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A b s t r a c t  

We pressent new Ky Fan type best approximation theorems for a discontinuous multivalued map on 

metrizable topological vector spaces and hyperconvex spaces. In addition, fixed point results are derived 
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1 Introduction 

In 1969, Ky Fan proved the following best approximation result: 

Theorem A ([6],The~ Let C be a compact convex set in a locally convex Hausdorff 

topological vector space X .  I f  f : C -~ X is continuous, then either f has a fixed point or there 

exist an x E C and a continuous seminorm p on X such that 

p(x - f x )  = dp( fx ,  C), 

where dp(fX, C) = i n f {p ( f x  - y) : y E C}. 
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This well-known best approxiamation theorem due to Ky Fan plays an important role in 

approximation theory, fixed point theory, nonlinear analysis, game theory and minimax theorems. 

Among several applications, this result serves as an important tool in ascertaining approximate 

solutions of systems of equations. It has been extended in various directions by many authors 

(e.g. see [12] and [18]). Prolla [15] has generalized it for a pair of continuous functions on a normed 

space while Sehgal and Singh [1~]" obtained its generalization for continuous multifunctions. Fixed 

point theorems for multivalued maps and some other related results have been used to prove the 

existence of best approximation for multivalued maps (see e.g. [8,12,14,15]). 

A hyperconvex space is a metric space satisfying a property about the intersection of closed 

balls. Recently, approximation theory in hyperconvex spaces has been the focus of several re- 

searchers. For more information about approximation theory and related concepts in hyperconvex 

spaces, we refer to [5,9,11,17] where further references are given. 

In this paper, we employ a variant argument, namely; use Ky Fan's intersection lemma to 

establish approximation results for continuous maps and a discontinuous class of multivalued 

maps, namely, *-nonexpansive maps on compact convex and noncompact convex sets in the 

settings of metrizable topological vector spaces and hyperconvex spaces. 

In Section 4, we establish Ky Fan type approximation results in hyperconvex spaces. Hyper- 

convexity facilitates in obtaining some results of Section 3 under weaker assumptions. Also, our 

results present multivalued analog of some well-known approximation theorems for hyperconvex 

spaces. 

In Section 2, we recall certain technical preliminaries and establish notational conventions 

for the sake of completeness. 

2 Pre l iminar ies  

Let X denote a topological vector space (TVS, for short). Throughout, we assume that its 

topology is tacitly generated by an F-norm on it; that is, there is a real-valued map, say, q on 

X such that 

(i) q(x) >_ 0 and q(x) = 0 iffx = 0; 

(ii) q(x + y) <_ q(x) + q(y); 

(iii) q(Ax) <_ q(x) for all x , y  E X and for all scalars A with IAI _< 1; 

(iv) if q(xn) ~ O, the q(Axn) ---4 0 for all scalars A; 

(v) if An -~ O, then q(Anx) ~ 0 for all x E X, where (An) is a sequence of scalars. 

The formula 

d(x, y) = q(x - y) 

defines a metric on X. A topological vector space X is called metrizable if there is a metric on 
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X such that  the metric topology coincides with the given topology. 

A single-valued selfmap T of a metric space (X, d) is called nonexpansive if d(Tx, Ty) <_ 

d(x, y) for all x, y C X. A generalization of this notion for multivalued maps has been introduced 

by Husain and Latit~7] as follows. 

Let X be a metrizable TVS, C C_ X and T : C ~ 2 x a multifunction. Then T is called 

*-nonexpansive (cf.[3,8,19]) if for all x, y E C and u~ e Tx  satisfying d(x, us) = d(x, Tx),  there 

exists uy E Ty satisfying d(y, uy) = d(y, Ty) such that 

d(u , uy) < d(x, y). 

Beg, Khan and Hussain [31, Hussain and Khan[ s] and Xu [191 have extensively used this concept in 

their investigations. Recall that x is a fixed point of T if x E Tx. 

A multivalued function T : C ~ 2 x is upper semicontinuous (usc) (lower semicontinu- 

ous(lsc)) if T - I ( B )  = {x E C : Tx  N B ~ O} is closed (open) for each closed (open) subset B of 

X. If T is both usc and lsc, then it is continuous. We denote by C(X) ,  the family of all nonempty 

closed subsets of X and H denotes the Hausdorff metric on C(X).  A map T : X ~ C(X)  is 

called H-continuous if it is continuous as a map from X into the metric space (C(X) ,H) .  If T 

is comapct-valued, then the two notions of continuity are equivalent (see [20]). 

The set of best approximations to x E X from C is a set-valued map defined as 

P c ( x )  = {y e c :  = d(x,C)}. 

If Pc(x) ~ r (singleton) for each x C X,  then C is called a proximinal (Chebyshev) set. In case 

Pc(x) is single-valued, it is called a proximity map (or a metric projection) and is denoted by p. 

Following Xu [191, we define the set (possibly empty), 

PT(X) = {U~ e Tx  : d(x,u~) = d(x, Tx)}.  

In general, *-nonexpansive maps are neither nonexpansive nor continuous as is clear from 

the following. 

E x a m p l e  2.1 (see also [8 ,Example  1.1]). Let T : [0, 1] --+ 2 [~ be defined by 

Then PT(X) = {~} for all x e [0,1]. 

that 

xe[0,{)u( ,1], 
1 

X ~ - - .  

2 

This implies that T is a *-nonexpansive map. Observe 

H(T(1/3) ,  T(1/2)) = H({1/2}, [1/4, 3/4]) = max{0, 1/4} = 1/4 > 1/6 = ]1/3 - 1/2 I. 
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So T is not a nonexpansive multivalued map. The map is not lsc because if we take V1/4 as a 

small open neighborhood of 1/4, then the set 

1 
T-'(V1/4) = {x e [0,1]: TxM V,/4 ~ r = {5} 

is not open. Hence T is not continuous. Note that 1/2 is a fixed point of T. 

A mapping f : C -~ X is called selector of the map T : C -~ 2 x if f (x)  E Tx.  For x E X, 

the inward set, Ic(x), of C at x is defined by Ic(x) = {x + r(u - x) E X : u E C,r  > 0}. The 

closure of Ic (x) is denoted by Ic (x). 

For a finite subset ix1 , . . .  ,xn} of a TVS X, we write the convex hull of {xx , ' . .  ,xn} as 

C o { z 1 , . . .  ,Xn} = oqxi : 0  ~ ~ i  _~ 1, a i  = 1 . 
i= l  i= l  

The following result known as Ky Fan's intersection Lemma [6] is needed. 

T h e o r e m  B. Let C be a subset of a TVS X and F : C ~ 2 x a closed-valued map such 

that Co(x l , . . .  ,Xn) C_ Un=lF(Xi) for each finite subset i x1 ,""  ,xn} of C. If F(Xo) is compact 

for at least one Xo in C, then [7 F(x) ~ r 
zEC 

Let C be a convex subset of metrizable TVS X and g : C ---} C a continuous map. Then g 

is said to be 

(i) almost affine if 

d(g(rxl + (1 - r)z2),y) <_ rd(gzl,y) + (1 - r)d(gx2,y), 

(ii) almost quasi-convex if 

d (g(rx, + (1 - r)x2), y) < max{d(gx,, y), d(gx2, y)}, 

w h e r e x l , x z E C ,  y E X a n d 0 < r < l .  

A metric space (Y,d) is said to be hyperconvex if MoB(xo,r~) ~ r for any collection 

{B(xa,ra)}  of all closed balls in Y for which d(xa,x~) _< ra + r~ (see e.g.[2]). An admissible 

subset of a hyperconvex space Y is a set of the form M~B (x~, ra),  where {B (xa, r~) } is a family 

of closed balls centered at the points xa E Y with respective radii ra. It is well-known that  

an admissible subset of a hyperconvex space is itself hyperconvex (see e.g [9])�9 A subset E of a 

metric space Y is said to be externally hyperconvex (relative to Y) if for a given family {xa } 

of points in Y and a family {r~} of real numbers with d(xa,x~) < r~ + r~ and d(x~, E) <_ r~, 

we have naB(x~,r~)  n E ~ r It is shown in [2] that an admissible subset of a hyperconvex 

space Y is externally hyperconvex relative to Y, and externally hyperconvex subsets of Y are 

proximinal in Y. Thus, if E is externally hyperconvex in Y and x E Y, then there is h E E such 

that  d(x, h) = d(x, E). For more information on externally hyperconvex spaces, we refer to [9]. 

A subset E of a metric space Y is said to be weakly externally convex (relative to Y) if E 

is externally hyperconvex relative to E U {z} for each z E ]/". More precisely, given any family 
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{x~} of points in Y all but at most one of which lies in E, and any family {r~} of real numbers 

satisfying d(x~, xz)  <_ r~ + r~ (with d(x~, E) < r~ if x~ r E) implies that M~B(x~, r~) M E ~ r 

(see [5] for more details). 

In what follows we use E ( Y )  to denote the family of all bounded subsets of Y which are 

externally hyperconvex. 

3 Approx ima t ion  Resu l t s  

Khan, Thaheem and Hussain [l~ have recently established the following pair of Prolla type 

approximation theorems on the basis of Ky Fan's intersection lemma (i.e. Theorem B) and the 

arguments used by Carbone [al. The proofs of our results will rely on these two theorems. 

T h e o r e m  C ([10]'Thr~ Let C be a nonempty compact convex subset of a metrizable 

TVS  X and g : C ~ C a continuous almost quasi-convex onto function. I f  f : C --+ X is a 

continuous ]unction, then there exists y E C such that d(gy, ]y)  = d( fy ,  C). 

T h e o r e m  D (]10]'The~ Let C be a nonempty convex subset of a metrizable T V S  

X and g : C ~ C a continuous almost quasi-convex onto ]unction. Suppose f : C --+ X is a 

continuous ]unction. I f  C has a nonempty compact convex subset B such that the set 

D = {y E C:  d ( f y ,gy )  < d ( f y ,gx )  for  all x E B}  

is compact, then there exists y E D such that d(]y,  gy) = d( fy ,  C). 

The "selections" have been studied and used in a number of disciplines over the last ffty 

years. Recently, Agarwal and O'Regan [1], Espinola, Kirk and Lopez [5], Hussain and khan [s], 

Khamsi, Kirk and Yanez [9] have utilized "selections" to obtain fixed point and approximation 

results for multivalued maps. In general, a nonexpansive multivalued map does not admit a 

single-valued nonexpansive selection. However, *-nonexpansive maps and hyperconvex spaces 

share this property. 

We establish here new Prolla type approximation results by using continuous selectors of *- 

nonexpansive maps on metrizable TVS and hyperconvex spaces. Our results contain as a special 

case the Ky Fan tye approximation results. 

The following result provides a generalized Prolla type best approximation theorem for 

*-nonexpansive maps. 

T h e o r e m  3.1. Let C be a nonempty compact convex subset of a uniformly convex metriz- 

able TVS  X and g : C ~ C a continuous almost quasi-convex onto map. If  T : C ~ 2 x is a 

closed convex valued *-nonexpansive mapping, then T possesses a nonexpansive selector f such 

that d(gy, f y )  = d( fy ,  C) for some y E C. Further, 

(i) I f  T : C ~ 2 c ,  then y is a coincidence point of g and T.  

(ii) I f  d ( f y , p f y )  = d(Ty,  C), then d(gy ,Ty)  = d(Ty, C), where p is the proximity map of 
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X onto C. 

Proof. A closed convex set in a uniformly convex metric linear space is Chebyshev, so Tx 

is a Chebyshev subset of X for each x E C. Thus for each x E C, there is unique ux E Tx  such 

that  {ux} = PT(x) e Tx. Since T is *-nonexpansive, therefore for each x, y E C, we get 

d( Pr(x), PT(Y) ) = d(uz, u~) <<_ d(x, y). 

This implies that  PT : C ~ X is a nonexpansive selector of T (i.e. PT(X) E Tx). By Theorem 

C, there exists y E C such that  

d(gy, PT(Y) ) = d( PT(y), C). (1) 

This proves the first part of the theorem. 

To prove (i), we observe that  d(PT(y), C) = 0 implies that gy = PT(Y) E Ty as desired. 

To prove (ii), we note that equation (1) and the assumption that d( fy ,p fy )  = d(Ty, C) 

imply 

d(gy, Ty) <_ d(gy, ]y) = d(fy, C) = d( fy ,p fy)  = d(Ty, C) << d(gy, Ty). 

Therefore, d(gy, Ty) = d(Ty, C). 

Next, we obtain a version of Theorem 3.1 without the compactness of C. 

T h e o r e m  3.2. Let C be a nonempty convex subset of a uniformly convex metrizable TVS 

X, g : C ~ C continuous almost quasi-convex onto function and T : C ~ 2 x a closed convex 

valued *-nonexpansive mapping, assume that C has a nonempty compact convex subset B such 

that 

(i) D = {z e C:  d(Tz, gz) <_ d(Tz, gx) ]or all x E B is compact. 

(ii) for each z e C, d(u~, gx) <_ d(Tz, gx), where z E C and satisfies 

d(uz, gz) <_ d(uz, gx) 

]or each x E C. Here uz denotes the unique best approximation of z from Tz. 

Then there exists y e D such that d(gy, Ty) = d(Ty, C). 

Proof. As in the proof of Theorem 3.1, PT : C -~ X is a nonexpansive selector o fT .  Define 

E = {y E C : d(PT(y),gy) <_ d(PT(y),gx) for each x E B}.  

As both PT and g are continuous, so E is a closed subset of C. Let y E E. Then for each x E B, 

we have (by (i)) 

d(Ty, gy) < d(PT"y, gy) <_ d(PTy, gx) = d(uy, gx) <_ d(Ty, gx). 

This implies that y E D. Thus PT satisfies all the conditions of Theorem D and hence there 

exists y E D such that 

d(gy, PTY) = d(PTy, C). (2) 
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From (2) and the hypotheses d(PTZ, gx) <__ d(Tz, gx), we get the inequality 

d(gy, Ty) = d(gy, PTY) = d(PTy, C) <_ d(PTy, gx) <_ d(Ty, gx) 

for all x E C. 

As g is onto, so d(gy, Ty) = d(Ty, C). 

Remark 3.3. (i) In case the map T is H-continuous instead of being *-nonexpansive, the 

conclusions of Theorems 3.1 and 3.2 hold (the similar proofs carry over). 

(ii) If we consider T : C ~ 2 c in Theorem 3.2, then y becomes a coincidence point of g and 

T. 

(iii) All the results obtained so far hold good when X is a Fr~chet space. 

4 Approximation in Hyperconvex Spaces 

(b) 

(c) 
Then T 

(i) 

(ii) 

onto C. 

We begin with an analog of Theorem 3.1 under weaker conditions. This also gives a multi- 

valued extension of results of Sine [17'c~176 and Espinola, Kirk and LSpez [5,The~ 

T h e o r e m  4.1. Let C be a nonempty compact convex subset of a hyperconvex metrizable 

TVS X , g  : C ~ C a continuous almost quasi-convex onto map and T : C ~ 2 x.  Suppose that 

either of the following conditions (a), (b) and (c) holds: 

(a) T is *-nonexpansive and for each x E C, Tx  is externally hyperconvex. 

T is continuous and Tx  is bounded and externally hyperconvex for each x E C. 

X has unique metric segments and T is closed-valued *-nonexpansive. 

possesses a continuous selector f such that d(gy, fy )  = d(fy,  C) for some y e C. Furhter, 

if T : C -+ 2 C, then y is a coincidence point ol g and T; 

if d(fy,  ply)  = d(Ty, C), then d(gy, Ty) = d(Ty, C), where p is the proximity map of X 

Proof. (a) Each Tx  being nonempty externally hyperconvex is proximinal, therefore PT(X) 

is nonempty for each x E C and PT(X) = B(x, r) M Tx, where 

r = d(x, Tx). 

PT(X) being the intersection of admissible and externally hyperconvex sets is externally hyper- 

convex for each x E C [9'Lemma'2]. So, PT : C -'~ E(X) is nonexpansive by the *-nonexpasive 

axiom of T. Thus by [9, Corollary 1], PT has a nonexpansive selector f : C ~ X which is also 

a selector of T. By Theorem C, there exists y in C such that  d(gy, fy )  = d(fy,  C). This proves 

the first part of the result. 

The proof for (i) is simple and we omit it. 
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To prove (ii), we note that the equality d(gy, fy)  -- d(.fy, C) and the hypotheses imply 

d(gy, Ty) < d(gy, .fy) = d( fy ,  C) = d( fy ,p fy )  = d(Ty, C) <_ d(gy, Ty). 

(b) The selection theorem of [9, Theorem 1] implies that T has a continuous selection 

f : C -~ X. Then, by Theorem C, there exists y E C such that d(gy, fy)  = d(fy,  C) and 

following the arguments similar to those in (a), we get the proof for (b). 

(c) We observe that a hyperconvex metric space with unique metric segments is a complete 

R-tree [see 11, Theorem 3.2]. Further, a closed subtree of a complete R-tree is Chebyshev [see 11, 

p. 70-71]. Thus, PT(X) in Tx  is unique fo each x in C and hence PT : C ~ X is a nonexpansive 

selector of T. So, the result follows from (a). 

The following theorem is a multifunction analog of the results of Sine [1~] and Espinola, Kirk 

and Lhpez [5] for hyperconvex normed spaces�9 

T h e o r e m  4.2. Suppose that C is a nonempty convex and weakly externally hyperconvex 

subset of a hyperconvex norrned space X and T : C ~ 2 x satisfies either of the conditions (a),(b) 

and (c) of Theorem 4.1. Let M and K be compact subsets of C with M being convex. If  for each x 

in C \ K, x ~. PM (Tx), then T possesses a continuous selector f such that d(y, fy)  = d(fy,  Ic (y) ) 

for some y E K. If, in addition, d ( fy ,p fy )  = d(Ty, Ic(y)), where p is the proximity map of X 

onto C, then d(y, Ty) = d(Ty, Iv(y)). 

Proof. As in the proof of Theorem 4.1, T has a continuous selector f in all the cases (a), 

(b) and (c). Thus, PM(fX) C PM(Tx) for each x e C. So, by assumption x r PM(f(x)) for each 

x e C \ K .  Thus, by Theorem l(i) of Park [13], there is y in K such that d(y, ]y) = d(fy,  (It(y))). 

Since C being weakly externally hyperconvex is proximinal, therefore ply  is a nonempty subset 

of C. By hypothesis, d( fy ,p fy )  = d(Ty, (Iv(y))), and hence we get 

d(y, Ty) < d(y, f y) = d(fy,  (Iv(y))) < d(fy,  C) <_ d( fy ,p fy )  = d(Ty, (It(y))) <<_ d(y, Ty). 

Finally, since compact hyperconvex subspaces have the fixed point property for continuous 

single-valued mappings [5], the selection theorem [o,whe~ and Theorem 4.2 of [5] yield the fol- 

lowing best approximation result for compact weakly externally hyperconvex set in hyperconvex 

metric spaces which is, in fact, a multifunction analog of Theorem 5.4 of [5]. 

T h e o r e m  4.3. Suppose that C is a nonempty compact weakly externally hyperconvex sub- 

set of a hyperconvex space X and T satisfies either of the conditions (a),(b) and (c) of Theorem 

4.1. Then T possesses a continuous selector f such that d(y, fy)  = d(fy,  C) for some y E C. If, 

in addition, d ( f y , p f y ) =  d(fy,  C), then 

d(y, Ty) = d(Ty, C), 

where p is the proximity map of X onto C. 

Remark 4.4. If we consider T : C ~ 2 c in Theorem 4.3, then we obtain the following fixed 

point result (Corollary 4.5) for *-nonexpansive and continuous maps which extends several well 
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known results such as Theorem 3.2 of [7], Theorem 2 of [19], Corollary 4 of [9] and Corollaries 

3.3 and 3.4 of [11]. 

Co ro l l a ry  4.5. Suppose that C is a nonempty compact weakly externally hyperconvex 

subset of a hyperconvex space X and T : C ~ 2 c satisfies either of the conditions (a),(b) and 

(c) of Theorem 4.1. Then T has a fixed point. 
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