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Abstract The definition of Schrodinger flow is proposed. It is indicated that the flow of ferromagnetic chain is ac- 
tually Schrodinger flow of maps into S2, and that there exists a unique local smooth solution for the initial value prob- 

lem of one-dimensional Schrodinger flow of maps into Kahler manifolds. In case the targets are Kahler manifolds with 
constant curvature, it is proved that one-dimensional Schrodinger flow admits a unique global smooth solution. 

Keywords: Schrodinger flow, Kahler manifold, conservative law, sectional curvature. 

1 The definition of Schrodinger flow 

Let (N, w ) be a symplectic manifold, and let J be an almost complex structure on N such 

that 

h ( * ,  .) : =  w ( . , J  .) (1 .1 )  
is a Riemannian metric. It is well known that any smooth function f on N corresponds to a 

Hamiltonian vector field Vf, which is given by the relation 

d f ( v )  = W ( V ,  Vf ) .  

From ( 1 . 1  ) , one easily derives 

vf = Jgradf, 

where grad f denotes the gradient of f with respect to the metric h . The flow defined by the o. d .  

e. 

= J ( u ) g r a d f ( u )  

is called the Hamiltonian flow with the Hamiltonian function f .  
It is natural to generalize the notion of Hamiltonian flow to an infinite-dimensional setting. 

Let ( M ,  g )  be a Riemannian manifold and let X = Ck ( M ,  N )  ( k  >, 1 ) .  We may consider X as 

a symplectic Banach manifold with the symplectic form fl defined by 

Similarly, we define an inner product on the tangent bundle T X  by 

(v .w) . .  = I  h ( u ) ( ~ , w ) d v ~ ,  V u  E X ,  V V , W  E T.X. 
M 

If F E c l ( X ,  R )  is any functional, we let TF be the gradient of F with respect to the above in- 

ner product, i. e .  

d F ( u ) ( v )  = ( T F ( u ) ,  v ) ,  V v E T , X .  

* Project partially supported by the National Natural Science Foundation of China (Grant No. 19631020, 19701034) 
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Then one can show that the corresponding Hamiltonian vector field V F  ( satisfying d F (  u  ) ( v )  
= Q ( u ) ( v ,  V F ( u ) )  has the expression 

V F ( ~ >  = J ( u ) T F ( u ) .  

Definition. Let E ( u  ) be the energy of u  : ( M ,  g  ) + ( N ,  h ) . The Schrodinger flow is the 

flow induced by the Hamiltonian vector field V E .  
Recall that 

where in local coordinates 

The ~ ' - ~ r a d i e n t  TE of E is usually called the "tension field". We will follow Eells and Samp- 

son'li to denote the tension field of u  by r ( u  ) , i . e.  TE ( u ) = T ( u  ) . In local coordinates 

where rjk is the Christoffel symbol on the target manifold N .  The Schrodinger flow is thus de- 

fined by the equation 

Note that when N = C is the complex plane, eq. ( 1 . 2 )  is just the linear Schrodinger equa- 

tion 

However, it is nonlinear in general, and a main problem is the existence of the initial value prob- 

lem of ( 1  . 2 ) ,  i .  e. given a smooth map u  : M+ N, we want to find a classical solution of ( 1  . 3 )  
which satisfies, at t = 0 

u ( . , O )  = U O .  ( 1 . 3 )  

Generally speaking, this is still an open problem. 

2 Some known results related to the Schrodinger flow 

There is an interesting equation from physics known as the equation of ferromagnetic chain, 

and it has the form 

a ,  
- = u  X A u ,  u ( . , O )  = u,J, a t  ( 2 . 1 )  

where uo is a smooth map from a Riemannian manifold ( M ,  g )  into the unit sphere s2 in R ~ ,  

and x is the cross product for vectors in This may be considered as the simplest nonlinear 

example of the Schrodinger flow because eq. ( 2 . 1 )  can be written in the form of (1.2). 
Note that the right-hand side of eq. ( 2 . 1 )  can be rewritten as u  x r (  u ) ,  where the tension 

field is given by 

r ( u )  = Au + I  V u  12u, 
which is the tangential part of A u .  Note also 

J ( u )  : =  u  X :  T,s~+ T,S~ 
is just the standard complex structure on s2. Thus, we can write the equation in the form of 
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(1 .2) ,  and the flow of ferro-magnetic chain is actually the Schrodinger flow for N = S' . 
For the solvability of the initial value problem (2.  I ) ,  the only result on the classical solution 

is the following. 

Theorem 2.1"'. If M = S ' ,  then (2 .1 )  has a unique, smooth, global solution. 

For dim M 2 2 ,  there are no results even on the short time existence of a classical solution to 

(2 .1 ) .  However, we should mention that global weak solutions do exist, as was proved in refer- 

ences [2] and footnote'). 

If ( N ,  h ) is a Kahler manifold, then we can choose a complex local coordinate system in N 

so that the operation of J ( u ) is just a multiplication by i = F l  . In such a local coordinate sys- 

tem, the linear part of ( 1 . 2 )  is just the standard Schrodinger operator. In fact problem ( 1 . 2 )  

and ( 1 . 3 )  with small initial data can be written in the following form: 

a u  - 

- = i[Au + r ( u ,  u ) ( d u , d u ) ] ,  
a t  

u ( - , O )  = uo  : M +  Cn.  

Such initial value problems have recently been studied by Kenig et al. ['I and Hayashi-Hira- 

tals1. They required M = Rm and used Fourier transformation and methods in harmonic analysis 

to treat the problem. Under certain conditions on uo, they can prove the short time existence and 

even global existenece of a unique solution. For instance, ref. [2 ]  proved the short time existence 

under the condition 

whe rebo>3m + 9 / 2 a n d s l  = 2 m  + 2.  

It may be possible to use similar methods to study this problem for M = Tm , the m -torus. 

One may consult Bourgain ' s work on nonlinear Schrodinger equations[3'41. How ever, it seems 

difficult to apply such methods to the general case. Essentially the difficulty is that, when Fourier 

analysis is not available one does not know how to study in depth the linear Schrodinger operator 

on a compact manifold. On the other hand, the method used in ref. [ I ]  is to approximate (2 .1 )  

by a parabolic system and apply the classical energy estimates in a clever way. This method relies 

more heavily on the geometric structures of the equation, and it seems more suitable for the study 

of the general Schrodinger flow. 

In the next section we will give a generalization of Theorem 2 . 1 .  Here we point out that the 

uniqueness part in Theorem 2 .  1 actually holds for the general Schrodinger flow, more precisely 

we have the following. 

Proposition 2 .1 .  Let M be a compact Riemannian manifold without boundary. Then the 

C3 -solutions to the initial value problem ( 1 . 2 )  and  ( 1 . 3 )  are  unique. 

Proof. We need to use an equivalent form of the Schrodinger flow equation. Note that we 

can always imbed N isometrically into some Euclidean space RL  so that N is considered as a sub- 

manifold of R' . For any y E N, let P( y ).: RL -+ TJV be the orthogonal projection onto the tan- 

gent space of N at y . Then for any C2-map u : M -+ N C RL we have 

r ( u )  = P ( u ) A u .  

1)Hayashi. N., Hirata, H . ,  Global existence of small solutions to nonlinear Schrodinger equations, Preprint. 
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Thus, eq. (1 .3)  becomes 

a u  
- = J ( u ) P ( u ) A u  
at 

Assume now that u ,  v : M x [0, T ]  -+ N C R' are two solutions to the above equation with the 

same initial value at t = 0. Then 

a(u - v, = [ J ( u ) P ( u )  - J ( v ) P ( v ) ] A u  + J(v)P(v)A(u - v), 
at 

and we have 

Note that the first integral on the right-hand side is controlled by 

where constant C depends on the c2-norm of u . The second integral, after integration by parts, 

can be seen to be bounded by 

c j  ( l  V ( u  - 7,) l 2  + I  V ( u  - v )  I I  u - v I ) ,  
M 

where constant C depends on the c'-norm of v .  Therefore, we have 
I I 

where constant C depends on the c2-norms of u and v . Moreover, 

L d J  v u -  l 2  
2 dt M 

+ j (A(. - u). J(V)P(V)A(U - v)). 
M 

Note that the second integral on the right-hand side vanishes, because J ( u ) : T,N + T,N is anti- 

symmetric. For the first integral, after integrating by parts we see that it is bounded by 

where C depends again on the C3-norms of u and v . So setting f ( t ) = 11 u ( t ) - v ( t ) 11 $ 2 ,  

we have 

which gives 

f(t> < f(O)exp(Ct). 
Since f(O) = O a n d f ( t ) > O ,  wemust have f ( t ) ~ O ,  i .e .  u v .  Thiscompletestheproofof 

Proposition 2. 1 . 

3 Results in the one-dimensional case 

In this section we generalize the 1-D result in ref. [ I ]  to the case of general Kahlerian tar- 
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gets. 

Theorem. I f  M = S' and ( N , J , h ) is a complete Kiihler manifold, then the initial val- 

ue problem of the Schriidinger flow 

has a unique smooth solution on s1 X [0, T ) ,  for some T E (0, 1. Moreover, i f  N is compact 

and has constant sectional curvature, then T = 00, i . e . the solution is global. 

Remark. If N is a Kahler manifold with constant sectional curvature, then N has to be ei- 

ther a closed surface or a flat complex torus of higher dimension. 

Before proving the theorem we need to introduce our notations. For u € C' ( S' X [O, T ) ,  
N ) ,  let 

, a u  u = -  . a u  
and u = - a s  a t 9  

a a 
where - and - are unit vector fields on S1 and [ O ,  T ) ,  respectively. Both u' and u are consid- a s  a t  
ered as sections of the vector bundle u " T N  over s1 x [0, T )  . Let V be the natural connection on 

the bundle u * TN with respect to the Riemannian metric h on TN. We will use the simplified 

notations 

V,= V-1 and V,= V a  . 
as  a t  

Thus, if X is a section of u * TN we have in local coordinates 

and for X = u'  we have 

It is easy to see that V, h = V, u' . We also note that the tension field of u in this case is just 

r ( u )  = V s u ' .  

Since we will make use of Sobolev imbedding theorems, it is convenient to imbed isometrical- 

ly the manifold N into a Euclidean space R2 for some positive integer 1 .  Then we may consider N 
as a submanifold of R', and a map u : S' + N can be considered as mapping S' into R' so that the 

Sobolev-norms of u make sense. We will denote the norm of u E W" ( S' , R' ) by 11 u 11 b, p .  

Note that /I 11  O , p  is just the LP norm. 

Lemma 3 .1 .  Let N be a complete Riernanian manifold and let S 1  be a unit circle. If  u : 

s ' + ~ ~ c N  is a m a p  in wks2(s1, R ~ ) ,  where f 2  is a compact subset of N, then for any integer 

k>,l 

1 1  u 11 2,,2 < 2 11 Vck -'u' 11  i - 2  + C ( k ,  f 2 ,  11 U 11  k-1 .2) .  

Proof. The case of k = 1 is trivial, so we start with k = 2.  We have 

( v S u f ) "  = + ~ ~ ( ~ ) a , ~ P a , ~ ~ .  
It follows that 

I aau l 2  < 2 I vhu' l 2  + c ( n )  I U' l 4  

and 

11 u I1 ; , 2  < 2 I1  vs u' I1 ;,2 + C ( a )  I1 u' I1 t . 4 .  
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Applying the interpolation inequality (in dimension one) 
' 3 ll u' ll ;,4 < II U 1 1  0,2  11  U" 11 0,29  

we get 
3 II u II ;,2 < 2 /I Vs u'  II i - 2  + C ( f l )  II u I1 1.2 I1 u I1 2 , 2 ,  ( 3 . 2 )  

which implies the lemma for k = 2.  
For k>2, we note that 

v:-lu' = a;u + P,( U ,  a S u ,  ..., af-2)at-1u + Q ~ ( u ,  a+, . a - ,  a:-2u), 

where Pk and Qk are matrix and vector with polynomial components. By the imbedding theorems 

I/ U 1 1  C?' < Ck /I 24 1 1  k - 1 . 2 ,  

we get 

11 u / I  b , 2  < I/ v:Skl~' 11 0.2 + C(k9 fly 11 U 11  k-1 ,~) .  

The lemma then follows easily. 

T o  prove Theorem, we approximate (3 .1 )  by the following initial value problem: 

where E > O  is a small constant. It is easy to check that the equation with E > 0  is a parabolic sys- 

tem, hence local solutions exist (cf. e .  g .  ref. [7]). This means that for every e > O  there exists 

T,  E (0,  ] such that ( 3 . 3 )  has a unique smooth solution u, : S' x [0, T,) + N .  The crucial 

point now is to get the a priori estimates for u,. The following Proposition 3 . 1  gives the neces- 

sary estimates which hold for E = 0 ,  too. 

Proposition 3 .1 .  Let u = u, be a local solution of ( 3 . 3 )  with E E [ O , 1 ]  . There exists a 

constant T > O  such that the solution exists on the time interval [ 0 ,  TI and  satisfies the follow- 

ing estimates : 

dist,(u(.s, t ) ,  uo(s,  t ) )  < 1, V s  E s', t E [O,  TI, (3 .4 )  

/I Vku'( t )110,2<Ck,  v k ) , O ,  t E  [O,TI, ( 3 . 5 )  

where constunts Ck depend only on the initiul map uo and  the target manifold N.  
Proof. We first note that ( 3. 5 ) holds trivially for k = 0 because the energy E ( u ) 

decreases along the flow (3 .3 )  . In fact we have 

where we have used ( a ,  .) to denote the inner product w. r .  t .  the metric h on N and noticed that 

the complex structure j is anti-symmetric w. r .  t .  this inner product. It follows that 

11  u ' ( t >  11 ;,2 = 2 E ( u ( t ) )  < 2 E ( u o ) .  

Next, since N may not be compact we let 0 = I p E N : distN( p , uo  ( S' ) ) < 1 \ , which is 

an open subset of N with compact closure a.  Let 

T' = supi t  > o :  ~ ( s l , t ) c n I .  

Then for t < T' we have the following estimate: 
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= -  F j  I vS i  1 2  + E j < ~ ( U ) ( u ~ , i ) u ~ , i )  + ~ ~ R ( ~ ) ( ~ ~ , ~ ) J ~ ~ , L )  

< c ( a ) j  I L l 2  I u f  1 2 .  

Here R  is the Riemannian curvature of N.  In the above computation we have used the fact VJ 
= 0 (since N is Kahler) and 

( v s U , ~ v s L )  = 0. 

Since I U l 2  = ( 1  + E ~ )  I ~ ( u )  12, we have 

On the other hand, since E (  u )  = 1 /2  11 u '  II H < C ,  we have 

II u '  11 2 < C ( l  + 11 u" ll ;,2>, 
and from ( 3 . 2 )  we deduce 

It U" I1 02,2 < c ( a ) ( l  + 11 r ( u >  11 : , 2 ) .  

Hence 

ll u '  11 2 < C ( O ) ( l  + II r ( u >  11  i .2) .  
Substituting inequality ( 3 . 7 )  in ( 3 . 6 )  we see 

This ordinary differential inequality shows that for any constant K > I) r ( u o )  11 ;,*, we can find 

T *  = T* ( K ,  C ( 0 ) )  > 0 such that 

11  r ( u ( t ) )  11  t . 2  = 11 V s u ' ( t )  11  i . 2  < K for t E [ O ,  T *  I. ( 3 . 8 )  

We now continue our estimates. 

Changing the order of covariant derivatives of the 3rd order gives 

V, V , V S u f =  V S V , V s u f  + R ( u f , u )  Vsu '  
= V, [ V s V t u '  + R ( u f ,  h ) u ' ]  + R ( u ' ,  u )  Vsu '  
= v:, + V,,R(U' ,  u ) u '  + R ( v s u ' ,  h ) u '  

+ ~ ( u ' , V ~ d ) u '  + 2 R ( u f ,  4 )  V S u f .  
Thus, assuming t < T' so that u  ( s,  t ) E 0, we have 
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Since we already have the Co-control of u ' by ( 3 . 7 )  and ( 3 . 8  provided t < T * , and since by 

( 3 . 3 )  we have 
I ~ k ; / 2 = ( 1 + ~ 2 ) 1 V ~ S k + 1 ~ ' 1 2  V k > , O ,  

we know from the above inequality that 

where we have used ( 3 . 8 ) .  This implies 

1 1  V?u ' ( t )  1 1  ;,2G C 2 ( 0 , u O )  for t < T * .  (3 .9 )  

We note that a positive lower bound of T' can be derived from ( 3 . 9 ) .  Indeed, similar to  
Lemma 3 .1 ,  one can prove that 

I1 u 1 1  :,2 a 11 11  ;,2 + a n ,  II U 11 
The right-hand side of the above inequality has an upper bound given by ( 3 . 8 )  and ( 3 . 9 ) .  So, 
by the Sobolev imbedding CO + w',', we have 

II u ( t )  II co < M 
for some M >0,  assuming that t < min { T '  , T * 1 . Thus, we have 

s u p d N ( u ( s ,  t ) ,  u O ( s ) )  < Mt V t E mini T' ,  T *  1 .  
5 6 s1 

If T '  > T * we get the lower bound, so we may assume T' < T * . Then letting t -+ T' in the 
above inequality we see MT '  >, 1 ( recalling the definition of T ' ) .  Therefore, if we set 

T = min { l/ M ,  T " 1 , then ( 3 . 8 )  and ( 3 . 9 )  hold for t E [0, T ]  . Note that T depends only on 

N and uo .  
To  finish the proof of the a priori estimate ( 3 . 5 ) ,  we remark that for k >, 3 the proof is es- 

sentially the same as the proof of ( 3 . 9 )  and can be completed by induction on k . We leave the de- 

tails to the reader. Once we get the estimate ( 3 . 5 ) ,  by Lemma 3 . 1  we get the bounds for the 
Sobolv norms of the solutions. Then it is easy to see that the solution must exist on the time inter- 
val [0, T ] . Otherwise, one can always extend the time interval of existence to cover the interval 

[O,  TI (see ref. [ 5 ] ) .  This completes the proof of Proposition 3.1. 
Remark 3 . 1 .  If N is compact, then by the above proof, the number T in Pmposition 3 . 1  

depends only on the manifold N, the energy of the initial map and the L~ norm of the tension 
field of the initial map, i. e. 

T = T ( N ,  E ( u o ) ,  11 r ( u o >  11 0.2). 

Proof of Theore~n . By Proposition 3 .1 ,  we have the bounds for the wk, ( sl, R' )-norms 

of u, ( . , t ) for all k and t E [0, T I ,  and these bounds do not depend on e E ( 0 , l ) .  Using eq. 

( 3 . 3 ) ,  it is easy to show that the solutions u, are also uniformly bounded in w k P 2 (  S' X [O, t 1, 
R' )  . Then by the standard argument, we can infer the existence of a sequence E~ -+ 0 such that u, 

+ u in C " ( S '  x [ O ,  TI, R')  and u is a solution to problem ( 3 . 1 ) .  This proves the local exis- 
tence. The uniqueness follows from Proposition 2 . 1 .  

Now, let N be a closed Kahler manifold of constant sectional curvature K ,  and let u be the 
local solution of (3 .  1 ) which exists on the maximal time interval [0, T )  . Then we know (cf. the 
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proof of Proposition 3 . 1  ) that the energy is preserved by the solution u , i .  e .  

E ( u ( t ) )  = E ( u 0 )  V t E  [ O , T ) .  

Moreover, the following Proposition 3 . 2  tells us that the solution also preserves the integral 

That is, 

I ( u ( t ) )  = I ( u o ) ,  V t E (0, T ) .  

From ( 3 . 2 )  and the inequality proceding it, we know that the above identity implies 

I I T . ( u ( ~ ) I I ~ , ~ < C ( N , I ( ~ ~ ) )  V t E  [ O , T ) .  

Now, if T is finite, then we can solve eq. ( 3 . 1 )  to find a local solution u l  which satisfies the ini- 

tial value condition 

u , ( s ,  T - E )  = U ( S ,  T - E ) ,  

where O <  E < T is a small number. Then by Proposition. 3 .1 ,  the solution u l  exists on the time 

interval ( T - E ,  ?' - E + I]) for some constant I] > 0.  Since we have uniform bounds on 

E ( u ( t ) ) and 11 r ( u ( t ) ) ( 1  2 .  Remark 3.1 tells us that I] is independent of E . Thus, if we 

choose E sufficiently small, we have 

T , =  T - E + I ] > T .  

However, by the uniqueness result (Proposition 2 .  1 ), u l  and u coincide on S' x [ T - E ,  TI 
and they together form a smooth solution of problem ( 3 . 1 )  on S' X [0, T I ) .  This contradicts the 

maximality of T ,  showing that we must have T = 03.  In other words, the solution u is global. 

The proof of Theorem is completed. 

Now we prove the following proposition. 

Proposition 3 .2 .  Let N he a surface of constant curvature K . Then for any solution u of 

(3 .  I ) ,  

Proof. Since u satisfies eq. ( 3 . 1  ) we have 

The first integral on the right side can be seen to vanish, because after integrating by parts the in- 

tegrand becomes (V5 ;, JVs ;) = 0 .  Since N has constant curvature K ,  we have 

( R ( U ,  V ) W , Z )  = K ( ( U , W ) ( V , Z )  - ( U , V ) ( W , Z ) ) .  
Applying the formula to the integrand of the second integral on the right side we get 

On the other hand, we have 
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Combining this with (3 .11)  we get 

This finishes the proof of Proposition 3 .2 .  

4 Final remarks 

For the existence of a classical solution of the general Schrodinger flow, there are more ques- 

tions than results. Even in the 1-D case, if N is only almost Kahler ( i. e. J is not a complex 

structure) we are unable to prove the local existence. 

On the other hand, the example of the constant curvature case shows that conservation laws 

are very useful in obtaining global existence. It is therefore desirable to find new conservation laws 

for the Schrodinger flow, at least when N is a nice symmetric space such as CPn. 
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