)} = g:sl),‘{a(r) )

note that an unessential factor 4 has been included in the integration constants
%" and ¥V, Equations (3.13) express the radial effective-mass approximation;
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the nucleon effective mass M*{y(r)} is readily found to be

(3.14) MIMHy(r)} = 1 + 2MBP{y(n)]

The conjectured dependence of M*{y(r)} on the square of x(r) is wrong ().
A more realistic mathematical model, at least for p < y(0), is provided by

the N = 2 approximation: we shall call it « model I». 1t is based upon the
system of differential equations

DB (1(r)} = 68 {5(1)} ,
(3.15) DB x(r)} = 2087{x ("},
BB y(r)} = 0.

The analytic expression of the single-particle potential provided by model 1 is

(3.16a) v{p, 11} = B ()} + BE{1(r)}p* + BP{5(r)}p*,
g;z){x } _ '3%7(2) )+§¢() 5( )_}_(gm) 3( )
(3.160) B} = M‘52’945(?‘) + 700

g(zz){x } __ gw) ,

where an unessential factor 1 has been included in the integration constants
€& and €. Note that the effective-mass approximation is formally obtained
by putting in eqgs. (3.16)

(3.17) FP =0,

The integration constants €%, €. and €' must be determined consistently
with the stability prescriptions of the considered even-even nucleus.

3'2. The single-particle potential deduced by variable separation. — Let us
now seek for solutions of eq. (2.14) using the method of variable separation.
To this end we substitute in eq. (2.14) the single-particle potential energy
expressed in geparable form

(3.18) v{p, 2(r)} = vup)vaf (7))

Following the procedure developed in I, sect. 6, it is readily ascertained that

(**) G.L. Suaw: Ann. Phys. (N. Y.), 8, 500 (1959).
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the only physically meaningful differential equations are

(3.19a) [p20,{p*2,} + a*v,(p) =0, p<x(0),
(3.19b) (22 e x72(r) 02} + atlv{x(r)} =0, p<x(0),
(3.20a) [p22,{p%0,} — B*lu(p) =0, p>2(0),
(3.200) [2(r) ey 2(r) 0} — Bl oo{x(r)} = 0, p=>2(0),

where o and f are real constants. The solutions of eqs. (3.19a) and (3.20q),
satisfying the conditions

(3.21) 1,(0) finite,  vy(c0) =0,
are

(3.22a) v:(p) = exfsin (ap)/p} p<x(0),
(3.22b) v(p) = ;Y (Bp) , 2> 7(0),

where Y(8p) = exp[— Bpl/fp is a Yukawa function in momentum space and
¢, and ¢, are unknown constants. Function vz{z(r)} must fulfil the physically
obvious condition

(3.23) v.{y(00)} = 0.

To solve eqs. (3.195) and (3.206) we perform the transformation

(3.24) v 2(r)} = 1) 6{x(N} ;

the following differential equations are thus found:

(3.25a) (02, + ez —2x2(n16{x(n} =0, P <x(0),
(3.25b) [62,— B2 — 2y 2(n10{x(n} =0, p>%(0).

The solution of Bessel’s equation (3.25a) is well known, the solution of
eq. (3.25b) has been obtained by series integration. The final results are

(3.26a) 6{x(r)} = exlisfox(r)} — cos {uz(n)}] p<x(0),
(3.26b) 0{x(r)} = el y?(r) + (B2/10) x*(r) + (B*/280) 1*(r)] p>x(0),
where jy(x) = sinz/r is the zeroth-order spherical Bessel function and ¢,

and ¢, are integration constants; function (3.26b) satisfies ¢q. (3.25b) up to
terms in yi(r). In conclusion, the factorable single-particle potential (3.18)
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turns out to be

(3.27a)  o{p, 1)} = Crofax (M} jolap) julox (1)} p<(0),
(3.270)  o{p, 21} = Cof{x3(r) + (B2/10) 3(r) -+ (B*/280) z7(n)} Y (Bp) ,
y ,"((0) ’

where j,(2) = {sin x/x?} — {cos x/r} is the first-order spherical Bessel function,
C,=¢c, and C, = ¢¢.

Funections (3.27) must be linked by continuity at p = x(0) together with
their first-order derivatives calculated with respect to momentum p; conse-
quently, the two unknown parameters C, and § can be expressed as functions
of the other two parameters €, and «. It is found that

(3.28a) Br(0) = —ax(0) ctg {ax(0)},
(3.285) ¢, >8001f)xazo{u (0) }yl{z }exp [ﬁ/wﬂ
280 ‘)%ﬂ‘ 2(0) - Bty
Sinee Bx(0)>0 because v{oco, y(r)} - - 0, parameter ay(0) has to be searched
for within the interval
(3.29) 2 <ax(0) <z .
For ay(0) -=x/2 (8 = 0) potential (3.27) behaves for p > x(0) as a Coulomb
function in momentum space, whereas for ay(0) —: x in (f = oo) it appears

to be a rounded-off square well momentum space. Taking into account
eqs. (3.28), potential (3.27) reads

(3.30a)  o{p, 2(r)} = Cralag(m)}iolap) iz} p<x(0),
(3.300)  o{p, x(1} = ve{x("}{exp [—Bp1/P} , p>x0),
to{x(r)} — Cijofax(0) }h{“?’ )} exp [ff,{ (B x (M ay(r)}e,

(3.30¢) 280 | 28F%ynr) | flyt

£Bar(3YY .
FELON = S0 — aspeyy 0 Ry

Since f{Bx(r)} is a slowly varying function approximately equal to 1, the radial
dependence Of potential (3.30) for p > »(0) is governed by the denslty func-
tion o(r). We shall refer to the mathematical deseription of the single-particle
potential expressed by eqs. (3.30) as «model IT ».

33. The «intermediate » single-particle potential. — A mathematical descrip-
tion of the radial and momentum dependence of the single-particle potential,
which is—so0 to speak—intermediate between model I and model 11, can be

8 — Il Nuovo Cimento A.
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constructed by assuming the validity of eq. (3.16) for p<x(0) and that of
eq. (3.27b) for p> x(0). This hybrid compromise between the solutions of
eq. (2.14) obtained by series integration and variable separation has a remark-
able heuristic value: it will be called « model I1T ». From continuity prescrip-
tions it is found that

3.3 55(2){1 } 3,{ '/3(2){7 } { )}’ J(o){x 0)
(( . ]a/) ﬂ]l!/ 0 = — (2) }_TA 0 J(z){ } Jm){ )} ,
(3 31b) CIIX ) IU(Z){} 0 1 x } 5'XI) [/ﬁlllx

* 2

—2M(0)[280 - 288%,2%(0) 4 ﬂ?u,{

In conclusion, model IIT is expressed by the following potential:

(3.32a) v{p, 1(r)} = B (1)} + BP{x(r)}p* + BP0t p<2(0),
(3.32b) vlu{py X(’I‘)} = vé"{x(r)}{exp [— ﬂIIIp]/p} y p>x(0),

v {x()} = 2(0)0®{x(0), x(O)} exp [ 2 (0)p{x(r)},

3.32¢
(3520 {11} = KB x (M Hx(r) [ 2(0)} .

Condition f, 7(0)>0 is satisfied provided

(3.33) BL{1(0)} + 3 (0) BP{1(0)} + 5x'(0)B{x(0)} >0 ;

it follows that the internal consistency of model 111 is ensured by the inequality
(3.34) — £7(0) P < (9/40) 4°(0) €2 + (7/80) £*(0) € .

The lowest approximation of model IIT is obtained by describing in radial
effective-mass approximation the single-particle potentials for p<x(0). The
corresponding relations can be deduced from the preceding ones by putting
#® =0 and, consequently,

(3.35) BP{xy(r)}=0.
Equations (3.31) become

B0 }+3x )B{2(0)}
J(l){x }_+_ x J(l){x 0 }

(3.36b) out . 2800{x(0), 2(0)} exp [Brurz(0

(3.36a) ﬂml(o)

,{ 3(0)1280 ‘*“)8151117 (OB ﬂIlIX

The consistency of the model is ensured by the inequality

(3.37) — B 7(0)}<3x2(0)B{2(0)} .
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4. — Stability prescriptions and nuclear compressibility.

4’1, The total energy of the nueleus. — Using the solutions of eq. (2.14) we
construct the total energy of the nucleus

(4.1) Wis,n) = T(s,n) + V(s, n)

where, neglecting the slight differences in the radial behaviour of the density
distributions of protons and neutrons, the kinetic and potential energies are

(£.2a)  T(s,n) = (I/M)fpﬁdav‘(r, p) = (4/5nM)fr2x5(r) dr,
o 0 ()
(4.20)  V(s,n) =fl’{p, AN} dA(r, p) = (4]n) frﬂ er‘p%{p, 2} dp .
0 [
Equation (4.1) explicitly reads
o )
(+.3) Wi(s,n) = ;—frz [gf)l) + |p2o{p, x(r)} (lp] dr.
0 0

Several results quoted in the literature have been de facto obtained using
W(s,n), given by eq. (4.3) with a factor } in front of the integral over p.
Although it may seem trivial, it has to be pointed out that this is wrong.
In faet, at the limit of a uniform distribution of nuclear matter confined in 4
sphere of radius R, from eq. (4.3) one obtains

z

(+.4) W () = GBS [37)| (21530 -+ [pro(p, ) dp]

0
which identifies with eq. (2.3) using relation
(4.5) R == (9n[8x*) A4 ,

derived from eq. (2.2).
The integral function

© 2(r")
N e PG ; ,
(L6) 0, = [ra 500+ [rroto, oy an]
r 0

expresses the fraction of the total energy of the nucleus external to a sphere
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of radius r; as is obvious, one obtains

(4.7) I0; s, n) = W(s, ).
Let us define energy

fl_j( ) 8y 7])

' _ 7
N

where number »(r) is defined as

(4.9) p(r) = (8/3n)jr’2 7y dr'

»(0)=-4.

Taking the limit for 4 — 0, eq. (1.8) becomes

x(r)

3
(4.10) “("‘;s’”):}s(-‘r)fpz[ﬂz 50 ) ]d‘”

0

Function (4.10) is formally identical to W_(x)/A, given in eq. (2.3), provided
z(r) is replaced by x. Thus, u(r; s, n) is the average total energy within a
sphere having in momentum space radius x(r). It is readily ascertained that

(4.11) I(r; s,7m) zfa(r’)u(r’; s, m) dr’

rriKo

The extension to a finite nucleus of the definition of the single-particle total
energy, discussed in I, leads to the following relation:

(4.12) [( {o(r)u(r; s, )}, ey ?

="

where s, and 7, are the values of the density distribution parameters cal-
culated at the minimum of the total energy of the nucleus. A straightfor-
ward calculation gives

(1.13) wir) = 55+ o), ) —

5 PAY
27%(r) J{X(r)l ’

where
x(r)

(L.14) 25N} = 2 e){xlr fp &lp, 1} ap -
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42, A theorem concerning the single-particle potential. — We shall now prove
the following theorem: for any density distribution o(r) function 2{y(r)} is
identically zero in the interval 0 <r<oo, ie.

(4.15) 2{y(r)} =0

provided v{p, z(r)} be a particular integral of the hyperbolic differential equa-
tion (2.14), satisfying the asymptotic condition

(£.16) v{ 3(c0), g(00)} =¢(0,0) =0

To this end we evaluate the derivative Dy = d/dy(r)

x(r)

(17) DL 2{x00}20)) = [2y0ps 1)) ], | S22, 200} dp,
[1]

where it has been taken into account that

(4.18) Dyo{x(r), 2(r)} = [(€, 4+ 2 t{p, 20 ey -

Equation (2.11) can be written in the form
(£.19) & [{p/xmPe,vlp, 1] = E{p/x(n} exelp, 11)}] .

Taking into account that ¢,v{p, y(r)} varies linearly with p in the neighbour-
hood of p =0, from eqs. (1.17) and (4.19) one has

(4.20a) S 2{x(M} 2] - -0,
(+.200) 2y} =620,

where € is an arbitrary integration constant. Performing the transformation
& = ply(r), from eqs. (4.14) and (1.200) one gets

(4.21) el 1), 20}~ 20 (£ ()&, 5] =% 5

equation (1.21) shows that condition (1.16) is satisfied provided € = 0, which
proves the theorem. One can readily check that the single-particle potentials
(3.13), (3.16) and (3.30a) possess the remarkable property (4.15).
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4°3. Stability preseriptions. — The first of the stability prescriptions of the
nuclear ground state is

(14.22) im D, I(7; 8, 9)]=s, =0,
=0 n=na
where D, = d/do(r) and s,, 7, are the values of s and 5 at equilibrium density:

as is “ell known, eq. (4.22) physically means that stability is ensured by the
zero pressure of the nuclear «liquid». The first-order total derivative of
I(r;s,m), at a fixed value of 7, is

(4.23) D, I(r; s,m) = (,8)6,I(r; 8, ) + (0,m0,1(r; s,m) .
With density (2.17) we construct function

(£.24)  F=F(o; 8,1 =
= 0~ (2/aV/7s) (2 -+ 30) {1+ (r/3)?) exp [— ()] =

Taking into account that S8 =— — (CoF)/(0,F) and Con —= — (Co F)/(Cq F),
eq. (4.22) becomes

(4.25) 80{ax ‘V(Sy 77)}0 + (2 + 3770){87,W(.S‘, 77)}0 =0,

where the symbol { }, means that the partial derivatives of the total energy
are evaluated at s —= g, and 5 =17,. One has

(4.26a) 8, W(s, n) = (8/n) f ({2, 7(r) }eelr) dr
(1.26D) ChWis,n) = 8/7)Jr 221 {Cnx(r)}eo(r) dr,

where, owing to the theorem previously proved, s (r) is given by formula (4.13)
with 2{y(r)} =0, d.e.

(1.27) w(r) = e(r) - o{x ("), x("},

e(r) == x2(r)/2M being the local Fermi eneigy. For density (2.17) it is found
that

o A iy (5 —2)(r[s)*—=2n(r[s)*]

(4.28a) Coxglr) = [ B (L + n(rs)?) ],{M )
D) 2 )y — 3 T/'S

(4.285) o)== [ 3(2 |- 3m){L + 7(rfs) 2}]
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Equation (4.25) expresses the necessary condition for nuclear stability.
The sufficient condition is given by

(4.29) Wi(so, m0) = b(X4) 4,

where b(X4) is the average binding energy of the considered even-even nu-
cleus X4, determined by spectroscopic mass measurements. This assumption
implies that the minimum W(s,, #,) also includes the contribution arising
from the Coulomb energy. This statement requires some comments. In the
idealized conception of infinite nuclear matter, the Coulomb contribution to
the single-particle potential energy fulfils eq. (2.1). It has been shown that
in first-order perturbation theory the single-particle potential energies are solu-
tions of the differential equation of infinitely extended nuclear matter provided
that the two-body potential ¢(r) is a function free of discontinuities: of course,
this also occurs for the Coulomb potential v (r)oc 1/r. It follows that in the
Fermi sea the Coulomb single-particle potential energy is momentum depen-
dent: this proves that the main ¢ause of the momentum dependence cannot be
restricted only to the exchange nature of the two-body force (**), but—as
already pointed out in subsect. 2'1—it is essentially brought about by the total
antisymmetry of the wave function describing the nuclear system. This im-
portant property is also preserved for finite nuclei by virtue of eq. (2.14).

4’4, The compressibility modulus. — The sufficient condition for nuclear
stability, expressed by eq. (4.29), possesses a clear-cut physical meaning but
is by no means sufficient for the existence of the minimum of the total energy.
From the mathematical standpoint the sufficient condition obviously requires
that the second-order derivative of the total energy with respect to density
D? W should be a positive quantity. Such a requirement isx always satisfied in
infinite nuclear matter and by finite nuclei in the framework of the Thomas-
Fermi model: this is probably the reason why so little attention is generally
devoted to this quantity in connection with nuclear stability. The physical
meaning of DZQW can easily be disclosed by applying standard thermodynamic
relations to the dexcription of the nucleus ground state at the limit of zero
temperature. I.et 1" be the nuclear volume, P the positive pressure of the
system and I the Telmholtz free energy. The isothermal compressibility C,,
is defined as the ratio of the variation in pressure to the corresponding fractional
variation of volume which it produces. The familiar relations valid for small
departures from the equilibrium configuration are

(1.30) C,=—— VEPRY), P—— (CH[T).

(1*) H.A. Brrur: Phys. Rer., 167, 879 (1968), p. 892,
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In the spirit of the Thomas-Fermi model we express €, and P in terms of
compressibility and respectively free energy per particle instead of compres-
sibility and free energy per unit volume, and then we replace the partial deri-
vative with respect to 17 with the total derivative with respect to density p;
one has

(4.31) C,=oD,P,  P==0'Dy(H/A).

Since at the limit of zero temperature D} W = D? H, from eq. (4.31) one
deduces that €, = oC, where

(4.32q) C =20D,(W/A) +~ 02 D? (W/A) .

ee

In order to work out analytically eq. (4.32a), we prefer to re-write it in the
form

(4.320) C = (1/A) lim {20(r) Do (75 5, 7) + g2(r) D2, L(r; 5, m)}s .

Owing to stability prescription (4.22), the first term in the r.h.s. of eq. (4.32b)
is equal to zero; energies

(4.33q) (50, 7m0) == (1/4) lim {o2(r) D1 (r; 8, 1)},
(4.33b) K (39, 170) = 9C (80, 7o)

are conventionally denominated as nuclear compressibility and nuclear com-
pressibility modulus, respectively. Thus the definition of quantity K(s,, 7,)
is physically significant in so far as it is specifically related to nuclear stability.
The calculation of the compressibility modulus is controversial (**); a variety
of «incompressibilities » quoted in the literature do not seem to have mueh
to do with definition (4.335).

The quantity we are interested in is

(4.34) K(s0, 7o) = 2 1im {0*(r) D, 1(r; 3, 1)}, -

Quantity (4.34) is generally evaluated by replacing ¢ with a length charac-
terizing the size of the nucleus such as the r.m.s. radius (**). We shall follow a
different and more genuine procedure. The second-order total derivative of

(*%) J.P. BraizoT: Phys. Rep., 64, 171 (1980). See also B. K. JExvines and A.D.
JACKsSON: Phys. Rep., 66, 141 (1980).

(%) J.P. Braizor, D. GogNY and B. GRAMMATICO3: Nuel. Phys. ., 265, 315 (1976);
K. B. Jex~NInNGgs and A. D. Jacksox: Nuel. Phys. A, 342, 23 (1980).
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I(r; s, ) with respect to density o(r) at a fixed value of » is

(4.35a) D2 L(r; 8, m) = (Ce8) {2 I(r; 5, M} + (Com) 2afCe 1(r; 5, )}

(4.350) D5, I(r; s,m) = (014 O) I(r; 8, 7)

where O, and O, are the differential operators

(1.36a) 0, = (?QS):E‘?S -4 (?-01))2?':’] + 2(F99)(?Q77) efq ’
(4.361)) 0.’. = (?;Qs)es —{- ( 0017)

o8 = — {2 )00 F) —2(2,F)(2,F) (@, F) + (2,F) (% F)}/(0, F)*,

(1.37b) ?;Qn = —{ (@, F) (@, ) — 22, )@, F)(2 F) + (2,72, 1)} (E, F)

Qe '}’l

where I == F(o; s, n) is defined in eq. (4.24). It is found that at limit y — 0
condition (1.25) lmphes

(4.38) {0, W(s,n)}=0.
The compressibility modulus (1.34) becomes

(4.39) K (89, mo) == (1/4) [So{ 777)Io+

A (2= 3@, Wy Y + 2802+ 3n){E5, Wis, )}l

where
2 Wi(s,n) = (8/m) Jm {0i(r5 5, 8) = walrs s, 7) S Jae(r) dr
0
(4.40) o Wi(s, 8/75] {o.(r; 7, 1) + wu(r; 7, 7)) ew(r) dr,
¢, Wis,n) = (8/n) fr {oulr; s,m) + wu(r; s, 7)) w(r) dr
L) @y(r; 8, 7) = 2 ([ 2{C xR x(r)} + 2002, 2(0}],

wy(r 98177)—,{()

The preceding relations exhibit the critical dependence of the compressibility
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modulus on the single-particle potential at p == x(r); in fact,

(4.42a) K (84, 10) = H (8o, 7o) -+ K1($0, 7o) + Ku($0, 10)

©

Rosa, 10) = (44 3) [r* Zr) y20)
(4.420)  { Kalsn, m0) = (8fd) [ 5:(n0{ 1(r), 1)}
Kolso, 1) = (8J4) [r* Eur)[20(x(r), 2(r)}] dr,

Eo(r) = Ei(r) + {2/1(7)}52(7) y

—

Ey(r) = s5y(r; So, $o) -

(4.42¢) + (2 + 310)2 i(75 70y Na) F 280(2 + 370) 01(75 S0y 7o) 5

Zp(?) = $5002(75 S0y So)

(2 4 390)2 w75 Moy No) + 280(2 -1 370) 0275 S0y 7o) -

Neglecting the complicated dependence on s and % of the potential parameter
C,o at the minimum of W(s,n), one obtains an approximate value of the
compressibility modulus by dividing by a factor 4 the result obtained from
eq. (4.42) assuming C,a constant.

5. — The parameters of the single-particle potential.

51, Model T and model II1. — The total energy of the nucleus described
by model T is

©

4 1 1 2 24
(5.1) W‘”(s, ,]) _. ;Z_J.,.zxs(,,.) [5)1 + ‘—5(6'(12))5(7‘) y 3 ggz)xs(.;.) |- F (g?),’{s(r)] dr .

0

This model is mathematically undetermined because dependent on five param-
eters (s,77; €2, €%, €¥) bound together by the two stability equations (4.23)
and (4.29). Let us, for heuristic purposes, examine the special case y = 0,
which @ priori will not be assumed to be valid for ‘He in spite of the fact
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that %, (*He) — 0. Function W®(s, 0) becomes

(5.2q) W (s, 0)/4 = a,s 4+ a,6Ps 4 a, D5+ a, €577,

S

ap = (n[4)% (V3[5)* (2750 M) A5 | a,—= (3/27)% (817/320) A%

u

(5.2b)

1,

a, = (n/2):(3/8)4 , = (2437/32)7 (8172 o()\/g)AZ
In the considered case the stability prescriptions are expressed by equations

(5.3q) {AW(s, 0)/ds} =0, Wi(so, 0) = b(X 1) A4,

S5 -sq

where, taking into account ansatz (2.31),

(5.3b) (2/8) r, AL,

From eqs. (5.3) one obtains

) 8, EF = {Bb(X4) —3ay s, % - Taygs, " €2} [2a,
(5.4) \ )
EN a<g< ) J’a sy —3b(l‘4)—761.3807(5;2)}/2(12 .

The compressibility modulus is

(5.5a) E(s), 0) = (s3/4){a*W (s, 0)/ds*}

s 89 7

(5.5b) K9(s, 0) = 3a,5,° — 150(X4) — Ta,s,” €.

Model IIT possesses the same indeterminacy as model I because also for
7 = 0 one additional equation is needed in order to determine parameters €'
(i -1, 3, 5). Model IT1, however, is useful in so far as it discloses the crucial
role of parameter € in evaluating, through eqs. (3.31), parameters €, and
B which govern the momentum dependence of the external part of the
single-partiele potential: only #{p, x(r)} for p > #(0) comes into play in the
construetion of the real part of the optical potential. As is seen from eq. (5.5b),
% also has an important role in determining the compressibility modulus.
The complicated interlacing between nuclear stability, compressibility and
optical potential, clearly exhibited by model III, also exists for model 11,
although masked by its mathematical features.

Only model I, developed in effective-mass approximation with 2= 0, is
mathematically defined. The corresponding relations can be obtained from
the preceding ones assuming ‘6‘:) =0 and a,:=0.
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52, Model 11I. — Model 11 is characterized by six parameters, i.e.
(5.6) s,y Uy, o0, Cygy B

only five equations are available, namely the ansatz equation (2.31), the two
stability equations (4.25) and (4.29) and the two continuity equations (3.28).
Thus, without additional experimental information or an additional equation,
the description of the nucleus ground state turns out to be parametrized as
a function of one of parameters (5.6). The total energy of the nucleus is

@

4 y (Cra)fax(m)}* ,
.7) Wis, n) — y_vfrz [{)1(‘[) ) :ZX i jifay(r) }] dr.

-1

1]

For our purposes it is convenient to adopt the following notation:

ay(r) = Qy(r/s),
w(rfs) = {1 4 n(r/s)?}} exp [— §(r/s)2],
_« (3 \/nA)

8

the Fermi energy at r =0 is

(5.9) go(n) = 22(0)/2M = {3(3Vr)3 [AMr2}{(2 -} 5y) /(2 + 37)3},

where r, is fixed by eq. (2.31) in accordance with the r.m.s. radius of the con-
sidered nucleus X4.

From eq. (4.25), taking into account eqs. (4.26) and (4.28), one obtains

(5.104) &N gln) = — (Cro) 22GL(L, 7,

") ;—‘J.ﬂ{(i 4 (5 — 4) 2 — 2p}(1 - nr?)t exp [— Hae23] de
(5-]Ob) G1(Qa 77) ==
:J‘:v‘l{ﬁ 4 (5 — d)az— 22 Y1 + qe) T Qu(x)} exp [— 53] dx,

(3.10¢) T Qu(@)} == jo{ Lu(®)} i Lu(®)},
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where & = #[s. The minimum of the average total energy (5.8) is

(3.116)  galy) | (C)Q6Q, ) =b(X4)

L )460(7]) fl"‘l nr2)®3 exp [—Hrz/3] dr
92(n) = B2 8n) v ) (1 4 ne2)* exp| / ;
(5.11b) °
12
I, — a2 - 24/32 ) —4x2/3]d
Go(L2,m) o1 Snwnfﬁ( Do) {Qu(r)} exp [— 4t
0

We now substitute in eq. (5.10a) the potential parameter C,x determined from
eq. (5.11a); it is found that

(5.12a) 9(n) ga(n) = Q{GA(2, )| (2, 1)},
(5.12D) ga(n (M Hgalm) — BX4)} .

Equation (5.12) allows one to determine parameter £2 as a function of # con-
sistently with the stability prescriptions. The dependence of Q(5) on the mass
number A4 is brought about only by the average binding energy b(X1) and
by the parameter r, :rO(X-") introduced in eq. (2.31). Of course, not only
the internal part of v{p, »(r)} in momentum space turns out to be parametrized
as o function of %, but also the external part: indeed, eqs. (3.28) are

(5.13a) B0y =—Q) etg {Qn)} =y,

. 1 8 1 +,§m-~3so< M ¢ o{2(n)} exp [y(n)]
(5-180)  Culop) — Vn(?. +3n) {280 = 28p2n) + 1 IG{R0), )}

The limit for 57 - 0 of the preceding relations identifies with the results other-
wise obtainable directly from egs. (5.3).

For the sake of simplicity we evaluate the s-dependence of the compres-
sibility modulus (4.30) for a fixed value of 7,. At equilibrium density one has

(3.14a) K (s, 1) =~ eol(no)Ho()0) +-
e(n)£2 (770)( ) {I{ (10, 8) -1 “')(770)11‘3(770’ §) ';QS_O} '
where

() = (8/3Va){e(m)(2 + 39},

(5.11b) _
ei(n) = (8/3Vm){C,a/(2 + 3n)},
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Hy(n) = |2*(1 4 na?,~th(a, 7n) exp [—5x2/3]dz ,

1]
(5.15a) Hy(n, ) = |x2(1 ~ ne2)3hy(x, n)d, {Q(n) %’ w(x)} exp [—Hx2/3]da ,
0

Hyn, s) = f w2hy (e, ), {Q(m = w(w)}exp [— 22 do ;

0

(5.150) {My} R
. Iy} =iy} — it} ;

4
(3.16a)  hn(x, ) = 3 amaln)a®”,

n=0

@ee = i,
ag(n) = 2229 — 78, ag(n) = 40n — 14292,
Gaa1) == 20072 — 2207 + 20 , doal) = 207°
a, =36,

(5.16Dh) a5,(n) = 1629 — 54, a,(n) = 24 — 10292,
ay,(n) = 1560n*— 1567 4 12, ay(n) =12n%,
a,, =29,
a5 (n) =30n—12, Agy(n) = 8y — 2097,
() = 257" — 32 + 4, () = 47° .

53. The angular-momentum distributions in the Thomas-Fermi model. -
We shall explore the possibility of determining parameter % by equating the
mean value of the square of the orbital angular momentum {/*),., calculated
according to the Thomas-Fermi model, with {£*)_ ., predicted by the shell
model, i.e.

(5.17) g = L% et -

The following considerations are restricted to even-even nuclei only. The value
of ({*,., is obtained from the level scheme characterizing the considered
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nucleus X4; using standard spectroscopic notation one hasg

119

(5.18) XA == 23 AL A DI el 2velf) = Af2.
/ J

7t

For the first two closed shells one has
(5'19) </2(4He)>shell = 0 ’ <[2(16())>shell = g ¢

The number (/%) is defined as

@ @

(5.20) (5 = f Ln(l) dff f a(6)de,

0

where zn(f) is the distribution function of nucleons with orbital momentum
between £ and £+ dZ. The number of particles with angular momentum

larger than ¢ is expressed by the integral function

(3.21) 1) = f () des
{

then, the distribution function =(¢) is given by
(5.22) a(f) = —{dll(¢)]ds} .
Function [I{¢) is readily obtained from model (2.15)

(5.23) 1(¢) =fde/V(r, P

by choosing the limits of integration over p and r properly. Let 0 be the angle

between r and p. Since I =rXxp, one has
(5.24) [cos O] = (r2p2— £2)rp ;
integrating over the angles and over p<y(r) it is found that

(5.25) 1) = (4/3n)f(.1 ) {rzer) — 2 ar,

where the integration over r has to be performed over the region where the
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radical is real. From eq. (5.22) one obtaing ('¢)

(5.26a) () = (4//n)f(1/7'){1‘212(r) — Wy
note that
(5.26) f (¢)de=T1(0) = A2 .

0
Taking into account definition (2.13), from eqs. (5.26) one deduces that

(5.27) (55 == (16]157)(3n/2)} A f rot(r) dr .

0

The numerical values of (%), obtained from eq. (5.27) are very sensitive
to the behaviour of the density function near the edge of the nucleus. The
integral over the fourth power of » is responsible for the general tendency of
the Thomas-Fermi model to predict too high average angular momenta for
light elements. Equation (5.17) is strongly violated for 4 — 1: indeed, if one
describes the density distribution of ‘He by a pure Gaussian funection
{n = 0), it is found that

(5.28) (L (THe) Y, = (2T/125)(3/5)}(36m)"

whereas the average shell value is zero. This suggests that eq. (5.17) should
be modified as follows:

(5-29) <ﬂ(‘Y )uhell <[ “ >’I‘F_</2(4He)>1‘l

The correction brought about by the shifting term is very effective for light
nuclei only and turns out to be less relevant as A increases (note that fora
standard nucleus {£2),, ,oc 20). Equation (5.29) provides a theoretical tool
for correlating the density distribution parameters. In particular, for den-
sity (2.17) it is found that parameter 5 is determined by equation

I(n) = (5/16)(Va[9)5 A S[{LHX Ay + L2 HeD, ],
(5.30) ©

I(n) = (2 4 3n) %fr‘ + 2*)3 exp [— ba2/3] die .

The method outlined above will be applied to **0 in subsect. 9'4.

(3¢) E. Frrm1: Z. Phys., 49, 550 (1928).
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5'4. The hydrodynamical nucleon mass approrimation. — Before concluding
that the determination of 5 is a hopeless task for even-even nuelei with 4 <16,
we shall explore a different approach. To this end we recall that in I, sect. 3,
the following theorem has been proved: if the infinitely extended nuclear
matter is conceived of as a nonviseous and incompressible fluid and the rela-
tion B, =r,A! is assumed to be valid, then the effective mass of a nucleon
plunged in it is exactly equal to } the mass of the free nucleon. This result
has been obtained according to classic hydrodynamies considerations and is
brought about by the dipole-velocity potential used for describing the motion
of & nucleon in the Fermi sea. It is interesting to evaluate the deviations from
the predicted value 0.5M of the effective mass of a nucleon in a realistic
liquidlike nuclear matter, i.e. in a peculiar fluid characterized by saturation
prescriptions (2.4). With this aim in view we define the single-particle total
energy as

(5.31) W (Py #p) = (P*2M) + v, (p, %)

where the explicit expression of v (p, »,) is given by the first of eqs. (9.4).
In the considered case the nucleon effective mass is usually defined as

(3.32)  MIML(p, ) = (M]p),wa(p, %) =1 L (Mp)2, 00 (D, 2) -

For our purposes it is significant to evaluate ratio (5.32) at p = x,. At
equilibrium density it is found that

(5.33) ag () == M MY (%) = L -+ (2/15e.) (36, — Bb,,) oty #,

where a,»x, 1s determined by solving the first of eqs. (9.6). If nueclear matter
behaved as a perfeet elassic fluid having the peculiar property of exerting
attractive forces upon the moving nucleon, in accordance with the above-
mentioned theorem the predicted value of =z,(x,.) would be

(5.34) @ (ny) =2

we shall ascertain in subsect. 9'3 that eq. (5.33) gives a,(x,) > 2. The more
general concept of mass tensor will not be considered. Equation (5.33) ac-
counts sufficiently well for the slope of v, (p, x,) at the Fermi sphere. As is
obvious, from definition (5.32) one obtains the nucleon effective mass (3.14)
provided v,(p, %,) is described simply as a linear function of p2.

The extension of definition (5.32) to a nucleon embedded in a finite even-
even nucleus characterized by a nonuniform density distribution is

(5.35) MIM*p, ()} =1+ (M[p)3,v{p, ()},

9 — I Nuovo Cimento A.
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where v{p, x(r)} is given by eq. (3.27a). Equation (3.35) is not so trivial as
it may appear at first; indeed, function (5.31) cannot be extended to a finite
nucleus by simply replacing x, with x(r): we only know that at p = y(r) the
single-particle total energy is expressed by funetion w(r), defined by eq. (4.27).
For these reasons we have ignored the nucleon mass tensor, which provides
a more refined hydrodynamical definition of the nucleon effective mass. The
internal logic of the theory, based on the differential equations (2.1) and (2.14)
and to the ansatz (2.31) implies that at the origin the nuclear system plays
the role of the nuclear matter associated to a given finite even-even nucleus.
It is then tempting to assume that

(5.36) a{7(0)} = agp(xy)

where a.{x(())} = M|M*{4(0), x(0)}. Equation (5.36) ensures a direct and very
crucial link between nuclear-matter calculations and those concerning finite
nueclei: it will be denominated as the « hydrodynamical mass approximation ».
From eq. (5.36) it is found that parameter % fulfils equation

(5.37) (Cr0) Q2 11(82) = — 2{aq () — 1} eo(n) -

Parameter 5 = 5, at equilibrium density will be determined in subsect. 9°3.
The optical-model prescription, introduced in the next section, implies that
it must be

(5.38) 24 (%) — 3> B(0) .

6. — The radial and energy dependence of the real optical potential for nucleons
scattered by even-even nuclei.

6'1. The optical transformation of model I. — We extend to the radially
dependent single-particle potentials, satisfying eq. (2.14), the definition of the
real part of the central potential used in I. Consequently, Vi(r, E) is con-
ceived of as the optical transform of the potential energy of a nucleon incident
on an even-even nucleus with an energy F == k*/2M in the laboratory system,
i.e.

(6.1) V}i(n E) = l'{p(?', E), Z(T)} y

where p(r, E) is the momentum of the incident nucleon embedded in the field
of the target nucleus

(6.2) plr, B) = k[1 + {— Vi(r, E)/E}]:.
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According to model (2.15) it is necessarily true that

(6.3) — V50, 0)> 20) (23 = &(r) 5
inequality
(6.4) — 150, 0) > 22(0)[2M == £4(m)

has a erucial importance for the physical congistency of transform (6.1).
In radial effective-mass approximation the central potential is

VI(r, By = m{z(M}B {x(r)} + [1 — m{x(n}] E,

6.5
-2 m{y(r)} - Mg} M, m{x(co)} = 1.

Prescription (6.3) is satisfied provided
(6.6) — m{x(0)} B {x(0)} > &oln) .

Substituting in eq. (6.6) the analytic expression of the nucleon effective mass
given by eq. (3.14), it is found that

(6.7) — e x(0), (0} > &o(n) .

It has been pointed out that the effective-mass approximation is mathematiecally
determined by the stability conditions only in the particular case n= 0. Let
us caleulate ¥0{x(0), x(0)} using for 5 == 0 the parameters ¢ and ¢ given
by egs. (5.4) with € and a;=: 0; it is readily established that inequality
(6.7) turns out to be violated. Such a drawback does not warrant any more
consideration of the nucleon effective-mass approximation,

The real part of the central optical potential, deduced from model L according
to transform (6.1), fulfils the second-degree equation

(6.8a) [V, B)2— Ay(r, E)VES(r, E) + A,(r, B) =0 ,
1= 2 MBP{y(r)} + SM* AP {y(r)}E
L MEBP{y(r)} N

ir gy = B} + 2 MABP L} E - AR (1)) B2
A= Toawaepey

, Ay E) =
(6.8b)

It is found that

(6.9a) Vi B) = 1A4(r, B) -+ 3V A0, B)— 44,0, B)
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where the ambiguity in sign has been eliminated by taking into aceount that
necessarily

(6.9b) Vl(f’c(oo, _E) == 0 .

Using eqs. (3.4) one can calculate the minimum value of ¥ which for 4 = 4
satisfies equation

(6.10) — V20, 0) = &(0) .

The mathematical connection between the compressibility modulus and the

zero-energy limit of the real central potential at the origin, implied by model I
at equilibrinm density, will be examined in subsect. 9°3.

6'2. The optical transformation of model 1I. — Let us consider the optical
transform of model II. The same procedure is also valid for model I1I. To this
end, we speeify eq. (6.1) using the single-particle potential (3.30b); one has

rC E—Vy y B 'a E—Irg”E é

ﬁyu{:{('r)} = 1’0{1(7')}/1(0) ’

(6.11b) V<(co, E) = VE(r, 00) =0 .

(6.11a)

The high-energy behaviour of potential (6.11) is expressed by the approxi-
mate formula

(6.12) Valr, B) = F{z(r)eoln) [T} exp [— Br(0){Fles(n)}*] -

The low-energy behaviour of Vi(r, E) cannot be obtained using the McLaurin
expansion

(6.13) Valr, B) = Vilr, 0) + S ea(r) B

n=1
where ¢,(r) = (1/r}){c"Vi(r, B)[SE™} .. It is found that functions ¢,(r) for

n > 1 diverge for r — oo, whereas for n =1 ¢,(co0) is a constant equal to }:
it follows that

(6.14) Vi(oo, E) =} E,

a result which is clearly physically meaningless.
For f —= 0 (2 = =/2) potential (6.11) is a root of the third-degree equation

(6.15) [VEtr, BT — BV, B] 4 eolm) [Fo{ ()12 =0 .
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Applying Hudde’s method it is found that

(6.16a) VE(r, E) = 1; E - 1) V— A (r, B) + V Ay(r, B) -

<

1\/ ArF \/1rE

Ay(ry B) = (E[3)* + {eoln) 2} [Fu{x(")}]?,

(6.16b) { Ay(r, E) == o)) L/? a[ RL,{ }]2 |- 150 )/ 0} [FR{)’ }]4 .

it is readily checked that potential (6.16) fulfils conditions (6.11b).
The zero-energy limit of potential (6.11) at the origin is obtained by solving
the equation

(6.17a) £ = N(n) exp [~ Br(0)E— 1)1,
[EZ — V50, 0)/eg(n)
(6.17b) _ _
N(n) = — {(Cro) ol }Q*(n)fo{Q(n)}h{Q(n)}-

Clearly, the optical-model prescription (6.4) implies that
(6.18) N >1, Em=>1.

Thus, inequalities (6.18) are sufficient for the consistency of the optical scheme:
both stability equations (5.10a) and (5.11a) are necessary to ensure that the
scheme has a physical content.

According to definition (1.3a) the real part of the spin-orbit potential can
be written in the form

(6.19a) Vil(ry E) = 2(2p/s,)%(6- L) Ug(r, E)V(r, ) ,
(6.19b) Ugy(r, B) = (s32r)D In{VE(r, E)},

where D == d/dr. Using the theory of implicit functions, one finds that
7{1°0+90ﬂ2, )+ B} Dir)

{280 + 282 x2(r) - /7’4 )}d r,E)’

D(r) = (s3/2r)D In {x(r)} = (s5/6r)D In {p(r)} ,

6.20b L Vi E Valr, B
( ) d(r,E) =1— SE— I(;C(T )E)[ + Bx(0 { 80(77(; )} ] '

(6.20a) Ugl(r, E) =

The zero-energy limit at the origin of the radial spin-orbit funection is

(e a0 0 =345 T )E(n)}f’80 >8y("’>‘ }— ()]’



126 A. PASCOLINI and €. VILLI

it is worthwhile to remark that eq. (6.21) predicts opposite signs of 15°(0, 0)
for even-even nuclei with # <1 and > 1.

6'3. Critical remarks. — Although potential (6.11) is generated by the sepa-
rable gingle-particle potential (3.18), it cannot be factorized as the product of
two functions VE(r) and Vi,(E) dependent only on the radial distance r and
only on the incident energy E, respectively, i.e.

(6.22) Valr, B) = Vg, (r) Vi, (F) .

As is shown by eq. (6.12), factorization (6.22) happens to be approximately
valid only at very high energies, namely

Vgl('r) = FR{X(T)} !

(6.23)

VialE) = {eo(m) B} exp [~ Br(0{Ee(m}] .
At high energies the real part of the spin-orbit potential (6.19) practically
behaves like Vi(r, F) factorized according to eqs. (6.22) and (6.23). At high
energies and at large distances potentials (6.11) and (6.19) turn out to be
approximately proportional to the density function, because

(6.24) IJR{X(T)} e o(r);

in such conditions the optical potential (1.2a) with the spin-orbit term expressed
by (1.3a) identifies with the potential formerly introduced in optical-model
calculations by FERNBACH, HECKROTTE and LEPORE (), and later used by
several other authors.

The low-energy behaviour of the real optical potential deserves some com-
ments. The linear dependence on energy F is straightforwardly brought
about by transforming the single-particle potential described in radial effec-
tive-mass approximation according to eq. (6.1). For nuclei with A <16 pre-
seription (6.4) turns out to be violated at equilibrium density: this is due to
the fact that the dependence of the single-particle potential on p? is inadequate,
in spite of the fact that it accounts for nuclear stability. Model I improves
the description of the nucleus ground state by means of an additional term
in p*, which is responsible for the appearance in the central part of the optical
potential of terms quadratic in the energy E.

The linear dependence on E of the central part of the potential, free from
pathological features, can be obtained by Taylor’s expansion of potential (6.11)
in proximity of a sufficiently large energy E,. The potential thus derived
simulates (especially for 4>16) the behaviour obtainable in radial effective-

('} 8. Ferypacu, W. HrckrortE and J. V. LEPORE: Phys. Rev., 97, 1059 (1955).



THE NUCLEAR THOMAS-FERMI MODEL EIC. 127

mass approximation: several analyses of elastic-scattering data, carried out
in the past, have been spoilt by such misunderstanding brought about by weak
phenomenological standpoints and by the acritical handling of fitting pro-
cedures. It is difficult to assess to what extent potential (6.11) accounts at
low energies for the insufficiencies of the impulse approximation and for the
neglect of multiple-scattering effects. It is encouraging to note that in our
scheme neither the breakdown of the impulse approximation, nor the neglect
of the presumptive role of multiple scattering influence the central part of
the real optical potential because its quantitative behaviour at low energies
is strongly bound to the stability requirements of the target nucleus: this is
the consequence of having used the average binding energy b(X+) as input
data for the determination of the parameters governing the radial and
momentum dependence of v{p, %(n}. The nonlocal features of the real optical
potential will be examined in subsect. 9°5. The spin-orbit part of the real
optical potential might turn out to be inadequate, unless one allows for the
energy dependence of length 4,, which has to be determined by fitting the
polarization data of nucleons elastically scattered by even-even nuclei.

It is worthwhile pointing out that the position of the minimum of poten-
tial (6.11) is independent of the incident energy.

In conclusion, the real optical potential (1.2a), constructed by means of
potentials (6.11) and (6.19), correlates the deseription of nucleon-nucleus
elastic scattering with the description of the main features of the nucleus
ground state. Thus, a stringent link has been established between asymptotic
phase shifts, elastic-scattering cross-seetions and polarization data, and the
stability conditions of the finite target nucleus. Optical-model calculations
which ignore the constraints implied by such an overall interlacing are
heuristically meaningless; this ecircumstance has been well emphasized by
Hopasox (1¥): « Most of the optical model analyses ... are relatively insensi-
tive to the radial variation chosen. Provided it falls exponentially at large
distances and is parametrized by a radius and a surface diffuseness, and these
are optimized to fit the experimental data, almost any form may be taken
for the radial variation in the nuelear interior without significantly affecting
the quality of the fit».

7. — The radial and energy dependence of the imaginary potential for nucleons
scattered by finite even-even nuclei.

T'1. The «frivolous model». — We extend to model (2.15) the treatment
used in I, sect. 10, for the caleulation of the central part of the imaginary
potential, Trivial considerations, based on the continuity equation and on

() P. E. Hopcsox: The Optical Model of Elastic Scattering ((larendon Press, Oxford,
1963), p. 113.
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the relation existing between the absorption probability per time unit and
the mean free path of nucleons within the nuclear system, lead to the con-
clusion that the central part of the imaginary potential in the Thomas-Fermi
scheme reads

(7.1) Vilr, B) = — (54/16)0(r) v (r, E){o,, ,

where » (r, E) is the velocity of the incident nucleon in the field of the target
nucleus and (¢ > is the neutron-proton cross-section locally averaged over
the 4 = 2Z = 2N nucleons of the nucleus: eq. (7.1) accounts for the implica-
tions of charge symmetry and charge independence of nuclear forces.

Let P(r, E) and P'(r, E) be the relative momenta of a two-nueleon system
before and after the collision of an incident nucleon of momentum p(r, E) >
>y(r) with a nucleon embedded in the nucleus with momentum ¢<y(7);
momentum p(r, ¥) is expressed by the dispersive relation (6.2). The principle
of local energy conservation requires that

(7.2) P'= P(r, E) = %|p(r, E)—q| .

The neutron-proton cross-section ¢,, depends on P and on the angle between
P(r, E) and P', i.e. 0,, =0 (P, P-P'). The caleulation of (g > is performed
according to the following procedure: i) quantity ¢ (P, P-P’) is multiplied
by the flux of incoming particles of momentum |p(r, E) — q|/M; ii) the quan-
tity thus obtained is integrated over the solid angle dz == sin 6 d6 dep defined
by the relative momenta P(r, F) and P’, keeping momenta p(r, E) and ¢ fixed;
iii) the average in momentum space gives the number of partficles scattered
per unit time in the whole solid angle for any value of q: this result is then
divided by the flux of incident particles. In conclusion, it is found that

2 ' 12 1] v > . P!
(7.3a) {6,y = ﬁT(r,E)):(r) fr dr f]p(r, E)—qlo,,(P, P-P)drdqg,

(7.3b) n(r) = (8/3n)[r’213(r’) dr',  anloco)=A.

0

To avoid cumbersome numerical calculations, we neglect the angular depen-
dence of the neutron-proton cross-section: this approximation alters the final
results by less than one per cent. Substitutirg in eq. (7.3a) the total neutron-
proton cross-section o, (P) — 470, (P, P-P’), one has

1 r
(1.4)  Lomy = 20 B)o(r) fr’z dr’f[p(r, E)— qlo, {P(r',E)} d(cos 0) dq .

¢
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Let us define vector Q = p(r, E) - q, which, owing to the conservation of

the total momentum, turns out to be an axis of eylindrical symmetry.
From the relation

(7.5) pP=pnE)+q—q=}Q+P
one obtains, taking into aceount eq. (7.2),

2p't—p*r, B)—q®
".6 > .‘0 = -t —- .
(7.6) co8 |p(r,E)+qu(T,1ﬁ)—ql’

lydird S{) =, — . - 4 ’2
(7.7) fd(“’“e) Ip(r; £) + q|'p(r, B) qlf

_ . ) (pl po)
\p(r, B)—q| |p(r, E)+ q|

The lower limit of integration is p} = x’(r). The upper limit is determined
by the Pauli principle and by the principle of energy conservation: in faet,
the latter requires that

(7.8a) pEr=p¥r, E) + ¢ —q'%;

the maximum of p' is obtained by putting in eq. (7.8a) ¢’=: y(r), which is the
minimum value of ¢' compatible with the exelusion principle, i.e.

(7.85) =, B) -+ gt — 2r)

The inequality p}—pj = p*(r, E) -- ¢*— 24*(r)>0 should hold for any g¢: this
implies that ¢ varies within the intervals

(7.9) [{2%2(7)*1’2("’ B)ji<q<ylr)  for pr, B)<2y%(r),
.

0<g<xlr) for p*(r, B)>2x%(r).

Equation (7.4) becomes

7y B) g2 2y ] -
10 - y', E .
(7 ) <6no> 2p r E ” ?‘)J. J.[ IP 7’ E ‘T_ ql GnD{P(? 2 )} dq

Let dg = ¢*dq sin © dO AP be the volume clement, where O is identified with
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the angle between p(r, E) and q. Using relation

(7.11) Q*=Ip(r, E) + q* = p*(r, E) -}- ¢* — 2p(r, E) g c05 O,

the relative momentum (7.2) turns out to be

(7.12) P(r, E) = }{2p°(r, E) + 2¢*— @*}

From eq. (7.11) one has sin @ dO = (Q/pq) dQ; it follows that eq. (7.10) takes

the form

r

— “L 3] 1
(7.13a) Oy = P )l )f? 8¢’y E)ydr’,
0
(7.13b) S(r, E) zfq{pz(r, E) 4+ ¢>—22(r)}&{p(r, E), q} dq ,
(e, E) tq
(7.13¢) S{p(r, E),q} = [anp{l (r, B)}dQ,
m(r,;i) -q

where the lower and upper limits of ¢ are given in (7.9).
From the experimental total neutron-proton cross-section ¢ (e}, where e

np

is the kinetic energy in the centre of mass, we derive the function

~ . I cl(’r7 E) o
(7.14a) 3(r, B) = L )+ P, B
(7.14b) e =e{P(r, E)} = P¥r, E)|M —='p(r, BE) —q?[+ M .

Function (7.14e) simulates the energy dependence of the neutron-proton total
cross-section and its apparent radial dependence brought about by the non-
uniform density distribution p(r). The radial and energy behaviour of funec-
tions ¢,(r, B) (i = 1, 2) is obtained using the procedure outlined in subsect. 7°2
and 9°6. Substituting in eq. (7.13¢) am,{P(r, E)} with 8(r, R), one obtains

.JIc,( E) Q
. - ry E), ¢
Ve, B B g

(7.15a) &{p(r, B), q} ==
(7.13b)  &{p(r, E), ¢} =

4 Mey(r, B) + %, B) + 3¢* 4+ 20 V22 Mey(r, B) + p*r, B) 4 ¢
A Mey(r, B) + p(r, B) + 3¢2— 2qV2{2 Mc,(r, E) + p*(r, B) + ¢*

=1In
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Since p(r, E) — q<Q <p(r, E) 4 ¢ and Q*<<2{2Mcy(r, E) -|- p*(r, E) + ¢*}, it fol-
lows that eq. (7.15a) can be written in the following form:

2 Mey(r, E) 1

7.16 E), S
(7.16a) S{plr, B, 4} = \/){_JICOTE)—{—])(rE)—{—qfn;)(

— 1" To{p(r, E), 4}
"y B 1

(7.160) Talp(r, B), ¢} — tgh  — PO BT (=1

V202 Mcy(r, B) - pi(r, B) + q3}

Performing the summation appearing in eq. (7.16a), the final form of func-

tion (7.13¢) turns out to be

(7.17) E{p(r, B), ¢} =
eMo(r,E) ) —1_)(11/‘_){2Mc 7‘ E) + pA(r, F_'_)+ (]21
){_Mc (r, B) +p (r E +q2} 4 Mcey(ry E )+p (r, E) L 3¢2

For calculational purposes it is convenient to define the following functions:

(7 L) = ,( )/p(?', E)7

(7.18) ;

p(ry B) = 20%r, E) — 1, v(r, B) = {2/e(r)} {e(r) -+ elr, B)L(r, )},
where ¢(r) =: ¥2(r)/2M; note that for ¥ %0 {(r, E) vanishes at infinity, whereas
for £ =0 it diverges as {x('r)} 1. In coneclusion, the analyvtic formm of the
central part of the imaginary potential is

(7.19a) Vi(ry B) = Vu(r, E)Vyu(r, E)
(7.190) Vul(ry B) = — (3 AM [m){o(r)[2»(r)}{E— Vi(r, E)},
Vi(r, E) zfr’zc1 {r'y Eydr',
(7.19¢) ’
Snlr, B) :ji,\z r, Bydz
- Hr—pu(r, B)} . Oz\/.’zz»~ v(r, E)
(7.19d) Tz ry ) = \/‘_’zz+-v7 E)th 3t fa(r, B)— 1

the limits of integration are

(7.20) { %o ::\/ﬁ(ry—IT)<2<¢(')‘, E)y=z, u(r, B) <

0
Z=0<2<{(r, E) = 2, wlr, E)>0.



132 A. PASCOLINI and €. VILLI

The central part of the real optical potential appearing in eq. (7.190) is given
by eq. (6.11). The zero-energy limit of V{(r, E) at the origin is

(7.21) VE(0, 0) == (5.4 [47%) (0, 0) (0, 0) VE(0, 0) .

The model upon which the construction of potential (7.19) is based, however
«frivolous » it may appear, seems nevertheless to be—about thirty years after
its basic formulation—less ephemeral than many other «serious» ones.

According to definition (1.3b), the spin-orbit part of the imaginary potential
turns out to be

(7.22q) VE(r, B) = 2(A,/s,)(a - L) Uy(r, B)VE(r, B),

(7.22b) U,(r, E) == (s}/2r)DIn{V{(r, B)}.

The zero-energy limit at the origin of the spin-orbit radial function is

(7.23a) U0, 0) = Ug(0, 0) + U,(0,0),
B} .8
(7.23b) Uy(0,0) = l:nul Z—; (D In {e,(r, 0)} 4- D In {F(r, 0)}) .

7'2. Simulation of the radial dependence of the nmeutron-proton total cross-
section. — Accurate knowledge of the radial and energy behaviour of func-
tion 8(r, E), defined in eq. (7.14a), is crucially important in order to make the
calculation of potential (7.19) reliable. We shall now outline the criterion
adopted for the determination of the auxiliary functions ¢,(r, E) and c,(r, E).
To this end we recall that the energy dependence of the neutron-proton total
cross-section in Born approximation is given by the well-known formula

(7.24) oy(e)=a/(b+e),

where @ and b are two constants dependent on the parameters of the considered
two-nucleon potential. The predicted energy behaviour of gy(e) is valid at
high energies. One might attempt to reproduce the observed energy depen-
dence of o, (¢) at all energies by means of the expansion

(7.25) 8(e) = 3 (—1)"o(e),

where Jg"(e) = a,/(b, + €) are Born-like functions with unknown coefficients a,

and b,. The use of eq. (7.25) in fitting precedures makes it necessary to over-
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come several difficulties due to the large number of parameters needed. For
calculational purposes it is convenient to replace eq. (7.25) with the new
arbitrary function

[ gk

(7.26) 8{e) = 0(0) 2 (—1)"{onle)[0,(0)}" .

n=0

Since for e-£ 0 oy(e)fo, (0) < 1, series (7.26) is rapidly convergent with in-
creasing energy. This makes it possible to sum the series and one finds that

-~ . G!)D(O)GB((')') . Cy _
(l._ l(lr) "3(6) - Gup(“) :']——G);(C) - C, ¢ ’

(7.27b) 6 a, ¢ = {a/0,,(0)} - b .

Note that the Born-like function (7.27a) identifies with the Born formula (7.25)
at the limit of high energies. The two unknown parameters ¢, = ¢,(E) and
¢; = ¢,(#) are determined by means of least-squares techniques. The same
procedure, although techunically far more complicated, can be used in order
to determine the two uaknown functions ¢ (r, E) and c(r, E) appearing in
eq. (7.14a). The limit of maximum variability of the relative momentum
P(r, E) is

(T.28) Py, B) = Hp(r, B) — (1} <P <} {p(r, ) 4 10"} = P,(r, B) .

v

The corresponding energies in the centre-of-mass system are

(7.29) eory B) -~ O{Po(/r; E)} = é{\/E — Iyl(t(ry E-) - \/5(7')}2 ’
[ . — - .
e(r, E) .= 6{1)1(7'7 E)} = 11:{\/1’]_ Viir, E) - \/8(7.)}2 :
it follows that for given values of » and F energy e(r, F) varies in the interval

(7.30) er, BY<e<e(r, E) .

The unknown functions c¢,(r, E) (i =1, 2) are determined by searching for
the minimum of the mean-square deviation

—~ Gm) (')[)__gir (",-)

2
] = minimum ,

where 3(r, E) is expressed by eq. (7.14). More details will be given in sub-
sect. 9°6.
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7'3. Outline of a computational procedure. — The calculation of integrals
(7.19) is difficult and time-consuming. We shall now outline a procedure
suitable for obtaining reliable numerical results. With this aim in view we
define the function

’z\/’z2~ L A )

(7.32) foles 1y E) = e, B)

and re-write eq. (7.19d) as

z{zt —p y(r E)

(7.33) fles 1, B) = 5=

thh—lto(z ", E).

Since for f2=:f(2; r, ) <1 one has

(7.34) tgh2fo=InV(1 + f)/(1 —fo) = fo+ 312,
it follows that eq. (7.33) becomes (f, S g,)

(135) s ry By = SR B 8 =l K2 100, B
322+ 9(r, E)—1 3{32*+ »(r, 19)—1‘3

The approximate expression (7.35) is not valid at low incident energies and

in proximity of r = 0. Taking into account that the interval of integration

of f,(z; r, E) is smaller than 1 and decreases as r and FE inerease, we replace

function g,(#z; r, £) by the new function

2a(z; 7, )2t {e* — u(r, E)}
322 | v(r, B)—1 ’

(7.36) bi(z; 1y E) =

where a(e; r, E) is an unknown function ensuring the validity of approxi-
mation (7.36) also at low energies and in proximity of » —= 0. Function
a(z; v, E)>1 is simply determined by solving equation

(7.37) fu(zi 7y E) =Di(2; 7y ) .
From eq. (7.37) one obtains

322 — v(r, b)—

a(z; r, E) -
(z 22 Vi 1 (1, B)

tgh 1§, (2; r, E) ,
(7.38)

a(0; r, B)=1
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Inspection of eq. (7.38) shows that an excellent approximation of a(z; v, E) is

(7.39a) alz; ry ) =U(r, £) + B, E) 2,
Zos ¥y IU) — 15 1 FE
A, E) - .zla‘( ,.9,,’._’,2.,2)_?“(2 )’_) ,
7.39h) ’
(. B(r, B) — alzy; ry B)—a(zo; 1, E)_,
2 —2

where 2z, and 2, are given in (7.20). The integral appearing in (7.19¢) becomes

(7T.40@) Falr, E) —ff)1(~, r, B)dz = §&,(r, E) ,
(7.10d) Gulr, B) =A(r, )Gy (ry E) — B(r, E)Sp(r, E),

(Sju(r; E) =

=z—n—Bu—r—1) [ l/‘ g (51 —2)V3(r—T1) R

3z —1
(7.40¢) o& +

Gra(ry E) = }(2] %( + 25 —3u—v-{ ]}T
—{—»};—(dy—;-v—l)(v—l)ln (327 -~ v —1)/(32; +v— 1)},

where p==u(r, E) and » —»(r, E). The procedure outlined above provides a
useful tool for numerical controls.

7°4. Critical remarks. — As is well known, the sum of a central and spin-
orbit part of the Thomas type appears, within the limits of validity of the
impulse approximation, to be a plausible form of the real optical potential
constructed by taking into account the spin dependence of the nucleon-nucleon
forces. There is no theoretical justification in assuming that this might be
even approximately true for the imaginary part of the optical potential:
indeed it has to be stressed that definitions (1.2b) and (1.83b) are entirely arbi-
trary. Nevertheless, RIESENFELD and WATSON (') have attempted to con-
struct the optical potential in the form (1.1), where

(7Ala) Voo, B) = VS(E) o(r) -|- V3O(E) (e L)(1/u2) D{(1/r) olr

Y ’

(A1) Vi(r, E) = VE(E) o) + ViE) (@ L)1 ju2) D{(1/r) olr

@ being the inverse Compton wave length of the pion. It should be appar-
ent that potentials V (r, E) and V. (r, E) built up in the preceding sections

(**) W.B. Riesexrerp and K. M. Warsox: Phys. Rev., 102, 1157 (1958).
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are substantially different from Riesenfeld and Watson’s either because the
radial and energy dependence is not arbitrarily factorized as in eqs. (7.41),
or because the quantitative behaviour for a given density distribution ofr)
is governed by the stability preseriptions of the target nucleus and by the
energy dependence of the neutron-proton total cross-section, without resorting
to the use of asymptotic nucleon-nucleon phase shifts, whose veliability is
questionable except at very low energies. It has already been pointed out
that the central part of the real optical potential can be considered approxi-
mately proportional to p(r) only at high energies and at large distances:
according to our scheme potentials (7.41) are not correct at low energies and
at distances smaller than the r.m.s. radius of the target nucleus. Further-
more, the proportionality to o(r) of the central part of the imaginary potential
is & very rough approximation of VI(r, E) expressed by eqs. (7.19): such an
approximation, however, is not consistent with the shell model prescription,
which will be discussed in sect. 8. Potential (7.19) probably represents the
most refined result obtainable from the so-called « frivolons model », outlined
by CLEMENTEL and VILLI long ago (*), for finite even-even nuclei in the
framework of a uniform distribution of infinitely extended nuclear matter.
It is worthwhile emphasizing that potential (7.19) is strictly related to the
stability conditions of the nucleus and consequently is grounded on a well-
determined deseription of the nucleus ground state, summarized by the pre-
dicted values of the compressibility modulus. Fuarthermore, potential (7.19)
discloses the inextricable links existing between the imaginary part of the
optical potential and the real one: the former cannot be evaluated independently
of the latter, Tt is interesting to compare the deduction of V{(r, E), expressed
by eqs. (7.19), with those performed by Havakawa, Kaway and KIxucHr (),
by HaraDpA and Opa (*2), by GOMES (%), by LeMMER, MARIS and TANG (*),
by GREENLESS, PYLE and TANG (**) and by SivmA and DUGGAN ().

The existence of a minimum of Vi(r, B} as a funetion of ¥ for a given dis-
tance » =7 (H) and, vice versa, the existence of a minimum as a function of »
for a given energy E_ = F_(r) are strictly dependent on the skin thickness of the
target nucleus; of course, spin-orbit potential Vi°(r, E) is zero at r =1 (E).
The behaviour of the imaginary potential should be properly considered
in choosing the more convenient energy when performing differential eross-
section and polarization measurements of nucleons elastically and inelas-

(29 E. CLEMENTEL and C. ViLLl: Nuowo Cimento, 1, 176 (1955).

(*1) 8. Havakawa, M. Kaway and K. Kikucnr: Prog. Theor. Phys., 13, 415 (1955).
(?2) K. Harapa and N. Opa: Prog. Theor. Phys., 21, 260 (1959).

(23) L.C. GoMes: Phys. Rev., 116, 1226 (1959).

(9 R.H. LeMMEiRr, T. A, J. Marts and Y. (. Tang: Nuel. Phys., 12, 619 (1959).
(25) G.W. GREENLEsSs, G.J. Pyre and Y.C. Tax¢: Phys. Rev., 171, 1115 (1968).
(26) B. Sixna and F. Duceax: Nuel. Phys. 4, 226, 31 (1974). See also B. Sinna:

Phys. Rev. C, 11, 1546 (1975).



THE NUCLEAR THOMAS-FERMI MODEL ETC. 137

tically scattered by even-even nueclei, in order to check the quantitative
predictions of the theory. As is well known, the comparison of the exper-
imental evidence (for example for ‘He and 2C) with the calculated results
showy significant discrepancies, due to experimental diffienlties and to the
inadequacy of the simplifying assumptions invoked to make the scattering
problem tractable. At high nucleon energies the presence or abgsence of a dip
in the measured polarization (usually ignored because of the uncertainties
in the nuclear-well shape and associated parameters) is determined in our
theoretical scheme by the stability conditions of the target nuclens, which
govern the quantitative behaviour of the optical potential. This is also true
for the diffraction minima in the differential cross-sections. It would be
interesting to ascertain if the imaginary part of the spin-orbit potential tends
to {ill up the troughs of the minima predicted by conventional treatments
(Born and WKB approximations), which have never been observed experi-
mentally. The influence of the imaginary spin-orbit potential on the polariza-
tion has never been investigated. In this connection it is worthwhile pointing
out that, if the central part of the real optical potential is smaller or equal
to the real part of the imaginary one, large polarizations can be predicted
even if V5°(r, E) is quite small and V3°(r, E) is put equal to zero. For incident
energies above meson production in nucleon-nucleon collisions, one should
expect parameter 4, 10 appear as depending also on the momentum transfer.
At such energies, however, the description of the optical-model interaction
outlined in this paper is not reliable.

8. — Implications of the shell model requirement fulfilled by the central part
of the imaginary potential.

We shall now bring to light an important link existing between Vi(r, E)
and VZ(r, E), which is concealed in the complicated dependence of the former
on the latter. Asis well known, the basic assumption of the shell model is that
the nucleons are embedded in a real potential well. Then, according to model
(2.15), a negative energy w*(r) must exist such that
(8.1) Ve, w*(r)} = 0.

It is seen from eqs. (7.19) that condition (8.1) is fulfilled provided
(8.2) 2o{ry 0¥(r)} = 2,{r, 0*(r)} ;

it follows that {{r, w*()} — 1, i.c.

(8.3) piry wH(r)} — y(r) .

10 — Il Nuovo Cimenlo A.
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From eqs. (3.30b), (6.1) and (8.3) one obtains Vi{r, w*(r)} implicitly dependent
on w*(r), namely

(8.4) Vil w*(n)} = Boo{ 2(n)} Y{Bx(n)]

where Y{fy(r)} is a Yukawa function of the local maximum momentum y(r),
(8.5) Y{By(r)} = exp [— Bx(r)}IBx() -

The negative energy F = w*(r) fulfils equation

(8.6) Y{Bx(r)} = Y{(Bx(0)V eolme) J[ae*(r) — Vi, w*(r)} ]t}

obtained by equating eqs. (8.4) and (6.11). A challenging task is to relate
V{r, w*(r)} to the single-particle potential energy (3.27) evaluated at p = y(r),

(8.7) v{x(r), 2(r)} = (Cra){ax(r)}* jo{oen(r)}iu{ocx(r)} -

1t is heuristically interesting to note that v{y(r), x(r)} fulfils the nonhomo-
geneous differential equation

(8.8) (D + o) o{x(r), 2(n} = 4(Cre)a® y(r) o (r)}

where the differential operator appearing in (8.8) is defined in subsect. 3'1;
the potential energy of the nucleus can be written in the form

@K

(8.9) V(s,m) = (1) [ 220)(D + o) o{y(0), 20} dr .

0

From eq. (8.4) it is ascertained that the equality holds
(8.10) V{0, w*(0)} = v{x(0), 2(0)} .
Funection w*(r) can be written in the form

(8.11) w*(r) = @(r) + Vi{r, w*(r)},

where ¢(r) is a function numerically determined frcm eq. (8.6). For r =0
it is found that

(8.12) P(0) = &,(n,) ;

in this case w*(0) is equal to w(0) defined by eq. (4.27).
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A priori one might be tempted to identify w*(r) with the total energy of
the probe nucleon embedded in the field of the target nucleus at distance »
from the origin. However, it iy difficult to find convineing arguments to sup-
port this interpretation. In fact, finite nuclei do not possess the properties of
nueclear matter whieh derive from the fact that the energy of a particle at the
Fermi surface is the extra energy which would be obtained by adding one
particle without changing its volume, while the average energy is the extra
energy which would be obtained by adding one particle to the nuclear system
without changing its density: for infinite nuclear matter these two quantities
are equal when the system is in equilibrium at zero pressure. The clue to the
problem lies in the boundary conditions associated to eq. (2.14), whose hyper-
bolic nature accounts for the propagation properties of nueleons in a highly
dispersive nuclear medium. The three particular integrals v_(p, %) considered
in subsect. 21 correspond to three different specifications ¢f the Cauchy prob-
lem associated to eq. (2.1); the boundary conditions are implicitly determined
by the choice of the two-body potential and by the caleulation procedure used
to evaluate ¢ (p, »). Both equations (2.7) and (2.12) possess two one-parameter
families of characteristic curves. The solutions of eq. (2.14) have been deter-
mined by taking into account the stability prescriptions (4.25) and (4.29) and
the optical-model requirement (6.4): according to the Cauchy-Kowalewski the-
orem these prescriptions imply definite analytic Cauchy constraints on a non-
characteristic boundary line. Through the shell model requirement (8.1), the
imaginary potential leads to eq. (8.6): thus, the unknown function w*(r) bas to
be extracted from a characteristic line implicitly dependent on the real optical
potential. This matter deserves further investigation. In the meanwhile we are
unable to offer a fundamental explanation (if any) of the radial behaviour of
w*(r), shown in fig. 3 for ‘He, 2C and %0, in comparison with the corre-
sponding w(r).

9. — The optical interaction of nucleons with *He, 2C and €O,

91. Main features of infinitely extended nuclear matter. — Before under-
taking numerical calculations for finite even-even nuclei, it is worthwhile to
summarize briefly the results obtainable in the framework of the idealized
conception of infinitely extended nuclear matter. Our starting point is pro-
vided by the hyperbolic partial differential equation (2.1). Its factorable
single-particle solutions are

(9.1a) Voo (Py %) = (Cr00,) (0t #)2 Jo(0t oo ) 2 (00 0 %) y <,

Vo (py %) = (Crag,) f(2){exp [— B ] /P}
(9.1%} ] . p=x.
J() = (oo #)2 ooy %) Ja (0t %) €XD [Bo %]
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As far as the physical implications are concerned, the fundamental mathe-
matical property of eq. (2.1) is expressed by the identity

(9'2) ’@m(x) = x* Fco(”} Z) —jpg{axﬂm(p7 J{)} dp =0.

The total energy (2.3) of the nuclear system is
(9.3) W () = 3Ax2/2 -1 (3A)2)(Crote) (e ) (0t ) -

Owing to theorem (9.2), from the first of the saturation prescriptions (2.4)
one obtains the separation energy relation (2.5). Tt follows that at equilibrinm
density potentials (9.1) become

(9 ) [vm(z% xp) e {(bv_ ep)/jo(am xp)}jo(amp) ’ p <ZF9
4
‘vco(p7 xp) = (bv— 8F) xF eXp [ﬂco %J{@.\'p [- /300])-]/1)} b .p > z}“

The compressibility modulus turns out to be

K (o) = et/ {2 W () [d), . = 6ey, -1 8(by — &) H (et 2,)
(9.5) . . . .
H(ot g ) = (0t %) {Ji(ct %) — TH& %)} (700t %) 11 (0 %)

The parameters o, %, and f,x, are given by the relations

.175_(I)v—'c"F)o‘zc,f,xF

{g (G tg) — - - ) _
8 (o e) T s T ) 9(5by— Ben) ()

Bty —: —ogie elg (Aeoxy) >0 ;

the former of eqs. (9.6) is deduced from the second of the saturation prescrip-
tions (2.4), the latter is deduced from the continuity relations between poten-
tials (9.1) at p = x%,. Note that the last of eqs. (9.6) implies that it must
necessarily be

9.7 A2 <o, %, < T
The central part of the real optical potential is

E—Vi(E, x|t

E— VB, 2|}
VIE, xp){ w ’/F}”,

} = Fg(x5) €xp [—ﬂwa {-» S

3

(9.8)
Fy(rp) == (by— &) exXP [foxp] -
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It is seen that inequality (6.4), which for finite nuclei ensures the internal
econsistency of the optical scheme, 15 always satisficd fer nuclear matter.
Furthermore, in the considered case, the subject discussed in sect. 7 is sim-
ply condensed in the following equations:

(9.9q) VI(E, s, = — (5. M [4a?) Cl(E){E* Vi(E, ”F)}FI(E) ®p)

BUE, %) = I3 By %) e
(9.95)

#{2t— u(E, %)} , 22V222 4 v(E, xy)

s Bt V(K #y) W Sy )17
(9.9¢) { S(E, #p) = »p[p(H, #5) ,
v.Je
LB, p) = 203 By wg)—1 VE, #p) = (2ep){er + ¢(E)CXE, 2:)} 5
(9.94) { 20 == V(B ) <2 <C(Ey ny) = 21, w8y x5) <0
JUC
Z =0 <2< {(E, #p) =2y, (E, #g) >0 ;

the meaning of the coefficients ¢{E) (i —= 1, 2) is specified in subsect. 7°2.

For infinitely extended nuclear matter the subjeet discussed in sect. 8 is sim-

ply condensed in the following relations:
rC — C(r, — 9 (s »

(9.10) Vilby, %) =0, Vilby, %) = (2 %,)

It has been shown in I that a cousistent overall descripticn of nuclear matter

can be obtained assuming the irput quantities b, cx d 7, = (97(/8)5/;.'}. lccalized

TABLE 1. ~ Numerical features of nuclear maiter described by eq. (2.1). Quantities £y, vo(p, %y), K,
Vﬁ(O, »e) and VIC(O, xg) are expressed in MeV and the Fermi momentum xy in (fm)= units.

by = — 14.0 MeV by —= - 15.0 MeV by == -— 16.0 MeV
7o in fin 1.0 1.2 1.0 1.2 1.0 1.2
- 1.5232 1.2694 1.5232 1.2694 1.5232 1.269+¢
&g 48.098 33.401 48.098 33.401 48.098 33.401
o My 1.9162 1.9997 1.931 8 2.0156 1.9465 2.030¢
B x5 0.68942 0.91449 0.72924 0.960 88 0.767 69 1.005:
Vo0, #p)  —126.46 —104.23 —130.29 —108.08 —134.12 —111.93
Voo (%p, 2p) — 62,008 — 47.401 — 63.098 — 48.401 — 064.098 — 49.401
K, 198.44 —173.63 207.43 184.28 216.36 192.88
V50, %) -~ 53.192 — 39.868 — 535.577 — 40.195 — 55.952 — 40.513

VE0,%,) — 052708 — 057611 — 0.58298 — 0.63145 — 0.63946 — 0.686"
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in the intervals
(9.11) b, =—(15.0£1.0) MeV, ro = (1.10-£0.10)- 10-3 ¢m

In view of the comparison with the results obtained for finite nuclei, we give
in table I an exhaustive numerical view of infinitely extended nuclear matter
pictured according to eq. (2.1).

9°2. A mathematical method for extracting nuclear information from electron-
nucleus scattering data. — A realistic evaluation of parameter r,, defined through
ansatz (2.31), is of crucial importance for the physical reliability of the
forthcoming caleulations. Our aim is to outline an exact mathematical meth-
od for obtaining nuclear information from the analyses of electron-nucleus
scattering data (*). The method will also bring to light the very reasons which
led us to choose density (2.17) for constructing the optical potential for nucleons
scattered from ‘He, 12C and 10,

We define as nuclear density o (r) the distribution of the centre of mass
of the protons bound in the nuclear system. Consequently, the « observed »
charge distribution g, (r), involved in the analyses of electron-nucleus scattering
data, is

(9.12) 0alr) = [o,(Ir — =) oy() dx,

where o (r) is the proton charge density. Equation (9.12) shows in three-

dimensional space that the unknown function g (r) obeys one of Fredholm’s
equations of the first kind, the symmetric kernel being expressed by the proton
density. Standard procedures seem inadequate to give exact solutions of
eq. (9.12). To circumvent mathematical deadlocks we start from the equi-

valent equation

(9.13) 0.(r) = — (1/4m) V2V, (1) ,

where V2 =D>+ (2/r)D is the radial part of the Laplacian operator and
V_((r) is the electron-nucleus potential energy

(9.14) V. () = f v,,(|r — ) o, (x) dx ,

v,,(r) being the electron-proton potential for unit charge. Introducing the
vector X = r — x and taking into account inequality (2.22), potential V (r)

(*') Recent information on nuclear-structure studies using electron scattering can be
found in the reviews C. C10F1 DEGLI ATTI: Prog. Part. Nucl. Phys., 3, 163 (1980); J. Hx1-
SENBERG: Nucl. Phys. 4, 396, 391c¢ (1983); B. Fo1s: Electron scattering and nuclear struc-
ture, in Proceedings of the International Conference on Nuclear Physics, Florence, 1983,
Vol. 2, Invited Papers (Bologna, 1984), p. 221-246.
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becomes

r

143

@

9.15a) V. (r) = (2a)r) [ f Ti(@, 1) o (2) 4z 4 [21,(z, ) o () dm],

0

r

rha atr
(9.150) I(@, 7)== f Xo(X)dX,  Ija,r) = f Xo,(X)dX .

Thus, from Poisson’s equation (9.13) one obtains the new integral equation

@

(9.16a) 0,,(r) = B(0) o (r) + (1/27) f oK (, r) o (z) d,
(9.16b) Elr—a)=Hr—a)v,(r—2) + (@—r)v (r—r)},

K(z,r) = D{(r—ax)v_(r—x)—(r +m)ven(r+x)}, T,
(9.16¢)

K(x, r) == D{(r -+ @) v,(r +a) + (. —1)v, (@ —1)}, T>r.

At this stage we need to specify the proton density g (r). We assume the
analytie expression

[ 0,(r) = (u2/4m)(a, — 2b, + b pu,7) Y(u,7) + (1 —a,) (r) ,
(9.17a)
Y(u,r) = exp[—pu,rlu,r,

(9.17b) [gp(r) dr=1;

the r.m.s. radius is (s, — 1/u,)

(9.17¢) =5,V 6(a, + 2b,)

D

proton seattering data. Density (9.17) underlies a variety of proton models
which have not been fully explored. For a, = b, = 0 or, alternatively, for
a, =0 and s, = 0 (u, = oo) one has a pointlike model: in this case the den-
sity is expressed by the delta-function and from eq. (9.12) one has 0,(r) =
= o\,(r). Of course, the same result is obtained from eq. (9.16a) because
V(1) = 1/r implies ¥(0) = 1 and K(x, r) = 0 for # <r and z>r. Three models
hwve been successfully applied to fit the data: Drell’s model (a, = 1, b, = 0),
Hofstadter’s model (¢, = 1, b, = }) and the model developed by CLEMENTEL
and VILLI (a, = %, b, = 0) (**). We recall that the Gaussian model (2.24)

Parameters a,, b, and s are determined by fitting high-energy electron-

(**) Details on proton models can be found in the review book by R. HoOFSTADTER:
Eleciron Scattering and Nuclear and Nucleon Structure (W. A. Benjamin, Ine., New York,
N.Y., 1963).
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has been chosen only for illustrative purposes, because it allows one to per-
form the folding integral (2.21) exactly.
The electron-proton potential generated by density (9.17) reads

(9.18) v, (") =1/r —a,pu, Y(u,r)— b, exp [—pu,r].
Substituting (9.18) into kernel (9.16¢), one has

K(‘Ty r) =
= [(a,— b, + b, u,7) sinh (u x) — b u, x cosh (u v)] exp [—pu, 7],

r<r,
(9.19) K, ) —

= [(@,— b, + b, u, @) sinh (u,r) — b, p,r cosh (u )] exp [— u 2],

r>r.

The apparently hopeless task of solving eq. (9.16a) characterized by kernel
(9.19) can be achieved by virtue of the transformations

(9.20) (1) = faa(0)]1 ox(r) =fu(n)r,

where functions f(r) and f.(r) must vanish at the origin linearly with » and
fulfil the prescription

@

9.21) [oulr) dr = 4a [risyar=1.

0

Consequently, from eq. (9.16a) one obtains

(9.224) fo () = (1= a,) f(r) + (a, — 2b) e, @(r) 4 2b, 1, p(7) ,
(9.220)  glr) =[O i) de,  pir) =¥, fyla) do,

&(x, r) = sinh (u,x) exp [—p, 1], x<r,
(9.23a) _

D(x, r) = sinh (u,r) exp [— u, 2], T>T,

Y(w,r) = 3[(1 4 pu,r) sinh (u,x) — p,x cosh (u @)] exp [— u,r], o<,
3b
) Y(x,r) = 3[(1 4 p, o) sinh (g 7r) — p,7r cosh (u,r)] exp [—pu 2], >7.

From eq. (9.22a), taking into account eq. (9.21), one deduces that functions
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@(ry and y(r) must fulfil the condition

@ @

(9.24) A f ro(r) dr = 4z f rp(r)dr =5, .

0

The mathematical properties of kernels @(x,#) and ¥(x,r) are discussed in
a preceding paper (*). Transformations (9.20) disclose that the following equa-
tions hold:

(9.250) (s;D*—1)gp(r) - — s, f(r)
(9.25b) ($2D*—1)y(r) = — (1),
(9.25¢) ($2D*— 252D + 1) p(r) = 8,7 () .

Equations (9.25a) and (9.25b) transform the integral equation (9.224) into the
nonhomogeneous fourth-order differential equation

(9.26a) O, w(r) = s, f.(r),
where O, is the model operator associzted to the proton density (9.17),
(9.26b) O, = —a)siD* 4 (a,-}-2b,—2)s2D* -1 .

Thus, the problem is solved: once p(r) is determined by solving eqs. (9.26) in
agreement with prescription (9.24), eq. (9.25b) gives ¢(r) and, finally, eq. (9.25a)
expresses fu(r) as a linear differential transform of f(r).

Let us restrict ourselves to Drell’s model (model D) and to Hofstadter’s
model (model H); the Clementel-Villi model requires rather complicated treat-
ment, which is beyond the scope of this paper. In the former case (a, =1,
b, = 0) one has

(9.27) O,:=—s:D*+1;

then, from eqs. (9.26a) and (9.250) one obtains ¢(r) = s f,(r) and eq. (9.25a)
gives

(9.28) 1) = L — ;D) f () -

(3*) C. ViLLr: Atti e Memorie dell’ Accademia Patavina di Scienze, Lettere ed Arii,
Yol. 90, Parte IT (1977-1978), p. 125.
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In the latter case (a, = 1, 2b, = 1) the model operator is O, =1, i.e. p(r) =
= 8,f.(r); from eq. (9.25¢) one deduces that

(9.29) (r) = (1—2s:D* 4 stD*)f . (r) .

Assuming o_(r) expressed by the analytic form (2.19) it is found that

0x(r) = (e0)en | Zrls)*] exp [— (rf5,0)1,

(9.30a)
(Qo)ch = ‘)/n\/;(?’ + 377cb) sgh ’
(9.300) f o (rdr=1,

where n = 2 for model D and n = 3 for model H. The parameters of the
nuclear density function are found to be

M =1—6(n,—1)&, Ny =1—12(n,—1)&—
—60(2n,, — 1) &,
0.51) N =1+ 21— 2)& Ny = 1+ 414 — 2)85 +
+20(157,, — 4) &,
Ny = — 4, &5, Ny = — 8, b5 —16(9,,— 1) &,
=0, 75 = 16n,5

where & = s [s,. It is readily ascertained by successive partial integrations
that both eqgs. (9.28) and (9.29) lead to relation (2.27) among the r.m.s. radii
R, B, and R, of o,,(r), o (r) and g, (r), i.e.

(9.32) R =R —R:.

The exact relation (9.32) will be used to determine r,, according to ansatz (2.31).

The electron-nucleus input parameters are listed in table ITa. The experi-
metal value of the proton r.m.s. radius is R = 0.77-101% cm; length s, cal-
culated according to eq. (9.17¢) for the considered proton models, turns out
to be

(9.33) & =R/V6=031-10"%cm, sT=R/H12=0.22-10"cm ;

the drawback of the Gaussian model (2.24) is mainly due to the large value
§¢ =10.63-10713 cm,
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TABLE Ila. —~ Parameters characterizing the 1lp-shell charge distribution determined
from the analysis of high-energy eleciron scattering data. Lengths are given in fm units.

i1le 12¢ 150
3 1.31 1.64 1.77
Nen 0 4/3 2
R, 1.61 2.40 2.64

TaBLE I1b. -- Parameters characterizing nuclear density distributions, calculated using
the values of s, and 7, given in table 1la. Lengths are given in fm units.

7 e 1208 16() s 1203 180
D H D H D H Ui

7o 1.33 1.38 0.93 0.90 0.82 0.80 s 1.56 1.68

N1 —0.22 —0.30 1.86 1.96 2.73 2.84 Mp 2.12 2.38

g 0 0.01 —0.19 —0.24 —0.24 —0.30 Sy 1.59 1.70

i 0 0 0 ~0 0 ~0.01 My 2.17 2.42

The parameters of density (9.30), evaluated according to eqs. (9.31), are
given in table IIb. The value 7, << 0 for ¢He and 7, < 0 for *C and 0
are unsatisfactory: the second- and fourth-order radial derivatives probably
amplify the inadequacies concealed in the analytic form of g (r) and o ().
However, since the 7’s have been calculated using an exaet procedure, weo
believe that the predicted behaviour of . (r) is substantially correct. This
suggests squeezing the overall information therein contained into the ana-
Iytically simpler density function p(r), expressed by eq. (2.17). This goal
can be reached by seeking for the minimum of the mean-square distance

between o (r) and ofr), i.e.

M(s, ) = [log() — ot dr,

(9.34)
0, M(s,n) = ¢, M(s,n) =0.

The nuclear parameters s and 7 are determined by solving the system of
equations

©

133 —2a2)p(s) exp [—a2] dr = Va/2(3/64)(4 + n)oq(s, 1)

o%

(9.354)

8

245 —2x2)px(sr) exp [— 2] de = \/n/2(15/256)(4 -+ 31)00(8y 1) 4

=)

(9.35b) olsy M) = 2[m/7(2 + 3y)s3.
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It is worthwhile anticipating that the values (s;,%,) and (s, 7,), given in
table 1Ib, are in excellent agreement with those determined in subsect. 94,
exclusively from nuelear stability and optical-model prescriptions. This is not
true for ‘He. In conclusion, the choice of the density function (2.17) seems
to be well justified at least for 2C and 0.

9°'3. Numerical results obtained from model I and model 111. — The input
data used in the following calculations are listed in table 111 (*). The r.m.s.
radii R(X4) have been evalnated according to eq. (9.32), where R = 0.77-

TasLE 1II. — Input data. Lengths are expressed in fm units, energies in MeV.

X4 4He 123 16()

R(X4) 1.41 2.27 9.52
7o X4) 0.89 0.99 1.00
Too 1.15 1.28 1.30
b(X4) —7.07 —7.67 ~-7.98

-10-1%3 em (31); the auxiliary length ro(X4) has been deduced from ansatz (2.31)
and the length 7y, from eq. (2.33). The average binding energy b(X4) has been
taken from spectroscopic mags measurements (32).

We begin by examining model I which should be considered simply as a
useful theoretical tool suitable for revealing the links existing among nuclear
stability, compressibility and the central part of the real optical potential.
The lowest indeterminacy of the model is obtained by putting 7, = 0; this
restricts the paradigm to ‘He. For 4 = 4 one has

(9.36)  $,=-1.1512-10"%cm,  §ox(0) == 2.1991,  £(0) = 74.91 MeV .
The numerical values of parameters (5.2b) are

o == 27.9740-10-% MeV-cm?
(9.37)
a,=1.8799,  a,=T7.0863,  a;=19.6175.

(30) The caleulations are performed assuming M —= }(M, --- M) -= 938.9263 MeV; in
the system of units # — ¢ == 1 one has 1/M =: 41.4594-10-2% MeV:cm?.

(31) The numerical values of R given in table III agree to a few percent with recent
evaluations; see J. S. McCartHY, I. Sick and R. R. WuIirNey: Phys. Rev. C, 15, 1396
(1977) for 4lle; W. REUTER, G. Fricke, K. MrrLr and H. Miska: Phys. Rev. C,
26, 806 (1982); I..S. CarDMAYN, J. W. LIGHTBODY jr., 5. PENNER, 8.P. FIVOZINSKY,
X. K. MaruvaMa, W.P. Trower and 8. E. WiLLiamson: Phys. Lett. B, 91, 203 (1980)
for 12C; I. Sick and J. 8. McCArRTHY: Nucl. Phys. A, 150, 631 (1970) for 150.

(32) 8. FrarMan and W. E. Maveruor: Nucl. Phys. 4, 206, 1 (1973); A. H. WapsTRA
and N.B. GovE: Nucl. Data Tables, 9, 267 (1971).
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It is convenient to write eqs. (5.4) and (3.5) in the form

50 EY = 5,060 4 (Tay[20,) 5,762,
(9.38a)

—5g(2) __ ,—5qpll) ~ ) —7q(2)
$°CY = 8", — (Ta,{2a,)s," €7,

(9.380) K%

Sos

0) = K"W(s,, 0) — Ta, s, €2 .

The radial effective-mass approximation is obtained by putting €* =: 0. It
is found that

82 = — 26.24 MeV, BD{5(0)} - - —187.10 MeV,

(9.39) §TOEN = 2.98 MeV 57280 1(0)} == 31. 69 MeV
m{z(0)} = 0.3283 , KM(sy, 0) = 169.37 MeV

This approximation provides s rough description of the nucleus ground state;
nevertheless, it conceals a serious drawback because it violates the optical
preseription (6.4) expressed by inequalities (6.6) and (6.7): indeed, it is found
that ’

— V3590, 0) = 61.42 MeV < £,(0) = 7-4.91 MeV,
(9.40) _ |
— 2 0{5(0), 2(0)} - — 33.8¢ MeV < £,(0) .

Inequalities (9.40) can be properly adjusted only at the expense of the cor-
rect r.nus. radius of He. It follows that the linear dependence on energy
of potential (6.5) is fallacious even at very low incident energies.

Model I with %2 7 0 possesses, at least in principle, the capability of
overcoming the failure of the radial effective-muass approximation. KHqua-
tions (9.38a) ensure that any value of €, either positive or negative, is con-
sistent with nuclear stability. It is seen that €® > 0 depresses the single-
particle potential at p =: »(0) and reduces the compressibility modulus below
the value predicted by the radial effective-mass approximation. Since the
results expressed by (9.10) arise from the fact that +™{y(0), %(0)} is too small,
model I is physically significant provided €< 0. The maximum value of
— 557 %” denoted as &, can be determined by solving equation

(9.41) €5(0) |- 44(0, 0)6,(0) - 4,(0,0) =0

obtained from eqs. (6.8) and (6.10). Tt is found that Z; —= 0.0923 MeV. The
value of ;7€ > — & ¢ 18 provided by the hydrodynamic nucleon mass ap-
proximation expressed by eq. (3.33). Assuming by = — 15.0 MeV, one has
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aq(x,) = 2.0136; in the considered case one deduces from eq. (5.32) that
(9.42) m{y(0)} =1 + 2MBEP{5(0)} + + MBZ{x(0)} x*(0) .

Then, from equation «_'(x,) = m®{x(0)} it is found that

55 EP — —0.1554 MeV .

In conclusion, model 1 is characterized by the guantities

BI{5(0)} = —217.55 MeV K®)(s,, 0) = 190.71 MeV ,
(9.43) s BP{5(0)} = 31.72 MeV v@{y(0), 2(0)} = —102.72 MeV,
§79BP(5(0)} = — 1.65 MeV , V0, 0) = — 89.62 MeV ,

where V&0, 0) has been evaluated using eq. (6.9).
The maximum value %, of —s;7%.”, consistent with model III, is
obtained by solving equation

(9.44) v x(0), x(0)} = — &(0) ;

it is found that %, == ¥,. Let us assume that v{p, x(r)} for p<x(0) be
the same as in model I. All inequalities indicated in subsect. 3’3 are verified;
in particular, 8, %(0) > 0. The zero-energy limit of the real part of the cen-
tral optical potential at the origin has to be evaluated by sclving eq. (6.17a).
The results are

(9.45) B x(0) = 0.4769 yane(g, ) = V0, 0) .

The interlacing of nuclear stability, compressibility and the central part
of the optical potential, clearly exhibited by mcdels I and 111, is fully accounted
for by model II, although it appears somewhat obscured by the very analytical
treatment it requires.

9'4. The nucleus ground state according to model II. — The n-dependence of the
most significant quantities characterizing model IT is shown in table IV: all
quantities are evaluated at the minimum of the total energy. We recall that
N(n), defined by eq. (6.17b), is the consistency indicator of the optical model
constructed according to eqs. (6.11) and (6.19). It is seen that requirement
N(n)>1 implies values of 5 which are larger than those predicted by the
shell model for the proton configurations of ‘He, *C and 0. Equation
(5.12) is used to determine {2 once 7 has been calculated according to
eq. (5.36); finally, length s is calculated according to amsatz (2.31). The hydro-
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TaBLE 1V. — 7j-dependence of ihe quantities 2(n) = ax(0), N(n), Px(0) and (in MeV)
eo(n), Cra and V{0, 0) at the minimum of the average tolal energy of the nucleus. The
calculations have been performed using as inpul parameters the values of ry(X*) and b(X4)
listed in table III.

7 iHe
2(n) N(n) B(0) &o(1) Cra V0, 0)
2.366 0.709 2.411 75.22 —75.38 —66.11
. 2.139 0.954 1.366 57.17 —69.42 — 55.95
1.5 2.036 1.065 1.021 50.11 —67.25 —51.69
2.0 1.943 1.158 0.759 44.78 — 66.01 —48.39
2.5 1.862 1.233 0.559 40.63 — 65.26 — 45.69
3.0 1.791 1.294 0.402 37.31 — 64.79 —43.38

) 1203
Q(n) N(n) B(0) £(7) 0= V50, 0)
0 2.457 0.674 3.008 60.54 —62.53 —52.98
1.0 2.218 0.964 1.677 46.01 — 57.76 — 45.29
1.5 2.111 1.097 1.264 40.32 — 56.02 —42.11
2.0 2.015 1.210 0.958 36.04 — 55.02 — 39.66
2.5 1.931 1.304 0.727 32.70 — 54.42 —-37.66
3.0 1.857 1.380 0.547 30.03 — 54.04 — 35.95

7 180
2(n) N(n) Bx(0) &(n) Cia V§(0, 0)
0 2.475 0.667 3.142 59.42 — 61.87 — 51.97
1.0 2.233 0.966 1.743 45.16 —57.18 —44.52
1.5 2.125 1.104 1.315 39.58 — 55.47 —41.43
2.0 2.029 1.222 1.000 35.37 — 54.49 —39.08
2.5 1.944 1.319 0.761 32.10 — 53.90 —37.15
3.0 1.870 1.399 0.577 29.474 --53.53 — 35.50

dynamical mass approximation is consistent with prescription R(n)>1: this
is an indirect test of the reliability of the overall description of infinitely
extended nuclear matter based on eq. (2.1). The numerical values thus selected
of the quantities describing the nucleus ground state are given in table V.
The ratio Ar/R, where Ar is the nuclear skin thickness defined as the distance
at which ofr) falls from 0.9g, to 0.1g,, turns out to be a decreasing function
of the mass number, whereas the ratio 7,/ between the half-density radius
and the r.m.s. radius increases slowly with A; the alpha-particle does not
appear to be «almost all surface» as happens in the case y = 0 (Ar/R ~ 1),
which is forbidden by prescription 9(n)>1. The values of 7, for 2C and *O
are in surprisingly good agreement with those extracted in subsect. 9°2 from
electron-nucleus scattering data.
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TABLE V. -- Numerical values of the quantities characterizing the nucleus ground state
selected from those listed in table IV by means of eq. (5.36). Ar is the skin thickness defined
as the distance in which o(r) falls from 0.9, to 0.1gy; 7y is the half-density radius. Lengths
are expressed in fm units, energies in MeV.

X4 sHe 120 180 X+ sHe 1e2( 150

S 0.951 1511 1672  ax(0) 2.012 1.987 1.964
Yo 1.620 2156  2.377  fy(0) 0.951 0.879 0.814
Ar/R 0.684  0.603  0.580 () 48.69 34.91 32.83

/R 1.002  1.066  1.087 O, — 66.89  --54.80  -— 54.02

{7(0)} 2.062 2167 2177 K 100.12 100.34 103.10

The surface W == W(s, n) exhibits a deep and narrow stability valley. No
minimum exists in the (W, s,)-plane: the minimum and the profile of the
valley is seen in the (W, n,)-plane. The s-dependence of W(s, 7,)/A and
K (s, 1), calculated using, respectively, eq. (5.7) and eq. (5.14), is plotted in
fig. L and fig. 2, respectively: the scarce stability of the calenlated compressi-
bility modulus against variations of length s is clearly brought into view.
It is found K(so,7,) ~ 0.6K,, K., being given in table I. It is not possible
to obtain an immediate, significant comparison of the values of the com-
pressibility modulus (at least for 160), given in table V, with those eval-
uated in studying the coupling of surface and bulk vibrations in the nuclear
breathing mode. The attempt to construet the eompressibility modulns as o sum
of different contributions as in the case of the semi-empirical mass formula (?2)

I IS UUW U I IS Y

W/[A (MeV/nucleon)
(=]

~2.0

—4.0

—6.0F

—8.0r L 1 1 L L
0.5 1.0 1.5 2.0 2.5

s(fm)

Fig. 1. — Plot of the s-dependence of the average total energy in proximity of the
minimum for 4He, 12C and %0, calculated using eq. (5.7).

(®) J. TreINeR, H. Kriving, O. Bonicas and J. MARTORELL: Nwel. Phys. A, 371,

)
253 (1981).
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K(MeV)

ISUSUUVETE FUUUE FU U

1 { 1
0.5 1.0 1.5 2.0 2.5
s{fm)

Fig. 2. —- Plot of the s-dependence of the compressibility modulus K in proximity of
the minimum (indicated by an arrow) for 4Ile, 12C and %0, calculated using eq. (5.14).

is objectionable. Tt is surprising that the description of collective 0 excitations
in nuclei should not be based on a clear-cut definition of the related adiabatic
compressibility modulus K_,. Trivial thermodynamical arguments show that
the adiabatic compressibility modulus is larger than the isothermie one. Conse-
quently, the only conclusion we can draw is that

(9.46) K, 2 K(sg, )< K, .

It would be highly desirable to compare carefully the theoretical perspectives
disclosed by eq. (2.14) with the conceptual content of standard Hartree-Fock
caleulations concerning ‘He, 12C and 0 (34).

Let us determine the value of » using the criterion based on the angular-
momentum distributions in the Thomas-Fermi model, outlined in subsect. 5°3.
Equations (5.30a) reads

(9.47a) I{n(X 9} -= eofe, 4- (LX) AT,
e = (5/16)(v/7/9)} — 0.1818

(9.470)
e, = (27/125)(3/5)}(867) == 0.8091 ;

the numerical values of integral (5.30b) are given in table VI. We restrict
ourselves to the magic nucleus 0. In this case, parameter »(*¢0) is deter-
mined by solving the equation

(9.48) 1{n(*0)} = 0.0661 .

(*) D.M. Brixk and E. Boexer: Nucl. Phys. 4, 91, 1 (1967).

11 = Il Nuwovo Cimento A.
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The solution is %(*0Q) = 2.5; the value 5 —= 5, = 2.377, e¢valuated from stabi-
lity prescriptions (table V), can be obtained from eqs. (9.47) reducing the
value of the arbitrary constant ¢, by less than 0.6 9 (ci = 0.8044). Replacing
¢, with c;, one can expect the suggested criterion to provide a reliable tool
for establishing an additional relation between the density function param-

TABLE VI. — Numerical values of the integral I(s) defined by eq. (5.30b).

] 0 1.0 1.5 2.0 2.5 3.0
I(n) 0.0584 0.0620 0.0644 0.0654 0.0661 0.0667

eters of the successive even-even magic nucleus *Ca. It is worthwhile
pointing out that the disturbingly slow dependence of I(n) on 7 is entirely
bound up with the density funetion (2.17) and will not be brought about by
density functions suitable to describe nuclei with A > 16, because characterized
by smaller skin thickness and steeper profiles.

The radial dependence of function w*(r) is determined by substituting in
eq. (8.6) potential Vi{r, w*(r)} given by eq. (8.4). The energy w*(r) <0 is
the solution of equation

(9.49a)  VO{wH(r)} = Ve(r) exp [ V2 MV D{wH(r)} —Ve(r)}]

£o(770) P{w*(r)} = wH(r) —vo{y(r)} exp [—Bx()],

(9.490) { Dlw*(0)} = 1.

The radial behaviour of w*(r) at equilibrium density is plotted in fig. 3.

-2.0f
- 4.0

—6.0f

MeV

—8.0f
—10.0F55

—12.0F

—14.0f

Fig. 3. — Radial behaviour of w*(r) (solid lines) and of w(r) (dashed lines) at equilibrium
density for ¢He, 12C and 0.
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9°5. The real optical potential. — The radial and energy dependence of the
central part of the real optical potential ¥V (r, E) and the real spin-orbit fune-
tion W (r, E) = U,V for nucleons elastically scattered by *He, 2C and 160
are plotted in fig. 4a), b), 6a), b), and 8a), b) respectively. More detailed infor-
mation for selected energies is plotted in fig. 5a), b), 7a), b) and 9a), b).

Fig. 4. -~ Radial and energy dependence of the real potential for *He: @) central
term Vg and b) spin-orbit term Wy = U,VS. The mesh steps are AE — 5 MeV and
A(r[sg) = 0.075.

The potential is not capable of reproducing the « experimental » behaviour
of the S-wave neutron-alpha phase shift as a function of energy. The hard-
sphere scattering, introduced ad hoc in order to describe the repulsive n-« inter-
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-10.0

-20.0}

v C(Mev)

-30.0k
~40.0F

~50.0

w, (MeV)

- 5.0

-10.0

—15.0f

L 1 1 1 '
0 0.5 1.0 1.5 2.0 2.5 3.0
r/sO

Fig. 5. — Radial dependence of the real potential for *lle for selected euncrgies:
a) central term ¥§ and b) spin-orbit term Wy = U, TR. The resolution is A(r/s,) = 0.03.
DE = 0MeV, 2)F — 10 MeV, 3)FE — 50 MeV, 4)F -— 100 MeV, 5)FE -: 150 MeV,
6) E == 200 MeV.

action in the S-state (33), is not compatible with the single-particle solutions
of eq. (2.14), which have to be thought of as originated by two-body poten-
tials free from discontinuities. Thus, the nucleon-nucleon repulsion at short
distances described by a core of radius », does not come into play. Using
standard many-body techniques one can show that the density dependence

(35) W.A. Prarce and P. Swax: Nucl. Phys., 78, 433 (1966). See also I’. E. Hopesox:
Philos. Mag. Suppl. Adv. Phys., 7, 25 (1958).
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Fig. 6. — Radial and energy dependence of the real potential for 12C: a) central
term V5 and b) spin-orbit term Wy = Up ¥S. The mesh steps are AE = 5 MeV and
A(r[sy) = 0.075.

of the reaction matrix is almost entirely due to the repulsive core (*). Since
energy .@{x(r)}, defined in subsect. 4’1, plays the role of the re-arrangement
energy in Brueckner’s theory, the theorem proved in subsect. 4'2 clearly
indicates that the shift in the single-particle potential energy is probably a
spurious core effect and as such incompatible with eq. (2.14). The single-
particle solutions of eq. (2.14) can be related to nucleon-nucleon repulsive

(3%) K. A. BRUECKNER, J. L. GaAMMEL and 1. WrrTzxER: Phys. Rev., 110, 431 (1958);
K. A. BRUECKNER, A. M. LoCcKETT and M. ROTENBERG: Phys. Rev., 121, 255 (1961).
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-10.0

4) 5) 6)

WR(MeV)

-10.0

—20.0 &)

1 )] 1 1 1

0 0.5 1.0 1.5 2.0 2.5 3.0
risg

Fig. 7. — Radial dependence of the real potential for 2C for sclected energies:
a) central term FE and b) spin-orbit term Wy — Ux V5. The resolution is A(r/s,) =
= 0.03. 1) = 0MeV, 2) E=10MeV, 3) K — 50 MeV, 4) E = 100 MeV, 5) K =
= 150 MeV, 6) E == 200 MeV.

interactions at short distances provided that the one-pion exchange potential is
reformulated in order to overcome the serious drawback of the PS-PV meson
theory of nuclear forces, based on the unrealistic description of nucleons as
pointlike sources of the meson field (). An investigation devoted to the search
for solutions of eq. (2.14) suitable to describe the nucleon-nucleus repulsion
in the optical-model secheme is in progress.

(37) C. ViLui: Nuovo Cimento A, 67, 178 (1982).
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]
|

Fig. 8. — Radial and energy dependence of the real potential for 10: a) central
term V§ and b) spin-orbit term Wi = U, ¥S. The mesh steps are AE = 5 MeV and
A(r[s,) - = 0.075.

Is the real optical potential (I.2a), constructed as a sum of potentials (6.11)
and (6.19), a local or a nonlocal potential? To give an answer to this question
we recall that in subsect. 2°1 it was pointed out that the momentum depen-
dence of the single-particle potential in nuelear matter arises primarily from
the total antisymmetry of the nuclear wave function and only partially from
the nonlocality of the two-body potential. Let a, be the nonlocality length
already introduced in subsect. 2'1. A theoretical scheme is, at least in prin-
ciple, worth of consideration if, at the limit a, — 0, the disappearance of the
momentum dependence brought about by the nonlocality does not cancel
the momentum dependence generated by the totally antisymmetric nuclear
wave funection: should this occur, the foundations of quantum mechanies would
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—10.0

—40.0

—10.0 7

WR(MeV)

—20.0f _
b)

T

-30.0 1 L 1 1 1 b

0.5 1.0 1.5 2.0 2.5 3.0
rls,

Fig. 9. — Radial dependence of the real potential for 10 for selected energies:
a)central term VS and b) spin-orbit term Wy = Ug V5. The resolution is A(r/sy) = 0.03.
1) E = 0 MeV, 2) E =10 MeV, 3) K = 50 MeV, 4) F = 100 MeV, 5) K = 150 MeV,
6) E = 200 MeV.

be violated! Of course, this fundamental aspect of the problem is also valid
for finite nuclei. The wave function of the incident nueleon, in interaction
with the A nucleons of the target nucleus, undergoes the global antisymmetriza-
tion process performed over A+41 nucleons. It should be evident that neg-
lect of the requirement that the wave function should be antisymmetrized
with respect to the exchange of the incident nucleon with a nucleon in the
target nucleus is a very misleading « approximation » (). Thus, the source of

(%) S.D. DreLL: Phys. Rev., 100, 97 (1955). See also ref. (25).
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the energy dependence of the real optical potential has to be identified in the
momentum dependence of the single-particle potential energy, the former be-
ing deduced from the latter by means of transformation (6.1): in this way
one can picture the dispersive properties of finite nuclear matter as they are
explored by the probe nucleon with energy K. Equation (2.14) is the only
available theoretical tool eapable of providing single-particle potential energies
which can be easily submitted to optical transformation, consistently with the
stability prescriptions of the target nucleus. Many-body techniques, apparently
more refined, fail to reach this goal. According to the Hartree-Fock method,
the expectation value of the total energy of the nucleus is constructed using
an antisymmetrized trial nuclear wave function of shell mcdel type. The cor-
rect wave function is determined by variational procedures by minimizing the
expectation value of the total energy. The necessary condition for the mini-
mum is that the normalization of the single-particle wave functions should be
unchanged: this intreduces a Lagrange multiplier, which is arbitrarily identified
with the single-particle energy. The determination of the Lagrarge multiplier
implies the solution of a complicated self-consistenc¢y problem, which requires
numerical work toco massive even for large computing machines. The need
to keep the calculations within reasonable bounds forces one to resort to
approximations, which are responsible for the unsatisfactory results so far
obtained. In conclusion, the optical transformation (6.1) is practicable only
by virtue of eq. (2.14).

The eonventional way of approaching the problem of the construction of
real optical potential is based on the Schrodinger equation expressed in integro-
differential form

(9.50) ((1/2M) V2 + Ely(r) fu r,r)pr) dr
where U(r, r') is the nonlocal optical potential and, using standard notatiens,

(9.51a) 2 w, () Y0, @) .

Since the nonlocal effects are expected to manifest themselves in proximity
of point r, we expand ,(r') in Taylor series about 7,

(9.51b) P () = 2 {0 =)} {(dfdr" ) )},

n=0

Taking into account that the classical equivalent of the radial derivative is
proportional to the momentum k of the free nueleon 2rd that the potential
must satisfy the requirement of invariance under space reflection, from cgs. (9.50)
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and (9.51b) it is found that
(9.52a) {(12M) V2 - E}p™(r) = V¥r, E)p™(r),

VO r, B) = 2 Wa(r) ke
(9.52b)
r) = {1/(2n) !}fU(r, ) — ) dr

For N =1 V(r, E) turns out to be linearly dependent on energy E: it is
formally similar to the optical potential (6.5) expressed in radial effective-
mass approximation; in the considered case the nucleon effective mass M*(r) is

(9.53) MIM*r) =1+ (M/z)fU(r, ) —r)2dr .

For N >1 V¥ (r, ) is a rough approximation of the real optical potential
derived from the single-particle solutions obtained by series integration of
eq. (2.14). In particular, for N = 2 potential V¥(r, F) is formally similar to
the optical potential deduced from model I and then expanded up to terms
in E* in McLaurin series. The energy dependence of V*¥(r, E) is entirely due
to the nonlocality of potential U(r, r'). Suppose that U(r,7') be expressed
in separable form, i.e.

(9.54) Ur, ') = Up{ Ir -+ P} G(lr — 7))

where G(|r — r’|) is the nonlocality function defined by egs. (2.11). At the
limit a, -0, G(|r—r'|) > d(r—r') and from egs. (9.52) and (9.54) one
deduces that

(9.55) lim V", B) = Us(r) , lim M*(r) = M,

i.e. the optical potential becomes energy independent as a consequence of the
switching-off of the nonlocality and the nucleon effective mass identifies with
the mass of the free nucleon (). Limits (9.55) disclose a serions drawback
to eq. (9.50) as it stands: indeed, the energy dependence of V*™(r, F) must
survive at the limit a, — 0 because the disappearance of the nonlocality can
in no way suppress the momentum dependence of the single-particle potential
energy arising from the total antisymmetry of the nuclear wave function.
Thus, the nonlocal potential U(r,r') must possess a more intimate energy
dependence, i.e.

(9.56) Uir, vy = U(r, r'; E), Uddr4-r'|} = Uy Ir + 7|5 E} .

(*®) H. Frsusacu: Annu. Rev. Nucl. Sci., 8, 49 (1958), formula (31).
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The source of the nonlocality of the optical potential has to be sought for
in the intrinsic nonlocality of the two-body potential, originally brought to
light by nonadiabatic treatments of the meson theory of nuclear forces, and
in the nonlocality induced by many-body effects on the nucleon-nucleon seat-
tering in finite (and infinite) nuclear matter. Equation (9.50) should be written
in the form

(9.57) {(L/2M) V2 4 E}y(r) sz(r, rr)pe, ) drl dr

However, potential U(r, 7', r") characterized by a double nonlocality should
be cnergy dependent, because otherwise the optical-model scheme based on
eq. (9.57) would imply the violation of the Pauli prineciple.

The problem of finding 2 nonlocal potential with an energy-independent
real part capable of fitting the scattering data at all energies appears to be
somewhat misleading: indeed, it implies that also the antisymmetry effects
can be accounted for by the nonlocality. This puzzling consequence does not
even come into play in the case of the imaginary potential, because the origin
of its energy dependence is such that it can in no way be absorbed into a pre-
sumptive nonlocality. In the light of the above considerations, it is interesting
to examine critically the nonlocal potentials constructed by FRAHN and LEM-
MER (1), PEREY and Buck (*') and by ENGELBRECHT and FIEDELDEY (42),

In coneclusion, potential (1.2a), constructed as a sum of potentials (6.11)
and (6.19), cannot be classified sie et simpliciter as local or nonlocal: it is a real
optical potential which has inherited, through transformation (6.1) and con-
sistently with the stability prescriptions of the target nucleus, the fully physical
content concealed in eq. (2.14).

9'6. The imaginary optical potential. — A critical point in the computation
of the imaginary optical potential (7.19) is represented by the evaluation of
integral ¥V (r, K), which presents a twofold problem. First of all, the summa-
bility of the integrand must be ensured and this requires function ¢,(r, E) to
obey sufficient regularity conditions. A second problem is a uniformly accurate
computation of the integral as a function of » and E.

A sufficient condition of regularity for ¢ (r, E) is obviously given by its
continuity as function of r. A minimization procedure for the discrete sum
(7.31) is very unlikely to gnarantee continuous c,(r, E) (i = 1, 2) and for this
reason we substitute (7.31) with the continuons expression

(9.58) M(cy, ¢) = f [o,,(¢) — 3(¢)] de = minimum ,

€

(* W.E. Fraux and R.H. LEMMER: Nuovo Cimento, 5, 1564 (1957).
(*) ¥. PereY and B. Brck: Nuel. Phys., 32, 353 (1962).
(#*) C.A. ExcELBrECHT and H. FIEDELDEY: Awn. Phys. (N. Y.), 42, 267 (1967).
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107 10° 10' 102
E _ (MeV)
lab

Fig. 10. — Experimental data of the neutron-proton total cross-section g, (**). The
solid line shows the fit obtained by eq. (9.59).

where 3(¢) is expressed by eq. (7.14) and o, (¢) is a continuous parametrization
of the experimental neutron-proton cross-section in the energy range of interest
(€g)min <€<(6)),0c- Figure 10 shows the experimental data from e=1.18-

Fig. 11. — Radial and energy dependence of coefficient ¢,(r, E) for *C. Mesh sizes
as in fig. 4.

(#3) The experimental data have been compiled on the basis of information from the
NEA Data Bank and the High-Energy Reaction Analysis Group of CERN.
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Fig. 12. -- Radial and energy dependence of coefficient ¢,(r, ) for 2C'. Mesh sizes
as in fig. 4.

‘1072 MeV to e -= 342.5 MeV (#) with a continuous fit given by the function

(9.39)  aule) = n( R . % )2) ,

(72? + (03 |- oy + o5 €%)? " g, = (0 + 0'96;

which has been inspired by a similar expression suggested by BAWE et al. ().

0.5p

[=]
o
w
5
n

2.0 2.5 3.0

Fig. 13. — Radial behaviour of the integrand function of (7.19) for 12(' at K = 10 MeV.
Dots represent values computed directly, while the solid line shows the result of the
interpolation by means of Padé approximants.

(*) 8.J. Bawe jr., E. Happav, J. E. Perry jr. and R. K. Syrrn: Rev. Sei. Instrum.,
28, 997 (1957).
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a)

b)

Fig. 14. — Radial and energy dependence of the imaginary potential for 4He: a) cen-

tral part ¥¢, and b) spin-orbit term W, — U, V7.

Mesh steps as in fig. 4.

TaBLe VII. — Numerical values of the coefficients of o, (e) defined by (9.59) which fit

best the experimental dala.

e<9 MeV e>9 MeV
ay 2.584 85 6.834817-10-2
g, 1.741 943 0
o3 --1.635 243 —3.0
A 0.100 389 5 1.671789-10-3
oy 0 0
Ty 0.4530061 1.2114057
a, 1.029 514 0.1208853
Oy 0.284 7097 1.119203
ay 0.426 8209 0.149606 3
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A Dbest-fit procedure on the experimental data gives the values for coeffi-

cients g; of (9.59) summarized in table VII.
The necessary conditions for the minimum (9.58) are

:0, 'i:l,!l.

(9.60)

For fixed values of r and E, the unknown parameters ¢; = c,{r, E) at the

0
-2.0f
~4.0F
- 6.0
=
> [
£ —8.0f
S
= —10.0f
-12.0F
—14.0f
—=16.0- L L L L ! 3
-1
1
]
= ]
(Y
b3 4
g ]
-4
1 1 1 i L
0 0.5 1.0 1.5 2.0 2.5 3.0

r/s0

Fig. 15. ~ Radial dependence of the imaginary potential for +He for selected energics:
@) central term VY and b) spin-orbit term W;= U V¢, Resolution as in fig. 5.
1) E = 0MeV, 2)F — 10 MeV, 3)E — 50 MeV, 4)E .- 100 MeV, 5) F = 150 MeV,
6) E = 200 MeV.
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minimum of M(c,, c,) fulfil equations

o = (@t )6 = ) F(e)

9.61a) 1 aTf ’

.6la
( 1«'(c.):(252-_ff°+ 01)1"'1(%?

= 206 + o)+ ey)
where
(9.61b) Fo(c,) = (Z”i)gp : m=1, 2.
.+ e

Equations (9.61) give solutions ¢; continuous in r and ¥ through the continuous

a)

b)

Fig. 16. — Radial and encrgy dependence of the imaginary potential for 2°; ) cen-
el Py i1 .\

tral part 17, and b) spin-orhit term W == U;T]. Mesh steps as in fig. 4.
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functions ¢,(r, ) and e(r, I). Figures 11 and 12 show the E- and r-depen-
dence of ¢, and ¢,, respectively, in the case of 2C; similar results have been
obtained for ¢He and %0 too.

In order to compute integral (7.19¢) with a uniform accuracy as a function
of » and ¥, we have chosen a procedure based on Padé approximants of
type II (#5). After having computed the integrand function at the points of

vE (Mev)

—12.0

w._(MevV)

1.0 1.5 2.0 2.5 3.0

Fig. 17. ~ Radial dependence of the imaginary potential for 12C for sclected energies:
a) central term VP and b) spin-orbit term W,= U/, 7°: Resolution in as fig. 5.
1) E=0MeV, 2) Il = 103eV, 3) E = 50 MeV, 4) E — 100 MeV, 5) E = 150 MeV,
6) K = 200 MeV.

(*%) A. Gexz: The s-algorithm and some other applications of Padé approximants in numer-
ical analysis, in Padé Approximants, edited by P.P. Graves Moxrris (Bristol, 1972),
p. 112-125.

12 — Il Nuovo Cimnenlo A.
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interest on the r-axis for a given energy E, we look for a Cauchy interpola-
tion by a polinomial rational function

(9.62) ) = r2ey(ry B)Sofr, B) == 207 ;

In order to find the coefficients of the polynomials P(r) and £(r) use is made
of the e-algorithm (4%) in order to accelerate the convergence of the continued-
fraction method. Figure 13 shows a typical case of the behaviour of the inter-
polating Padé approximant against the values of the interpolated points.

A similar approach based on Padé approximants has also been used to com-
pute the limit for » — 0 of the imaginary spin-orbit potential U%°(r, E) (7.22b).

The radial and energy dependence of the central part of the imaginary
potential V7 (r, E) and the imaginary spin-orbit function W,(r, E) = U, V¢ for

a)

b)

Fig. 18. — Radial and energy dependence of the imaginary potential for 1¢0: a) cen-
tral part V2, and b) spin-orbit term W;= U;V{. Mesh steps as in fig. 4.
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nuecleons elastically secattered by ‘Ie, *C and %0 are plotted in fig. 14a), b),

16a), b) and 18a), b), respectively: more detailed information for selected en-
ergies is plotted in fig. 15a), b), 17a), b) and 19a), b).
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Fig. 19. — Radial dependence of the imaginary potential for 60 for selected energies:
a) central term VY and b) spin-orbit term W,= U, V¢, Resolution as in fig. 5.
HE = 0MeV, 2) =10 MeV, 3) K = 50 MeV, 4) E = 100 MeV, 5) E = 150 MeV,
6) E = 200 MeV.

10. - Concluding remarks.

The basic idea followed in the construction of the optical potential for
single-channel reactions is well summarized by the factorable single-particle
potential expressed by eqs. (3.30): the former concerns the description of an
even-cven target nucleus, while the latter generates, through transformation
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{6.1), the raal optical potential. The linking in momentnm space of the internal
solution with the external one at p = x(0), together with their first-order
derivatives, allows one to transfer to the description of the nucleon-nueleus
scattering, namely for p > #(0), the parameters governing the momentum
dependence of the single-particle potential for p < x(0). Besides the continuity
conditions fulfilled by the internal and external solutions of eq. (2.14), the
five energy-independent parameters sy, 7o, C;, «, f are determined by taking
into account a) the stability prescriptions of the target nucleus expressed by
eqs. (4.22) and (1.29), &) the r.m.s. radius deduced from electron-nucleus
scattering experiments (subsect. 9°2) and then used according to ansatz (2.31),
and e) the overall description of infinite nuclear matter through the hydro-
dynamical nueleon mass approximation, introduced in subsect. 3'4: in con-
clusion, all loose ends of the problems are tied up and there is no room for
empirical adjustments of the optical parameters, except for the lengths 2,
and ;. The radial and energy dependence of the real optical potential is
strongly bound to the description of the nuclens ground state: indeed, eq. (3.28a)
shows that small variations of length « imply large variations of f. The
complicated dependence of the imaginary potential on Vi(r, E) also clogely
relates V(r, E) to the nucleus ground state. The theoretical scheme outlined
in this paper makes it possible to disclose the single-particle potential under-
lying current optical-model analyses: it is found that the phenomenological
arbitrariness generally coneeals amazing pictures of monster-target nuelei, whieh
do not exist. In conclusion, we have set up an overall theoretical scheme
which is exactly the opposite of the elusive optical models referred to by
IlopnasoNn, as mentioned at the end of sect. 6.

The total and differential cross-sections for the scattering of nucleons from
nuclei, together with the strength functions, depend on the form of the optical
potential in a very complicated manner. The capability of the potential to
fit the observed energy dependence only provides a necessary condition for
testing its raliability. The sufficient condition is given by polarization data.
Still, the optical potential turns out to be not unambiguously determined by
fits which generally are not quantitatively defined. An important goal to pursue
is to disentangle from the observed energy dependence the competing contri-
butions arising from the indistinguishability of the incident nucleon and from
intrinsic and induced nonlocalities, the former being brought out by the pre-
sumptive nonlocality of the two-body forces and the latter by many-body
effects. The current distinction between loeal and nonlocal potentials sounds
somewhat quodlibetic. In fact, phenomenological potentials quoted in the lite-
rature as local might coneceal nonlocalities and vice versa: the latter aspect
of the problem is conceptually embarrasing as it implies that the antisym-
metry effects of the nuclear wave function are conceived of as equivalent to an
effective nonlocality, a conclusion which must clearly be rejected. A careful
examination of the inflnenee of the variation of the form of the optieal potential
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on the shift and damping of the diffraction pattern might be illuminating:
in fact, one should expect that, for a given incident erergy, & « pure » lceality
tends to shift the pattern ot large angles, wheress a « pure » norlecelity shifts
the pattern =t smaller angles and tends to weaken both maxime a1d minima.
The comparison of the predicted value of the zero-energy limit at the origin
of the central part of the real optical potential with the values extrapolated
from the analysis of the data is signiticant only if the effects arising from
compound elastic scattering are cavefully accounted for: it is worthwhile to
point out that faults in fitting precedures might simulate spuricus surface
effects and anomealous values of the nucleon effective maxs. The quality of
the fit and the numerical values of the optical parameters extracted from
the analysis of the data ure also influenced by the analytic form of density
function o). In particular, this is true for the Saxon-Woeods distributien
which makes the spin-orbit parts of the potential divergent a«t » = 0 and
therefore is responsible for undue violence on the optical-model informa-
tion derived from the overall fit of the data. For this reason ©(Ca will be
examined in a subsequent paper, assuming a Gaussian taper distribution which
gives finite values for the spin-orbit potentizls at the origin, The choice of o(r)
given by eq. (2.17) is motivated by the purpose of finding cut to what extent
the bhasic assumptions of the shell and Themas-Fermi mcedels can be used for
building up a unified theoretical deseription of ¢ven-cven rrelei with A< 16
and the optical interaction of nucleens with them. Further investigations in
this direction are in pregress,

The heuristic role played by the hyperbolie partial differential equations
(2.1) and (2.14) is remarkable. The mathematical structure of these equations
outweighs the detzils concerning the two-bedy forcees both in the case of in-
finite nuelear matter and in the case of finite nuclei. The comyplicated interlacing
of the single-particle solutions ¢f egs. (2.1) and (2.14) with tlie assceiate Cauchy
problems is the very cause of the puzzling attitude to lay zll the blame
for the unsatisfactory results obtaired by conventional treatments either on
the choice of the two-body potential or on the many-body descriptien of the
nucleon propagation in the nuclear medium. Equations (2.1) and (2.14) provide
a theoretical tool for expressing analytically the single-particle potentialerergy
without resorting to any preconceived choice ¢f the nucleon-nueleon potential:
in this regard we have endeavoured to be faithful to Newton's statement
« hypotheses non fingo ».
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® RIASSUNTO

Si delinea una nuova descrizione dell'interazione di nucleoni con nueclei pari-pari e si
esamina in dettaglio la dipendenza radiale ed energetica del potenziale ottico che de-
serive l'interazione di nucleoni con 4He, 12C e 160,

faepnas mogenas Tomaca-®epMH H ONTHYECKHH MOTEHIMAJT A1 OAHO-KAHAMBHBIX PEAKUHH.

Pesiome (*). — Pa3BuBaercs HOBBIH NMOAXOJ K OMNHMCAHUIO SACPHOIO B3aUMOACHCTBHSA
HYKIOHOB ¢ KOHEYHBIMH YETHO-4eTHeIMK simpamu. MccnenyroTcs panuvanbHas H 3Hepre-
THYECKasd 3aBHCHMMOCTH ONTHYECKOTO TOTEHIHMANa, ONMUCHIBAIOLIELO B3aHMOICHCTBHSA HYK-
nionoB ¢ ‘He, 12C u 10,

(*) IHepesederno pedaxyueil.



