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S u m m a r y .  - -  A new approach to the description of the nuclear inter- 
action of mmleons with finite even-even nuclei is outlined. The radial 
and euergy dependence of the optical potential describing the interaction 
of nucleons with 4[[c, '2C and *sO is extensively investigated. 

PACS. 21.10.-  Geaeral and average properties of nuclei; properties 
of nuclear energy levels. 
PACS. 21.60. -- Nuclear-structure models and nlethods. 

1 .  - I n t r o d u c t i o n .  

As r emarked  b y  SEN~IA (1) (~ the  ear ly  sixties in the  h i s to ry  of the  opt ical  
po ten t ia l  un fo r tuna te ly  tu rned  out  like ,~ bl ind mai l ' s  su rvey  of the  p a r a m -  
e ter  jungle and  quite a lot  of the  work, a l though useful as a s t ra igh t forward  

guide-line for the  predict ion of sc:t t tering da ta ,  did not  serve a n y  frui t ful  

purpose  in fur ther ing  unders tand ing  of the  under ly ing  theoret ica l  concepts  ~). 

Tile s i tuat ion is now only moder~ttely improved  an4  fund,~mental  da rk  cor- 

ners still exist,  which need exploring.  The  goal of se t t ing  up a physical ly  

reliable, ana ly t ica l ly  simple and  numer ica l ly  manageab le  theoret ical  tool for  

cons t ruc t ing  the  opt ical  po ten t ia l  h'~s been missed, ma in ly  because of the  

ambi t ious  a.im of developing form~dly rigorous t r eu tmen t s  which, unfor tuna te ly ,  

are not  pr,~ctic'~ble. A s t r ingent  crit ical analysis  of the  opt ical -model  predic- 

(~) B. SI~llA: Phys .  Rep .  C, 20, 1 (1975), p. 3. 
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t ions canno t  be  carr ied out  because mos t  of the  avai lable  resul ts  have  been 
ob ta ined  b y  means  of a p p r o x i m a t e  ca.lculations which are far  f rom being 

t r a n s p a r e n t  and  are not  control lable numerical ly.  :None of the innumer-  

able invest igat ions  on the  sca t t e r ing  of nucleons f rom nuclei (2) has  so far  

been conceived with  the  a im of giving a clear-cut answer  to the  following 
quest ions:  a) How can an optical  model  be cons t ruc ted  with the hope of being 
a correct  model? b) How can one avoid pu t t ing  t remendous  efforts into cal- 

culat ions on empir ical  models  which have  no connect ion with real i ty?  c) :How 

c~n the  exper imen ta l  da ta  be used to discard erroneous models and  enable  
tile research  to converge towards  the  correct  one? 

As a first s tep towards  the  goal of giving an answer  to these  questions,  

we shall  outl ine an unconvent iona l  approach  to the  p rob lem of cons t ruc t ing  

opt ica l  po ten t i a l  V(r, E) for finite even-even nuclei. Our p rog ram is to deduce 

the  radia l  and  energy dependence of V(r ,E)  consis tent ly  with the  s tab i l i ty  

of tile t a rge t  nucleus and  in such a way  t b a t  the  po ten t ia l  be  exploi table  for 
incident  nucleons of wha tever  energy  E. The po ten t ia l  is assumed to be the  
sum of a real  and  an  imag ina ry  pa r t ,  i.e. 

(1.1) V(r, E) ---- Va(r, E) + iVy(r, E) ; 

bo th  po ten t ia l s  Va(r, E) and  V~(r, E) can be split  into a cent ra l  and  a spin- 

orbi t  cont r ibu t ion  

(1.2a) 

(].2b) 

R(r, E) + v~~ E),  V ~ ( r ,  E )  = ~'~" 

V,(r, ~)  = V~(r, E) + V~,~ E) . 

We generalize ]~ermi's conjecture  (3) and  define the  spin-orbi t  contr ibut ions 
to the  opt ical  po ten t ia l  as Thomas  terms,  name ly  

(1.3a) 

(1.3b) 

TSO l ~ (r, E) = (2~Jr)(e.L)(dVC(r, E)/dr},  

V~~ E) = ().~Jr)(a. L)(dVC(r, E)/dr},  

where lengths  2 a and  2~ have  to be de te rmined  b y  fi t t ing the scat ter ing da ta .  

The only expe r imen ta l  da ta  used to eva lua te  V(r, E) are the  binding energy 

and  the  r .m.s,  radius of the  t a rge t  nucleus and  the observed energy dependence 

of the  to t a l  neu t ron-pro ton  cross-section. Such minimal  exper imenta l  informa-  

(2) P .E .  IIOI)GSO.~: Nuclear Reactions and ~Tnclear Structure (Clarendon Press, Oxford, 
1971); see also P. E. HODGSO-',': Annu. l~ev. )~ucl. Sci., 17, 1 (1967); ~Yuoco Cimento A, 
81, 250 (1984). 
(a) E. FERMI: NUOVO Cimenlo, 11, 407 (1954). 
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t ion is sufficient for predictillg the radial  and energy d e p e r d e r c e  of l ' (r ,  E):  
the a(.hievement of this goal is made possible pr imari ly by the extension to 
finite even-even nu(.lei of the differential equat ion of infinite nuclear mat te r ,  
dis(.ussed in a previous paper  (4). 

2. - Ex tens ion  o f  the  differential  equat ion  o f  ini~nite nuc lear  matter  to i~nite 

e v e n - e v e n  nuc le i .  

2"1. The diJ]erential equation oJ ]inite nuclear matter. - I t  lla8 been shown 
in I, sect. 5, t ha t  the potent ia l  energy" %(p, ~) of a nucleon havillg momen- 

tum p in the infinitely ex tended  Fermi  sea obeys the hyperbolic par t ia l  differ- 

ent ial  equat ion 

/ ~  ~ 2 ~ ~ 2 ~ 
(2.1) tP'~P*=-::?P ~cn* " ~ j V o o ( p , n ) - - o ,  

where the limitillg momen tum • is defined as 

(.~ n --- (3~ 2 A Oo/2) ~ == (9:r/S)i(A~/R~). 

The to ta l  energy of the nucleus is ( p < x )  

(2.3) W ~ ( ~ ) -  (3AI4~n~)f((p~12M) + �89 v~(p, z)} dp  ; 

the saturat ion propert ies  of im(.lear forces rc(tuire tha t  

(2.4) {dW~(u)/du}~._~F ---- 0 ,  W~(uF) ---- bvA, 

where b v is the average volume energy and  x~, is the Fermi  momen tum obta ined 
by  pu t t ing  in eq. (2.2) 1~+ =-roA ~. Equat ion  (2.1) expresses in differential 
form the analyt ica l  constra ints  of the single-parti(.le, potent ia l  energy arising 
f rom the to ta l  a n t i s y m m e t r y  of the nuclear wave func, tion. I t  is remarkable  

t ha t  all par t icular  integrals v+(p, x), specified a(.eordillg to sa turat ion prescrip- 
tions (2.,1), exac t ly  fulfil the relat ion 

(2.5) by = % ~-v~(zF, ~ )  -- ~(,~(.~,, ~F), 

o ) 
where % = ~;.I'-'M is the Fe rmi  energy and w~(p, • is the single-l)article to ta l  

(4) C. VILLI: ~r~Ol'O Cime,n, to A, 74, 37 (1983); hereafter this paper will be referred 
to as I. 



92 A. I'ASCOLINI and C. "VILLI 

energy. Relation (2.5) expresses the Hugenholtz "~nd Van Hove theorenl (5): 
a t  the densi ty minimizing the to ta l  energy of infinite nuclear matter ,  the average 
volume energy is equal to the tota l  energy of the most energetie nucleon. 

The following remarks will be t ter  explain the role of eq. (2.1) in mlclear- 
ma t t e r  problems. Let  us represent the ground st'~te of a nucleus by a tota l ly  
ant isymmetr ized wave function ~b, built up in de terminanta l  form from A 
individuM fmlctions T,, ~ v;jo)~, for single particles, and assume tha t  the nucl- 
eons, described by space, spin and  isobaric spin co-ordinates, interact  via 
two-body forces through the potent ia l  v(1, 2) ---- O1.. f(r~..), whose exchange prop- 
erties and r~dial behaviour will be left  completely unspecified. Then, if the 
nuclear interaction is t reated as a perturbat ion and the A/4  spatial wave func- 
tions ~f~j(r ) ~  Q-�89 are associated in turn with all fonr spin 
and isobaric-spin wave functions eo~,, the expectation value V(n) of tile porch- 
t im energy of the nucleus is given by the second term appearing in eq. (2.3), 
where (p ~ p ~ ,  q ~:Pi) 

,~(a- -  1) 

(2.6a) Vco(p, n) = Z [c~(ij!flq)- c~(ij]flji)], 

(ij[f]ij) and ( i j] f l j i )  being the ordinary and exchange matrix elements of 

f(r,d, i.e. 

~_ ~ f f(r~:) dr, dr.,  (2.6b) (q[ f l i j )  

( * ( r l ) * ( r 2 )  F ( ~ ' 1 2 ) d r 1  dr2" (2.6e) (ij]flji) -jW~, % %(r~)~f,(r:) 

the two constants  q and co are given by 

4 4 
(2.6d) c, : ~ Qz, i01el/~v), c,---- ~. (i.tv[O~2lvtz) . 

Equat ion (2.6a) is easily worked out  and finally yields (p <~.; r ~ r ~ )  

(2.7a) 

(2.7b) 

co 

v~(p,  ~) - • 2[c~- c.,(nr)- ?o(pr) h(nr)] f ( r )d r ,  
o 

! l 
c~ = 2(A -- 1) Q/3xO-A, c2 = (A -- 1) c, /4xA , 

jo(X) and jl(x) being spherical Bessel functions. The single-particle potential  
energy (2.7) is .~ part icular  integral of eq. (2.1). A different way to evaluate 
v~(p,  x) is b,~sed on an ingenious modification of the Hartree-Fock theory,  

(5) N.M. IIITC,~:XlIOLTZ and L. VA,~" tIovE: Physica, 24, 363 (1958). 
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namely in replacing potent ia l  v by  the t-matrix,  and then  expressing (ij[tli~) 
and (ij]t[ji) in terms of nucleon-nucleon scat ter ing ampli tudes.  In this case, 

instead of eq. (2.7), one has for p < x  

�89 �89 

, f  (2.8) v=(p, y.) = - -  F(q) q~ dq - -  ~ :~M Mp F(qlty. ~ - ( 2 q - p ) ~ ] q d q ,  

o �89 ~) 

where f(q) is a complicated funct ion of tile nucleon momentum,  expressed as 
a sum of scat ter ing ampli tudes,  classified accordil~g to spin and isobaric-spin 
substates of the  two-nucleon system (~). ~No reliable results can be obta ined 
f rom eq. {2.8) because of the  insufficient knowledge of the nucleon-nucleon 
asympto t ic  phase shifts. I t  is, nevertheless,  worlh~vhile pointing out  t h a t  the  
single-particle potent ia l  (2.8) is a par t icu lar  integral  of eq. (2.1). 

I t  is seen t ha t  the momen tum dependence of potent ia l  (2.7) is ent i re ly  
brought  about  by  the to ta l  a n t i s y m m e t r y  of the nuclear  ~ave  function,  whereas 
t ha t  of potent ia l  (2.8) arises f rom energs,-momentum conservat ion under  the 
constra ints  imposed by  the l 'aul i  principle. A different source of momen tum 
dependence has to be searched for in the nucleon-nucleon correlations existing 
in nuclear  mat te r .  The  presence of a nucleon ~t point  r influences the proba- 
bil i ty of finding ano the r  nucleon at  a point  r '  in the  neighbourhood of r. 

Although in the neighbourhood of a nucleon there  m a y  be considerable fluc- 
tuat ions  in the densi ty  of other  particles, the nuclear-mat ter  distr ibution pre- 
seives its homogeneous character .  This si tuation,  however,  affects the  energy 
of a nucleon at  r so t ha t  the  energy opera tor  is no longer diagonal in co-ordinate 
space. Consequently,  the  nucleon-nucleon correlations can be conceived of 
as being due to a nonlocal  nucleon-nucleon potent ia l  u(r, r ') .  The SchrOdinger 
equat ion is 

(2.9) -- (1/2M) V2~v(r) - ~ f u ( ] r -  r'l)~(r' ) d r ' :  Ey)(r). 
, /  

Using plane waves of cons tan t  momen tum p, the effective two-nucleon poten- 
tial, evaluated  as Four ier  t ransform of u ( [ r - - r ' l )  , reads 

(2.J0) V(r, p) =fu(Ir- r'l) exp [,:p. dr'.  

Let  us assume a separable form for u(]r--r'l) , i.e. 

(2.11a) u ( l r -  ,'1) - +  'L)c(ir- 

(~) K.A. BRD-ECKNER, C.A. ]',EVIltSON all(]. II.M. ]~IhII.~rU1): Phys. Rev., 95, 219 
(1954); K. A. BRL~ECK.~'ER: Phys. Rev., 96, 508 (1954); N. FVK1:DA and R. G. NEWTOn': 
Phys. Rev., 103, 1558 (1956). 
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where G ( I r - - r ' ] )  is the Gaussian funct ion normalized to 1, 

(2.11b) 
,"1) = exp E-  I " -  

f G(r) d r  = 1 ,  

ao being tile nonlocal i ty  length;  a t  the limit ao --~ 0 G ( l r -  r']) operates under  
integral  sign as the delta-function 6 ( r - -  r ' ) :  iu this case i)otential V becomes 
local and the momen tum dependence disappears. Le t  us now identify V with 
the two-body potent iM used to (teduee eq. (2.7). The effect of the nonlocal i ty  
(a0 r 0) modifies the momen tum dependence of the exchange mat r ix  e lement  
<ij[Vlji ) and generates a p-dependence also of the ordinary matr ix  e lement  
<ijlV[ij). i t  is found tha t  

(2.12) 

3 (  o- ! ! % ( p ,  z) - u r - [ q g , ( r , p ;  a0)-- c. .&(r ,p;  a0)] d r ,  
J 
0 

g~(r, p;  0) = f(r) ,  g2(r, p;  O) = (ur)-l]o(pr)],(xr)f(r)  ; 

the explicit  expressions of gi(r, p;  a0) (i = 1, 2) will not  be given. I t  is never- 
theless clear t ha t  the resulting m o m e n t u m  dependence of v~(p, x) is a cmnbined 
effect of the to ta l  an t i symmet ry  of the nuclear wave funct ion and of the non- 
local na ture  of the  two-body potential .  Tile single-particle potent ia l  energy 
(2.12) is a par t icu lar  solution of eq. (2.1). h i  conclusion, eq. (2.1) accounts  
for the mom en tum dependence of the single-particle po ten t ia l  wi thout  an y  
specification of the two-body forces involved, nor  of the type  of nucleon- 
nucleon correlat ions (dusters  of three  or more uueleons), nor  of the effective 
role p layed  by  the  intrinsic or apparen t  nonloeali ty of the two-body potential .  

A more retined theory  of iufinitely ex tended nuclear m a t t e r  is based on 
a detailed description of nucleon-nucleon scat ter ing in the l~ermi sea.. The 
difference in behaviour  inside and outside nuclear m a t t e r  is due to the exclu- 
sion principle. When  two nucleons of a rb i t r a ry  initial momenta  collide as an 
isolated pair,  the  mmnen tum of the final s ta te  m ay  be divided between the  
p,~rtieles in re:my ways, with probabili t ies de termined solely by  the inter- 
nucleon potential .  Ill  nuclear ma t t e r  the number  of possible tinal states is 
grea t ly  reduced since so m a n y  of the states available for  isolated nucleons 

are a l ready occupied by  other  nucleons. IIenee,  the  scat ter ing in nuclear m a t t e r  

is great ly  different f rom tha t  in vacuo. Clearly, in nuclear m a t t e r  only nucleon- 
nucleon collisions are allowed for which the final s ta te  of bo th  particles have 
momenta  above tile Fermi  level: s ta r t ing  from two levels below :Fermi's, 
such collisions would defy  the conservat ion of energy. Hence,  there  is no 
real  s<~ttering and the asympto t i c  wave functions contain no phase shifts. 
However ,  the possibili ty of a v i r tua l  scat ter ing s ta te  outside tile :Fermi sea 
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h~s the effect of dis tor t ing ttle wave funct ion at  distances of the order of the 
:Fermi wave length (corresponding approximate ly  to the  value of the non- 
locality par;~meter a0). The effect of nucleon-nucleon interact ions by  c~msing 
transi t ions f rom occupied states  into occupied ones is to spread the momentum 
distr ibut ion of the single rmcleons in the neighbourhood of the  l imiting nm- 
men tum ~ = ~.,, calculated at  equil ibrium densi ty,  namely  by  lowering tile 
densi ty  in momentum space below u r and giving rise to a tail  above this value. 
i u  spite of this, most  of the scat ter ing effects due to the internucleon potent ia l  
arc el iminated:  as is well known, this is the in t imate  reason why shell model 
works. Brueckner ' s  theory  provides the  mathemat ica l  tool for handling such 
:~ complicated problem. The exact  solutions of the nonlinear system of equa- 
tions, expressing the react ion matrix,  are unknown and the approxim~tions 
used to obt~t, in numerical  results give rise to complications and ambiguities 
which outweigh tile heuristic value of the theory .  Serious mathemat ica l  com- 
plexities discourage one f rom going into the  details of the self-consistency 

problem. It  will suffice to point  out  t ha t  the densi ty  dependence of the reac- 
t ion mat r ix  gives rise to the so-called re -ar rangement  energy~ which consti- 
tutes an addi t ional  contr ibut ion to ttle single-particle potent ia l  (7). Conse- 
quent ly ,  the Hugeuhol tz  and V~n Hove theorem is violated. Since the val idi ty 
of this theorem is s t r ic t ly  re la ted to eq. (2.1), which predicts  t ha t  the  re- 
a r rangement  energy is equ~l to zero, we conclude tha t  voo(p, u)~ calculated ac- 
cording to BrueckueL's theory,  does not  fulfil eq. (2.1). So far  no clear-cut 
computa t ional  evide]lce exists for sharing the opinion according to which the 
nonzero m~tgnitude of the re -ar rangement  energy is a character is t ic  many-  
body effect which m,~nifests itself through high-order effects in the react ion 

m',~trix. Indeed,  it can be shown tha t  the appearance  of re-ar rangement  
energies is s t r ic t ly  bound to the  critcri(m adopted  in the application of varia- 
tion~d methods,  which- - in  turn- - inf luences  the choice of the single-particle 
potenti~d. O:le might  suspect e i ther  tln~t the re -a r rangement  energy is a sort 
of ((ghost ~) energy cre~ted by  lnathemat ical  procedures (and/or approxim,t- 
tions) or t ha t  it would p robab ly  disappe~r in an exact  formulat ion of Brueckner ' s  
theory .  Anyway,  eq. (2.1) seems to offer "t I)owerful guide to an overall descrip- 
tion of infinitely ex tended nuclear mat ter .  

With  this theoretic;~l scheme in mind, we have been temt)ted to ex tend  

the val id i ty  of ~he m',~them~ttical s t ruc ture  of eq. (2.1) to finite even-even 
nuclei by  replacing the  l imiting momen tum z with the funct ion z(r), obta ined 

by  the self-expla.uatory generaliz;~tion of definition (2.2) to nuclei character ized 

b y  ~ nonull iform densi ty  distr ibution ~(r) (norm'tlized to 1), i.e. 

(2.13) z(r) = {(3~z~ ; 

(7) K. 2t,. I{RU]ECKN~]R: Phys. Rer., 110, 597 (1958). 
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definition (2.13) is valid only for even-even nuclei (A = 2Z ---- 2N). The new 
differential equat ion is 

{ ~  2 ~ 8 .2 2 8 } 
(2.14) ~cP 2 ~- V ~P ~)~(r) 2 -~ g-(-r) ~ ( r  i v{v' Z(r)} = 0 .  

Equa t ion  (2.14) is the  spring board for a substant ia l  improvement  of the  
Thomas-Fermi  model. Le t  us define deW(r, p) as the  number  of nucleons with 
m o m e n t u m  p at  point  r in a small volume element  of phase space. Then,  
the  basic assumption is t ha t  all s ta tes  are filled equally as long as a certain 

m o m e n t u m  z(r) is not  exceeded, a f te r  which they  are all empty .  
Assuming 1 / =  e =: ] ,  one has 

(2.15) 
{ d ~ ( r ,  p)  ---- 2 d r  dp/(2~r) ~ , p < ;~(r) ; 

d ~ ( r ,  p)  ~ 0 ,  p>z(r )  ; 

fac tor  2 comes f rom the  fac t  t ha t  the number  of s tates  is doubled by  the 
presence of the spin. By  in tegra t ing  (2.:15) over p one obtains eq. (2.13), 
which is the  fundamenta l  relat ionship between nuclear density ~o(r) and local 

ma x imum  m o m e n t u m  Z(r). 
The  t l a r t r ee -Fock  approach to finite nuclei is ex t remely  difficult (s). The 

short-range correlat ions have to be t r ea ted  by  a ladder summat ion through 
the  in t roduct ion  of a react ion ma t r ix  conceived of as a funct ional  of the lceal 
densi ty.  The semi-classical approximat ion  of such a funct ional  in powers of 
the  dens i ty  gradient  turns  out  to be disastrous: the shell s t ruc ture  of the 
nucleus is lost!  Calculating a self-consistent single-particle potent ia l  is based 
upon mult i-s tep i terat ions which require enormously  long computer  t imes and 
make  a sys temat ic  invest igat ion pract ical ly impossible. This discouraging 
s i tuat ion s t imulates  one to ascertain whether  cq. (2.14) is capable, a t  least  for 
finite even-even nuclei, of playing the (~ steering ~) role played by  eq. (2.]) for 

infinite nuclear  mat ter .  

2"2. The density distribution o/ even-even nuclei with A <~]6. - Several  em- 

pirical forms of dens i ty  funct ion o(r) have  been considered in the l i tera ture  (9). 

(s) P. ItonEI~-~EI~G and W. KolI~': Phys. Rev. B, 136, 864 (1966); L. I. SII).M and W. 
Kom~: Phys. Rev., 145, 561 (1966); K.A. BI~u>'CK~r:, J .L .  GAMbreL and H. WEITZ- 
~'V.R: ~'hys. Rev., l l0 ,  431 (1958); K. T. I(. DAvIEs, S. J. KRIEGER and M. B~RA~'GER" 
~ucl. Phys., 84, 545 (1966); J. P. SWE-'~NE, A. K. K~R.MAI~- and F. VILI.ARS: t)hys. Rev., 
147, 710 (1966). 
(g) K.A. BRUECr:~XR, J. R. BUCnLER, S. JOR~'A and R. LO.~IB,uiD: Phys. Rev., 171, 
1188 (1968). See also C.W. DE JAGER, H. DE YRIXS and C. DE Vmxs:At. Data 
.Nucl. Data Tables, 14, 479 (1974). 
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~Negleeting the small differences between the radial distribution of protons and 
neutrons,  the simplest analyt ic  form of p(r) is 

(2.]6) o ( r ) :  ~ J Z(P*(r l ,  ..., rA)6(r- -r~)  ~tJ(rl, ..., rA)dr l . . ,  dr~, 
i 

where kP(r~, ..., rA) is the total ly ant isymmetr ized ground-state  nuclear wave 
function expressed a.s a Slater de terminant  and ~ indicates the summation 

P 

over all permutat ions.  Assuming tha t  the ground states of the even-even 
nuclei with A <16 can be adequately described by the lowest shell model con- 
figuration, it  can be shown quite generally tha t  o(r) is independent of the 
mode of coupling in the shell model, and  del3ends only on the shape of the 
common potent ial  well. Assuming an infinite parabolic well, densi ty func- 
tion (2.16) becomes 

(2.17a) 

(2.17b) 

the r.m.s, radius is 

e(r) = Oo(~ § ~7(r/s)~) exp  [ -  (r/s)~], 

~oo ---- '72/~V~(2 ~- 3V)s 3 , 

f~(r) d r -  - I ; 

(2.]7c) R ~- ]~(s, ~) ---- s{3(2 d- 5U)/2(2 -4- 3U)}�89 

Informat ion on the shape of the central  potential ,  on the strength of the 
spin-orbit coupling and  oil the type,  shape and strength of the residual 
two-nucleon interact ion is concealed in the two unknown parameters s and U; 
in particular,  length s is related to the curvature of the well and to the 
energy interval  between two successive levels of the harmonic oscillator. 
Parameters  s and ~/ will be determined according to the stabili ty prescrip- 
tions of the considered even-even nuclei: it  will be shown tha t  this goal 
c~n be achieved provided one also puts simultaneously into play optical-model 
requirements and consistency constraints arising from the theory of infin- 
i te ly extended nuclear mat ter .  

The analyt ic  form (2.17) is used for dcscribi~g the charge density of nuclei 
with two protons in the s-shell and  Z - -  2 protons in the T-shell (~0): in this 
case, using appropriate harmonic well wave functions, it is found tha t  

(2 .1s)  v = ( z  - 2 ) / 3 .  

Remarkable fits of the elastic-scatteril~g da ta  cf high-energy electrons from 

(lo) R .L .B .  ]dLTON: 2~uclear Sizes (Oxford University :Press, Oxford, 1961). 
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q[e ,  12C and 160 have been obtained (11) using a chargo distr ibution h~ving 
the form (2.17), namely 

(2.19a) 

(2.19b) 

(2.19c) 

oct(r) = (Oo)oh(l + ~cb(r/Sch) 2} exp [-- (r/sob)"] , 

(e0)r = 2 /zV~(2  + 3V<h)sc~h, 

f o h ( r  ) d r  = ] ? 

th = 5 ,  )/'~('> -~- 3Vth)}" 

The c~p:~bility of densi ty  (2.]9) is str ict ly dependent  on the p a r a m e t e r  

( 2 . 2 0 )  Vc .  = - 2 )  ; 

which gives ~Tch= O for *He, ~ h =  ~ for x"C and ~]~h= 2 for leO. For  our 
purposes it is essential to clarify the  relation existing between nuclear den- 
sity (2.17) and charge density (2.19), namely between the set of param- 
eters (s, ~) and (Sh , Vch)" A clear-cut start ing point is the following: a) den- 
si ty (2.17) expresses the radial distr ibution of the centre of mass of tim 
nucleons (and-- in  par t icular - -of  the  protons) bound in the  nucle~tr sys- 
tem;  b) the  incident electron feels the  combined electromagnetic effects 
arising bo th  from the nonuniform centre-of-mass distribution of the  protons 
and from the individual charge densi ty  distr ibution %(r) elmractcrizing each 
proton.  Consequently,  the churge distr ibution ~r used in the analyses of 
the  electron-nucleus scattering data  is related to %(r) and ~(r) through the  
folding integral  

(2.2]) ~)eh(r) = f 0 , (  ]r -- x]) o(x) dx .  
d - 

l~et us introduce the vec tor  X := r - - x ;  taking into account  tha t  

(2.22) 

equat ion (2.2]) becomes 

(2.23) 

[r- -  x l < X  < r  + x , 

r co 

- - -  I , ( x ,  r )o (x )  d x  ~,- x I~(x ,  r)~2(x) d x  , o o ~ ( r ) -  r 

0 r 

r + x  �9 ~r  

I i ( x ,  r)=fx%(x)dX, I_o(x, r ) - - f x , 2 ~ ( X ) d X .  
r x - r  

(11) H . F .  ]~IIRENB~'.RG, R .  IIoFsTXI)TER, U .  3IAY:ER-]{ERK}IOUT, D . G .  R A V E N I I A L L  

and S. SOBOTKA: Phys.  Bey., 113, 666 (1959). See also R. }[OFSTADTER: A'lvlb'z*. Rev. 
Nucl .  Sci., 7, 231 (1957). 
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In  order to perform tr~nspurent calculations, we resort to the Gaussiun proton 
model which, al though inadequate in accounting for the electron-proton seat- 
tering data,  nevertheless gives suitable quali tat ive results of general validity. 
The considered proton model is expressed by the charge densi ty normalized 
to I 

(2.2Ja) 
0o(r) - :  (1/~V~s~,)exp [ -  (r/so):],  

f op(r) dr  = 1 ; 

the r . m . s ,  radius is 

(2.2lb) 

Equution (2.23) becomes 

('2.25) 
~oh(r) --: (2/V~s~r) F(r) exp [-- (rh~)2] , 

(o 

i ') "/ '  ,2 /~'(r) ==. x sinh (.~, I,%) o(x) exp [-- (x/s~) 2] dx 
0 

Densi ty  (2.19) is obtained from eq. (2.25) ~ssuming for t~(r) the form (2.17); 
the p~r'tmeters characterizing ~ch(r) are found to be 

(~.~6) 
{ (0o)c~ = {o _!_ 3(,~o/,?oy.,D/nx/~( ~ § 3v),~, 

I t  is readily ~s('ertained tha t  the following equality holds: 

(2.~7) ~ - R ~ + R i .  

The form factor corresponding to densi ty  (2.19) is 

(~.2s) ,~-(qO) = [1 -- (~oJ2(2 § 3~ch)}s~hq 2] exp [-- (shq/2)2], 

where q_=_-q(E, O) is the relativistic momentum transfer. The ~ngular posi- 
tion of the zero of ~(q-~) is t~ surprisingly close guide to the m~rrow diffraction 
minimum of the differential electron-nucleus cross-section. The iit of the 
;~ngular position provides an a(.curate determinat ion of p ' t rametels  sch and ~Lh" 
The fit is improved by  taking into account t ha t  the origin of the co-ordinates 
is the centre of m:~ss of the nucle,~r system and not  the centre o~ the well as 
is assumed in the usual shell model t r ea tment ;  the correction is 

(2.29) s~h = {(A --1)/A}s" § s"~. 
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The val idi ty  of eq. (2.20) (concerning finite-size protons) and not th,~t of 
eq. (2.18) (concerning pointlike nucleons) possesses strong exper imental  evi- 
dence. I t  is astonishil)g tha t  this circumstance has never  been specifically 
stressed. :For our purposes it  is sufficient to have given 

( 2 . 3 0 )  s < s h ,  ~ > ~r 

A deeper insight into densi ty  funct ion (2.17) will be given in subsect. 9"2. 

2"3. A n  ansatz on the nuclear radius.  - In  order to m~ke as much use as 
possible of nuc lear -mat te r  results in describing finite nuclei, we adopt  the fol- 
lowing ansatz: the  r.m.s, radius R(s,  ~) of a nonunifo lm densi ty  distr ibution 
Q(r), cMculated for an even-even nucleus at  the  minimum of the to ta l  energy 
of the  nucleus ground state,  is equal  to the length _R~---- roA ~ character iz ing 

the  infinite nuclear  ma t t e r  a t  the minimum W~(nF)=  bvA , i.e. 

(2.31) /~(s, ~) = roA ~ ; 

f rom eq. (2.31) one expresses s as a funct ion of ~, namely  

(2.32) s --- roA~[2(2 -{- 3~)/3(2 -~- 5~)] t . 

The empirical  (~ nuclear  radius ~ R0o = rooA t, crudely de termined in the frame- 
work of phenomenologicul  theories,  is re la ted to the r.m.s, radius R(s,  ~) by  
the  relat ion 

(2.33) too = (~)i ro. 

A n s a t z  (2.31) does not  cont rad ic t  the  approximat ion  intrinsic to the nuclear 
Thomas-Fermi  model, namely  tha t  tile energy and densi ty dependence is 

locally the same as tha t  of a homogeneous medium in its ground s ta te :  of 
course, this is equivalent  to assuming tha t  the  correlations between the nucleons 

in finite nuclei are the  same as in nuclear mat te r .  Should ansatz (2.31) be 
groundless, then  the results achieved through nuclear-mat ter  calculations ought  
to be considered not  only heuristically me:mingless bu t  also conceptually mis- 
leading. This is, in fact ,  not  the  case! By  means of the hydrodynamica l  effec- 

t ive-mass approximat ion,  in t roduced in subsect.  5"4, we shall pour  into the  
t heo ry  of finite nuclei some crucial informat ion obtained from the overall  
description of infinitely ex tended nuclear mat te r ,  based upon the differen- 
t ial  equat ion (2.1): this will make it  possible to determine the nuclear param- 

eters  s and ~/ and then  to const ruct  the  optical  potenti 'fl .  
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3. - The momentum-density dependence of the single-particle potential energy. 

3"1. The single-particle potential  deduced by series integration. - W e  shall 
seek for solutions of eq. (2.14) by  expanding v{p, x(r)} in power series of p, 
i.e. 

c o  

(3.~) ~'{p, x(,')} = Z ~ , {x( , ' ) }p" ,  

where a/.{;/(r)} are unknown functions of the local max imum momen tum ;dr). 
Following the procedure outl ined in I,  i t  is found tha t  

(3.2) ~r 0, 

'a id t ha t  only  even powers of the nucleon momentum p ,appear in expansion 
(3.1). The general integrals of eq. (2.14) in _IV approximat ion  read 

(3.3) ~'("(p, x(,')} = ~2k~)(x(r)}p"",  
~ t ~ 0  

where all terms corresponding to n >_~" are assumed to be zero, i.e. 

(3.4) ~!i~!~{z(r)} = 0 

for v = 1, 2, .... Funct ions  ~"){y.(r)} satisfy the  recurrence relations 

(3.5) 

where ~ is the differential  opera tor  

(3.6) 4: (2 /z( r )}ax - - -  C X Z -  

The determiuat ion  of funct ions ~l:v){z(r)} is carried out  by  solving the sys tem 
of differentiM equat ions 

(3.7) 

627 ' ( z ( , . ) ) - -  ~2~-"'(z(r)), 
. . . o  . . . . . .  o o o . .  o , o o o , , . . . . , ,  . . . . . . .  , o , o . . , , ,  . . . . . .  * *  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  o . . . . . . . . . . . . . . . . . .  

( 2 ; )  . . 2 5 - ( 2 5 - +  11~,.  {z(,)}  = ~.~!,~21{z(r)}, o = ~.e!~'{x(r)}.  
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The solutions of the  sys tem are 

(3.s)  

i .  P A S C O L I N I  and  C .  V I L L I  

= ~*~+I  Z (r) -~- --2x , 

= 1)[5- (d~.~ ~ Z (~) - ~..,._~ o~._~ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~  . . . . . . . . . . .  , . . . . . . . . . .  o .  o .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  �9 . .  

where ,~, (~) --2~v+1 are 2N -{- 1 ~rbi t rary  integrat ion constants.  Any physically signif- 
it.ant solution of eq. (2.14) must  fulfil for p > 0  the condition 

(3.9) 

it  follows t h a t  

(3.:10) 

~{p, x ( ~ ) }  = o ; 

2~V - - 2 . u  * '*  ~ 

I t  is worthwhile  to remark  tha t  funct ion v~V){p, g(r)} depends only on the odd 
powers of the  local max imum m o m e n t u m  z(r). 

(0) . ) The 2r = 0 approximat ion  is not  significant. :Function 2 0 {7.(r)j obeys the 
differential  equat ion 

(3.11a) ~2~~ 0 ; 

the  m o m e n t u m  dependence of the single-particle potent ia l  is lost, i .e.  

(3.11b) v ( O ) { p ,  z ( r )  } ._=  1 (0) 3 .3(dl Z (r) oc q(r) . 

The 2V----1 approximat ion  is obta ined by  solving the system of differential 

equat ions 

(3 .12)  ~2~:~{z(,.) } = 6 2 ~ { z ( , . ) } ,  .~21'~{z(,.)) = o ; 

it is found t h a t  

(3.13a) 

(3.13b) 

~. , {p ,  x(r)}  = 2~l '{z(r)}  + 2 ' ) ' {X( ' ) }P  ~ , 

( l ~ f  .3 (1) 5 , 2 0 tz(r)} = 5 (da Z (r) ~- c~(x')za(r) , 

2(1)( ,r,~ , ~ ( 1 )  3 , ~ , ,  1 tXt ; 1 -  'a Z (  ) ;  

note  t h a t  an  unessential  factor  �89 has been included in the integrat ion constants  
~r and ~cl) Equat ions  (3.13) express the  radial  effective-ma, ss approximation ; 

3 V l  " 
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the  nucleon effective mass ,'~/*{y.(r)} is readi ly found to be 

(3.14) .'~IIM*{x(r)} = 1 if- 2M~){y~(r)}.  

The conjectured dependence of M*{y~(r)} on the square of z(r) is wrong (12). 

A more realistic mathemat ica l  model,  a t  least  for p<y.(O), is provided by  
the N ---- 2 approximat ion:  we shall call i t  ((model I ~. I t  is based upon the 
system of differential equations 

9 ,j, (2) , (3.15) ~2~){z(r)}-----0.~2 {Z0)},  

The ,~nalytic expression of the s ingle-partMe potent ia l  provided by  model I is 

(3.16a) v(~){p, z(r)}  ~ (~) = 2 0 {y.(r)} + 2~"~{x(r)}p ~ + 22(2){z(r)} p,  , 

(3.16b) ~ ) { z ( r ) }  = "--5"~(2'z~(r) + ~a'2) Z3 (r) , 

= (d~ ;r (r) , 

where an unessential  fac tor  �89 has been included in the  integrat ion constants  
ff(~) and ~(2) ~ o t e  t ha t  the  effective-mass ' lpproxim~tion is formally obta ined $ - - 3  " 

by  pu t t ing  in eqs. (3.16) 

(3.17) ~'5" = 0 .  

The integrat ion constants  ~(-~) (d c2) and ~c2) must  be determined consistently ~ 1  ~ - - 3  - - 5  

with the s tabi l i ty  prescriptions of the  considered even-even nucleus. 

3"2. The single-particle potential deduced by variable separation. - Let  us 
now seek for solutions of eq. (2.14) using the  me thod  of variable sepa.ration. 
To this end we subst i tu te  in eq. (2.14) the  single-particle potent ia l  energ~ ~ 
expressed in separable form 

( 3 3 8 )  x( , )}  = 

:Following the procedure developed in I, sect. 6, it is readi ly ascertuincd tha t  

(1~) G.L. Smtw: _l.n,n. Phys. (u Y.), 8, 500 (1959). 
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the only physically meanin~o-ful differential equations are 

A. I ' A S C O L I N I  a n d  C. V I L L I  

(3.19a) [p-~r{p~-~v} -~ a~]v~(p) = 0 ,  p ~<Z(0), 

(3.19b) [;~-(r) ~x(Z-2(r)~z} --  :t2]v2{~/(r)} --~ 0 ,  p ~<2/(0), 

(3.20a) [p_2 ~,{pO.~} _ f12] vx(p) = O, p >~ z(O) , 

(3.2 0b) [Z2(r) ~{Z-2(r) ~z} -- rio.] v~.{z(r) } = 0 ,  p ~> Z(0), 

where a and fl are real constants.  The solutions of eqs. (3.19a) and (3.20a). 
sat isfying the conditions 

(3.21) v~(0) f in i te ,  

are 

(3.22a) 

(3.22b) 

vx(oo) = 0 , 

~,(p) = c~{sin (~p)/p}, 
v , ( p )  = c~flY(~p), 

p < z ( 0 ) ,  

p > X(0), 

where Y ( f l p ) =  exp [--flp]lflp is 'L u  funct ion in momen tum space and 
cl and  c3 are unknown constants.  Funct ion v2(;~(r)} must  fulfil tile physically 
obvious condition 

(3.23) v2{Z(cx3)} = 0 .  

To solve eqs. (3.19b) and (3.20b) we perform the t ransformation 

(3.24) v2{z(r)} ---- z(r)0{x(r)} ; 

the following differential equations are thus found: 

~2 (3.25a) [v xx ~- o:o--- 2 g-2(r)]O{z(r) } -= O, p -<<Z(0), 

~2 (3.25b) [ j**- -  fl~- - -  2Z-~(r)] 0{z(r)}  = 0 ,  p > X(0) 

The solution of Bessel's equation (3.25a) is well known, the solution of 
eq. (3.25b) has been obtained by series integration. The final results are 

(3.26a) 0{z(r)} = c2[]o[aZ(r)} -- cos {az(r)}] , p ~< X(0), 

(3.265) 0{x(r) } --~ c4[;~(r) ~-~ (flo-/10)z'(r) + (fl'/280)ze(r)], :P>Z(0),  

where jo (x)=  s i n x / x  is the zeroth-order spherical Bessel function and c., 
and c4 are integration constants;  function (3.26b) satisfies eq. (3.25b) up to 
terms in z*(r). Ill conclusion, the factorable single-particle potential  (3.18) 
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t l l r l l S  ( ) l i t  to be 

(3.27a) 

(3.27b) 

v{p, z(r)} -~ C,~{o~z(r)}"-jo(a @) j,{ccz(r)}, p < z(O), 

v{p, z(r)}--: C2fl{T~(r)-]-(fl~/10)z~(r)-F (fl*/280)z;(r)} ] ' ( t i p ) ,  

P > Z(0), 

where j,(x) = {sin x / x  ~} - -  {cos x/x} is the f i r s t -o rder  spheri,.al Bessel function, 
C~I = ClC 2 a l l d  C 2 -  c a e  a .  

Functions (3.27) must  be linked by cont inui ty  at  p ---- g(0) together with 
their first-order derivatives calculated with rest)e(.t to momentum p; ('onse- 
quently, the two unknown panmleters  C2 and fl can be expressed as funetions 
of the other two parameters  C~ and 0r I t  is found tha t  

(3.28a) 

(3.28b) 

flz(O) = - ~z(0) et~ { : z ( o ) } ,  

28oc,a~jo{~z(o)}/,{~z(O)} exp [flz(O)] 
C 2 ---  - . _ . 

28o -F 2sfl"z~(o) -:- fl~z'(O) 

Sin(,e flZ(0)>0 because v{oo, z ( r ) } -  0, parameter  aZ(0 ) has to be se:~rehed 
for within the interval  

(3.29) ~/2 <aZ(0 ) < ~ .  

For aZ(0) - :  ~/2 ( f l - -0 )  potential  (3.27) behaves for p > Z(0) as a Couh)mb 
fun(.tion in momentum spaee, whereas for aZ(0 ) --: ~ in (fl ---- co) it a.ppears 
to be a rounded-off square well momentmn st)a(.e. Taking into a('eount 
eqs. (3.28), potential  (3.27) re~uis 

(3.30a) p < Z(0),  

(3.30b) p > Z(0),  

(3.30c) 

q'{P,  z ( r ) }  : C l ~ { ~ ( r ) } 2 j o ( ~ p ) j l { ( x z ( r ) }  , 

~:{p, z(,')} = %{z(r))fexp [ -  flp]/p}, 

' , ' o {Z( , ) }  - cx  M~z(o)}  ) ,{~z(o)} , ,x~)[:fix(o)1/{#z(,.)}{~z(r)}~, 
28o t 2sfl~Z~(r) t fl 'z"(r) 

t { f l z ( , ' ) }  - - -  :,so - 2s#"z'-'(oi - i -~ ~ z ' ( o )  

Sin(.e ]{flz(r)} is ~ slowly varying function approxiinately equal to 1, the radi~fl 
del)endene(~ of potential  (3.30) for p > Z(0) is governed by tim density func- 
tion o(r). We shall refer to tim mathemMAcal deseriplion of tile single-particle 
potential  expressed by eqs. (3.30) as ((model I I  ~). 

3"3. The  (( in termedia te  ,) s ingle-part ic le  po ten t ia l .  - A lnathematical  des('rip- 
t ion of the radbd ~uid momentum dependence of the single-particle potential,  
which is--so to speak-- in termedia te  between model I and model l I ,  can be 

$ - II  Nuoco Cimento A .  
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constructed by  assuming the val idi ty of eq. (3.16) for p < z ( 0 )  and theft of 
eq. (3.27b) for p > 2 ( 0 ) .  This hybr id  comt)romise between the solutions of 
eq. (2.14) obta ined by  series integration a.nd variable separation has ,~ remark- 
~ble heuristic value:  it will be eMled <( model 111 ,>. From cont inui ty prescrip- 
tions it is found tha t  

~(o~){z(O)} -~- 3z2(O)~2)(z(O)} -{- 5z'(O)~~){z(O)} 
(3 .31a )  ~IIIZ(O)" ~--- - -  " ~'~(o2){z(O)} -~" z2(O)~2)(z(O))--~-- Z4---'~'~2'(0)~ 2 {z(O)) ' 

280V2){Z({}), Z(0)} exp [/3mZ(0)] 
(3.31b) C,~ I t =  Z~(0)[280-:]-28fl~,,~(0 ) ~- ~uZ,(-O) ] . 

In  conclusion, model I I I  is expressed by  the following potential :  

(3.32a) v(2)(p, z(r)} = ~'o2){z(r)} + ~'x')(z(r)}p 2 + .~(2~'{z(r)}p ' , p < z(O), 

(3.325) vm{p, z(r)} = VXoU{Z(r)} (exp [-- f lmP]/P},  P ~ z(O), 

{ v ~ I t ( z ( r ) }  = z(O)v(2){z(O), z(O)} e x p  [ ~ i i I z ( O ) ] ~ ( z ( r ) }  , 

(3.32c) 9{;~(r)} = / { f l m z ( r ) } { z ( r ) / z ( O ) }  3. 

Condition ~ I I I Z ( 0 ) > 0  is sa.tisfied provided 

(3.33) ~o {z(O)} + 3z~(O)~?){z(O)} -7 .  ~ ,  , .0 ~,,  ,, ; 

it follows tha t  the internal consistency of model I i1  is ensured by the inequali ty 

(3.34) -- zT(O) ~, (~) < (9/40) zs(O) (~(~)~a -{- (7/80) z3(O) -,~(~) --5 

The lowest approximat ion of model I I I  is obt ,dned by  describing hi radial 
effective-mass approximat ion the single-particle potentials  for p < z ( 0 ) .  The 
corresponding relations can be deduced from the preceding ones by  put t ing  
~(2)_  0 and, consequently,  5 - -  

~ {z(~)} = 0 .  (3.35) (o) 

Equat ions  (3.31) become 

J~I){z(O)} -+- 3Z2(0) d,~il)(z(O)} 
(3 .36a )  ~II IZ(0)  :--= - -  ~ I ) { z ( 0 ) )  .~_ ~ 2 ( 0 ) ~ 1 ) { , ~ ( 0 ) ;  , 

(3.36b) C~ u _ 280v(~){Z(0), Z(0))_exp [flmZ(0)] 
- z~(o)t2so + "8PL,z"(o)!  ~Lz ' (O)l"  

The consistency of the model is ensured by  the inequali ty 

(1) 2 (1) (3.37) -- '~o {z(O)}<3Z ( 0 ) ~  {z(O)}. 
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4. - Stabi l i ty  prescript ions  and n u c l e a r  compress ib i l i ty .  

4"1. 1'he. total energy  o/ the nuc leus .  - Using tile solutions of eq. (2.]4) we 
construct  the to ta l  energy of the nucleus 

(1.:1) W(s, r/) ---- T(.% ~l) + V(s, r/) 

where, neglecting the slight ditTerences in the radial  behaviour  of the densi ty  

distr ibutions of protons  and neutrons,  the kinetic and potent ia l  energies ~re 

co 

(4.2a) T(s, r/) --  ( 1 1 i ) f p  ~ dJ~:(r, p )  : ( 4 1 5 n M ) f r  ~ zS(r) d r ,  
I 

o 

co %(r) 

d p  . 

0 0 

r(., n) =fv(p, x(,)} dJV'(r, p) (4.2b) 

Equa t ion  (,1.1) explicitly reads 

(4.3) 

~o g ( r )  

4 l"' rz~ TAr)}dp]dr = -  r "~--'_'-[- 0 

o o 

Several  results quoted iu the  l i terature  lmve been de Jacto obtained using 
W(s,r/), given by  eq. (4.3) with a fac tor  �89 in f ront  of the integral  over p. 
AJthough it  may  seem trivial,  i t  has to be pointed out  t ha t  this is wrong. 
In  fact ,  a t  the l imit  of a uniform distr ibution of nuclear m a t t e r  confined in a 
sphere of radius R~,  f rom eq. (4.3) one obtains 

(4.4) wco(~.) = (4~.L/3=)[(~.:/SM)+fp~-v(p, ~.)dp], 
o 

which identifies with eq. (2.3) using relat ion 

(.1.5) R,~ --  (9n/8u3)A, 

derived f rom eq. (2.2). 

The integral  funct ion 

4f, rz',r'> ~ -  r 2 (-1.6) I ( r ;  s, ~7) ~ [ 5M 
r 

Z(r' 

0 

dr '  

expresses the fr~ction of the total  energy of the nucleus external  to ~ sphere 
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of radius r; as is obvious, one obtains 

(4 .7 )  

Let  us define, energy 

I (0;  .~, ~) ~ IV(s, V) .  

(4.8) u(r;  s, '7) = d / ! r ;  s, ~l_) __ l i m I (  r -i b; s, ,])--!(r;s,~! 
d v  ~ ~o v ( r  + 5) - -  v(r) 

where number  v(r) is detined '~s 

(4.9) 

co 

,,(r) = (8/3~)fr"- x~(r ') dr' , 

r 

~,(o) : :  A .  

Taldng the  l imit  for b -> 0, eq. (1.8) becomes 

(4.10) 

zCr) 

~ ( r ; ~ ' ~ ) = ) . ~ ( r )  P '_'M :, v{p,  z(,')} dp. 
0 

Fun(.t ion (4.10) is formally identiea.l to Wo~(n)/A, given in eq. (2.3), provided 
y.(r) is repla(.ed by  ~. Thus,  u(r; s, ~) is the average tot'/1 energy within a 
sphere having in momen tum spa('e radius z(r). I t  is readi ly ascertained t h a t  

(4.1 1) I(r;  .~, =fe(r')u(r'; s, V) dr '  . 
r ~ r ' ~ < c o  

The extension to a finite nucleus of tile definition of tile single-particle to ta l  
energy,  discussed in I, leads to the following rehttion: 

(4.~2) ,,,(r) : - [~0{(,(,.)u(r; ,~, v ) } ] ,~ , . ,  

where So and ~o are the values of the densi ty  distr ibution paraIneters  cal- 

eulated at  the minimum of tile t.otal energy of the nucleus. A straightfor-  

ward calculation gives 

(,1.13) 

whele  

(4.14) 

w ( r )  - Z2('r) '_'M i ~'{z(r), x ( r ) } - - -  2Z2(r) g(x(r)}, 

x(r )  

-~(g(r)} = Z'-'(r)v[i~(r), z ( r )} - fp%.~ ,{p ,  x(r)} d p .  
0 
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4"2. A lhcorem co~cerning the single-particle potential. - Wc shall now prove 
the following theorem: for any  density distribution ~o(r) fun('liOll .~{x(r)} is 
identi(.ally zero in the interval 0 < r < o o ,  i.e. 

( l . t s )  2 { z ( r ) }  ~ o 

t)rovidcd v{p, z(r)} be :~ p~a'ticular integral of the hyperboli(~ differential equa- 
tion (2.14), satiMying the ~symptoti( '  condition 

(.t.16) ~ , { z ( ~ ) ,  z ( o o ) }  - r(0,  0) = 0 .  

To this elld we ewdu~te the derivative Dx :-d/dz(r)  

(4.17) 
z(r) 

Dx[2{z(r)}/Z"(r)J = [r X(' )}],=z(~)--j c~[{P/Z(r))'(xv{P, z(r))] dp ,  
o 

where it has been taken into a(,(.ount tha t  

(4.18) D x v { y . ( r ) ,  z ( r ) }  [ ( ~ . - ] -  ~ r = ~.~) c~p,  Z(r)} ]~ ,= . . )  �9 

Equat ion (2.1.1) can be writ ten in the form 

(-1.19) c,[{p/7.(,)Kc',v{p , z(r)}] : cx[{p/x(r)}-cxv{p, z(r)}] . 

Taking into account tha t  (~v{p, z(r)} v~ries linea.rly with p in the neighbour- 
hood of p ----0, from eqs. (4.17) and (..t.19) one has 

(4.20a) a~l ~{x(~)}/x~(,.)l o ,  

(4.20b) :2{z(r)} _-- ifz2(r), 

where if  is ~[ll ~u'bitrary integration (.onstant. l)erfornfing the t ransformation 
=p/z(,r) ,  from eqs. (4.1,1) 't.nd (.1.20b) one tzcts 

1 

(4.21) c{z(r), z ( r ) } -  z(r)f~2[c~zc{z(r)$, Z(r)}] (t~ : ~ ;  
0 

eqm~tion (.1.21) shows tha t  condition (t.16) is satisiicd t)rovidcd if---- O, which 
proves the theorem. OJte can readily cheek th,~t the single-i)arti(,le potentials 
(3.13), (3.16) ,~n4 (3.30a) possess the rem~rkable proper ty  (4.15). 
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4"3. Stability prescriptions. - T h e  first  of t h e  s t ab i l i t y  pres ( ' r ip t ions  of t he  

nuc l ea r  g r o u n d  s t a t e  is 

(4.22) l ira [ D e l ( r ;  s, ;7)] . . . .  -- 0 , 
r--+0 ~]=qo 

where  D o ~ d/do(r)  a n d  so, ~o a re  t he  va lues  of s a n d  ~ a t  equ i l ib r ium d e n s i t y :  
as is well  known ,  eq. (4.22) phys icMly  m e a n s  theft s t ab i l i t y  is ensu red  b y  the  

zero p r e s s u r e  of t h e  auc l ea r  (~liquid ~). T h e  t i r s t -o rder  t o t a l  d e r i v a t i v e  of 

I ( r ;  s ,~ ) ,  a t  a f ixed va lue  of r, is 

(4.23) D J ( r ;  .% V) = (c,~)%10; s, ~) + ( % ~ ) ~ I ( r ;  s, ~) . 

W i t h  d e n s i t y  (2.17) we (.,onstruct func t ion  

(4.24) t '  - -  2 " ( 0 ;  s ,  ~/)  = 

= o - -  (2 / , r iVes  a) (2 -~- 3~)-~{1 + ~(r/s)"-} exp  [--  (rls):] - 0 . 

= - - ( r  T a k i n g  in to  a c c o u n t  t h a t  ~es (?oF)l(3J~') a u d  ~-~7 - ~ ' ~ ' 

eq.  (4.22) b e c o m e s  

( 4 . 2 5 )  so{?.'., W(s, ~/)}o + (2 + 3flo){~, W(s, ~ / )}o-  O, 

whe re  t he  s y m b o l  { }o m e a n s  t h a t  t he  p,~rtial de r iva t ives  of the  t o t a l  e n e r g y  

a r e  e v a h m t e d  a t  s - s  o a n d  ~ - - - ~ o .  Onc  has  

(4.26a) 

(.1.26b) 

co  

w(.,., v) = (S/=) d r ,  
o 

co 

~,W(s, ~7) : (8/'n) fr"-Z"(r){?,z(r)}w(r) d r ,  
0 

where ,  owing  to  t he  t h e o r e m  p r e v i o u s l y  p roved ,  w(r) is g iven  b y  fo rmul~  (4.13) 

wi th  .~{y~(r)} -= 0, i.e. 

(.1.27) w(r) = ~.(.r) - t  v{x(r),  z ( r ) } ,  

~(r) := z2(r)/2M be ing  the  local  F e r m i  ene lgy .  F o r  d e n s i i y  (2.17) it  is f ound  

t h a t  

3 ~ (5~ 7 -- 2 )(r ls)  2 -  2r/(r/s) ' ]  
(4.28a) ~'~x(r) . . . . .  o%;>krl + 'lt/JS'~"r's'2) J Z(r)  ' 

3 -  2(rl ') ] 
(4.28b) ~z('r) = - -  [3(2 -t- 3~l){t 4- d r/s)~}J z(r) �9 
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Equ~tion (4.25) expresses the necessary condition for nuclear stabili ty.  
The suffu.ient condit ion is given by  

(4.29) W(s0, ~o) : b(Xa) A , 

where b(X,') is the average binding energy of the considered even-even nu- 
cleus X -~, de termined by spectros(,.opic mass measurements .  This assumption 
implies tha t  the minimum W(so,~0) also includes the contr ibut ion arising 
f rom the Coulomb energy. This s ta ternent  requires some comments .  In  the 

idealized com.eption of infinite nuclear mat te r ,  the  Coulomb contr ibut ion to 
the single-particle potent ia l  energy fulfils eq. (2.1). ] t  has been shown th a t  
in first-order pe~'turbation theory  the  single-particle potentia.1 energies are solu- 
tions of the ditIerential equat ion of infinitely ex tended nuclear ma t t e r  provided 
tha t  the two-body potent ia l  v(r) is a funct ion free of discontinuities: of course, 
this also occurs for the Coulomb potent ia l  vc(r ) ~ 1/r. I t  follows tha t  in the 
Fermi  sea the Coulomb single-parti(.le potent ia l  energy is momen tum depen- 
dent :  this proves th:~t the main cause of the momentum dependen(.e cannot  be 
restri(.ted only to the  exchange na ture  of the two-body force (~3), b u t - - a s  

a l ready pointed out  in subsect. 2" l - - i t  is essentially b rought  about  by  the to ta l  
'~nt isymmetry of the wave fun(.tion describing the nuclear system. This im- 
por tan t  p roper ty  is also preserved for finite nuclei by vir tue of eq. (2.14). 

4"4. The compressibility modulus. - Tim sufficient condit ion for nuclear 
stabil i ty,  expressed by  eq. (4.29)~ possesses a clear-cut physical meaning bu t  
is by  no met~ns sufficient for the existence of the minimum of the to ta l  energy.  
F rom the muthemat icql  s tandpoint  the sufficient (.ondition obviously requires 
t ha t  the  second-order derivat ive of the to ta l  energy with respect  to densi ty  
D~oW should be a positive quant i ty .  Such a requi rement  is always satisfied in 
infinite nuclear ma t t e r  and by finite nuclei in the f ramework of the Thomas- 
Fermi  model: this is probably the reason why so lit t le a t t en t ion  is general ly 
devoted to this quan t i ty  in conne(.tion with nuclear stabil i ty.  The physical  
meaning of D~oW can easily be disch)sed by  applying s tandard  thermodynain ic  
relati(ms to the description of the  m~cleus ground s ta te  at. the  limit of zero 

tempera ture .  Le t  V be the nuclear volume, P the positive pressure of the 
sys tem and H the IIelmholtz  free energy. The isothermal  compressibil i ty Cl. 
is defined as the rat io of the variat ion in l)ressm'e to the corresponding fract ional  
variat ion of volume whi(.h it. produces.  The familiar  relations valid for sm'lll 
depar tures  f rom the equil ibrium configur'~tion are 

(.1.30) el, : -- V(~/)/?V),  P --~ -- (~H/~V).  

(~3) II.A. B].:TII].:: Phys. ~e~'., 167, 879 (1968), p. 892. 
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I n  the  spiri t  of the  Thomas-:Fermi model  we express  C~, and  P in t e rms  of 

compress ibi l i ty  and  re.spectively free energy per part icle  instead of compres-  
sibi l i ty and  free energy per unit  volume,  and  then  we replace the par t ia l  deri- 

va t i ve  with respec t  to V with the to ta l  der ivat ive  with respect  to densi ty  ~; 

o n e  h a s  

(4.31) C,. = oDf l '  , P == o~ . 

Since a t  tile l imi t  of zero t e m p e r a t u r e  D~oW =: D ~ H ,  f rom eq. (4.3t) one 

deduces t h a t  C~. = oC, where 

(4.32a) , o . ,D2 C - -  2oD~(W/A) ~- - qe(W/A) 

In  order  to work out  ana ly t ica l ly  eq. (4.32a), we prefer  to re-wri te  it. ill the  

fo rm 

(4.32b) C ---- (1/A) !ira (2o(r)DQl(r" s, rl) + ~"(r)D~eI(r; s, ~/)}o 

Owing to s tab i l i ty  prescr ipt ion (4.22), the  first t e r m  in the r.h.s, of eq. (4.32b) 

is equal  to zero; ener/zies 

(4.33a) 

(4.33b) 

C(so, ~/o) ::= (1/A)!!m{o2(r)D~QI(,r; s, ~)}o, 

K(so, ~1~) = 9C(Zo, ~o) 

are convent ional ly  denomina ted  as nuclear  compressibi l i ty  and  nuclear  com- 

press ibi l i ty  modulus,  respect ively.  Thus tile detinition of quan t i t y  K(So, ~o) 
is phys ica l ly  signific,mt in so far  as it is specitically related to nuclear  s tabi l i ty .  
The  cah!ulation of the  compress ibi l i ty  modulus is controversial  (~t); a va r i e t y  

of ~ineompressibi l i t ies  ~) quoted  in the  l i t e ra ture  do not  seem to have  much 

to do with definit ion (4.33b). 

The q u a n t i t y  we are  in te res ted  in is 

(4.34) K(.%, ~o) = ~ !ira (o~ .% ~))o . 

Q u a n t i t y  (4.34) is genenfl ly  eva lua ted  by  replacing o with a length (.hara(.- 

ter izing the  size of the  nucleus such as the  r .m.s,  radius (~5). We shall folh)w a 

different and  more  genuine procedure.  The second-order to ta l  der ivat ive  of 

(14) j .  ]). BLAlZOT: Phys. Itep., 64, 171 (1980). See also B .K.  JENXINq;S and A.D.  
JACKSOX: Phys. Rep., 66, 141 (1980) .  
(15) j .  ]). ]3LAIZOT, D. G()GxY and B. GRA.~I.~IATICOS: Nucl. Phys. A, 265, 315 (1976); 
K .B .  J~X~I~'GS and A. I). J.~CKSOX: Nucl. Phys. A, 342, 23 (1980). 
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I(r ;  .% W) with respect to densi ty  (2(r) at  a fixed value (ff r is 

(,1.35a) D ~ q I ( r ;  s ,  n ) -  (~es) ?'.,{r I(r;  s, 7])} § (~oV)~,{~ol(r; .% ~/)}, 

(4.35b) D~ I(r; s, V) =: (O~ § O2)I(r; s, ~1), 

where O~ and O., are tile differential oper:~tors 

(4.36a) O, = (?r s)"~, q. (%V)'?'2,, § .(ces)(%r/)c~.,,7 , 

(4.36b) O~ ---. (~.~')~ q- (~ ~1)~,. 

F rom the theory of implMt fun(.tions one obtains 

(4.37a) c~os = - - ~ ( % ~ ) ( ( ~ o ~ ) - - - ( ( ~  )(%~)((o,-~) =- (%2) (%~)}/(%F) , 

-,~ c,~ F,~,~ F '  (4.370) ('o~W-----l(', ~ ( c ~ ) - - 2 ( ? o F ) ( ~ , F ) ( ~ , F ) + ( ~ F ) 2 ( ~  F)}/(O_F) 3, 

where F .... Y(o; s, ~1) is defined in eq. (4.24). I t  is found tha t  at  linfit r -> 0 
(.ondition (4.25) implies 

(4.38) {O2 W(.s', r l )}o- 0 .  

The (.ompressibility modulus (.t.34) becomes 

(4.a)) 2r(."o, no) == (1/A)[."~o{G W(.~, ~)}o + 

+ (~ t -  3~o)~{G, w(.~, ~)}o + ~.~o(~ + 3~o){G, w(.,., n)}o], 

where 

(4.40) 

~'~ W(s, ~) - - 
a s  

72 W(s, ~/) : - 

(?~,, W(.~, V) = 

co 

j'r" .~) = ; ~/)G}w(r)dr,  (8/~) {o~,(r;.~, ' r , , d r  .~, 
0 

co 

(8/zt) fr"- {(o~(r; '1, ~11-[- (o2(r; '1, ~])(~x}w(r)dr, 
0 

co 

(s/~)fr-'{,o,(r; ,,,, v) + ",-("; s, ~ )~}  w(r)dr,  
o 

(1.41) 
{oh(r; s,~l) )r . ~ ) 42 ---- z(r)[.~GZ(~ )}{c,x(r) S + z(r){c~,Z(r) S] , 

,,,~(r; .~, ~) = z ~ ( , . ) { ~ z ( , . ) } { G z ( ~ ) } .  

Tile preceding relations exhibit  tile critical dependen(:e of tile compressibility 
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modulus on the single-particle potential  at p - - z ( r ) ;  in fact,  

(4.42a) 

(4A2b) 

(4.42c) 

K(so, ~o) ---- Ko(so, ~o) -~- K~(.%, z/o) " K2(.%, ~o), 

co 

Ko(so, z/o) = ( 4 /~rA M) f r~ X~'(r) dr , 
0 

co 

K~(so, ~o) = (8/~rA)j'r "2 ~ ( r )  v{ 7~(r), z (r )}  d r ,  
o 

co 

K.(.,'o,. no) = (S/~.4) fr-=o(r)[~.**,(x(r), x(r)}] dr, 
0 

Eo(r) = ~ ( r )  + (2 / z ( r ) }E2(r )  , 

~ , ( r )  = s~o~(r; So, So) -]- 

~- (2 -{- 3~o)~ w~(r; Z]o, z/o) ~- 2so( 2 + 3z/o)a)~(r; So, ~/o), 

~ ( r )  = ,%coo(r; ,%, So) + 

+ (2 + 3r/o)-~ o~2(r; z/o, z/o) + 2So( 2 -+- 3~o)Oo.(r; So, z/o) �9 

.~Tegleeting the complicated dependence on s and Z/ of the potent ial  parameter  
C~a at  the minimum of W(s ,  ~), one obtains an approximate value of the 
compressibility modulus by dividing by a factor 4 the result obtained from 
eq. (4.42) assuming C~a constant .  

5. - The parameters  o f  the single-particle potential .  

5"1. Mode l  I a n d  model I I I . -  The total  energy of the nucleus described 

by model ] is 

co 

~ Z 0 )  - -  . . . .  c~1 Z(r) [ -~ cd.~ X O) d r .  (5.1) W(~)(s, ~) r~z%r) + c~) - (5) ~ .  (~) 5 . 

0 

This model is nmthemati(..ally undetermined because dependent  on five param- 
eters (s, r];--1~(2), '~3~'(~), ~52)) bound togetherJ by tile two stability, equations (4.25) 
and  (,t.29). Let  us, for heuristic purposes, examine the special case Z/ = 0, 
which a pr ior i  will not be :~ssumed to be valid for 4tie in spite of the fact  
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t h a t  rlr =-: 0. F u n c t i o n  W(~)(s, 0) b e c o m e s  

o - -  ~ ( 2 )  - a  (2) - 5 ~ (~(2)  ~--7 ( 5 . 2 a )  W("-)(.s ", O ) / A  - -  a o s -  J r  a ~ w ~  s -[ a z ~  a s -4- ~ ~ , 

(5.2b) 

, } 3 ; - - ~  , ) - ~  ~. g- , ' o "~ ao = (~/4) (4/3Io)- ( - , I , , 0 ~ / ) ~  , a: - -  (312~)~ (81~I3.O)A~,  

a~ = ( n / 2 ) }  ( 3 / 8 ) A ,  a3 = ( 2 4 3 n / 3 2 ) ~  ( 8 ] ~ / 2 5 0 V / 5 ) A } .  

I n  t he  consi&~red case t h e  s t ab i l i t y  p re sc r ip t ions  a re  e x p r e s s e d  b y  e q u a t i o n s  

(5.3a) { d W ( s ,  O)/ds}~,,~ -= 0 ,  W(so, O) = b ( X - ' ) A ,  

where ,  t a k i n g  in to  a(,(.omlt ansa tz  (2.31), 

(5.3b) so = (2/3)~roA ~ �9 

F r o m  eqs.  (5.3) one o b t a i n s  

(5.~) 

- . -  o 

So 3 ,~(2) _ {5b(XA) __ 3aos ~ . _~. 7a~s 07 (~l~)~/,), 
- - 1  '05 f [ - -  (~'1 

[So 5~('')-a =- flaoSo-2--3b(XA) - -  7aaso 7 cf(m/')~5 ~1-"2 �9 

T h e  e o m p r e s s i b i l i t y  n m d u l u s  is 

(5.5a) K("-)(So, O) - (so/A){d ~ W(s, 0)/ds-~}~ .~o, 

(5.5b) K('-')(so, 0) = 3a  o so -~ - -  ] 5 b ( X  A) --  7a 3 s o 7 ~ )  . 

Model I I I  possesses  the  s a m e  i n d e t e r m i n a c y  as mode l  I because  also for  

~1 ---- 0 one a d d i t i o n a l  e q u a t i o n  is needed  in o rde r  to d e t e r m i n e  p a r a m e t e r s  ~(i ~ 

(i - = 1, 3, 5). Model  i I i ,  h o w e v e r ,  is usefnl  in so f a r  as  i t  disch)ses t he  crucial  
role  of p a r a m e t e r  (d~ ~) in e v a l u a t i n g ,  t h r o u g h  eqs.  (3.31), p a r a m e t e r s  ~3 a n d  

tim which  g o v e r n  tl le n m m e n t n m  det )endenee  of t he  e x t e r n a l  t )ar t  of t he  

silt~le-l)arti(qe p o t e n t i a l :  on ly  v{p, ;~(r)} fo r  p > 7~(0) comes  in to  p l ay  in t he  

c o n s t r u c t i o n  of the  rea l  l) ' t r t  of the  op t i ca l  po ten t i a l .  As is seen f rom eq. (5.5b), 

(5 '(~) also has  an i m p o r t a n t  role  in de t e rmin inK tile compres s ib i l i t y  modu lus .  

The  c o m p l i c a t e d  in t e r l ac ing  be tween  nuc l ea r  s t ab i l i t y ,  compres s ib i l i t y  a n d  

op t i ca l  p o t e n t i a l ,  cle:~rly exhibit~,d b y  mode l  I l l ,  a lso ex is t s  for  mode l  I I ,  
air .hough m~sked  b y  i ts  m a t h e m , t t i c a l  % a t u r e s .  

On ly  mode l  I ,  deveh)ped  in e f f ec t i ve -mass  a p p r o x i m a t i o n  wi th  r}----0, is 

m a t h e m a t i c a l l y  def ined.  T h e  co r r e spond ing  re la i ions  can  be  o b t . d n e d  f r o m  
t h e  p reced ing  ones a s s u m i n g  ~5- ' )=  0 a n d  a3 :=  0. 
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5"2. Model  i I .  - .~Io(tel I I  is (.h~racterize(l by  ,six pa ramete r s ,  i.e. 

(5.6) s, V, G,  a, G,  f l ;  

only five equat ions  are available,  namely  the ansa t z  equat ion (2.31)~ the two 

s tabi l i ty  equ;~tions (4.25) and  (4.29) q.nd the  two cont inui ty  equat ions  (3.28). 

Thus,  wi thout  add i t ion 'd  exper imen ta l  informat ion  or an addi t ional  equat ion,  

the  descript ion of the nucleus ground s ta te  turns  out  to be pa rame t r i zed  as 

a funct ion of one of p a r a m e t e r s  (5.6). The to ta l  ener~5- of the nucleus is 

co 

= _ ,.3 ~ . . . .  fi{~xO')} d r .  (5.7) W(s, ~/) a L 5 M  a s 
o 

F o r  ore" purposes it  is convenient  to adop t  the  following no ta t ion :  

~z(r) :-- ~2~(rls) , 

~(,./.~.) = {l + ~(r/,,')q~ ~,xp [ -  ~(,'/,q~], 
(5.8) 

the  :Fermi energy a.t r - - - 0  is 

(5.9) eo(~7) -~ z2(O)I  2 M  = {3(3~) ] /4M, '~}{ (2  -~- 5~)/(2 ~- 3~7)~}, 

where ro is fixed by  eq. (2.31.) in a(.eord,~nee with the r.m.s,  radius of the  (.on- 
sidered nucleus X ~. 

F r o m  eq. (4.25), t ak ing  into account  eqs. (4.26) and  (4.28), one obta ins  

(5.10a) eoO?)g,(~) = - -  ( C l a )  ~t~2(;l( "Q, ~ )  , 

co 

g,(~) := fx ' {6  H (Sv- -  4 ) x ' - -  2V~q(1 W ' )  ~ exv I-- 5.~/3] d x ,  
0 

(5.10b) G~(D, V) ::  

--j ' .~{6 -I- (5? - .l)~ -~- 2nx,}(~ + ,~x~)~g~{9~(x)} exp  [ -  5~:-~/31 d x ,  
o 

(5.10c) Jo{.O~(x)} =: jo{D~,(x)}j~{E2~(x)}, 
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where .~: = rls. The minimum of the average to ta l  eiiergy (5.8) is 

(5.1 la) 

(5.1 lb) 

g.,(~]) t- ((;~a)L)G.~('~2, ~7) - -  b(X'~) , 

0o 

2.1eo(~7) f .  

o 

0 

%Ve ~l()w subst ihl te  in eq. (5.10a) the potentia.l p~rlmleter C~a determined #on i  
eq. (5.11a); it is found tha t  

(5.12a) 

(5.12b) 

g,(~7)g3(~7) = ~Q{G,(/2, ~7)IG-2(.Q, ~7)}, 

g3(~7) = e o ( ~ 7 ) / { g # 7 )  - -  b(XA)} �9 

Equa.tion (5.12) allows one to de termine  t)ar ' tlneter .0 as a funct ion of ~/ con- 
sistently with tile s tabil i ty pres.'riptions. The dependence of .(2(7/) on the mass 
l lumber A is brought  .t.bout only by the average binding energy b(X A) a~ld 
by  tile pa ramete r  r e -  ro(X "~) introdu(..ed in eq. (2.31). Of course, not  only 

the illterlial t)i~i'l of I:~p, 7.(r)} iil monleli tum space turns out to be pari~metrized 
ils "/ flln(.tion of 17, but  ~flso tlie extern ' l l  l)art: indeed, eqs. (3.28) "ire 

(5.13a) 

(5.~3b) 

flZ(0) = - -  -0(~7) (,.lg {.?(~)) _- rOD, 

~/ "r 140(2 + 5~)r2oso(~7)g,(rl)Jo{s exp [y(~])] 
C.,(#]) --  - -  ~(2 + "~/) {280 --- 28y2(~/) + 74(~i)}G~{.(2(~]), ~7} 

The limit for ~/ --> 0 of the preoedilig relations identifies with tile results other- 
wise obtainable  dire(.tly f rom eqs. (5.3). 

For  the sake of sinli)li(.ity we evalua.te tile s-depend(m(.e of the eomt)res- 

sibility rrioduhls (4.30) for  a iixed value of v/0. At equil ibrium densi ty  one has 

(5.1 la)  

where 

(5 . l ib )  

K(,s,, +7o) =__ Co07o)Ho(+lo) + 

I 1 (+'of +)-n- +,); 
- '  c'(rJ~176 \ ~ l 

{ Co(~) = (813q-~){~o(~)I(2 + 3~)}., 
~,,(~) = (s/3q~){e,~<l(2 + 3,)}, 
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(5.15a) 

(5.15b) 

(5.16a) 

(5.16b) 

Ho(~) 

HI(~, s) 

H.~(V, s) 

co 

= f x ~ (  
o 

1 -~ +]x2)-lho(x, ~]) c x p  [-- 5x2/3] d x ,  

cv 

= f x 2 ( 1  
0 

~x2)-lhl(x, { ", } ex]3 5x2/3] ~)Jo -Q(~]) ? F(x) [-- d x ,  

4 

~ 0  

aoo - -  5 4  , 

aol(~) ---- 222~ -- 78 , ao3(~) = 4()~ -- 142~ 2 , 

a o 2 ( ~ )  - -  2 0 0 ~  2 - -  2 2 0 ~  -~- 2 0 ,  a o , ( ~ )  : =  20~7 -~ , 

alo --- 36 , 

an(rt) = 162v] -- 54 ,  a~(~) = 24~ -- 102~'-, 

a ~ ( ~ )  --  150~72- 156~ -+- 12 ,  a l , ( ~ )  - -  1 2 ~  ) , 

a2o --~ 9 

a2~(~) =-- 30~ - 1 2 ,  a~(~) =: 8~ --  20~ ~ , 

a.22(~]) = 25~] ~  32~ .4- 4 ,  a2,(~) = 4~ 2 �9 

5"3. The angular -momentum distributions in the Thomas-~'ermi model. - 

We shall explore the possibility of ( te~rmini~g parumeter  ~ by equat ing the 
mean value of the  square of the orbi ta l  angular  m o m en tu m  @">TF, calculated 
according to the  Thomas-Fermi  model,  with <[">.,~n predicted by  the shell 

model,  i.e. 

(5.17) <[~>~ = < -> . , .  

Tile following considerations are res t r ic ted to even-even nuclei only. The wflue 
of <t~2>~o~1 is obta ined from the level scheme <'.haracterizing the considered 

Jo{y) - jo{y) j l{y},  
"2 "2  

co 

=- 2h2(x,~)J 1 Y2(~])s~(X) e x p [ - - 2 x 2 ] d x ;  

0 
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nucleus X,t; using s tand~rd spectroscopic m)tation one has 

(5.18) (/~(XA)) =-- ~v~-(r Evl , ( j )  = A /2 .  
/z  H J~ 

:For the lirst two closed shells one has 

(5 .19)  <E2('He)>~h,1, := 0 ,  ( { 2 ( ~ ( ) ) > ~ .  = ~_. 

2 The number  <t' >Tr, is defined as 

co co 

0 0 

where :~(E) is the distribution function of nucleons with orbital momentum 
between ~' and ~'@ dL The number  of p~rticlcs with angular momentum 
larger than  d is expressed by the integral function 

r 

(5.21) 1I(d) = (~({) dd 

then,  the distribution function ~({) is given by 

( 5 . 2 2 )  z ( d )  = - ( d / - / ( t ) / ( t Y } .  

Funct ion //(d) is re,~dily obt~fined from model (2.]5) 

(5.23) II(E) = l a w ( r ,  P) ,  

by choosing the limits of integration over p a.nd r properly. Le t  0 be the ~ngle 
between r ~nd p.  Since I ~ r •  one has 

(5.24) Icos Ot = (r~p 2 -  ~'-)~/rp ; 

integrat ing over the ~rngles and over p<)~(r) it  is found tha t  

(4/3zOf(l/r) {r~-z2(r)- dz} ~ d r ,  (5.25) H(~) 

where the integration over r has to be performed over the region where the 
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radica.1 is real. F rom eq. (5.22) one ol)tains (~e) 

(5.26a) 

note  tha t  

(5.26b) 

:~(~) = (~/=)  f (1/r){r"-X~-(r) --  t'-}* dr ; 

co 

: ~ ( t )  d :  - H ( o )  = A / 2  . 

o 

Ta.king into account  definition (2.13), f rom eqs. (5.26) one deduces tha.t 

(5.27) 
co 

7 ~  ~ r 5 2 f  4 S (E"-)T ~, (16 / lox ) (3x" /_ ) .A~  r o~(r) d r .  
0 

The numerical  values of </~>Tr" obta ined from eq. (5.27) are ve ry  sensitive 
to the  behaviour  of tile densi ty  funct ion ne%r ttle edge of the nucleus. The 
integral  over the four th  power of r is responsible for the general t endency  of 
the  Thomas-Fermi  model to predict  too high average angular  momenta  for 
l ight elements.  Equ, t t iou (5.17) is s trongly violated for A ~ - t :  indeed, if one 
describes the  density distr ibution of 4He by ~ pure Ganssian funct ion 

(7 = 0), it is found t ha t  

(5.28) (f"('He)},rF ---- (27/t25)(3/5)~(367~) ~ , 

whereas the average shell vahle is zero. This suggests t h a t  eq. (5.:17) should 

be modified as follows: 

(5.29)  < [ 2 ( . r A ) } . h c l  I ---- ( / 2 ( . V A ) ) T F -  (d"(*He))TV. 

Tile correct ion brought  abou t  by  tile shift ing t e rm is very  effective for light 
nuclei only and turns  out to be less re levant  as A increases (note tha.t for a 

s tandard  nucleus (d"),hd~oC 20). Equat ion  (5.29) tlrovides a theoret ical  tool 
for correlating the densi ty distribution pa.rameters. ]n part icular ,  for den- 

si ty (2.17) it is found tha t  pa.rameter ~ is determined by equation 

(5.30) [ I (7 )  = (5/16)(V~/9):A : [ ( ~ ( x ' D . ~ , ,  + ( t ' ( '~Ie))~ .F] ,  

m 

�9 - ' f x ' ( l +  ~ i(~) = (2 + 3V)-. ~x-)~ exp [ -  5x:/3] d x .  
o 

The method  outl ined above will be applied to ~sO in subsect.  9"4. 

(i~) F. ]:'zR.~xx: Z. Phys., 49, 550 (1928). 
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5"-1. The hydrodynamical nucleon mass approximation. - Before concludin~ 
tha t  the de te rmina t ion  of ~/is a hopeless task  for even-even nuclei with A <16,  
we shall explore a different approach.  To this end we recall  t ha t  in I,  sect. 3, 
the following theorem has been proved:  if the infinitely ex tended  nuclear 
ma t t e r  is conceived of as a ~mnviscous and  incompressible fluid and  the rela- 

tion R~ = roA ~ is assumed to be valid, then  the effective mass of ~ nucleon 
plunged in it  is exac t ly  equal  to ~- the mass of the free nucleon. This result  
has been obta ined according to classic hydrodynamics  considerations and is 
brought  about  by  the dipole-velocity potent ia l  used for describing the motion 
of a nucleon in the Fermi  sea. I t  is interest ing to evaluate  the deviations from 
the predicted value 0.5M of the effective mass of a nucleon in a realistic 
liquidlike mwlear  mat te r ,  i.e. in a peculi~r fluid character ized by  saturat ion 
prescriptions (2.4). Wi th  this aim in view we define the single-particle to ta l  

energy  as 

(5.31) w~(p, ~,,) --  (p"-/2M) ~- v ~(p, ur-), 

where the explicit  expression of v~(p, ~r) is given by  ttle first of eqs. (9.4). 

In  the considered case the nucleon effective mass is usually defined as 

(5.32) M / M * ( p ,  ~:,.) = (M/p) 8~.w~(p, ~,,) = 1 + (M/p) a~v~(p, zF). 

For  our plxrposes it  is significant to evaluate  ra t io  (5.32) a t  p ~ Yu... At 
equil ibrium densi ty  it  is found tha t  

(5.33) ~'~(zF) ~ M/M*(uF) == 1 -i- (2/15%)(3sr-- 5by) cr ~ , ,  

where a ~ z  r is de termined by  solving the first of eqs. (9.6). I f  nuclear ma t t e r  
behaved as a perfect  classic fluid having the  peculiar  p rope r ty  of exer t ing  
a t t rac t ive  forces upon the moving nucleon, in accordance with the  above- 
ment ioned theorem the predicted value of a~(~.)  would be 

( 5 . 3 0  ~,~(zF) = 2 ; 

we shall ascer ta in  in subsect .  9"3 tha t  eq. (5.33) gives ,~+(xF) > 2. The more 
general concept  of m~ss tensor  will not  be considered. Equa t ion  (5.33) ac- 
counts  suffieie~ttly well for the  slope of v+(p, xF) "~t tile Fermi  sphere. As is 
obvious, f rom definition (5.32) one obtains the  nucleon effective mass (3.14) 

provided vc~(p, xr.) is described simply as a linear funct ion of p-t 

The extension of definition (5.32) to a nucleon embedded in a finite even- 
even lmcleus (~tmracterized by  a nonuniform densi ty  distr ibution is 

(5.35) MIM*{p,  z(r)} = 1 + (M/p)a ,  v{p, Z(r)}, 

9 - 1 l  N u o ~ , o  C i m e n t o  A .  
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where  v(p, z(r)} is given b y  eq. (3.27a). Equa t ion  (5.35) is not  so t r ivial  as 
it  m a y  a p p e a r  a t  first;  indeed, funct ion (5.3]) canno t  be ex tended  to a finite 

nucleus b y  s imply  replacing x r with z(r):  we Olfly know t h a t  a t  p ---- z(r) the 

single-part icle to ta l  energy  is expressed by  fmlct ion w(r), defined by  eq. (4.27). 
Fo r  these  reasons  we have  igqmred the nucleon mass  tensor,  which provides 

a more  refined hyd rodynam i ca l  definition of the  nucleon effective mass.  The 

in te rna l  logic of the  theory ,  based  on the  diit 'erential equal ions (2.]) and  (2.14) 

and  to the  ansatz (2.31) implies t h a t  a t  the  origin the m M e a r  sys i em plays  

the  role of the  nuclear  m a t t e r  associa ted to a given finite even-even mwlcus.  

I t  is then  t e m p t i n g  to assume t h a t  

(5.36) a{X(0) } ==-- **~(xv), 

where  a{Z(0)} = M/M*{z(O) , X(0)}. Equa t ion  (5.36) c.nsures a direct  and  very  

crucial  l ink be tween  nuc lea r -ma t t e r  calculat ions and  those concernh~g finite 

nuclei :  i t  will be  denomina ted  as the  <~ hyd rodynamiea l  mass  approx imat ion  ~>. 

~'r()m eq. (5.36) it  is found t h a t  p a r a m e t e r  ~ fulfils equat ion 

(5.37) (c~ ~) 9~ ? , (9)  . . . .  2 ( ~ ( ~ )  - 1}~o(V). 

P a r a m e t e r  ~ - - %  at  equi l ibr ium dens i ty  will be de te rmined  in subscct.  9"3. 
The  opt ica l -model  prescr ipt ion,  in t roduced in the nex t  section, implies t ha t  

it mus t  be 

(5.3s) 2a~(%,) - -  3 >flz(O).  

6. - The radial and energy dependence of  the real optical potential for nucleons 
scattered by even-even nuclei.  

6"]. The optical trans]ormation o/ model I.  - We ex tend  to the  radia l ly  

dependen t  single-particle potent ia ls ,  sat isfying eq. (2.14), the  definition of the 

real  p a r t  of the  eentrM poten t ia l  used in 1. Consequently,  V~(r ,~)  is con- 

ceived of as the  opt ical  t r ans fo rm of the  poten t ia l  energy of a nucleon incident  

on an  even-even nucleus with an  ener~"  E - -  k~-/2M in the l abo ra to ry  sys tem,  

i.e. 

I ,~(r, E) r{p(r, E), z(r)},  (6.1) ,~c _-- 

where  p(r ,  E) is the  m o m e n t u m  of the  incident  nucleon embedded  in the field 

of the  t a rge t  nucleus 

(6.2) p(r,  E) = k[1 + ( - -  V~(r, E) /E}] t .  
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According to model (2.15) it is necessarily true tha t  

- V~(r, o ) >  Z~(,r)!2M --  ~(r) ; (6.3) 

inequali ty 

(6.4) - v~(0 ,  0 ) >  Z'-(O)/'-'M ~,~ ~'o(V) 

has a cru(.ia.1 importan(.e for the physical (..onsistency of t ransform (6.1). 
In  ra.di'd effe(.tive-mass al)proximation the centra] potential  is 

(6.5) 

r ( 1 ) C  I , ,  (r, E ) - -  m{z(r)}~(o'}{g(r)} -t- [1 --m{y.(r)}]E , 

,~{z(r)} - : i * { z ( r ) } / ~ ,  m { Z ( ~ ) }  = - ~ .  

Prescription (6.3) is satisfied provided 

(6.6) - m { z ( O ) } 2 ~ ' { z ( o ) }  > ~o(V) �9 

123 

Subst i tut ing in eq. (6.6) the analyt ic  expression of the. nut,leon effective mass 
given by eq. (3.1.1), it is found tha t  

-r{'){z(O), z(o)} >~o(V) �9 (6.7) 

I t  has been pointed out tha t  the effective-mass approximation is mathemat ical ly  
determined by the s tabi l i ty  (,onditions only in the parti(.ular ease ~ = 0. Let  
us ca lcul'tte va}{Z(0) , z(O)} using for ~ - -  6 the parameters  ~(~') and ~(3 ') giv(m 
by eqs. (5.4) with ~ ' ( / )and a3 =: 0; it is readily esta.blished tha t  inequali ty 
(6.7) turns  out  to be violated. Such a drawback does not warrant  a.ny more 
consideration of the nucleon effectNe-mass a.pproximation. 

The rea.1 paxt of the central opti(.al potential ,  dedn(,ed from model i ac(.ording 
to t ransform (6.1), fulfils the se(,ond-degree equation 

v("){:,- E) -t- Adr, E) 0 v{'~}{'/. E)]~_A,{r,  E) .  ,~ , , ,  (6.8a) [-R 0 ,  : -  , 

& ( r ,  E ) -  ~ -' '2 M.~?'{Z(, ')} 4 81}P~;"'{Z(,')}E_ 
2 ~  { 2 } f  . 4 ~ } / ~ . ,  .~(~ )} 

) 2 (2}  ) , , . ____ . A,,(r, E) 2~"}{z(r}} + '.z' 2"II21 {z(r)yE -,- 4M22?)[x(r)] .E~- 
. . . .  ~2"2~" '{z ( r )}  

(6.8b) 

I t  is found tha t  

, ,) . . . .  

(6.9a) .v'2)ct~ u," E) = .1, At(r, E) T .~. V'..ii'(r, E) --  .l.,12(r , E) , 
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where the  a m b i g u i t y  in sign has been elimin.~ted by  takil)g into a(.eount t h a t  

necessar i ly  

(6.9b) vI2~c/~ .,~ ~- - ,  E)  := 0 . 

Using eqs. (5A) one can calculate  the  m i n i m u m  value of cd(~'-') whi(.h for A = 4 

satisfies equa t ion  

(6.10) - -  V ~2)cm 0) ---- e0(0) 
- 14 \ " ~  

The m a t h e m a t i c a l  connect ion be tween  the  compressibi l i ty  modulus  and  the  

zero-energy linfit of the real  cent ra l  po ten t i a l  a t  the  origin, imlflied by  model  I 
a t  equi l ibr ium densi ty ,  will be examined  in subsect.  9"3. 

6"2. The optical trans/ormation o/ model l I .  - Le t  us consider the opt ical  

t r a n s f o r m  of model  I I .  The same procedure  is a.lso val id  for model  I I I .  To this 

end,  we specify eq. (6.1) us ing the  single-p,~rtiele po ten t i a l  (3.30b); one has  

(6.]1a) 
v~(,., E) !;--  v~,(!,, E)I+ F,~{Z(,')} e,,v --~z(O) t -  ~ )  

eo(~) J 
~',,(z(r)} -Vo{z(r)}/z(O), 

(6 . l ib)  VC(oo, E) : VC(r, oo) ~-- 0 . 

The h igh-energy behav iour  of po ten t i a l  (6.11) is expressed by  the apl)roxi- 

m a t e  fo rnmla  

(6.12) V~(r, E) ~_ F~{yJr)}{e0(~)/F}t exp [ - -  fl;t(O){Eleo(~l)}l]. 

The low-energy behav iour  of rc . t a(~, E) e~mnot be ob ta ined  using the 3IeLauril l  

exp~msion 

(6.~3) V~(r, ~) ~~ �9 = ~ d ' ,  o ) +  ~e, ,(r)l , : ' ,  
r t=l  

~.c I h(r, E ) / c E  }~=0. I t  is found t h a t  fmwt ions  c,,(r) for where  c,,(r) == ( l /n!)  ; '~  ~c ~ , 
n > 1 diverge for r -+ 0% whereas for n -~ 1 c~(oo) is a cons tant  equal  to -~. ~" 

it  follows t h a t  

(6.T4) P~(oo ,  E)  : ~ - E ,  

a. result  which is clearly physical ly  meaningless.  
~'or fl ~= 0 (.Q = z/2) po ten t i a l  (6.11) is ~ root  of the third-degree equat ion  

(6.15) [VC(r, E)] 3 -  E l  V~(r, E)] -]- soO1)[Ft~(z(,r)}]2 = 0 .  
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A1)plying t tudde ' s  method it is found tha t  

1~/--  --  ( r , ~ ,  - A,(r, E) ~/A2 ) 

{ , 
(6.165) A2(r, E) = eoO])(E/3)~[IR{Z(r)}] ~- [- {eo(~])/'.)}*[2'~{z(r)}] ~ ; 

it is readily checked tha t  potential  (6.16) fulfils conditions (6.11b). 
The zero-eners limit of potential  (6.11) at  the origin is obtained by solving 

tile equation 

(6.] 7a) ~3 ~_ 92(~) exp [--flZ(0)(~- 1)],  

= - v (o, 

(6.17b) 9t(~]) ---- -- { (C~a)/so(n)} Y~:(~/) io{f2(~/)) j~{-Q(~/)). 

Clearly, the optical-model prescrit)tion (6..1) implies tha t  

(6.18) ~(v/) > 1 ,  ~(~/) > ] . 

Thus, inequalities (6.18) are sufficient for the consistency of the optical scheme: 
both stabil i ty equations (5.10a) and (5.]la) are necessary to ensure tha t  the 
scheme has a I)hysical content .  

According to definition (1.3a) the real par t  of the spin-orbit potential  can 
be wri t ten in the form 

(6.19a) 

(6.]95) 

r.qO , , 0 ,  E) = 2().n/So)2(a "L) U~(r, E)V~(r, E ) ,  

YR(r , L') = (s~/2r)D In {VC(r, E)},  

where D ~ d/dr. Using tile theory  of implicit functions,  one finds tha t  

7{120 ~ 20fl~z~(r ) -]- flaz'(r)}D(r) 
(6.20a) Ua(r, E ) =  {280 ~ - - ~ z ~ ( r - ) - ~  - f l ~ ( r ) }  d(~ E i ' 

D(r) ---- (s2o/2r)D In {x(r)} = (s~/6r)D in {0(r)}, 

(6.205) d(r, E) = 1 2 E - -  VC(r, E) 1 ~- flz(O) eo(~]) J J 

The zero-energy limit at  the  origin of the  radial  spin-orbit function is 

~4(~-- ~)[J2o + 2o7~(~) + 7~(~)] 
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it is worthwhile to remark tha t  eq. (6.21) predicts opposite signs of l's~ (0, 0) 
for even-even nuclei with ~ < 1 and ~/> ]. 

6"3. Cri t ical  r emarks .  - Although potential (6.11) is generated by the sepa- 
rable single-particle potential (3.18), it ctmnot be factorized as the product of 

~c V c ~E" two functions ~ re(r) and R,-, ) dependent only oll the radial distance r and 
only on the incident energy E, respectively, i .e.  

(6.22) v,j~, ~1 V~;,(r) V~;JE). 

As is shown by eq. (6.12), factorization (6.22) happens to be 'q)proximately 
valid only at very high energies, namely 

(6.23) 
{ V;l(r) ~- ~',~{z(r)}, 

At high energies the real part  of the spin-orbit potential (6.19) practically 
behaves like Ve(r~E) factorized according to eqs. (6.22) and (6.23). At high 
energies and at l~rge distances potentfids (6.11) and (6.119) turn out to be 
approximately proportional to the density function, because 

(6.24) ~'R(z(r)) ~ e(r) ; 
r---~ o~ 

in such conditions the optical potential (t.2a) with the spin-orbit term expressed 
by (1.3a) identifies with the potential formerly introduced ill optical-model 
calculations by ~ERNBACtt, IIECKROTTE and LEPORE (~7), and b~ter used by 
several other authors. 

The low-energy behaviour of tim real optical potential deserves some com- 
ments. The linear dependence on energy E is straightforwardly brought 
about by transforming the single-particle potential described in radial effec- 
tive-m~ss approximation according to eq. (6.1). :For nuclei with A < 1 6  pre- 
scription (6.4) turns out to be violated at equilibrium density: this is due to 
the fact that  the dependence of the single-particle potential on p2 is inadequate, 
in spite of the f'tct that  it accounts for nuclear st~bility. Model I improves 
the description of the nucleus ground state by means of an additional term 
in p~, which is responsible for the appearance in the central part of the optical 

potential of terms quadratic in the energy E. 
The linear dependence on E of the central part  of the potential, free from 

pathological features, ca.u be obtained by Taylor's expansion of potential (6.] 1) 
in proximity of "~ sufticiently large energy Eo. The potenti 'd thus derived 
sinmlates (especially for A ~ ] 6 )  the behaviour obtainable in radial effec.tive- 

(1~) S. F~]RNBACII, W. I[>;CXROTT:E and J.V. L~l'01~: 1)hys. Rev.,  97, 1059 (1955). 
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m~ss approxim~tion: several an'~lyses of elastic-scattering data, carried out 
in the past, have been spoilt by such misunderstanding brought about by weak 
phenomenologic~fl standpoints and by the acritical handling of fitting pro- 
cedures. I t  is difficult to assess to what extent potential (6.J1) accounts at  
h)w e.,~ergies for the insufficiencies of the impulse approximation and for the 
negle(:t of mtfltiple-seattering effects. I t  is encouraging to note that  in our 
scheme neither the. breakdown of the impulse approxim'~tion, nor the neglect 
of the presumptive role of multiple scattering intluence the central part  of 
the re~l optical potential because its quantitative behaviour at low energies 
is strongly bound to the stability requirements of the target nucleus: this is 
the consequenc.e of tmving used the average binding energy b(X .~) as input 
data for the determination of the parameters governing the radial and 
momentum dependence of v(p, x(r)}. Tile nonlocal features of tile real optie.al 
potential will be examined in subsect. 9"5. The spin-orbit part  of the real 
opti(.al potential might turn out to be inadequate, unless one allows for the 
energy dependence of length ),~, which has to be determined by fitting the 
polarization data of nucleons ehtstically scattered by even-even nuclei. 

I t  is worthwhile pointing out that  the position of the minimum of poten- 
tia.l (6.1]) is independent of the incident energy. 

In concJusion, the real optical potential (1.2a), constructed by means of 
potentials (6.11) and (6.19), correlates the description of nucleon-nucleus 
elastic scattering with the description of the main features of the nucleus 
ground state. Thus, a stringent link has been established between asymptotic 
phase shifts, elastic-scattering cross-sections and polarization data, and the 
stability conditions of the finite target nucleus. Optical-model cah.ulations 
which ignore the constr'~ints implied by such an overall interlacing '~re 
heuristically meaningless; this circumstance has been well emphasized by 
IIOD(~SON (r (, 3lost of the optical model analyses ... are relatively insensi- 
tive to the radial variation chosen. Provided it falls exponentially at large 
distances and is parametrized by a radius and a surface diffuseness, and these 
are optimized to fit the experimental data, almost any form may be taken 
for the m~dial variation in the nuclear interior without significantly affecting 
the qu~dity of the fit ~. 

7. - The radial and energy dependence of  the imaginary potential for nucleons 
scattered by finite even-even nuclei .  

7"1. The ((]rivolous model~). - We extend to model (2.15) tlle treatment 
used in I, sect. 10, for the calculation of the central part  of the imaginary 
potential. Trivial considerations, based on the continuity equation and on 

(is) p .E.  HOD(:SON: The Optical Model o/Elastic Scatteri~ (('larelldon l'ress, Oxford, 
1963), p. 113. 
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the relat ion exist ing between the absorpt ion probabi l i ty  per t ime unit  and 
the  mea.n free pa th  of nucleons within the nuclear system, lead to the con- 

clusion t h a t  the centra l  pa.rt of the  ima.ginary potent ia l  in the Thomas-Fermi  
scheme reads 

(7a) V[(r, E) = -- (5A/16)Q(r)v(r,  E)<a ~> , 

where %(r, E) is the  veloci ty  of the  incident  nucleon in the field of the ta rge t  
nucleus and <a,~) is the  neut ron-pro ton  cross-section locally averaged over  
the  A ~ 2Z ~ 2N nucleons of the nucleus: eq. (7.1) accounts  for the  implica- 
t ions of cha.rge s y m m e t r y  and  cha.rge independence of nuclear forces. 

Le t  P(r, .E) and  P'(r, E) be the  re la t ive  momenta, of a two-nucleon sys tem 
before and a f te r  the collision of an incident  nucleon of momen tum p(r, E ) >  
>x( r )  with a nucleon embedded in the  nucleus with momen tum q-<x(r); 
m o m e n t u m  p(r, E) is expressed by  the  dispersive rela.tion (6.2). The principle 

of local energy conservat ion requires tha.t 

(7.2) 2 '  = _P(r, E )  = �89 Ip(r,  ~ )  - q l .  

The neu t ron-pro ton  cross-section a=~ depends on 2 ~ a.nd on the angle be tween 
P(r, ]S) and  P' ,  i.e. ~ ~ ~ a=~(1 ~, P .  P').  The calculat ion of <(r> is performed 
a.ccording to the following procedure:  i) quan t i ty  a=~(1 ~, P . P ' )  is multiplied 
b y  tile flux of incoming part icles of momen tu m  Ip(r, E) -- q[/M; ii) the  qua.n- 
t i t y  thus  obta ined is in tegra ted  over ttle solid angle d z - - s i n  0 d0 d~0 defined 
by  the  relat ive momenta  P(r, E) and P ' ,  keeping momenta  p(r,  E) and q fixed; 
iii) the  average in m o m e n t u m  space gives the  number  of part icles sca.ttcred 
per  un i t  t ime in the  whole solid angle for a.ny value of q:  this resul t  is then  
divided by  the  flux of incident  particles.  In conclusion, it  is found tha t  

r 

fr2drf (7.3a) <a=~> --  g2p(r, E)z(r)  lp(r, E) - -  q [an~(P, P ' P ' )  dT d q ,  

0 

f 

~(r) = (8/3zt)fr '2ff(r  ' ) .  dr '  , ~(cx3) = A . 

0 

(7.3b) 

To avoid cumbersome numerica.1 calculations, we neglect the angular  depen- 
dence of the neut ron-pro ton  cross-section: this approximat ion  alters the final 
results  by  less tha.n one per cent.  Subst i tut iPg in eq. (7.3a) the tota . lneutron-  

pro ton  cross-section a=,(/~) -+ 4~ran,(/~, P ' P ' ) ,  one has 

(7.4) 

r 

1 f r f  <a=~> = ~;pi-G-E)J~(r) ' ,  dr '  [p(r, E) - -  q[a=~{P(r', E)) d(cos O) d q .  

0 
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Let  us define vector Q = p(r, E) -',. q, which, owing to the conservation of 
the total  momentum,  turns out to be an ~xis of cylindrical symmetry .  
F rom the relation 

(7.5) p'=- p(r, E) -~ q -- q' - �89 Q q- V'  

one obtains~ taking into account eq. (7.2), 

2p'2-- p2(r, E ) _ q Z  
(7.6) cos 0 = ip(r ' E) -~. q[!p(r, E ) - - q i '  

fd ; (7.7) (cos 0) = iP(;; E) ~ !  !p(,:; ~ ) - q l  a(p,,) = 
I io a 

- -  . . . . .  ~ i ~ 1 - - - / / 0 1  

Ip(r, E ) - - q [  Ip(r, E) ~ q[ " 

The lower limit of integration is p2 o = z2(r). The upper limit is determined 
by the  Pauli  principle and  by the principle of energy conservation: in fact,  
the la t ter  requires tha t  

(7.8a) p,2 - p~-(r, ]A) ~- q:-- q'~ ; 

the maximum of p '  is obtained by pu t t ing  in (!q. (7.8a) q'=: x(r)~ which is the 
minimum value of q' compatible with the exclusion prb~ciple, i.e. 

(7.8b) p~ =: p~-(r, E) -t- q2_ Z._(r) . 

The inequal i ty p~--p~ ~p~-(r, E ) - t - q 2  2z: ( r )~  0 should hold for any  q: this 
implies tha t  q varies within the intervals 

] (2z~(r) ~ p:(r, E)}t ~q ~z(r)  for p~(r, ~) <2z2(r),  
(7.9) [ 0 ~ q < z(r) for p~(r, E) ~ 2Z"(r ) . 

Equat ion (7.4) becomes 

r 

: f f (7.10) ( (r~)~-~p(r;E) ,~(~)  ," 'dr '  [ p ' ( r ' E ) - ~ q ' - ' 2 g ' ( r ' ) ]  ~ p { P ( r ' , E ) } d q .  
L [~;(7, E )~  q[ j 

0 

Let dq : q2 dq sin 0 dO c1~ be the volume e]ement~ where 0 is identified with 
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the angle between p(r, E) :~ud q. Using relation 

( ; .11)  Q~ = ]p(r,  E)  + ql ~- = p"-(r, _~:) -[- q-" - 2p(r, E)q cos O, 

the  relative momen tum (7.2) turns  out to be 

(7.12) ~'(r, E) = �89 E) + 2q'--- q'-}~ . 

From eq. (7.11) one has sin O dO ---- (Q/pq) dQ; it follows tha t  eq. (7.10) takes 
the  form 

r 

4 fr'2S(r ', E) dr' , (7.:l 3a) (c~.p} ~p'(r, E)~(r) 
0 

ql 

(7.135) S(r, E) =fq{p'(r, E) + q~--2z~(r)}~{p(r, E), q} dq ,  
qa 

~ ( r , E )  ~ q 

(7.13c) ~{p(r, E), q} = f ~ { P ( r ,  E)} dQ,  
~ ( r , E )  -q  

where the lower and upper  limits of q are given in (7.9). 
:From the exper imental  to ta l  neutron-proton cross-section (r (e), where e 

is the kinetic energy in the  centre of mass, we derive the function 

el(r, E) 
(7.14a) ~(r, E) -- 

c2(r, E) ~- e(P(r, E)} ' 

(7.145) e --  e~P(r, E)} P (r, E)/M -- Ip(r, E) -- q]2/4M. 

:Function (7.14a) simulates the energy dependence of the neutron-proton total  
cross-sectioll ~nd its ~pp~rcnt radial dependence brought  abou t  by  the non- 
uniform densi ty  distr ibution if(r). The radi:d and energy behaviour  of func- 
tions c~(r, E) (i = 1, 2) is obta ined using the procedure outlined in subsect.  7"2 
:~ud 9"6. Subst i tu t ing  iu eq. (7.13c) a~(P(r, E)} with ~(r~ R)~ one obtains 

(7.15a) 
2Men(r, E) 

| E), q} =: %'2~7/:'2 M%(r, E) + p2ir;E) tq':r fdip(r, E), q}, 

(7.:15b) ~{p(r, E), q} =- 

---- In 4M%(r, E) + p~(r, E) + 3q 2 + 2q ~r E) 4- p2(r, E) -~ q~ 
4Mc2(r, E) 4-. p2(r, E) + 3q 2 -  2q ~/2(2-~ c..,(r, E) -~-p*(r, E) -~ q~ 
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Sin(.e p(r, E) -- q <Q <p(r, E) -]- q and Q2 < 2(2Mc2(r, E) t- P2(r, E) ~- q2}, it fol- 
lows tha t  eq. (7.15a) cau be writ ten in tile following form: 

2Mcl(r~ E) 
(7.16a) | E), q} ---- :/2r2Mc.~(r, ~ ' ) v  ( ~ ~- p2(r~-E) § q2~ ,,=o ~ ( -  1F~,(p(r, E),q}, 

(7.16b) ~;(p(.r, E), q} ~ tgh -~ __ p(r,  E ) - ~  ( -  1)'q 
V2{2Mc.,(r, E) ~ p2(r, E) ~- q~}" 

I)erforming the sumnmtion appearing in eq. (7.J6a), the fimll form of func- 
tion (7.13c) turns  (mr to be 

(7.17) ~{p(r,E),q} : 

2Me~(r, E) ,2qV2(2Mc~(r, E) + p-~(-~:, E) ~ q2} 
-~2(2M-c;(r ,E)  4 -p , - ( r ,E )~q~  lgh . . . . .  -4-~lc.(r,E)~--p-2(r,E)+ 3q' " 

:For c~dculatiom~l purposes it is convenient  to deiine the following functions: 

/ ~(r, ~:) - -  z('r)/p(r, E), 
(7.18) / tt(r, E) ---- 2~"(.r, E ) -  J , v(r, E) ---- {2/e(r)j'((e(r) -~- r E)~(r, F)}, 

where ~:(r):-= y2(r)/2M; note tha t  for E ~- 0 ,~(~, E) w~nishes ~t infinity, whereas 
for E = 0 it diverges as {z(r)} ~. In conclusion, the ~n'dytie  form of the 
ce~tral par t  of the imaginary potentia.1 is 

(7.19a) VC(r, E) -- Vu(r, E) V~2(r, E) , 

(7.19b) V~,(,', E) . . . .  (5AM/~r){o(r)/~(r)}(E--. )zc~,(,,. E)} ,  

r 

= j r ' 2  c,(', '', E)~,( ," ,  E ) d r ' ,  V,,(r, E) 
o 

(7.19c) 
zl  

~(.r, E) = j ~ ( z ;  r, E) dz ,  
z o  

(7.19d) f~(z; r, E) - z{z2--~t('r, E)} tgh_ ~ 2z%/2z ~ _  _ '~-v(r, ~_ 
V2z ~ ~- v(r, E)- 3z ~ ~- r(r, E ) -  1 ; 

the limits of integration arc 

,[ zo --~/~t(r, E)<~z<~$(r, E) ~ z~, #(r, E ) < 0 ,  
(7.'_'o) [ zo =- 0 ~<z <~(r,  E) =~z~, tt(r, E ) ~ 0 .  
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The central par t  of the real optical potential  apl~earh:g in eq. (7.:19b) is given 
by eq. (6.11). The zero-energy limit of VC(r, E) at  the origin is 

(7.2J) VC(0, 0)--- (5M/4~ 2) c,(0, 0 ) ~ ( 0 ,  O) VC(0, O). 

The model upon which the construction of potent ial  (7.]9) is based, however 
(~ frivolous ~) it  may  appear, seems nevertheless to be - -abou t  th i r ty  years af ter  
its basic formulat ion-- less  ephemeral  t han  many  other (, serious )) ones. 

According to definition (1.3b), the spin-orbit par t  of the imaginary potential  
turns out to be 

(7.22a) 

(7.22b) 

r ~ O  t~0,E), I x (r, E) = 2(2Js0)-"(a .L) Ux(r, E) '<: �9 

U,(r, E) = (S2o/2r)D In { VC(r, E)}. 

The zero-energy limit  a t  the origin of the spin-orbit radial function is 

(7.23a) 

(7.23b) 

u,(0, o) = u~(0, o) + Uo(O, o), 

Vo(O, 0) = lim s_~ (DIn  {q(r, O)} -~-D In {~,(r, 0)}). 
,--~o 2r 

7"2. Simulation o] the radial dependence o/ the neutron-proton total cross- 
section. - Accurate knowledge of the radial  and energy behaviour of func- 
tion ~(r, E), deiined in eq. (7.14a), is crucially impor tan t  in order to make the 
calculation of potent ial  (7.19) reliable. We shall now outline the criterion 
adopted for the determinat ion of the auxiliary functions q(r,/!7) and r E). 
To this end we recall tha t  the energy dependence of the neutron-proton tot :d 
cross-section in Born "~pproxim'~tion is given by the well-known formula 

(7.24) an(e ) = a/(b @ e), 

where a and b are two constants dependent  on the parameters  of the considered 
two-nucleon potential .  The predicted energy behavionr of a~(e) is valid at  
high energies. One might a t t emp t  to reproduce the observed energy depen- 
dence of a~(e) at  all energies by means of the expansion 

co 

(7.25) ~(e) -  y (-- J)"4")(e), 
n = 0  

where (r(~")(e) = a./(b,, + e) are Born-like functions with unkIlown coefficients a .  
and b.. The use of eq. (7.25) in fittiilg procedures makes it necessary to over- 
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come several difficulties due to tile large mm~ber of parameters  needed. :For 
caleulation.fl purposes it  is convenient  to replace eq. (7.25) with the new 
a rb i t r a ry  fnn(.tion 

(7.2(-;) 
co 

~(e) = ~ o o ( o ) ~  ( -  1)"(~,,(e)/~.o(o)}". 
"tl=O 

Since for e # 0 %(e)/a(O)< 1, series (7.26) is rapidly convergent  with in- 
creasing energy. This makes it. possible to sum the series and one finds tha t  

a,A0)a~de) ct (7.27a) ,e(e) . . . . .  
%(o) t -  ~ , , (e i - -  c.,-  e '  

(7.27b) c , - - : . ,  co = ( a / % ( o ) ) +  b .  

Nots; t ha t  the Born-like funct ion (7.27a) identifies with the Born formula (7.25) 
a t  the limit of high energies. The two unknown para.meters q - =  q(E) and 
cz--= co(E) are de te rmined  by  means of least-squares techniques.  The same 
pro(:edure, a l though technical ly  far  more complicated,  can be used in order 
to de termine  the two ltilk/lOWlt functions c,(r, E) and %(r, E) appearing in 
eq. (7.14a). Tile limit of maximum var iabi l i ty  (ff the relat ive momentum 
P(r, lg) is 

(7.'_,s) iOo(r, t:) -~ 1 {p(r, ~ )  - z(r)) < P  < ,1, (p(r, E) + Z(")} - -  P~(", J~). 

The corresponding energies in the centre-of-mass sys tem are 

(7.29) 
,o(,-, ~ : ) =  e(eo(~,  E))  - 21 { V 3 : -  V:;~r, E3 - V~(, .)}  -~ , 

ei e,(r, E) -= e{Pl(r, E)} 2 , , ~- ; 

it follows tha t  for given values of r and E energy e(r, E) varies in the in terval  

(7.30) Co(r, E ) < e  <edr ,  E ) .  

The unknown funct ions c,.(r, E) ( i - - : l ,  2) are de termined by  searching for 
the min imum of the  mean-square  deviation 

(7.31) ~ [an,)(ei) - -  ~ir, eJ]"- 
,,<,,<,, k S~ode , )  := m i n i m u m ,  

where ~(r, E) is expressed by  eq. (7.14). 3.[ore details will be given ill sub- 
sect. 9"6. 
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7"3. Outl ine o/ a computat ional  procedure. - The  c~leula t ion  of i n t eg ra l s  

(7.19) is difficult  a n d  t ime-consurn ing .  W e  shall  n o w  out l ine  a p r o c e d u r e  

su i t ab le  for  o b t a i n i n g  re l iable  n u m e r i c a l  resul t s .  W i t h  th is  a i m  in v iew we 

dei ine  t he  f u n c t i o n  

2zV'_'z' ~(r, gi  
(7.32) fo(Z; r, E)  = 

3z 2 v ( r ,  E )  - -  1 ' 

an(t  r e -wr i t e  eq.  (7.19d) as 

zfz~ - -  if(r, E)} 
(7.33) f,(z; r, E) - -  - ~ - - ~ _ - - - - _  t g h  -x fo(Z; r, E ) .  

V 2 z  2 + v(r, E)  

Since for  f-~ o =: f2o(Z; r, ]~) < 1 one h'~s 

(7.34) tgh- '  fo ---- ln%/~ + ?o)/(1 --fo) --~ fo-{- afo~ a, 

i t  folh)ws t h a t  eq.  (7.33) b e c o m e s  ( f ~  g~) 

(7.35) 
2z~{z~-ff(r, E)} 

fl,(z; r ,  E)  ---- 3z ~ ~_ v(r, E)  - -  i -i- 
8z '{z~--  #(r ,  E)}{2z ~ ~- ,( , ' ,  E)} 

3{3z2+  v ( r , E ) Z 1 }  a- - 

T h e  a p p r o x i m a t e  express ion  (7.35) is no t  va l id  a t  low inc iden t  energies  a n d  

in p r o x i m i t y  of r = 0. T a k i n g  in to  a c c o u n t  t h a t  t he  i n t e r v a l  of i n t e g r a t i o n  

of Ii(z; r, E)  is sma l l e r  th~n  I a n d  dec reases  as r a n d  E increase ,  we rep lace  

f u n c t i o n  .qi(z; r, E)  b y  the  new f u n c t i o n  

2a(z; r, E)z~{z  2 - - i f ( r ,  E)} 
(7.36) ~ ( z ;  r, E)  = 3z ~ t v(r, E ) - - I  -- ' 

w h e r e  a(z; r , E )  is a n  u n k n o w n  func t i on  ensu r ing  the  v a l i d i t y  of app rox i -  

m a t i o n  (7.36) a lso  a t  low energ ies  a n d  ill 1)roximity  of r - - - -0 .  F u n c t i o n  

a(z; r , E ) > l  is s i m p l y  d e t e r m i n e d  b y  solving equa t ion  

(7.37) ~I(Z; r ,  E )  - -  [)i(z; r ,  E )  , 

F r o m  eq. (7.37) one  o b t a i n s  

(7.38) 

3z ~ v(r, E) - -  :1 
a(z; r, E)  . . . . .  

2z V~Z~ 4 v(r, E) 

a(0; r , E ) =  1 . 

tgh-  1 ~o (z ; r, E) , 
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]nspe(..tion of eq. (7.38) shows tha t  ~n excellent  approximat ion  of (~(z; r, E) is 

(7.39a) a(z; r, E) = ~{()', E) + ~3(r, E ) .  , 

(7.39b) 

z,a(Zo; r, E) - -Zoa(Z, ;  r, E)  
t{(.r, E) . . . . . . . . . . . . . . .  

Z 1 - -  Z o 

E) = r, El--a(Zo; , ,  E!,  
Z t - -  Z o 

where zo an(l z~ ~rc given in (7.20). The integral appearing in (7.t9c) becomes 

( 7 . 1 0 a )  

(TA0b) 

(7.40c) 

zl 

~ i ( r ,  E) --j~)i(z; r) E) d z  - -  -9.C~[~i(r) E )  , 

zo 

(~(r ,  E) = 9~(r, E)(~n(r , E) ~ ( r ,  E)(.~,2(r, E ) ,  

(~H(r, E)  = 

= z~__ Z3o__ (3# '__ v__ l ) [z __ zo__ l/v3_}_ tg-~ (z'-- Zo) ~ / ~ ]  
3 Z  0 Z 1 ~-- V -  1 ] ' 

(~Ji2('r, E) - -  I(Z~ - ~2Lf'~f~2~0'c',*l + Z 2 0 ) - - 3 f f - - v  t- 1} q-' 

-~- -{-(3ff -.- v - -  1 ) ( v  - -  1 ) In  t(3z,2 v - -  1 ) / ( 3 Z o  + v - -  1 ) ) ,  

where ff ==if(r, E) ~nd v - v ( r ,  El.  The procedure outl ined above provides a 
useful tool for numeric 'f l  (.ontrols. 

7"4. Critical remarks. - As is well known, the  sum of t~ central  and spin- 
orbi t  par t  of the Thomas type  appears,  within the limits of validit)  " of the 
impulse a.pproximation, to be i~ plausible form of the real optical potent ia l  
const ructed by taking into account  the spin dependence of the nucleon-ml(.leon 
forces. There  is no theoret ical  justification in ~rssuming tha t  this might be 
even ~pproximately  t rue  for the inmginary p ' t r t  of the opti(,al potent iql :  
indeed it  h~s to be stressed tha t  definitions (l.2b) and (l.3b) ~re ent i re ly  arl)i- 
tra.ry. [Nevertheless, ]{IESENF:ELD and ~,VATS()N (l~) have a.t tempted 1o con- 
s t ruc t  the opti(.al potent ia l  in the form (t.1), where 

(TAla) 

( 7 . 4 ] b )  

V,dr , E) - V~(E) o(r) - t  Vs~~ L)(1/# >) D{(11r) 0(r)),  

Iri('r, ~) - - -  VI' (E ) o(.r) -t- V~<'(E)(o �9 L)(J lff'>-) D{(1 lr) o(r)} ,  

ff being tile inverse Compton wave length of the pion. I t  should be appar-  
r �9 ent  t ha t  potent ia ls  V~(r, E) and I ~(~, E) built  up in the preceding sections 

(19) ~V.B. RI].:SE.NVELD "~nd K. 3[. WATSON: l)hys, l~ev., 102, 1157 (1958). 
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are substant ia l ly  different f rom Riesenfeld and Watson 's  ei ther  bec'tuse the 
radial  and energy dependence is not  arbi t rar i ly  factorized as in eqs. (7.41), 
or because the quant i ta t ive  behaviour  for ~ given densi ty  distr ibution o(r) 

is governed by  the s tabi l i ty  prescriptions of the ta rge t  nucleus and by  the 
energy dependence of the neutron-proton to ta l  cross-section, without  resor t ing 
to the use of asymptot ic  nucleon-nucleon phase shifts, whose reliabil i ty is 
questionable except  a t  ve ry  low energies. I t  has a l ready been pointed out  
th. l t  the central  pa r t  of the real optical  potent ia l  can be considered approxi- 
m~ttely proport ional  to @(r) only at  high energies ~nd at  large distances:  
according to our scheme potent ials  (7.41) are not  correct  a t  low energies and 
at  dist~nces smaller than  the r.m.s, radius of the target  nucleus. Fur ther -  
more,  the  propor t ional i ty  to o(r) of the central  pa r t  of the imaginary  t)otential 
is ~ ve r y  rough "~pproximatiou of V~(r, E) expressed by  eqs. (7.19): such ~n 
approximat ion,  however, is not  consistent  with the shell model prescription,  
which will be discussed in sect. 8. Potent ia l  (7.19) prob~bly represents  the 
most  refined result  obtainable f rom the so-called (( frivolous model ~>, out l ined 
by  CLE~[ENTEL and VrLLr long ago (.,o), for tinite even-even nuclei ill the 
f ramework  of a uniform distr ibution of infiuitely extended nuclear mat ter .  
]it is worthwhile emphasizing tha t  potent ial  (7.19) is s tr ict ly related to the 
s tabi l i ty  conditions of the nucleus and consequent ly  is grounded on a well- 
de termined description of the  nucleus ground state,  sllmmarized by  the  pre- 
dicted values of the compressibili ty modulus. Fur the rmore ,  potctt t ial  (7.19) 

discloses the inextricable links existing between the imaginary pa r t  of the 
optical  poteut ia l  and the real one: the former  cannot  be evaluated independent ly  
of the  h~tter. I t  is interest ing to compare the deduct ion of V~(r, E), expressed 
by  eqs. (7.t9), with those performed by  HA YAKAWA, KAWAY and K ~ u c I H  (2~), 
by  HAICADA and Oo.~ (,22), by  Go.~[Es (2~), by  LE)[.~n,:n, )IAR[S '~nd TANG (2a), 
by  GI~EENLESS, ])YLE and TA~'G (.05) and by  S~Ni[.,t and DUGGAN (o.s). 

The existence of "~. minimum of V~i:(r, E) as a funci io~ of E for a given dis- 
t~nce r --  rm(E ) and,  vice versa, the  existence of a minimum as "~ function of r 
for a given energy E m ~ Emir ) are s t r ic t ly  dependent  on the skin thickness of the  

ta rge t  nucleus; of course, spi~l-orbit potent ia l  V~~ E) is zero at  r m --rm(E). 
The behaviour  of the  imaginary potent ial  should bo properly considered 
in choosing the more convenient  energy when performing differential cross- 

section and polarization measurements  of nucleons elastically and inclas- 

(~o) E. CL:EMI~NTEL and C. VILLI: NUOVO Cimeuto, 1, 176 (1955). 
(o.1) S. IIAY~KAWA, M. KAwxY and K. KIKUClII: ,prog. Theor. Phys., 13, 415 (1955). 
(~-0.) K. t[ARADA and N. 0DA: ,prog. Theor. ,phys., 21, 260 (1959). 
(23) L.C. Go.~s:  ,phys. Rev., 116, 1226 (1959). 
(2~) It. H. L:E.'.IMER, T. A. J. MARIS and Y.C. TA.~G: Nucl. ,phys., 12, 619 (1959). 
(25) G . W .  GR~.NL):SS, G.J .  1)YL~ and Y.C. TA~'(r ,phys. Rev., 171, 1115 (1968). 
(~) B. SI.~HA and F. DUG(;A.~: Yucl. ,phys. A, 226, 31 (1974). See also B. SINHA: 
,phys. Rev. C, 11, 1546 (1975). 
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t ically scat tered by  even-even nuclei, in order to check the quant i ta t ive  
predictions of the theory.  As is well known, the comparison of the  expe, r- 
imenta.1 evidence (for e,x~mplo for 4He and r'C) with the  calculated results 
shows signiticant discrepancies, due to exper imenta l  difficulties and to the 
inadequacy of the simplifying assumptions invoked to make  the scat ter ing 

problem tractable.  At  high nucleon energies the presence or ~bsc.nce of a dip 

in the measured polarization (usually ignored because of the uncertaint ies  
in tile nuclear-well shape and associated parameters)  is determined in our 
theoret ical  scheme 1)y the s tabi l i ty  conditions of the ta rge t  nucleus, which 
govern the  quant i ta t ive  behaviour  of the optical  potent ial .  This is also true 
for ~he diffraction minima in the differential cross-sections. It.. would be 
interest ing to ascertain if the imaginary  par t  of the spin-orbit  potent ia l  tends 
to till up the t roughs of the minima predicted by  convent ional  t r ea tments  
(Born and W KB approximations) ,  which ha.re never  been observed experi- 
mental ly.  The influence of the imaginary  spin-orbit  po ten t ia l  on the polariza- 
t ion ]ms never been invest igated.  In  this connection it  is worthwhile pointing 
out  tha.t, if the  centra l  pa r t  of the tea.1 optical  po ten t ia l  is smaller or equal 
to the reM par t  of the imaginary  on% large polarizations can be predicted 
even if V~~ E) is quite small and ,so . I ~ (~, E) is pu t  equal  to zero. For  incident  
energies above meson product ion in m~cleon-mlcleon collisions, one should 
expect  p~m~meter ~ to a.ppear as depending also on the momen tum transfer.  
At  such energies, however,  the description of the optical-model  in teract ion 
outl ined in this paper  is not  reliable. 

8. - Implications of the shell model requirement fulfilled by the central part 
of the imaginary potential. 

We shall now bring to l ight an impor t an t  l ink exist ing between ~c ~(r, E) 
and Vi~ El, which is concealed in the complicated dependence of the former  
on the lat ter .  As is well known, tile basic assumption of the shell model is t ha t  
tile nucleons are embedded  in a real potent ia l  well. Then,  qccording to model  
(2.15), a nega.tive ener~,~ w*(r) must  exist  such tha t  

( s a )  r~b ' ,  ,v*( r )}- -  0 .  

I t  is seen f rom eqs. (7.19) tha t  condit ion (8.1) is fullilled provided 

(8.2) zo{r, w*(r)} = z i { r  , ,,,@(r)} ; 

i t  follows t lmt  ~{r, w*(r)} - -  1, i.e. 

(8.a) p{r ,  u,*0')} - z(~') �9 

10  - I I  Nuovo  Cintcnto A .  
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From eqs. (3.30b), (6.1) and (8.3) one obtains V~{r, w*(r)} implicitly dependent  
on w*(r), namely  

(8.4) v~fr, w*(r)} = ~VofZ(r)) r{~z(r)} ,  

where [Y{fl•(r)} is a Yukawa funct ion of the local maximum momentum 7Jr), 

(8.5) Y{flz(r)) = exp [--flz(r)]/flx(r). 

The negative energy E -  w*(r) fulfils equat ion 

(8.6) ~'{flY~(r)} ---- Y{(flZ(0)/VSo(~/o))[w*(r)-- VRC{r, w*(r))]t} 

obta ined  b y  equat ing eqs. (8.4) and (6.11). A challenging task  is to relate 
VC(r, w*(r)} to the  single-particle potent ia l  energy (3.27) evaluated at  p = g(r), 

(8.7) v{;~(r), z(r)}  ----- (C,ot){ag(r))2jo{a)~(r)}j~{a)~(r)}. 

I t  is heurist ically interesting to note  tha t  v{x(r), 7~(r)} fulfils the nonhomo- 
geneous differential equation 

(8.8) ( ~  -]-4a2)v{g(r), z(r)} ----4(C, ot)ot3x(r)j~,{o~x(r)}, 

where the differential operator  appearing in (8.8) is defined in subsect.  3"1; 
the  potent ia l  energy of the nucleus can be writ ten in the form 

}'(s, ,~) = (1/~a'-)fr~Z~(r)(W + 4.~)v{x(r), z(r)} dr. (8.9) 
0 

From eq. (8.4) it is ascertained tha t  the  equal i ty  holds 

(8.10) VC{0, w*(0)} = v{;~(0), Z(0)}. 

Funct ion  w*(r) can be wri t ten in the  form 

(8.11) w*(r) = 9(r) + VC{r, w*(r)}, 

where 9(r) is a funct ion numerical ly determined frcm eq. (8.6). For  r----0 
it is found tha t  

(8.12) ~0(0) ---- eo(~/o ) ; 

in this case w*(O) is equal  to w(0) defined by  eq. (4.27). 
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A priori one might be tempted to identify w*(r) with the total energy of 
the probe nucleon embedded in the field of the target nucleus at distance r 
from the origin. However, it is diffi(.ult to find convineivg arguments to sup- 
port this interpretation, in  f'~(.t, finite nuclei do not possess the properties of 
nuclear matter which derive from the fact that  the energy of a particle at the 
Fermi sm'face is the extra energy which would be obtained by adding one 
p~trticle without changil~g its -,'olume, while the average energy is the extra 
energy which would be obtained by adding one particle to the nuclear system 
without changing its density: for infinite nuclear matter these two quantities 
�9 /re equal when the system is in equilibrium at zero pressure. The clue to the 
problem lies in the boundary conditions associated to cq. (2.14), whose hyper- 
bolic nature accounts for the propagation properties of nuclccr.s in a highly 
dispersive nuclear medium. The three particular integrals v~(p, 7r considered 
in subsect. 2"1 correspond to three different specifications of the Calwhy prob- 
lem associated to eq. (2.1); the boundary conditions are implicitly determined 
by the choice of the two-body potential and by the calculation procedure used 
to evaluate vr z). ]toth equations (2.7) and (2.12) possess two one-parameter 
families of characteristic curves. The solutions of eq. (2.14) have been deter- 
mined by taking into account the stability prescriptions (4.25) and (4.29) and 
the optical-nlodel requirement (6.4): according to the Canchy-Kowalewski the- 
orem these prescriptions imply definite analytic Cauehy constraints on a non- 
characteristic boundary line. Through the shell model requirement (8.1), the 
imaginary potential leads to eq. (8.6) : thus, the unknown function w*(r) has to 
be extracted from a characteristic line implicitly dependent on the real optical 
potential. This matter deserves further investigation. In the meanwhile we are 
unable to offer a fundamental explanation (if any) of the radial behaviour of 
w*(r), shown in tig. 3 for 4He, ~-~ and ~eO, in comparison with the corre- 
sponding w(r). 

9. - The optical  interact ion o f  nuc leons  with  4T]e, 32C and ~ 0 .  

9"]. Main ]eatures o] in]initely extended nuclear matter. - Before under- 
taking numerical calculations for finite even-even nuclei, it is worthwhile to 
summarize briefly the results obtainable in the framework of the idealized 
conception of infinitely extended nuclear matter. Our startil)g point is pro- 
vided by the hyperbolic partial differential equation (2.1). Its factorable 
single-particle solutions are 

(9.1a) 

(9.1b) 

v~(p, ~) = (Cla~)(a~Z)2jo(a~p)jl(~r , 

{ v~(p, u) =-- (Cla~)](x)(exp [-- fl~p]/p} , 

f(~l~)----(O~oO ~)2jO(O~co ~)jl(acO U)exp [tq~] , 

P ~ ,  

p>/~.. 
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As far  as the physical  implications are concerned,  the fundamenta l  mathe-  
ma.tical p rope r ty  of eq. (2.1) is expressed by  the iden t i ty  

(9.2) 

x 

": O~v~(p, 
) 

The to ta l  energy  (2.3) of tlle nuclear sys tem is 

(9.3) IV= (u )  :- �9 3 A~:')-12 M -!- (3,4/2)(C, a~ ) ( ~  z) )-~(c% u) . 

Owing to theorem (9.2), f rom the first of tile saturat ion prescriplions (2.4) 
one obtains the separat ion energy relat ion (2.5). I t  follows lhat  a t  equil ibrium 
densi ty  potent ia ls  (9.1) become 

(9.4) [ v~ (p, ..~.) = { ( b ~ -  ~) / j0(a~.~)}  j o ( ~  p ) ,  p < ~,., 

c~o(p, x~..) ---- (b v -  %)xF exp [flooxF]{exp [-- fl~p]/p}, p >x, .  

The compressibi l i ty modulus turns  out, to be 

(9.5) 
K,~(:~F) - (u[,/A){d~'W=(u)/(tg~}~=** - :  6%-!" 3(b v -  ei,)H(c % nF)'  

H ( ~  ~ )  = (~o~",,){fo(~= u~) - -  f~(a~ ~i~')}/)o(a= ~')  J~(a~ Y'r) �9 

The p~mmete r s  u ~ r ,  :rod fl~ ur, are given by  the relat ions 

(9.6) 

tg (0:.o ..~,) --- . . . . . . .  
1 5 ( b y - - e F ) -  2(5by--  3e~)(-a,~ ~F) 0- ' 

ttle former  of eqs. (9.6) is deduced f rom the second of the sa tura t ion pres(.rit)- 
t ions (2A), the la t te r  is deduced f rom the cont inu i ty  relations between poten-  
tials (9.1) a t  p = g~. ~N-otc tha t  the last of eqs. (9.6) implies tha t  it  must  

necessari ly be 

(9.7) ~/2 < ~z:o %, < ~ �9 

The centra l  pa r t  of tile real  optical  potent ia l  is 

(9.8) 

~ = ( ~ )  = (b , , - -  ~,) e x p  [f t , ,z , , ] .  
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I t  is s e e n  t h a t  i n ( : q u a l i t y  (6.4), whi( .h  fo r  f i n i t e  ~lu(.lei c ~ s ~ r r s  t h e  i n t c ~ n q l  

c o n s i s t e n c y  of  t h e  op t i ( , q l  s , . h c m e ,  is a l w a y s  s a t i s f i ( d  f o r  ~ ( . h a r  m a t t v r .  

F l ~ r t h e r m o r e ,  in  t h e  eonsider(~d case ,  t h e  s u b j e c t  dis(:~s,~,d in sec t .  7 is s i m -  

p l y  c o n d e n s e d  in  t h e  fo l lowing '  ( , q u a t i m : s :  

(9 .9a)  V [ ( E ,  z.,,) = - -  (.~ i / 4 . ~ )  q ( E ) { Z - -  V~(E, xF)})'~(~', ~.F), 

(9.9b) 

( 9 . 9 c )  { 

(9.9d)  { 

zl  

E, 
Zo 

z { z ~ -  ~,(E, ~,.)} 
]~(z; E ,  ~.r-)-- -v/.2z ~ '-- v (E ,  ~F) 

2z~/Oz' -~- v(E, zF) 
t g h  -~ 

3z~ -5 v(E, a t ) -  1 ' 

~(E,  z r )  : g~./p(E, ~ )  , 

/~( E,  gF) --- 2 ~ ( E ,  ~ )  - -  1 , r (E ,  ..~.) = (2 /e~){~ .  + " ~ ' c~(E)r (E,  :~,.)} ; 

Zo :-- x /#(L,  ..~.) < z < ~ ( E ,  ..l,) z~, 

zo - :  0 < z < ~ ( E ,  x~..) ~=: z~ ,  

/z (E,  g F ) < 0  , 

# ( E ,  • > 0 ; 

t h e  m e a n i n g  of  t h e  c o e f f i c i e n t s  cz(E) ( i -  _1, 2) is ,st~ecificd in s u b s e c t .  7"2. 

F o r  i n i i n i t e l y  e x t e n d e d  nuclea . r  m a t t e r  t h e  sub jcc~  d i scuss ( ' d  in sec t .  8 is s i m -  

1)ly con(h~.nsed in t h e  f o l l o w i n g  r e l a t i o n s :  

(9.10) I'Ci(bv ' xF) = 0 , l 'C(bv, u~.) = v~(~.F, ~.~.) . 

I t  h a s  b e e n  s h o w n  in I t h a t  a ( :m~sis tcnt  ( ,v( ' ra l t  de~( . r i p l i cn  (~f l~:( . le~r  nmtt( ' - r  

c a n  be  o b t a i n e d  "~ss~rnil~g' t L e  i l : t / u t  q u a n t i t i ( s  b~..:~ (1 r0 = (9~/8)~/z~, lc( ,~] iz(d  

TAnL}~ I. -- Numerical features o/ ,~uelear matter described by eq. (2.1). Quantities e~., v~(p, u~), Ko 
Vc(0, XF) and Vc(O, UF) are expressed i.t~ MeV and the 1,u nwmentum • in (fro) -1 u~zits. 

by . . . .  14.0 MeV b v . . . . . .  15.0 MeV b v . . . .  16.0 MeV 

r o ill fm 1.0 1.2 1.0 1.2 1.0 1.2 

~ .  1.523 2 [ .269 4 1.523 2 1.269 4 1.523 2 

•F 48.098 33.401 48.098 33.401 48.098 

C~ ~.  1.9162 1.9997 1.931 8 2.0156 1.946 5 

rico ~F 0.689 42 0.914 49 0.729 24 0.960 88 0.767 69 

vr gp) - -  126.46 - -  104.23 - -  130.29 - -  108.08 - -  134.12 

vo~(~F, ~l.') - -  62.098 - -  47.401 - -  63.098 - -  48.401 - -  64.098 

K=, 198,44 - -  175.63 207.43 184.28 216.36 

VC(0,~.)  - -  55.192 - -  39.868 - -  55.577 - -  40.195 - -  55.95'2 

gc(0,~q..) - -  0.52708 - -  0.57611 - -  0.58298 - -  0.63145 - -  0.63946 

1.269 L_ 

33.401 

2.030 ,' 

1.t)05 

- -  111.93 

- -  49.401 

192.88 

- -  40.513 

- -  0.686; 
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in the in terwds  

(9.1 J) b v = - -  (15.0 •  MeV,  ro ~ (1.10 •  l0 - '3 c m .  

In  view of the comparison with the results obta ined  for finite nuclei, we give 

in t~ble I au exhaus t ive  numerical  view of infinitely ex tended nuclear m a t t e r  
p ic tured  ,~ccordiug to eq. (2.1). 

9"2. A mathematical method ]or extracting nuclear in/ormation ]rom electron- 
nucleus scattering data. - A realistic evaluat ion of pa ramete r  ro, defined through 
ansatz (2.31), is of crucial impor tunce  for the physical  rel iabil i ty of the 
for thcoming calculations. Our aim is to outl ine an exact  mathemat ic ,d  meth-  
od for obtaining nuclear informat ion from the analyses of electron-nucleus 
scat ter ing da ta  (27). The method will also bring to light the  ve ry  reasons which 

led us to choose densi ty  (2.17) for construct ing the optical  potent ia l  for mlcleons 
scat tered f rom ' l i e ,  '2C and ~6(). 

We define as nuclear densi ty  %(r) the distr ibution of the centre of mass 
of the  protons  bound in the nuclear system. Consequently,  the ((observed ~> 
charge distr ibution 0r involved in the  analyses of electron-nucleus scat ter ing 
data, is 

(9.12) o~r ) -[Oo(I r -  x[) %(x) d x  , 
J 

where %(r) is the pro ton  eh'trge densi ty.  Equ' t t ion (9.12) shows in three-  
dimensional space tha t  the unknown funct ion ON(r ) obeys one of Fredhohn ' s  
equations of the first kind, the symmetr ic  kernel being expressed by  the pro ton  
densi ty.  S tandard  procedures seem inadequate  to give exact  solutions of 
eq. (9.12). To c i rcumvent  mathemat ica l  deadlocks we s ta r t  f rom the equi- 
va len t  equat ion 

(9.13) ech(r) -~ -- (lfil~) V2I: s ( r ) ,  

where V" = D' -+ (2/r)D is tile radia.1 p~rt  of the Laplacian opera tor  and  
V x(r) is the electron-nucleus poten t ia l  energy 

,.(,.) =fv.o([r- xl)e (x)d , (9.14) 

v~ being the electron-proton potential for unit charge. Introducing the 
vector X ~ r - -  x and taking iuto :Iccount inequality (2.22), potential V~(r) 

(27) Recent information on nuclear-structure studies using electron scattering can be 
found in the reviews C. C~oI,'I DEGLI ATTI: Prog. ]'art. )Tucl. Phys., 3, 163 (1980); J. II~I- 
S:E~m:ERG: Nucl. Phys. A, 396, 391c (1983); B. ]~oIs : Electro~ scattering a~d nuclear struc- 
ture, in Proceedings o] the Internatioq~al Con]ere~we on ~Vuclear Physics, .Floren, ce, 1983, 
Vol. 2, Invited Papers (Bologna, 1984), p. 221-246. 
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becomes 

(9.15a) 

(9.15b) 

co 

Von(r) := (2=lr)[ fxI ,<x , r)G~.(x) dx ~- f x I , (x ,  r)~_(x) dx] , 
0 r 

r-i-x x+r 

J l (X,  r ) - f . ~ ' o  ( X )  d X  , I , ( x ,  r )  = f X O v ( . r )  d.~" . 

Thus, f rom Poisson's equat ion (9.13) one obtains the  new integral  equat ion 

(9.16a) 

(9.16b) 

(9.16c) 

9r :: ~(0)ox(r ) + (1/2r) fxK(x, r)eAx)(ix, 
0 

C C ( r - - x l = . ~ { ( r - - x l v , ( r - - x ) ~ ,  ( x - - r ) v  ( x - - r ) } ,  

K(x,  r) := D{(r - -  x)v  ~(r-- x) ~ (r-~ x)vp(r  + x)},  

K (x, r) == D{ (r -~- x) v ~(r + x) ~- (x -- r) v ~(x -- r)},  

x ~ r  

x>~r. 

At this stage we need to specify tile p ro ton  dens i ty  ~)~(r). We assume the 
a, na, lyt ie  expression 

[ o (r) ~- (/~/:lz)(a -- 2b ~- b /~ r) ~Y(/~,r) ~- ( 1 - - a  )5(r) , 
(9.17a) ~ ~ 

:[ (/~p ") -- exp [--/~D r]//ap r 

(9.17b) Iop(r) d r  ~ .1 ; 

the  r.m.s, radius is (s~--1/ /~)  

(9n7c) R~ = s p V 6 ~ - ~  2bp). 

Par~tmeters a ,  b and s are de termined by  fit t ing high-energy electron- 
pro ton  scat ter ing data.  Densi ty  (9.17) underlies a va r ie ty  of pro ton  models 
which have not  been fully explored. For  ap--~ b~----0 or, alternatively~ for 

a = 0 and  s~ = 0 (/~ -~ oo) one has a point l ike model:  in this case the  den- 
s i ty  is expressed by  the delt~-function and from eq. (9.12) one has ~r 

o~(r). Of course, the  same resul t  is obta ined f rom eq. (9.16a) because 

vow(r) -~ 1/r implies ~(0) ~ 1 and K(x,  r) = 0 for x 4 r  and x > r .  Three  models 
have been successfully applied to fit the  da ta :  DrelFs model (a~ ~ 1, bp = 0), 

Hofst ' td ter ' s  modeI (a~ ~ 1, b~ -~ �89 and the  model  developed by  CL~.~tE.~T~3L 

and VILLI ( a  = ~-~ b, ~ 0)(,,a). We recall  t h a t  the  Gaussian model  (2.24) 

(2s) Details on proton models call be found in the review book by R. IIOFS~.~DT~R: 
Electro.~ Scatteri~.g and A'uclear a~ul ~'ucleon Structure (W. A. Benjamin, Inc., New York, 
N.Y., 1963). 



144 A. ~'~SCOLLXI and c. VILLI 

has been chosen only for illustrative purposes, because it allows one to per- 
form the folding integral (2.21) exactly.  

The electron-proton potential  generated by densi ty  (9.17) reads 

(9.18) Vep(r ) = 1/r -- a~/a~ Y(/~p r) -- b~/u, exp [--/z~r]. 

Subst i tut ing (9.18) into kernel  (9.:16c), one has 

K(x ,  r) = 

= [(a~-- b~ -[- bp/z r) sinh (/z~x) -- b~/z~ x eosh (/~ x)] exp [--/~p r ] ,  

x < r ~  
(9.t9) K ( x ,  r) = 

[(a ,--  b~ ~- b~t~x)  sinh (/zp r) -- b~/~r cosh (/z r)] exp [-- /~,x] ,  

x ~ r .  

The apparent ly  hopeless task of solving eq. (9.:16a) characterized by kernel 
(9.19) e~n be achieved by vir tue of the  transformations 

(9.20) O~h(r ) : ]r , oN(r) = f..q(r)/r , 

~vhere functions ]ch(r) and ].~(r) must  v.~nish at  the origin linearly with r "~nd 
fulfil the  prescription 

0.21) fo~h(," ) d r  = 4~fr/n(r)  dr = 1 .  
0 

Consequently,  f rom eq. (9.16a) one obtains 

(9.22a) /oh(r) = ( 1 -  ap)].~(r) + (an --2b,)/~p~v(r)+ 2bp/zp?;(r), 
co co 

(9.22b) ~0(r) =fq~(x, r) /s(x)  dx ,  ~(r) - - : f~(x,  r ) / u ( x ) d x ,  
0 0 

{ qS(x, r) ---- sinh (~px) exp [--/~p r] , x ~ r ,  

(9.23a) ~(x, r) = sinh (/~p r) exp [ - - / ~ x ] ,  x ~  r ,  

/ ~(x,  r) ---- �89 [(1 ~-/~ r) sinh (/~x) - - / ~  x cosh (/~x)] exp [ - - /~  r], x < r ,  

(9.23b) [ ~(x,r)---- ~[(1 ~-~tpx) s i n h ( # p r ) - - # ~ r c o s h  (~tpr)Jexp [ - - /~x ] ,  x ~ r .  

Prom eq. (9.22a), taking into account  eq. (9.2]), one deduces tha t  functions 
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~v(r) a n d  ~,(r) m u s t  fultil  t he  condi t ion  

(9.2.t) 

co co 

o o 

T h e  nmthemat ica .1  p r o p e r t i e s  of ke rne l s  CP(x, r) a n d  T(x ,  r) a.re d iseussed  in 

a. p r eced ing  p a p e r  C9). Transform~r t ions  (9.20) disclose t h a t  t h e  followiI)g equa-  

t ions  ho ld :  

(9.25a) (s~D ~ -- ] )~(,') : - _ s~fx(r) , 

(9.25b) (s~D-'--  ] )  y , ( r )  : -  - -  ~ ( r ) ,  

(9.25c) (s~D'--  2s~D ~ + ])  ~v(r) = s~/x(r ) . 

E q u a t i o n s  (9.25a) arid (9.25b) t r a n s f o r m  the  i n t eg ra l  equa t i on  (9.22a) in to  the  
n o n h o m o g e n e o u s  f o u r t h - o r d e r  d i f fe rent ia l  equ ' t t ion  

(9.26a) 0 ~  ~v(r) = sp l (h ( r )  , 

where  O~, is the  mode l  o p e r a t o r  a s soc i a t ed  to  t he  p r o t o n  dens i t y  (9.17), 

(9.26b) O.~ t = (1 - -  ap)s4D a -4- (~, - I  2b~--  2) s~D2-~ - ] �9 

T_hus, t he  p r o b l e m  is so lved :  once ~v(r) is d e t e r m i n e d  b y  solvii~g eqs. (9.26) in 
a g r e e m e n t  wi th  p re sc r ip t i on  (9.24), eq.  (9.25b) gives  ~0(r) a.nd, f inally,  eq. (9.25a) 
expresses  /s(r) as a l inear  d i f fe ren t ia l  t r a n s f o r n i  of ]r 

L e t  us  restr i ( . t  ourse lves  to  Dre l l ' s  m o d e l  (mode]  I))  a n d  to H o f s t a d t e r ' s  

mode l  (model  H)  ; t he  Clementel -Vi l l i  m o d e l  requ i res  r a t h e r  compl i ca t ed  t r e a t -  

m e n t ,  which  is b e y o n d  the  scope of th is  pape r .  I n  t he  f o r m e r  case  (a,  = 1, 
b~ = 0) one  has  

(9.27) 0 D . . . .  s'2~D ~" + 1 ; 

t hen ,  f r o m  eqs.  (9.26a) ,~nd (9.25b) one ob t~ ins  el(r) ---- sff(h(r ) a n d  eq. (9.25a) 
gives  

(9.28) (D) l x  ( r )  = (1  - -  s~D"l/~(r). 

(2~) C. VILLI: Atti e Memorie dell'Accademia Patavi.na di Scienze, Zeffere ed Arti, 
Vol. 90, l)ar |e  II (1977-1978), p. 125. 
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I n  the  h t t te r  case (ap = 1, 2b~ ~ 1) the  model  opera to r  is O~ - -  1, i .e .  ~f(r) = 

= sflch(r); f rom eq. (9.25c) one deduces t h a t  

( 9 . 2 9 )  ](~>(r) ( t - - ' " -  " ' ' = 2 s p D  § s ~ D  )]r . 

Assuming  oo~(r) expressed b y  the  ana ly t i c  fo rm (2.19) it  is found t h a t  

ox(r  ) = (Oo)o~ ~.~,(r/sr  ~' exp [--  (r/so~)~] , 
i = 0  (9.30a) 

(Oo)o~ = 2/~v'~(2 + 3~o~).~, 

(9.30b) Jo,.(r) d r  = 1 

where  n ~ 2 for  model  D and  n = 3 for model  H. 

nuclear  dens i ty  funct ion are found to be 

(9.31) 

The p a r a m e t e r s  of the  

m" = 1 - 6 ( n o ~ -  ~ ) ~ ,  

= ' 7 - 2 ) ~  ~ ~/o~-~-'2( */o~ 

' t o V~ = - : ~ o ~ ,  

n~'=O, 

v'0' = ~ - 1 2 ( n o ~ -  1 ) ~ , -  

- -  60(2~/c h - -  1) ~ ,  

§ 20(15~r h -  4) ~ ,  

~ I I  2 , = - 8 n o ~ , ~ -  ~6 (9vo~  - 1)  ~ ,  

where $ : sp/so~. I t  is readi ly  ascer ta ined  b y  successive pa r t i a l  in tegra t ions  

th;~t bo th  eqs. (9.28) and  (9.29) lead to relat ion (2.27) a m o n g  the  r.m.s,  radii  

R ~ ,  ]~x and  R~ of ooh(r), ox(r) and  o ( r ) ,  i .e .  

( 9 . 3 2 )  R~. - -  R k  - n : o .  

The exac t  relution (9.32) will be used to de te rmine  r0, according to a n s a t z  (2.31). 
The electron-nucleus input  p a r a m e t e r s  are l isted in tab le  I I a .  The  experi-  

me ta l  wfiue of the  p ro ton  r .m.s,  radius  is 1~.~ ~ 0.77.10 -~3 cm;  length s~, cal- 

culated according to eq. (9.17c) for the  considered p ro ton  models,  turns  out  

to be  

(9.33) sp'" -~ Rp[V /6  -~ 0.3t "10 -13 c m ,  s~ ~ = R~/V/FJ : 0.=~ -13 cm ; 

the  d rawback  of the  Gaussian model  (2.24) is main ly  due to the  large value 

a = 0.63.10 -13 cm. 8p 
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TABLE IIa.  - Parameters characterizing the lp-shell ch,~rge distribution determined 
]rom the analysis o/ high-energy electron scattering data. Zeqwths are give.n i.n fm u.nits. 

4 I [ c  12 C 16 0 

S~h 1.31 1.64 1.77 
W~ 0 4/3 2 
Rr 1.61 2.40 2.64 

TABLE IIb. -- Parameters characterizbuj nuclear density distributions, calculated using 
the values el s~h and ~lr given i.~ table IIa.  Lengths are given in fm units. 

r 1 ~l[e r-'C ~60 s 12C 160 

D H D H D H 

~lo 1.33 1.38 0.93 0.90 0.82 0.80 s~) 1.56 1.68 
~h --0.22 --0.30 1.86 1.96 2.73 2.84 ~h) 2.12 2.38 
~ 0 0.01 --0.19 --0.24 --0.24 --0.30 s~ 1.59 1.70 
~a 0 0 0 ~ 0 0 ~ 0 . 0 1  ~ht 2 . 1 7  2.42 

The p a r a m e t e r s  of dens i ty  (9.30), eva lua ted  according to eqs. (9.31), are 
given in tab le  I Ib .  The value ~ ~ 0 for q I e  and ~2 < 0 for 1-'C and  ~eO 

are unsa t i s fac tory :  the  second- and  four th-order  radia l  der ivat ives  p robab ly  

~mplify the  inadequacies concealed in the analy t ic  fo rm of ~)r and  p,(r). 

Ho~vcver, since the  ~'s have  been calculated using an exact  procedure,  we 

believe t h a t  the  predic ted  behaviour  of Q~(r) is substant ia l ly  correct. This 

suggests squeezing the  overal l  in format ion  therein  contained into the  ana-  
lyt ical ly  s impler  (hmsity funct ion ~(r), expresse(t by  eq. (2.17). This goal 
can be reached by  seeking for the  m i n i m u m  of t lm mean-square  distance 
between 9x(r) and  o(r), i.e. 

(9.34) 
{ M(.~, 7) - - f i e f ( r )  - e( , ) ] '  d r ,  

~ M(s ,  ~) ---- ~, M(s ,  ~) = 0 .  

Tile nuclear  par t ,meters  s and  ~ are de te rmined  by  solving the sys tem of 
equat ions 

(9.35a) 

co 

x~(3 - -  2x~)o~.(sx) cxp [ - - x  2] dx, 
0 

co 

f x*(5 - -  2x~) 9.~-(sx) ex I) [ - - x  ~] dx 
O 

-V'z~/2(3/64)(-I + ~])~)0(s, 7 ) ,  

---- V~/2(15/256)(4 + 3~)Oo(S, 7 ) ,  

(9.35b) Oo(S, ~) ---- 21zV/,~(2 ~- 3~)s 3 . 
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I t  is w o r t h w h i l e  a l l t i c i p a t i n g  t h a t  t h e  v a l u e s  ( s , ,  ~D) a n d  (s~,*]a), g iven  in  

t a b l e  I I b ,  a r e  in  e x c e l l e n t  a g r e e m e n t  w i th  t h o s e  d e t e r m i n e d  in  subsec t .  9"4, 

e x c l u s i v e l y  f r o m  n u c l e a r  s t a b i l i t y  a n d  o p t i c a l - m o d e l  p r e s c r i p t i o n s .  Th i s  is n o t  

t r u e  for  *He. I n  conc lus ion ,  t h e  choice  of t h e  d e n s i t y  f u n c t i o n  (2.17) seems  

t o  b e  wel l  j u s t i f i e d  a t  l e a s t  for  ~C u n d  ~O. 

9"3. Numerical results obtained /rom model I and model I i i .  - T h e  i n p u t  

d a t a  u s e d  iu  t h e  fo l lowing  c a l c u l a t i o n s  a r e  l i s t e d  in t u b l e  I l l  (3o). T h e  r .m . s .  

r a d i i  R ( X  ~) h a v e  b e e n  e v a l u a t e d  a c c o r d i n g  to  eq.  (9.32), w h e r e  / r  0.77.  

TAttLE I I I . -  lnput data. Le,tt,gths are expressed i~, fm units, energies in MeV. 

X ~ 4 H e  12C 160 

R(X a) 1.41 2.27 2.52 
ro(X ~) 0.89 0.99 1.00 
to0 1.15 1.28 1.30 
b(X A) - -  7.07 - -  7.67 - -  7.98 

�9 10 -~a c m  (a~); t h e  a u x i l i a r y  l e n g t h  ro(X ~) h a s  b e e n  d e d u c e d  f r o m  ansatz (2.31) 

a n d  t h e  l e n g t h  ro0 f r o m  eq.  (2.33). T h e  ave r~ge  b i n d i n g  e n e r g y  b(X A) h,~s b e e n  

t a k e n  f rom spec t ro scop i c  m a s s  m e a s u r e m e n t s  (32). 

W e  b e g i n  b y  e x a m i n i n g  m o d e l  I wh ich  s h o u l d  be  c o n s i d e r e d  s i m p l y  as  a 

u se fu l  t h e o r e t i c a l  t oo l  s u i t a b l e  for  r e v e a l i n g  t h e  l i nks  e x i s t i n g  a m o n g  n u c l e a r  

s t a b i l i t y ,  c o m p r e s s i b i l i t y  a n d  t h e  c e n t r a l  p a r t  of t h e  r e a l  o p t i c a l  p o t e n t i a l .  

T h e  l o w e s t  i n d e t e r m i n a c y  of t h e  m o d e l  is  o b t a i n e d  b y  p u t t i n g  ~/r ~ 0 ;  t h i s  

r e s t r i c t s  t h e  p a r a d i g m  to  4Iie.  F o r  A - -  4 one  has  

(9.36) So := :1.1512"10-~3 c m ,  SoZ(O) - 2 .1991 ,  ~o(0) = 74.91 M e V .  

T h e  n u m e r i c a l  v a l u e s  of p a r a m e t e r s  (5.2b) a r e  

(9.37) 
ao - -  27.97.10 �9 10 -'-'~ MeV.  cm ~ , 

a~ -=- :1.8799 , a 2 = 7.0865 , a3 = 19.6175 . 

(no) The eMculations are performed assuming M = .~(Mp I- M~) : :  938.9263 MeV; in 
the  system of units / / -  c = 1 one has 1/M ~= 41.4594.10 -2~ MeV.cm 2. 
(al) The numerical  values of /r given in table  I I I  agree to a few percent  with recent 
evaluat ions;  see J. S. ~ICCARTHY, I. SICK and R. R. WHIT.,,'VY: Phys. ltev. C, 15, 1396 
(1977) for 41Ie; W. R~IST~R, G. ~'I~ICK~, K. M~RL~." "rod H. MISKA: Phys. 1-:ev. C, 
26, 806 (1982); L. S. (:At(D3IAN, J . W .  LIGIITBODY jr., S. P~;x~U.m, S. l ' .  FIvOZL~S~Y, 
X. K. MARUYAMA, W. P. TROw],m and S. E. WILLIA~tSOX: Phys. Zett. B, 91, 203 (1980) 
for 1~ I. SICK and J. S. MC('.~RTnY: 2~'ucl. Phys. A, 150, 631 {1970) for x60. 
(a2) S. FIARMA~," and W. E. MAV>:aHO~': A~ucl. Phys. A, 206, 1 (1973); A. ] t .  WAPSTRA 
and N .B .  GorE:  A~ucT. :Data Tables, 9, 267 (1971). 
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I t  is convenient  to write eqs. (5.4) '~nd (5.5) in the form 

(9.38a) 

(9.38b) 

80 ~ 1  = 80 o 1 

~--5 (tv(2) ,~--5 f~{l )  ~ *) ~--7 ( ) 

K(")(,%, O) = K(*)(.%, O) -- 7~.~.%~. ~ ~ . 

The radial  effeetive-mass q.pproximation is obtained by  put t ing  ~(.o~ =: 0. I t  
is found thq.t 

(9.39) 

�9 ~- a~(~) -- 26.24 MeV,  0 ~  -- 

so-~(~)~a := 2.98 MeV,  

m { z ( O )  } : :  0.3283,  

(D 
2 0  { z ( 0 ) }  : = - J 8 7 . 1 0  ~ , , v ,  

so :~ '{z (O)}  =: 3J. 69 MeV,  

K(~)(so, O) ~ 169.37 M-eV . 

This approximat ion  provides :~ rough des(.ril)tion of the nucleus ground s ta te ;  
nevertheless,  it  couce~fls ~ serious dra.wba(.k because it vielates the optical 
pres(.ription (6.4) expressed by inequalities (6.6) and (6.7): indeed, it is fonnd 
tha t  

(9A0) 
T(~IC _ T ~ (0, 0) = 61.42 3{eV< Co(0) = 74.91 3[eV,  

- - v " { z ( O )  , z (O)}  . . . . .  33.8t  M eV < so(O) .  

Inequ:dit ies (9.4(I) c~n be proper ly  adjusted oltly a t  tlle expense of the cor- 
rec t  r.nl.s, r~dius of ~I[o. I t  follows ttl~t the l inear dependence on energy 
of po ten t ia l  (6.5) is fallacious even at  ve ry  h)w in('ident energies. 

3Iodel I with ~c~2) 7": 0 possesses, at  least  in prineiple, the  capabil i ty of 
overeomillg the  failure of the radi~fl effective-mass approxim~tion.  Equa-  
t ions (9.38a) ensure tha.t a.ny value of ~r o s , e i ther  positive or neg:~tive, is con- 
sistent  with nu(.le,tr st~bilitv.. I t  is seen theft ~(2)>5 0 depresses the single- 
parti(.le potent ia l  a.t p =- Z(0) and reduces the compressibil i ty modulus below 
the value predicted by  the  rndial effective-m~ss approxinmtion.  Since the 
results e.,:pressed by  (9.40) arise f rom the fac t  theft veil{z(0), Z(0)) is too small, 

model [ is physical ly  signifie'~nt provided c~([.)<: 0. The maximum value of 
_ .%7 (#(5~) denoted  ,~s s  can be de termined by  solving equation 

(9.4i) eg(0) [- AI(0, 0) e0(0) !- A..(0, 0) = 0 

obt~fined fr()nl eqs. (6.8) and (6.10). It. is found t h a t  s I = 0.0925 MeV. The 
vMue of %7 ~ ) > _  '~x is provided by  the hyd rodynamic  nucleon mass a.p- 
preximat ion  expressed by  eq. (5.33). Assuming b v = -  15.0 MeV, one has 
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a~(u~) = 2.0136; in the considered case one deduces from eq. (5.32) tha t  

(9.42) m'"'{x(o)}  - -  ~ + e M21~'{z(O)} + 4 M.~':'{x(O)} X"(O) �9 

Then,  f rom equat ion ~ (~ .~ . )=  m(2){Z(0)} it  is found tha t  

so 7 ~ )  == -- 0.1554 MeV . 

In conclusion, model I is ( .haracterized by  the quanti t ies  

( 9 . 4 3 )  

2;~ ' {x(o)}  = - 2 1 7 . 5 5  ~ e v ,  

* J 2 ' ? ' { x ( o ) }  = 31 .72  ) l e v ,  

s-4M (~)r ~0) ) -- 1.65 MeV,  o 2 ~.Zt .r ---- 

K(~)(So, O) ---- 190.71 MeV,  

v(~){z(O), z(O)} = -- 102.72 MeV,  

V (2)clo O) ---- - -  89.62 MeV,  

where V~)c(0, 0) has been evahmted  using eq. (6.9). 
The max imum value ~m of -- s o-7~(2)~5 , consis tent  

ob ta ined  by  solving equat ion 
with model I I I ,  is 

(9.44) v(~){x(0), x (0 ) }  = - ~ o ( 0 )  ; 

i t  is found tha t  ~III-" ~I" Let  us assume tha t  v(:){p, x(r)} for p < z ( 0 )  be 
the  same as in model I.  All inequalities indicated in subsect. 3"3 .ire verified; 
in par t icular ,  flmZ(0) > 0. The zero-energy l imit  cf  the  real pa r t  cf the cen- 
t ra l  optical  po ten t ia l  a t  the origin has to be evaluated by  selvirg eq. (6.17a). 

The results are 

(9.45) V (re)orb O)"~ v(~)~ 0). f l m z ( O )  = 0 . 4 7 6 9 ,  _ ~ ,-,  - - . ,  ,- ,  

The interlacing of nuclear stabil i ty,  compressibil i ty and the central  pa r t  

of the  optical  potent ia l ,  clearly exhibi ted by  mcdels I and I I I ,  is fully accomlted 
for by  model I I ,  a l thougb it  appears  somewhat  obscured by  the very  analyt ica l  

t r e a t m e n t  it  requires.  

9"4. The nucleus ground state according to model II .  - The ~-dependence of the  
most  significant quantit ies characterizing model I I  is shown in table  IV:  all 
quanti t ies are evaluated at  the min imum of the to ta l  energy. We recall t ha t  
~(~),  defined by  eq. (6.17b), is the consistency indicator  of the optical model  
cons t ruc ted  according to eqs. (6.11) and (6.19). I t  is seen t h a t  requ i rement  
~ ( ~ ) > 1  implies values of ~/ which are larger t han  those predicted by  the  
shell model for the  pro ton  configurations of q:Ie, lrC and  1if). Equa t ion  
(5.12) is used to de te rmine  f2 once ~/ has been calculated according to 
eq. (5.36); finally, length s is calculated according to ansatz (2.31). The hydro-  
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T.~I~L]~ IV.  - ~l-dependence o] the quantities I2(rl) ----- aZ(0), ~(~l), fig(0) and (iq~)ieY) 
eo(r/), U,~ and yc(o, O) at the minimum o/ the average total energy o] the nucleus. The 
calculations have been pe~']ormed ~tsing as i~put parameters the values o] ro(X ~) a~zd b(X ~) 
listed in table I I I .  

~j 4He 

~(,l)  ~(77) /~z(0) eo(,~) C~ ~ V~(o, o) 

0 2.366 0.709 2.411 75.22 - -  75.38 - -  66.11 
1.0 2.139 0.954 1.366 57.17 - -  69.42 - -  55.95 
1.5 2.036 1.065 1.021 50.11 - -  67.25 - -  51.69 
2.0 1.943 1.158 0.759 44.78 - -  66.01 - -  48.39 
2.5 1.862 1.233 0.559 40.63 - -  65.26 - -  45.69 
3.0 1.791 1.294 0.402 37.31 - -  64.79 - -  43.38 

7 i *~ 

-o(v) ~(~)  fix(o) So(Tl) C~ ~ V~(o, o) 

0 2.457 0.674 3.008 60.54 - -  62.53 - -  52.98 
1.0 2.218 0.964 1.677 46.01 - -  57.76 - -  45.29 
1.5 2.111 1.097 1.264 40.32 - -  56.02 - -  42.11 
2.0 2.015 1.210 0.958 36.04 - -  55.02 - -  39.66 
2.5 1.931 1.304 0.727 32.70 - -  54.42 - -  37.66 
3.0 1.857 1.380 0.547 30.03 - -  54.04 - -  35.95 

~j leO 

~)(~l) ~(~l) ~z(O) ~o(~) C, ~ V~(O, o) 

0 2.475 0.667 3.142 59.42 - -  61.87 - -  51.97 
1.0 2.233 0.966 1.743 45.16 - -  57.18 - -  44.52 
1.5 2.125 1.104 1.315 39.58 - -  55.47 - -  41.43 
2.0 2.029 1.222 1.000 35.37 - -  54.49 - -  39.08 
2.5 1.944 1.319 0.761 32.10 - -  53.90 - -  37.15 
3.0 1.870 1.399 0.577 29.474 - -  53.53 - -  35.50 

d y n a m i c a l  m a s s  a p p r o x i m a t i o n  is c o n s i s t e n t  w i t h  p r e s c r i p t i o n  ~ ( ~ ) > 1 :  t h i s  

is  a n  i n d i r e c t  t e s t  of  t h e  r e l i a b i l i t y  of  t h e  o v e r a l l  d e s c r i p t i o n  of  i n f i n i t e l y  

e x t e n d e d  n u c l e a r  m a t t e r  b a s e d  o n  eq .  (2 .1) .  T h e  n u m e r i c a l  v a l u e s  t h u s  s e l e c t e d  

o f  t h e  q u a n t i t i e s  d e s c r i b i n g  t h e  n u c l e u s  g r o u n d  s t a t e  a r e  g i v e n  i n  t a b l e  V .  

T h e  r a t i o  Ar/R,  w h e r e  A r  is t h e  n u c l e a r  s k i n  t h i c k n e s s  d e f i n e d  a s  t h e  d i s t a n c e  

a t  w h i c h  9(r) f a l l s  f r o m  0.9~oo t o  0.19o , t u r n s  o u t  t o  b e  a d e c r e a s i ~ g  f u n c t i o n  

o f  t h e  m a s s  n u m b e r ,  w h e r e a s  t h e  r a t i o  rdR  b e t w e e n  t h e  h a l f - d e n s i t y  r a d i u s  

~md t h e  r . m . s ,  r a d i u s  i n c r e a s e s  s l o w l y  w i t h  A ;  t h e  a l p h a - p a r t i c l e  d o e s  n o t  

~ p p e a r  t o  b e  ~ a l m o s t  a l l  s u r f a c e  ~) a s  h a p p e n s  i n  t h e  c a s e  ~ = 0 (Ar/R ~ 1) ,  

w h i c h  is f o r b i d d e n  b y  p r e s c r i p t i o n  ~ ( ~ ) > : 1 .  T h e  v a l u e s  of  ~o f o r  *"-C a n d  ~60 

a r e  i n  s u r p r i s i n g l y  g o o d  a g r e e m e n t  w i t h  t h o s e  e x t r a c t e d  i n  s u b s e c t .  9"2 f r o m  

e l e c t r o n - n u c l e u s  s c a t t e r i n g  d a t a .  
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T~t~LS V. -- Numerical values oJ the qeantities characterizing the nucleus g.rou~d stt~te 
selected ]rom those listed in table IV by means oJ eq. (5.36). Ar is the ski.a thickness defined 
as the distance in which o(r) JaUs ]roan 0.9o o to 0.1qo; ri .is the hal]-density radius. Le.t~gfhs 
are expressed in fm units, energies in MeV. 

X A +I[e t~:C leO X "* 4tic 12C 180 

s o 0.951 1.511 1.672 aT.(O) 2.012 1.987 1.964 
~Jo 1.620 2.156 2.377 fiT.(0) 0.95[ 0.879 0.814 
Ar/R 0.684 0.603 0.580 %(%) 48.69 34.9l 32.83 
ri /R 1.002 1.066 1.087 Ct~ - -  66.89 - -  54.80 - -  54.02 
�9 ~{Z(0)} 2.062 2.167 2.177 K 100.12 100.34 103.10 

The  sur face  W =: W(s ,  ~) exhibi ts  a deep ;rod na r row  sta, bi l i ty  val ley.  No  

m i n i m u m  exists  ill t he  (W, So)-plane: tile m i n i m u m  and  the  profile of t he  

wf l lcy  is seen in the  (W, ~/o)-plane. The  s -dependence  of W(s,  ~7o)/A ,~nd 

K(s ,  ~]o), calcul~ted  using,  respe(, t ively,  eq. (5.7) and  eq. (5.14), is p lo t t ed  in 

fig. [ ~uld fig. 2, r e spec t ive ly :  the  se;~rce s tab i l i ty  of the  ca lcu la ted  (.ompressi- 

b i l i ty  modu lus  "~ga.inst va r i a t ions  of l eng th  s is (.learly b r o u g h t  in to  view. 

I t  is f o u n d  K(so,  ~70) --~ 0.5Ko~, K ~  be ing  g iven  in t ab le  I .  I t  is no t  possible 

r obtai l t  an  immedia t e ,  s ignif icant  comp~r i son  of t he  values  of the  com- 

press ib i l i ty  n lodulus  (at leas t  for  ~60), given in tab le  V, wi th  those  eval-  

u:~ted in s t u d y i n g  the  coupl ing  of sur face  a n d  bu lk  v ib ra t i ons  in the  nuc lea r  

b r e a t h i n g  mode .  T he  "~ttempt to  c o n s t r u c t  the  compress ib i l i ty  modu lus  as '~ s u m  

of d i f ferent  con t r ibu t ions  as in the  ease of the  semi-(n~pirioal mass  formld'~ (33) 

8.9 aH~ 

6.0 

~o 4.0 

~ 

X 

"~ -2"C I -4.0 

- 6 . 0  

-8.0 
�9 i . . . .  l . . . . . .  I , . , . , , . I i - �9 �9 l 

0.5 1.0 1.5 2.0 2.5 
s ( fm)  

Fig. 1. - Plot of the s-dependence of the average total energy in proximity of the 
mininmm for q[c ,  12C and 160, calculated using eq. (5.7). 

(83) j .  TnEL',')m, H. KRIVINE, O. ]~OIIIGAS and J. ~[AI{TORELL: Xucl. Phys. A,  371, 
253 (1981). 
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:Fig. 2. -- Plot of the s-dependence of the compressibility modulus K in proximity of 
the mildmum (indicated by an arrow) for al[e, ~-(' and ~e(), calculated using eq. (5.14). 

is object ionable .  I t  is surpris ing t h a t  the  descript ion of collec, t ive 0 + exc i ta t ions  

in nuclei should not  be b~sed on a cle'~r-cut definition of the related ad iaba t ic  
compress ibi l i ty  modulus K~.  Trivial  thermodyn '~mic:d  a rgumen t s  show t h a t  

the  ad iaba t ic  compress ibi l i ty  modulus is l~rger t han  the isothermic one. Conse- 
quentlT, the only con(.lusion we can draw is t ha t  

(9 .46)  K~, : -  K(so,  ~]0) <: K~d �9 

I t  would be highly desirable to compare  carefully the  theoret ic ,d  perspect ives  
disclosed by  eq. (2.1t) with the  conceptual  ( .ontent of s t andard  Har t ree - ] :ock  
c:~lculations concerning *He, 12C and ~eO (3,). 

Le t  us de te rmine  the  value of ~1 using the criterion b:~sed on the  ~nb,mlar- 
m o m e n t u m  dis t r ibut ions in the Thomas -Fe rmi  model,  outl ined in subsect.  5"3. 
Equa t ions  (5.30a) reads  

(9.47a) I{v(XA)}-= co(c, [-{:2(XA)~,h~n}A-t , 

I Co = (5/16)(V~/9) ~ =: 0 .18 t8 ,  
(9.47b) t c~ ---- (27/125)(3/5)�89 ~ == 0.8091 ; 

the  uumeri(.M v~hles of in tegra l  (5.30b) :~re given in tab le  VI.  We res t r ic t  

ourselves to the  magic nucleus 160. I n  this case, p a r a m e t e r  ~(~O) is deter-  
mined  b y  solving the equat ion  

(9 .48)  l{~](~e())~ = 0.0661. 

(34) I ) .  ~I .  B R I N K  a n d  E .  BO~'KER:  Nucl .  Phy,~. A,  9 1 ,  1 ( 1 9 6 7 ) .  

11 - II Nuoeo Cimento A. 
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The  solution is ~(~O) = 2.5; the  value  ~ ~_ r/o = 2.377, evalua ted  from stabi- 
l i ty  prescript ions (table V), can be obta ined  f rom eqs. (9.47) reducing the 

value of the  a rb i t r a ry  cons tant  c~ by  less than  0 .6% (c'~ = 0.8044). Replacing 
i 

c, with c,, one can expect  the suggested criterion to provide a reliable tool 

for establishing an addit ional  relat ion between the density function param- 

TABT.~ VI. - Nu,verieal values o~ the integral I(tt) de/it~ed by eq. (5.30b). 

,7 0 1.0 1.5 2.0 2.5 3.0 
I0J) 0.0584 0.0620 0.0644 0.0654 0.0661 0.0667 

eters  of the  successive cvcn-even magic nucleus ~~ I t  is worthwhile 
point ing out  tha t  the disturbingly slow dependence of I(~]) on ~] is ent irely 
bound up with the densi ty  funct ion (2.17) and will not  be bronght  about  by  
dens i ty  funct ions suitable to describe nuclei with A > 16, because eh'~ra(.terized 
by  smaller skin thickness and steeper profiles. 

The radial  dependence of funct ion w*(r) is determined by  subst i tut ing in 
eq. (8.6) po ten t ia l  VC{r~ w*(r)} given by  eq. (8.4). The ener~.~y w*(r)< 0 is 

tim solution of equat ion 

(9.49a) 

(9.49b) 

V'(/){w*(r)} = %/~i~ exp [--fl~/2M{~/-cl){w-*(r)}-- ~/~-(.,'))] , 

Co(rio) r = w*(r) - -  Vo{Z(r)} exp [-- fiX(")], 
= 1 .  

The radial  behaviour  of w*(r) at  equil ibrium densi ty  is p lo t ted  in fig. 3. 
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/ / "..% , :? 

2 "" / """ / ::I 
.." : .. : / fi 
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Fig. 3. - Radial behaviour of w*(r) (solid lines) and of w(r) (dashed lines) at equilibrium 
density for qIe, nC and 1~0. 
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9"5. The  real opt ical  potent ia l .  - The radia l  and  energy  dependence of the 
cent ra l  p a r t  of tile real  opt ical  po ten t i a l  VC(r, E) and  the  real  spin-orbit  func- 

t ion W~(r ,  E) - -  Ut~ V~ for nucleons elastically sca t te red  b y  4He, ~~ and ~O 

are p lo t t ed  in fig. 4a), b), 6a), b), and  8a), b) respectively.  More detailed infor- 

mar ion  for selected energics is p lo t ted  in fig. 5a), b), 7a), b) and  9a), b). 

Fig. 4. - Radial and energy dependence of the real potential for ~I[e: a) central 
tel'In V c and b) spin-orbit ternl ]Wl, * r ,o - /SR~l~" The mesh steps are AE - 5MeV and 
A(r/so) = 0.075. 

The po ten t i a l  is no t  (.apable of reproducing the  (, exper imenta l  ~ behaviour  
of the  S-wave neu t ron-a lpha  phase  shif t  as a funct ion of energy.  The hard-  

sphere scattering~ in t roduced  ad hoc in order  to describe the  repulsive n-~ inter-  
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Fig. 5 . -  Radial dep(mdence of the real potential  for 4IIe for selected energies: 
a) central term V c" and b) spin-orbit term 1V R : L I~ ] .  -ci~. The resolution is .4(r/so) = 0.03. 
1 ) E =  0MeV, 2) E = 10MeV, 3) E - -  50MeV, 4) E :- 1003IeV, 5) E : :  150MeV, 
6) E -~. 200 MeV. 

a c t i o n  in  the  S-st~ttc (35), is n o t  c o m p a t i b l e  wi th  t he  s ing le -par t ic le  so lu t ions  

of eq. (2.14), which h~ve to be t h o u g h t  of as o r i g i n a t e d  b y  t w o - b o d y  pot(m- 

r ials  free f rom d i scon t inu i t i e s .  Thus ,  the  nu( , l eon-nuc leon  repu l s ion  a t  sho r t  

d i s t ance s  deser ibed  b y  a core of r ad ius  re does n o t  come in to  pl~3-. Us ing  

s t~uldard m~tny-body t e c h n i q u e s  one  can  show t l m t  the  de ns i t y  (Iependel~ce 

(s~) W . A .  I):FARCE and I'. SwaN: Xucl. -phys., 78, 433 (1966). See also ]'. E. I[ODGSON: 
_Philos. Mag. Suppl. Adv. Phys., 7, 25 (1958). 
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Fig. 6. - Radial and energy dependence of the real potential for 1~C: a) central 
term V c and b) spin-orbit term Wl~ = ~c U~t~r The mesh steps are A E =  5MeV and 
~(r/so) - 0.075. 

of the  reac t ion  ma t r i x  is .f imost en t i re ly  due to the  repulsive core (as). Since 

energy  .~{g(r)}, defined ill subsect .  4"1, p lays  the  role of the  r e -a r r angemen t  

ene rgy  in Brueckner ' s  theory ,  the  t heo rem proved  in subsect.  4"2 clearly 

indicates  t h a t  the  shif t  in the  single-particle po ten t i a l  energy  is p robab ly  

spurious core effect a.nd a.s such incompat ib le  with eq. (2.]4). The single- 

par t ic le  solutim,s of eq. (2.14) can be re la ted  to nucleon-nucleon repulsive 

(3,) K . A .  BRU):C~ER, J . L .  GA.~tM~I, and ]I. W>',ITZ~XI~: Phys. Rev., 110, 431 (1958); 
K.A.  BRu~:CX~m, A.M. ],0C~ETT and M. ROTF,~B~.RG: Phys. Rev., 121, 255 (1961). 
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Fig. 7 . -  Radial dependence of the real potential for *-+C for selected energies: 
a) central term F c and b) spin-orbit term ]VR ~ U~V c. The resolution is A(r/so) = 
= 0.03. 1) E - -  0MeV, 2) E =  10MeV, 3) E - -  50MeV, 4) E = 100MeV, 5) E =  
= 150McV, 6) E - -  200MeV. 

in t e r ac t ions  a t  sho r t  d i s tances  p rov ided  t h a t  the  one-p ion  e x c h a n g e  po ten t i a l  is 

r e fo rmu la t ed  in order  to  ove rcome  the  serious d r a w b a c k  of the  P S - P V  meson  

t h e o r y  of nuc lea r  forces,  b~sed on the  unrea l i s t ic  descr ip t ion  of nucleons  as 

po in t l ike  sources  of the  meson  field (37). An investig,ution devo t ed  to the  sear( 'h 

for  solut ions  of eq. (2.14) sui table  to descr ibe  the  nuc leon-nuc leus  repuls ion  

in the  op t i ca l -mode l  s cheme  is in progress .  

(37) C. V[LI,[: Nuovo Cimento A, 67, 178 (1982). 
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Fig. 8. - Radial and energy dependence of the real potential for ~e0: a) central 
term V c and b) spin-orbit term W n =  " "(~ ~RI ~. The mesh steps are AE = 5 MeV and 
A(r/So) --: 0.075. 

Is the reul opticul potent ia l  (t.2a), constructed us a sum of potentials (6.1.1) 

and (6.19), u locul or u nonlocal potential? To give an unswer to this question 

wc recall tha t  in subsect. 2"1 it was pointed out  t ha t  the momen tum depen- 

dence of the  single-pt~'ticle pote~tial  in m~elear mut ter  arises pr imari ly  from 

the totul  un t i symmet ry  of the nuclear wave funct ion and only purtially from 

the uonloculity of the two-body potential .  Let  a0 be the nonloculity length 

ah 'eady int roduced in subsect. 2'.1. A theoret ical  scheme is, a t  least in prin- 

ciple, wortll of consideration if, at  the limit ao -* 0, the disappearance of the 

m o m e n t u m  dependence brought  about  by  the nontoctdity does not  cancel 

the m o m e n t u m  dependence generated by the total ly  untisymmetri( ,  nucle'~r 

wave funct ion:  should this occur, the foundat ions of quan tum mechanics would 
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Fig. 9 . -  Radial dependence of the real potential for ze0 for selected energies: 
a) central term Va c and b) spin-orbit term WR ~ UKV c. The resolution is A(r/so) = 0.03. 
1) E - ~  0MeV, 2) E =  10MeV, 3) E - ~  50MeV, 4) E ~  100MeV, 5) E - -  150MeV, 
6) E ---- 200 MeV. 

be  v io la ted!  Of course, this  f l m d a m e n t a l  aspec t  of the  p rob lem is also val id 

for  finite nuclei. The wave funct ion of the  incident  nucleon, in in terac t ion  

with the  A nucleons of the  t a rge t  nucleus,  undergoes the global an t i symmet r i za -  

t ion process pe r fo rmed  over  A + I  nucleons. I t  should be evident  t h a t  neg- 

lect  of the  r equ i remen t  t h a t  the  wave funct ion should be an t i symmet r i zed  

with  respect  to the  exchange  of the  incident  nucleon with a nucleon in the  
t a rge t  nucleus is a ve ry  misleading ( (approximat ion ~) (38). Thus,  the  source of 

(as) S.D. DR~LL: Phys. Rev., 100, 97 (1955). See also ref. (25). 
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the energy dependence of the real opti(.al potent ia l  lms to be identified in the 
momen tum dependence of the single-tmrticle po ten t ia l  energy, the former  be- 
ing deduced from the  l a t t e r  by  means of t ransformat ion  (6.1): in this way 
one can pic ture  the  dispersive propert ies  of finite nuclear  m a t t e r  as they  arc 
explored by  the  probe nucleon with er.ergy ~ .  Equat ion  (2.14) is the only 
available theoret ical  tool capable of providing single-particle potent ia l  energies 
which can be easily submit ted  to optical  t ransformat ion,  consistently with the 
s tabi l i ty  prescript ions of the ta rge t  nucleus. Many-body techniques,  apparent ly  

more retined, fail to reach this goal. According to the Hartrce-~'ock meth(~d, 
the expecta t ion value of the to ta l  energy of the nucleus is constructed using 
an  ,~utisymmetrized tr ial  nuclear wave funet ion of shell model type.  The cor- 
rec t  wave funct ion is determined by  var ia t ional  procedures by  minimizip~g the 
expectat ion value of the to ta l  energy. The necessary condit ion for the mini- 
mum is t ha t  the normalizat ion of the  single-particle w~tve functions should be 
unchanged:  this introduces a Lagrange nmltiplier,  which is arbi t rar i ly  identified 
with the single-particle energy. The determinat i(m of the L~gra~ge mult ipl ier  
implies the solution of a. complicated self-consistency problem, which requires 

lmmerical  work too massive even for large comput ing  machines.  The need 
to keep the  cah.ulations within reasonable bounds forces one to resor t  to 
approxim,~tions, which are responsible for the unsa t i s fac tory  results so far  
obtained.  In  conclusion, the opticsl  t ransformat ion (6.]) is pra(.ticable only 
by  v i r tue  of cq. (2.14). 

The convent ional  way of approaching the problem of the construction of 
real  optical  potent ia l  is bas(,d on the SchrSdinger equat ion expressed in integro- 
differential  form 

(9.50) {(1/2M) V" + E}yJ(r) ----fU(r, r')yJ(r') dr', 

where U(r, r') is the nonloeal  optical potent ia l  and, usil~g s tandard  notations,  

( 9 . 5 1 a )  F ( r ' )  " , . z  ~ . .  , . ---- .~ yjL(r )~ ~ L(0, ~') 
/,M 

Since the nonlocal  effects a.re expected to manifest  themseL'es in p rox imi ty  
of point  r, we expand  yJL(r') in Taylor  series about  r, 

3" 

(9.51b) ,(,v, , !} . VL ( r )  --: ~{(r'--r)~/n {(d/dr')'V,L(r')}, 
n=O 

Taking into account  t h a t  the classical equivalent  of the ra'dial derivat ive is 
propor t ional  to the momen tum k of the free r, ueleol~ e.I:d tha t  the potenti~,l 
must  s~tisfy the requi rement  of inv~ria.n(,e raider space refiectior,  from eqs. (9.50) 
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and  (9.51b) it  is found t ha t  

(9.52a) 

(9.52b) 

{(112 M) V" . -  E} ~(~"(r) = Vt'V)(r, E) ~0t~')(r) , 

V(~)(r, El  = ~. W,,(r)/,'~", 
,n=O 

W.(r) ---- {l / (2n)!}fU(r ,  r')(r'-- r ) " " d r ' .  

Fo r  ~V----1 V')(r, E) turns  out  to be l iaear ly  dependent  on energy E :  it is 
fommdly similar to the optical  potent ia l  (6.5) expressed in radial  effective- 
mass approximat ion;  in the considered case the nucleon effective mass M*(r) is 

(9.53) M / M * ( r )  - -  1 - I -  (MI2)f U(r, r ' ) ( r ' - -  r) 2 d r '  . 

For  N > 1 V~'~)(r, E) is a rough approximat ion  of the real  optical po ten t ia l  
derived f rom the single-particle solutions obta ined by  series in tegrat ion of 
eq. (2.1-1). Ill par t icular ,  for N = 2 potent ia l  V('2)(r, E) is formally similar to 
the  optical  po ten t ia l  deduced from model I and then  expanded  up to te rms 
in E ~ in McLaurin series. The energy dependence of V~(r, E) is ent i re ly  due 
to the  nonlocal i ty  of po ten t ia l  U(r, r'). Suppose tha t  U(r, r') be expressed 

in separable form, i.e. 

(9.54) U(r, r') = Uo{~ !r t r'l} G( I r - -  r ' l ) ,  

where G(I r -  r ' l) is tlle nonlocal i ty  function defined by eqs. (2.11). At the 
l imit  ao-->0, G ( I r - - r ' l ) - - ~ 6 ( r - - r ' ) a n d  f rom eqs. ( 9 . 5 2 ) a n d  ( 9 . 5 4 ) o n e  

deduces t h a t  

(9.55) lira VU~)(r, E) ---- Oo(r) , lim M*(r) = M , 
ao-~.o ao-~-o 

i.e. tile optical  potent ia l  bec, omes energy independent  as a consequence of the 
switching-off of the nonlocali ty and the nucleon effective mass identiiies with 

the mass of tile free nucleon (3~). Limits (9.55) disclose a serious drawback 
to eq. (9.50) as it  s tands:  indeed, the energy dependence of V~'~(r, E) must  

survive at  the l imit  ao --> 0 because the disappearance of the nonlocali ty can 
in no way suppress the monlen tum dependence of the single-particle potent ia l  

energy i~rising from the to ta l  an t i symmet ry  of the nuclear wave function.  
Thus,  the  nonh)cal po ten t ia l  U(r, r') must  possess a more in t imate  energy 

dependence,  i.e. 

(9.56) U(r, r') = U(r, r'; E ) ,  Uo{~ Ir + r'l} -- Uo(~ Ir ~ r'l; E } .  

(39) H. F>:slmACII: A~rbu. Rev. Nucl. Sci., 8, 49 (1958), formula (;31). 
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The source of the nonloe~flity of the optical  po ten t ia l  h'ts to be sought for 
in the intrinsic lmnlocali ty of the two-body potent ial ,  originally brought  to 
l ight by  nonadfi~batic t rea tments  of the meson theory  of nucle'tr for(.es, and 
in the nonlocal i ty induced by  many-body  effects on the nucleon-nueleon sc~t- 
ter ing in finite (and infinite) nuclear mat ter .  Equat ion (9.50) should be writ ten 
in the form 

(9.57) {(1/2M) V 2 + E}~v(r) fu (r ,  r', ~v(r', r")dr' dr" : r")  . 

I[owever,  po ten t ia l  U(r, r', r") character ized by  :~ double nonloculi ty should 
be e~mrgy dependent ,  because otherwise the optical-model scheme based on 
eq. (9.57) would imply the  violat ion of the Pauli principle. 

The problem of tinding :~ nonlocal  po ten t ia l  with an energy- independent  
real p:~rt capable of f i t t ing the s(.attering da ta  a t  all energies :~ppears to be 
somewh~t misleading: indeed, it  implies tha t  also the :~ntisymmetry effects 
c:~n be :~ccounted for by  the nonloc:flity. This puzzling consequence does not  

even come into t)l~y in the c'tse of the imaginary potent ia l ,  because the origin 
of its energy dependence is such t ha t  it can in no way be absorbed into a pre- 
sumptive  nonlocali ty.  In  the light of the above considerations, it  is interest ing 
to ex~mfine crit ically the nonlocal potent ials  constructed by FI~An_,; and LE3I- 
)I~m (4o), Pl,mvv and BVCK (~') and by ~Es"GELBRECIIT :~I1(t FIEDELDEY (42). 

In conclusion, potentfid (1.2a), const ructed as a sum of potent ials  (6.11) 
~l.lld (6.19), ('anllot be ('lassiiied sic et simpliciter as local or nonlocal: it is a real 
optical  potent ia l  wlti(.h has inherited,  through t ransformat ion (6.1) and con- 
sistel~tly with the stabil i ty prescriptions of the target  nucleus, the fully physical  
content  concealed in eq. (2.14). 

9"6 .  The imaginary optical potential. - A critical point  in the computa t ion  
of the imaginary opti(.al potent ia l  (7.19) is represented by the  evaluation of 
integral  V~(r, E), which presents  a twofold problem. Firs t  of all, the  summa- 
bil i ty of the integrund must  be ensured t~nd this requires funct ion c~(r, E) to 
obey suffi('ient regul~rity conditions. A second problem is :~ uni formly ,~ecurate 
oomput:~tion of the  integral  as a funct ion of r and A'. 

A sufficient condit ion of regular i ty  for c,(r, E) is obviously given by  its 
cont inui ty  as funct ion of r. A minimization procedure for the  discrete sum 
(7.31) is ve ry  unlikely to guarantee  continuous c~(r, E) (i ---- 1, 2) and for this 
ret~son we subst i tu te  (7.31) with the c()ntinuous expression 

(9.58) 
el 

- - - f [ % ( e )  - de = min imum , 
e~ 

(~o) "W. E. FRAUN and R. II. I,~'M.~FR: Nuovo Cime.nto, 5, 1564 (1957). 
(41) F. PxI~EY and B. BVCK: Nucl. Phys., 3 2 ,  3 5 3  ( 1 9 6 2 ) .  

(4~) (~. A. ~'NG~ELBRECI1T and H. FIED:ELD:EY: A'Wn,. Phys. (.V.Y.), 42, 267 (1967). 
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Fig.  10. - Exper imenta l  da ta  of the neutron-proton to ta l  cross-section a,,p (43). The 
solid l ine shows the fit obtained b y  eq. (9.59). 

w h e r e  ~(e) is e x p r e s s e d  b y  eq.  (7.:14) a n d  a ( e )  is a c o n t i n u o u s  p a r a m e t r i z a t i o n  

of  t h e  e x p e r i m e n t a l  n e u t r o n - p r o t o n  er(~ss-section in t h e  e n e r g y  r~nge  of  i n t e r e s t  

(e0)m~<e<(e~) . . . .  . F i g u r e  ] 0  shows  t h e  e x p e r i m e n t a l  d a t ~  f r o m  e - - ] . 1 8 .  

Fig.  11. - Radial  and energy dependence of coefficient el(r, E) for x-~C. Mesh sizes 
as in fig. 4. 

(43) The exper imenta l  da ta  have been compiled on the basis of information from the 
,NEA D a t a  Bank and the t i igh-Energy Reaction Analysis Group of CERN. 
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1.5 

Fig. 12.-- Radial and energy dependence of coefficient c2(r, E) for a2C. Mesh sizes 
as in tig. 4. 

�9 10 -~.~[cV to e - =  342.5 MeV (43) wi th  a c o n t i n u o u s  fit g iven  b y  the  f u n c t i o n  

(9.59) ~ . ~ ( e ) = ~  i ,+ (~?~-~-e+~ ,e i )Z-~-c~;e_ !  i ~ +  ~,c) ' , 

which ha, s been  in sp i r ed  by  a s imi la r  express ion  suggested by  13AWE et al. (~). 

0.5 

1.0 

o~ 1.o ~5 2'.o 2:s 3.o 
r/s o 

Fig. 13. - Radial behaviour of the integrand function of (7.19) for r-'c ai E = 10 MeV. 
Dots represent values computed directly, while the solid line shows the result of the 
interpolatio~t by means of ]'ad4 approximants. 

(44) S.J .  BAwE jr., E. [[ADDAD, J. E. I'I~RRY jr. and R. K. SMITII: Rec. Sci. Instrum., 
28, 997 (1957). 
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F ig .  14. - R a d i a l  a n d  e n e r g y  d e p e n d e n c e  of  t h c  i m a g i n a r y  p o t c n i i ' d  fo r  4 l i e :  a)  c e n -  

t r a l  p a r t  V[ ~, a n d  b) s p i n - o r b i t  t e r m  W I ~ UxV~ "~. M e s h  s t e p s  as  in  fig. 4. 

TABLI~] V I I .  - .Yumerical vaZues o] the coe]]icients o] o..l)(e) defined by (9.59) which /it 
best the experimental data. 

e-< 9 M e V  e ~ 9 M e V  

a 1 2 .584 85 6 .834 8 1 7 . 1 0  .2 

a2 1.741 943 4) 
a a - - 1 . 6 3 5 2 4 3  - - 3 . 0  

o.4 0 .100 389 5 ! .671 789" 10 -3 

o" 5 0 0 

a~ 0 .453 006 1 1.211 405 7 

a T 1.029 514 0 .120 895 3 

a s 0 .284  709 7 1.119 203 

a 9 0 .426 820 9 0 .149 606 3 
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A bes t - f i t  p r o c e d u r e  on t h e  e x p e r i m e n t a l  d a t a  g ives  t h e  v a l u e s  for  coeffi- 

c i e n t s  ~ of (9.59) s u m m a r i z e d  in t ~ b l e  V l I .  

T h e  n e c e s s a r y  c o n d i t i o n s  for  t h e  m i n i m u m  (9.58) :~re 

(9.60) s c~)= 0 ,  i = 1 , 2 .  

:For f ixed  v a l u e s  of r a l l d  E ,  t h e  u n k n o w n  p ,~ rame te r s  c~ - -  c~(r, E)  a t  t h e  

1) 
0 

-2 .0  2) 

-4 .0  

-6.0 ~ .,~ 
oX --8.0 

- 1 4 " 0 I ~  

- - 1 6 0 ~  I I l | 

a) 

2.0 

2) 
0 

--2.0 
, , ' ,  

-- 4.0 5 ~  b) 

- 6 . 0  

I , I I 
0 0.5 1.0 1.5 2t.O I 2.5 3.0 

r / s  o 

Fig. 15. - Radial  dependence of the imaginary  potent ia l  for 4IIe for selected energies: 
a) central  tern, V] ~' and b) spin-orbit  terin ] r  I = u i  Vc. Resolution as in fig. 5. 
1 ) E - - 0 M e V ,  2) E =  10 MeV, 3) E =  50MeV, 4) E - =  100MeV, 5) E -  150MeV, 
6) E - 200 MeV. 
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m i n i m u m  of ~)~(cl, co) fulfi l  e q u a t i o n s  

( 9 . 6 1 a )  

w h e r e  

(c~+eo)(C~ e,)J:,(c~) 
Ca . . . . . . . . . . . . . . . . . . .  

~ 1 -  (!0 

y,'~(c~) = (2c: __+ .fo + e,)F,(c~!, 
2(c~ + eo)(C.~--e,) 

r 

f a~v(e) de (9.61b) F,,,(co) -- i% ~- e);'; ' ~t - -  1, '2.  

eo 

Equ;~t ions  (9.61) giw; so lu t i ons  c~ c o n t i n u o u s  in r a n d  E t h r o u g h  t h e  c o n t i n u o u s  

Fig. 16. - Radia l  and energy dependence of tile imaginary  potent ia l  for ~2~,: a) cen- 
t ra l  pa r t  yc ,  and b) spin-or'bit term WI:= U]Vtl '. Mesh steps as in fig. 4. 
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fun(-t ions e0(r, E)  :~nd e~(r, E). :Fi~,~lres 11 a n d  12 show the  E-  : tnd r -depen-  
dence  of c~ ,~n(t c~., r espec t ive ly ,  in the  e:tse of ~'-C; similar  resul ts  h~ve been  
o b t a i n e d  for  4He a n d  ~O too. 

I n  o rder  to  c o m p u t e  in tegra l  (7.19c) wi th  a u n i f o r m  :~ecuracy as ~ h m c t i o n  

of r and  E,  we have  chosen  ,~ p rocedu re  based  on 1)a(i6 ~ p p r o x i m a n t s  of 

t y p e  I [  (~5). Af te r  h a v i n g  c o m p u t e d  t he  integra.nd func t ion  a t  t he  po in t s  of 

? 
>Z 

0 

-2.0 

-4.C 

-6.C 

-8.0 

--I0.0 

--12.0 

1) 
2) ~ f  

l , I , , I i , , 1 

s0l 
'~ 0 I1) ~ , ~  
:z 2) ' 

- 5 . 0  ~ 5) b) 

---,o.o 1"~'6) 

' o15 ,'.o ' 1.5 210 21.5 3.0 
t',/s 0 

Fig. 17. - Radial dependence of the imaginary potential for t~-C for selected energies: 
a) central term V ~ and b) spin-orbit term IV1= UxV o" Resolution in as fig. 5. 
1) E ~  0MeV, 2) E =  10MeV, 3) E : =  5031eV, 4) E ~  100MeV, 5) E =  150MeV, 
6)  E = 200 MeV. 

rp  e " " " (45) A .  G E N Z :  h s-algorithm antl some other opphcatzons o] Pad6 approximants in numer- 
ical a~alysis, in Pad6 Approximams, edited by P . P .  GR.~V~S Morn{Is (Bristol, 1972), 
p .  112-125. 

12  - I l  N u o v o  C i m e n l o  A .  
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in te res t  on the  r-axis for a given energ~z E, we look for a Cauchy interpola-  

t ion b y  a pol inomial  ra t iona l  funct ion 

. , 9 ~ ( r )  
(9.62) ~(r) -:  r c~(r, l / , )~(r ,  E) = Z-(r)" 

I n  order  to find the  coefficients of the  po lynomia ls  ~( r )  and  s use is made  

of the  e-algori thm (4s) in order  to accelera te  the  convergence of the cont inued-  
f rac t ion  method .  :Figure 13 shows a typ ica l  case of the behaviour  of the inter-  

pola t ing  Pad6 a p p r o x i m a n t  aga ins t  the  values  of the  in terpola ted  points.  

A s imilar  approach  based  on I)ad~ a p p r o x i m a n t s  has  also been used to com- 
pu t e  the  l imit  for r --> 0 of the  imag ina ry  spin-orbi t  po ten t ia l  US~ E) (7.22b). 

The radia l  and  ene lgy  dependence of the  cent ra l  p a r t  of the  imag ina ry  

po ten t i a l  V~(r, F,) and  the  imag ina ry  spin-orbit  funct ion W~(r. E) = U~V~ for 

Fig. 18. - Radial and energy dependence of the imaginary potential for 180: a) cen- 
tral part  170 , and b) spin-orbit term W I =  U IV c. Mesh steps as in fig. 4. 
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nucleons elastically scattered by 4He, ~-'C and ~eO are plot ted in fig. 14a), b), 
16a), b) and  :18a), b), respectively: more detailed information for selected en- 
ergies is plotted in fig. 15a), b), 17a), b) and 19a), b). 

0 

- 2 . 0  

- 4 . . 0  

- 6 . 0  

- 8 , , 2  

- l O . O  

-12.0 

1) 

.2 ) f 

I ~ , , | , . . I J 
~ -2.o' 

/ 

--I 2.Or ~6)/- : 1 ; 

0 0 .5  1.0 1.5 2.0 2 . 5  - -3 .0  
r/% 

Fig. 19. - Radial dependence of the imaginary potenti~fl for ~O for selected energies: 
a) central term V c and b) spin-orbit term W1---- UIV~. Resolution as in fig. 5. 
1 ) E =  05[eV, 2) I~=  105leV, 3) E== 505IeV, 4) E =  100MeV, 5) E :  150~eV, 
6) E = 200 MeV. 

10. - Conc lud ing  remarks .  

The basic idea followed in the construction of the optica.1 potential  for 
single-channel reactions is well summarized by the factorable single-particle 
potent ial  expressed by eqs. (3.30): the former concerns the description of an 
even-even target  nucleus, while the la t ter  generates, through t ransformation 
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(6.1), the real optical p,~)tential. The linking in momentmn space of tile internal 
solution with the external one a.t p = 2(0), together with their first-order 
deriva.tives, ~dlows one to transfer to tile description of the nucleon-nncleus 
scattering, n.tmely for p > Z(0), the parameters governinis the nmnlentun~ 
det)enden(.e of thc sint,de-particle potential for p <y~(0). Besides the continuity 
conditions fnllilled by the internal ~md extern,/1 solutions of eq. (2.14), the 
five energy-independent p,~rameters S'o, r/0, Cx, ~, fl are determined by taking 
into account a) the st~bility prescriptions of the target nucleus expressed by 
eqs. (4.22) and (l.29), b) the r.m.s, radius deduced fronl electron-nucleus 
scattering experiments (subsect. 9"2) and then used according to a ~ s a t z  (2.31), 
�9 rod c) the overall description of infinite nuclear matter  through tlle hydro- 
dynamical nucleon mass at)proxim',,tion, introdu('ed in subse(.t. 5"4: in con- 
(.lusion, all loose emts of the problems are tied uI) and there is no room fur 
empirical adjustments of the optical parameters, except for the lengths ).R 
and )-i. The radial and energy dependence of the real optical potential is 
strongly bound to the description of the nucleus ground state: indeed, eq. (3.28a) 
shows th,~t small variations of length ~ imply large variations of //. The 
complicated dependen(.e of the imaginary potential on Vc(r, E) also closely 
relates VC(r, E) to the mmleus ground sta.te. The theoreti(.al scheme outlined 
in this p~per makes it possible to disclose tile single-partMe potential under- 
lying current optical-model 'malyses: it is fotmd th%t the phenomenologi(.:d 
"~rbitr.~riness generally (~()nee'~.ls amazing t)ictures of monster-target mtelei, whi(.h 
do not exist. In eon(.h|sion, we have set up '~n overall theoretical scheme 
which is exactly the opposite of the elusive optil'a.1 models referred to 1)y 
][ODGSON~ I~S mentioned at the end of sect. 6. 

The total and ditlerential cross-sections for the seattering of nucleons from 
nu(.lei, together with the strength functions, depend on the form of tile optical 
potenti:~l in a very complicated manner. The capa.bility of the potentia.1 to 
fit the observed energy dependence only provides a necessary condition for 
testing its reliability. The sulticient condition is given by polarization data. 
Still, the optical potential turns out to be not unambigamusly determined by 
fits which generally a.re not quantit:~tively defined. An imI)ortant goal to pursue 
is to disentangle from the observed energy dependence the competing contri- 
butions arising from the indistinguishability of the incident nucleon and from 
intrinsic '~nd induced nonlocalities, the former being brought out by the pre- 
sumptive nonlocality of the two-body forces and tile latter by many-body 
effects. The current distinction between local and nonlocal t)otentials sounds 
somewhat quodlibetic. In fact, phenomenologieal potentials quoted in the lite- 
rature '~.s local might conceal nonloc,dities and vicc versa:  the latter aspect 
of the problem is conceptually embarrasing as it implies that  tim antisym- 
merry effects of the nuclear wave function are conceived of as equivalent to an 
effeetive nonlocality, a conclusion which must ele'~rly be reje(.ted. A careful 
examination of the influence of the variation of the form of the optical potential 
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on the shif t  ;u:d d;anpii;g of the  dift'ra(./ion Fat tel 'n  might  be illmninatiJ)g: 
in fact ,  o11(, should exiw(.t t ha t ,  for '~ g'iven in(.ident el:erg3- , a <, pure  ~/lc(.~dity 
tends  to shift  the p ' l t t e rn  ;',t large a.ngles, uhere~;s a <, t)ure ,> nor lcr  shills 
the  pa t t e rn  ~:t smal ler  an~'les ;',rid tends to weaken both  m;txiln,- a~d minima.  
The compar i son  of the  predic ted  value of the  zero-energy l imit  a t  the, origin 

of the eentra.1 p:,,rt of the real optical  po ten t ia l  with the vahtes extrat~olated 

f rom the a.nalysis of the da ta  is signiliea.nt only if the  etl'~ets arisil~.g f rom 

r elast ic seaLtering are e~refully accounted  for:  it is worthwhile to 

po in t  out  l h a t  faul ts  in t i t l ing procedures  might  s imulate  spuricus sm'f;~,ee 

ett'eets and  anomalous  values of th(, nucleon effective nmss. The qual i ty  of 
the  fit and the  numeri( ' ;d values of the  optical  1)aralnetels exh'a( , ted f rom 
the analysis  of the (tala are also inih'en(.ed by  the analyti(,  form (ff d(msily 

flm(.tion o(r). In  I)arti( 'uhtr,  this is t rue  for  tI:e Saxoll-~,V(io(]s d is t r i tmlien 

which makes  the spin-orbit  ? a r t s  of the po ten t ia l  divergev.l~ ; 't  r =  0 a~:d 

therefore is resi)onsible for mldue violence on the ol)tieal-mod(q informa- 
t ion derived f rom the overall  tit of the  data .  For  this reason 40('a will be 

examined  in a, subsequent  patwr,  assl~mil)g a, Gaussian tal :er  dis t r ibut ion ~hi(.]l 
gives finite values  for the spil l-orbit  potenli~:ls ;tt the m iKin. ~[]:e choice (d' rO(r ) 

given by  eq. (2.17) is mot ivat t :d  by  ttle lmrl.~ose (if fir.ding cut  to what  ex t en t  
the basic assumpt ions  (~f the shell and rl'liclll~ls-]~'erllli lllcdels (';:11 he used for 

buildiI;g up a m~ified theorelh .a l  deserit : l i(n t,f (:ven-e~(n H:(.lei with A<.16 

and  the  optical  inter; '( .tion cf mwle(ms with them.  F u r t h e r  inv('stigatioJ:s in 
this direction are in pr(~rt:ss. 

The heurist ic  role p layed  by  the hyl~erbolie I)~rtial dift 'erential equat ions 

(2.1) and (2.14) is remarkab le .  The m;~A hemal  teal s t ruc ture  of these equat ions 
outweighs the det~',ils (.on(,erning the t u o - b c d y  forces bo th  in the case of in- 
tinite lmelear m a t t e r  and in the  case of finite mwlei. The complicated interlaefi)~' 
of tile sil~.gle-p'~rtiele solnti(ms (',f eqs. (2.1) ",~:d (2.14) with II:e assceia/e  Cauchy 

problems is the  very  (.ause of the puzzling a t t i t ude  to lay all the  blame, 
for the m~s:~tisf;t(.tory results obtaiv.ed 1)y (.(mv(.ntioJ;al Ir( 'alnl( 'nts  eitl:er on 

the (.hoi(,e of the  tuo-bo(13- 1)otential or on the m~uiy-bo(ly deseril)tien (~f tile 
mt(,leon propaga t ion  in the ~m(.l(,ar nwdium.  }~quations (2.1) and (2.14) pr(;~,ide 
a theoretic:,,1 tool for expressing am~.lytieally tl:e si~:gle-parti(.le I:otel~tiale~:ero'y 

wi thout  resorti l :g to any  i)reeon(.~dved (,hoi(.e cf the mwleon-nr,(.l('on t~otential: 
in this regard we have endeavoured  to be fai thful  to Newt(m's  st:~tement 
<, hyt)otheses non tinizo ~>. 

We are ~rateful  to Dr.  L. S~LW~)O~: L Mrs, A. SPaLLA, Mrs, M. EVANS 

I~II0SPERI FLAVIAN[~ .~,II'. A .  I{A3IPAZZO and  Mr. G. SAL31ASO f o r  vahlable  help 
in the  l)rei)a,r'~tion of the  manus( ' r ipt .  

For the realization of the plots tile graphical i/a(.ka~'es MIZAllTEK, devel- 
oped in Milan by l)r. A. GIORGILLI~ and HBOOK/IIPLOT, developed at CEIIN, 
have been use, d. 
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Si de l inea  u n a  n u o v a  descr iz ione  d e l l ' i n t e r a z i o n e  di nuc leon i  con  nucle i  p : t r i -par i  e si 
e s a m i n a  in  d e t t a g l i o  la  d i p e n d e n z a  r ad i a l e  ed ene rge t i ca  del  po tenz ia l e  o t t i co  che de- 
scr ive  l ' i n t e r a z i o n e  di nuc leon i  con 4He, x2C e xs0. 

5l~epnaa MOde.rib ToMaCa-tl[>epMH x OIITEIqeCKHH nOTeHlltla,~ ,~.'L~ O~HO-Kaxa.TIbHblX peagHxfi. 

Pe3mMe (*). - -  Pa3BHBaeTC~ HOBBI~[ IIO~XOjl K onacaHmo ~IepHoro  B3ariMO~IefiCTarl~ 
HyKaoRoB C KoHeRHBIMR tIeTHO-qeTHblMK ~t/IpaMH. H c c a e ~ y m r c ~  pa~!aa~bHa~[ H 3Hepre- 
Trf~ecKa~t 3aBHCI~MOCTH OrlTI~IeCKOI'O noTeHuIlaJ/a, orlr~CblBalol/Iero B3aI~MO~IefiCTBrlSl HyK- 
J'IOHOB C 4He, 12C H ~eO. 

(*) IlepeaeOeno pec)amtue[t. 


