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Abstract 

In this paper, we firstly define a decreasing sequence {Pn(S)} by the generation of the Sierpinski gas- 

ket where each Pn(S) can be obtained in finite steps. Then we prove that the Hausdor~ measure H ' (S)  

of the Sierpinski gasket S can be approximated by {P"(S)} with P"(S) / (1+1/2"-3)"  ~ H'(S) < P"(S) .  

An algorithm is presented to get P'~(S) for n ~ 5. As an application, we obtain the best lower bound of 

H'(S) till now: H'(S) > 0.5631. 

Key words Hauadorff measure, sierpin~ki gasket, approximation method 
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1 In t roduc t ion  

It is one of basic problems to calculate Hausdorif measure of sets in fractal geometry. It 

is well known that the Hausdorif measure of the Cantor middle-third set is 1. In [AS99], Ayer 

and Strichartz gave an algorithm for computing the Hausdorff measure of a class of Cantor sets 

in finite steps. Zhou et al got some estimates of Hausdorff measure of fractal sets including the 

*This paper was presented in the Fractal Satellite Conference of ICM 2002 in Nanjing. 
Research supported by NSFC, grant 10041005, grant 10171045. 
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Sierpinski gasket, the Koch curve and so on (see [Z97A, ZF00]). However, there is no precise 

value of Hausdorff measure obtained for any classical self-similar set with Hausdorff dimension 

larger than 1. Even there is no algorithm to approximate the value arbitrary near in finite step. 

The Sierpinski gasket S is one of the classical self-similar set. Its Hausdorff dimension 
1 s dimH(S) = s = log23. Marion [M87l showed that Hs(S) _< [ 3  ~ 0.9508 and conjectured that  

this upper bound is the actual Hausdorff measure. Zhou [Z97A] pointed out that  the conjecture is 

not true by showing that  

H'(S) < ~4 78 0.9105. 

In [Z97B] and [ZF00], the upper bound was improved to 

and 

H~(S) < [ [  ~ 0.8900 

1927233,61, 
H~(S) < ~ l g 6 )  ~ 0.8308. 

Using the result of [Z97A], Wang [w99] obtained the best upper bound till now: Hs(S) <_ 0.8179. 

The lower bound is more difficult to be estimated. Recently, aia et al [Jzz] proved that  

Hs(S) >_ 0.5 by using mass distribution principle. 

In this paper, we will present one method to approximate the Hausdorff measure H~(S) of 

the Sierpinski gasket by a decreasing sequence {pn(s)} with 

Pn(S)/(1 + 1/ ( (x /3 .2n-4) )  8 _< H*(S) <_ pn(s)  

where Pn(S) can be obtained in finite steps. 

The paper is arranged as follows. In section 2, we define the sequence {P'*(S)} by the 

generation of the Sierpinski gasket and present the main theorem. Tile proof of the main theorem 

is given in section 3. Finally, in section 4, we give an effective algorithm to calculate P " ( S )  for 

n < 5 and obtain tile best lower bound estimate of Hs(S) till now. 

2 M a i n  R e s u l t s  

The generation of the Sierpinski gasket S can be discribed as follows. 

Choose an equilateral triangle A A B C  with side of length 1. Call it So. Join the midpoints 

of sides with lines and remove the open inverted equilateral triangle. Call the remaining set 

$1. For each of the three remaining triangles, join the midpoints of sides with lines and remove 

the open inverted equilateral triangle. Call tile remaining set $2 (see Figure 1). Repeating this 

process, wc obtain So D S~ D $2 D .-. D S,~ D . . . .  The non-empty set S = N,~>oSn is called 

the Sierpinski gasket. 

It is well known that tile Hausdorff dimension of S equals 1og23. In the sequel of this paper, 

s will always denote tile Hausdorff dimension of S. 
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From the generation of the Sierpinski gasket S, we can see that  for each n > O, Sn consists 

of 3 n equilateral triangles with side length 1/2 n. We denote these by A t ,  A ~ , . . . ,  A~,.  Each 

A T is called a n-level triangle. 

C 

A B 

s, 
Figure 1 

We define a measure v on R 2 such that  

C 

A B 

S, 

C 

A B 

s, 
The Generation of the Sierpinski Gasket 

for any i = 1 ,2 , . �9149  n. 

/'(So) = 1, 

. (A?)  = ~ ,  

~(a2 \ S) = O. 

(1) 

We call v the Sierpinski distribution. 

Remark 2.1. It is clear that  

for any Borel set U c R 2. 

Hs(U) 

Hs(S) 

Definition 2.1. Let t be an integer satisfying 1 < t < 3". 

j = 1, 2 , . . . ,  t and ij # ik for j # k. We define 

n t P({Ai i} j=,)  = 

Let ij 

3"1 t A"I 8 , . . % = x  ,~ _ I I'Jj----1 A61 
- -  V ( I I I  A n �9 t ~"j=l  it) 

6 { i , 2 , . . . , 3 " }  for all 

Definition 2.2�9 Let t be an integer satisfying 1 < t < 3", we define 

t"?(8) = min{P({A~ }~=x)}, 

where the minimum is over all possible subsets {A6}j= i n  t of t~isA'u3"Ji=l. 

Definition 2.3. Define pn(S) = min{Ptn(S) : 1 < t < 3n}. 

We will show that  Hs(S) can be approximated by P"(S) as 

T h e o r e m  2.1. (i) {P"(S)}~=I is a decreasing sequence. 

(ii) P"(S) <_ Hs(S) < P"(S)�9 
(1 + l / v / 3  �9 2"-4)  8 
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(iii) H ~ ( S ) =  lim Pn(S) and 

IH*(S) - Pn(S)J < (t - (1 + 1/(v '~.  2 n - 4 ) ) - ' ) P n ( S )  _< 1 -- (1 + 1/(V~" 2n-4)) - ' .  

3 P r o o f  of  T h e o r e m  2.1 

In order to prove the theorem, we need following lemmas. 

L e m m a  3.1. (Mass distribution principle, see IF90]) Let E C ll~ n, let ~ be a measure with 

support contained in E such that 0 < #(E) < cx). Suppose that there exist t >_ O, c > 0 and 5 > 0 

such that 

u(u) <_ clUI 

for all sets U with IUI <_ 5, then Ht(E)  >_ I~(E)/e. 

L e m m a  3.2. (see [ZF00]) Let E C I~ n be a self-similar set satisfying the open set 

condition and I3(~ n) be the Borel a-algebra on ~n. Let t be the Hausdorff dimension of E. For 

any U C IR n, we define 

FE(U) = [St ( E) / Ht( E n U)]IUI t 

if S t ( E n U )  ~ 0 ,  FE(U) : +oo if H t ( E n U ) = 0 .  Then 

H ' (E)  = inf{FE(U) : U E B(II~n)}. 

We will prove the following lemma by Lemma 3.1. 

L e m m a  3.3. Let s be the Hausdorff dimension of the Sierpinski gasket S. Let v be the 

Sierpinski distribution. Suppose that there exists c > 0 such that 

u(U) _< etY I' 

for all Borel sets U C S with 1 >_ iU] >_ v'~/8, then Hs(S)  >_ v (S) /c  = 1/c. 

Proof. First we will prove that for all Borel sets U C S, 

u(U) <_ ciU]'. (2) 

C 

/ 
A B 

v 

x 

Figure 2 S~ and A~, i = 1 , 2 , . . . , 9 .  
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If U contains only one point in S, then u(U) = [U[ 8 = 0 so that (2) is satisfied. Thus we 

can assume that IU[ > 0. 

We establish a rectangular coordinate system and arrange ~ 2 , i  = 1, 2 , . . . ,  9 as Figure 2. 

Let/X~ = / X ~ U A  2uzx3 2 , / x ~ = / x ~ U A  2U/x~ a n d / X ~ = A  2U/x~UZx9 2. 

A~ and A~ are called adjacent if they have a common vertex. Otherwise, they are called 

seperated. It is obvious that when/X~ and ZX~ are seperated, 

v/3 1 v/3 if x E A2 and y E A~." (3) d(x,y) >_ -'2-'4 - 8 ' 

Case  1. I f U n A ~  r  we can choose x, y, z e U s u c h t h a t x E A l , y E Z X . ~  

and z E /X~. If d(z,y) < vf3/8, then x E &.~ by (3). Using (3) again, we can see that 

d(z, z) _> v~ /8 .  Hence IU] _> v ~ / 8  so that u(U) <_ clU] ~. 

C a s e  2. If there exist only two l-level triangles A~ satisfying U n A~ 7~ 0. Without loss 

of generality, we can assume that U n A I r  0, U n A~ 7~ 0 and U n A~ = 0. 

Case  2.1. If U n A 2 ~ 0 or V n A32 ~ 0, then for any y e/X~ n U, we have d(x, y) >_ V~/8. 
Thus ]U] _> v ~ / 8  so that u(U) <_ clUI ~. 

Case  2.2. I f U n A ~ q i o r U n A  2 r 0, we can prove l U]_> v f 3 / 8 a n d u ( U )  <c[UI sby 
the same method as in case 2.1. 

Case  2.3. I f U  C /X~U/~ .  Let U* = { ( x - 1 / 4 ,  y) : (x,y) E U}. Then u(U*) = u(U) 
and U* C ZXl. We will prove u(U*) __< clU*l" in case 3. 

Case  3. If U is contained in some AI. Without loss of generality, we can assume that 
u c zxl. 

Let U1 = 2U. From the generation of S and the definition of Hausdorff measure, we can 

easily see that u(U1) = 3u(U). Thus, we have 

~(u1) ~(u) 

lUll 8 IVl' 

It is clear that U1 C S. 

If U1 is a set satisfying one of case 1, case 2.1 and case 2.2, then lUll _> v ~ / 8  so that  

u(gl) <_clgil'. Hence ~[~-8 = ~ <_c. 

If U1 is a set satisfying one of case 2.3 and case 3, we can find U2 such that 

IU2t = 2lUxl, U2 c S, and  v(U2) _ v(U1)  _ u (U)  
IU218 lu l l  ~ IUI 8 

By induction, there exitsts U,~ such that 

IUnI >_ v/3/8, Un C S, and v(Un) 
IUnl 8 

_ ~ ( u )  

IUI 8 
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From lull > Z / S ,  we have ~ < ~.. Th~s .(U) < elUI ~. 
- I U . I '  - - 

Combining case 1, case 2 and case 3, we have u(U) < clU}" for all Borel sets U C S. Thus, 

from the definition of v, we have 

~(u)  < ,4u)  = ~,(u n s) < elU n Sl ~ < clUl" = clUI ~ 

for all sets d C 1~ '~. By Lemma 3.1, H*(S) >_ t,(S)/c = 1/c. 

Proof  of Theorem 2.1. 

(i) It is clearly true. 

(ii) By Remark 2.1 and Lemma 3.2, Hs(S) < IU]~/~,(U) for all U E B(1~2), where we define 

IUIS/t,(U) = +oo if t,(U) -- 0. Thus we have Hs(S) < Pn(S) for all n E N by the definition of 
Pn(S). 

Now we will prove H~(S) >>_ P~(S) 
(1 + 1/(v/3 - 2n-4)) ~" 

Let U C S is a set with IUI >_ vf3/8. Define ,4 = {il/~}~ M U r ~}. Let V = Uic.aA[', rhea 

U C V, v(U) < u(V) and v'~/8 _< [UI _< IV[. For any x ,y  E V, there exist x*,y* E U such 

that x and x*, y and y* are contained in same n-level triangle, respectively. Thus Ix - y] < 

Ix - z ' l  + Ix" - u ' l  + ly" - vl < )uI + 1/2 ' ' -~. Hence IVl < IUI + 1 / 2 " - ' .  

From IUI _> 1/4 and the definition of P"(S), we have 

~(y) ,.,(v) IUI 1 ,~ 

v(g) < dy )  < i-]?~1~ (IUl + 1/2"-')" < .T-ff~(IuI + ~/---~-~ 2,,_,) 

~,(v) U "(1 + 1 / (v / -3 .2" -4 ) )  " < ( P " ( S ) ) - '  (1 + ] . / ( , , / 5 .2" -4 ) ) ' 1U I  '. <- T i ~  

By Lemma 3.3, we have 

s~(s) k 
P " ( S )  

(1 + 1 / ( ~ .  2 " - 4 ) )  ~ 

(iii) Since p1 (S) = 1 from the definition, using (i) and (ii), we have 

IH~(S)  - P" (S ) l  <_ (1 - (1 + : / ( , . / 3 . 2 ' * - 4 ) ) - ' ) P " ( S )  <_ 1 - (1 + 1 / (v '~ .  2" -4 ) )  -s.  

4 N u m e r i c a l  Ana lys i s  

It is easy to calculate p1 (S) and P2(S) by exhaust algorithm. Then, we design an efficient 

algorithm to obtain P"(S) for r~ < 5 by using the symmetry of tile Sierpinski gasket. 

Definition 4.1. We denote three midlines of A A B C  by Ii, 12 and Is. Wc call A~ ~ and A ]  

are symmetrical triangles if' they satisfy one of the following cases: 

�9 A~ ~ and A '.~ are symmetrical with respect to some lp, where p E {1, 2, 3}. 
J 
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�9 There exist A~, l~ and lq such that /X n and A~ are symmetrical with respect to /p ,  A~ 

and A7 are symmetrical with respect to lq, respectively, where p,q ~ {1,2,3} and k 

{1 ,2 , . . . , 3n} .  

Note t ha t /~n  is a symmetrical triangle of itself from the definition. Using the symmetrical 
n n K n K ~  = relationship, we can devide s^n~3" to different eqivalent classes K x , K 2 , with t ~ i  J i : l  " � 9  n v  

{/\pn(1),a~(~.),...,a~(up)) , where 1 _< p( i )  < p(2) < �9 < p(up) <_ 3 n and p(1) < q(1) for 

1 _< p < q < nu. A~(1) is called the first triangle in K ; .  We define r(/kn) = p i f /k  n E K n - -  p "  

E x a m p l e  4.1. In Figure 2, we can deride 2 9 5, o J {Ai}i= 1 to Z~ andK~ with g~ = {A~l, A 2 A 2l 

and g i =  {Ai, ZXg}. 
Definition4.2. L e t M  > 0 be agiven real number. Le t t  E { 1 , 2 , . . . , 3  n} be agiven integer. 

We call A n is a suitable triangle of K~ with (t, M) if r (A  n) _> p and [A n U Z~p(1) _ 

Denote the set of all suitable triangles of K~ with (t, M) by G(n, t,p, M). 

Remark4.1. A~(1) E G(n , t ,p ,M)  for any M > 0. 

Definition 4.3. Let p E {1,2, .,n,,}. If # G ( n , t , p , M )  < t, we define p n = M; �9 �9 t , p , M  

otherwise we define p n  = min{M,R~,n,M} with R n t,n,M t,p,M = min{P({A~}~=l)} ,  where the 
minimum is over all possible subsets n t {Aid}j=1 of G(n,t ,p,  M). 

Remark 4.2. min{M, P~(S)}  < pn < M. t , p , M  - -  

T h e o r e m  4.1. Let Mx > 0 be any given real number, Mn+l = p nt,p,Mn, p = 1,2, . . .  ,rig. 
Then Mn~+l = min{M1, Ptn(S)}. 

Proof�9 It is easy to see that pnt,p,Mp --> min{M1,P[~(S)} for any p E {1 ,2 , . . . , nu}  from 

Remark 4.2. Thus Mn~+l >_ min{M1,Pl*(S)}. 

On the other hand, note that j a/f ~,~+1 is a decreasing sequence, we have Mn~+I = M1 if t ~ ' ~ p J p = l  

M1 < P~(S). 

If Ma _> Pp(S), then there exist 1 _< il < i2 < . .-  < it _< 3 n such that p({/ki~}j=l)n t = 
P~(S) <_ M1. Let 

n B Ain~ e g ~  = {A,(,) ,  a~(2) , . . .  , an(u~)} 

satisfy r ( A ~ )  < r ( A ~ )  for all j r k, where p(1) < p(2) < . . .  < p(up). 

n p n t n t 
= , = { / x ~ } j =  1 i s  a 1. I f /X~  Ap(,) then from ({/ \ i i} j= , )  P~(S) < MI, we can see that 

subset of G(r~, t,p, Mp). Thus 

M,,.+x < Mp+l < ,~ t _ _ P ({Ai j} j=I )  = P~(S) < M,v+a. 

Hence M,~+I -- P~(S). 

2. If / ~  r /k~(x) and there exists q e {1,2,3} such that /kn~ and A n p(1) are symmet- 

rical with lq, then we can define {A,n jn }5=1t such that A. n,~ and Arnn~ are symmetrical 

with lq for j fi {1 ,2 , . . . , t } .  By the symmetry, we haveP({A~j  }i=1)t : P ( { A ~  }t--l) $ = 

P~(S).Since/X,~ = A~(1) and r(A~nk) < r ( A ~ i  ) for all j r k, we have M,~+I = Pr(S)  

from (i). 
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3. If Apk # Ap( U and there exist A'* '~ n n p,~ E Kn,andql,q2 E {1,2,3} suchthat Aik a n d ~  n A n 
P a  ' Pa 

n and Ap0 ) are symmetrical with lql and lq2, respectively. We can prove Mnv+x = P~(S) by 

the similar method as in (ii). 

From Theorem 4.1, let 

Qp = min {Pt~(S)}, 
l<i<_t 

we can calculate P'~(S) by the following algorithm. 

A lgor i thm 4.1. 

l < t < 3  n, 

�9 Set Q~ = 1.0. 

�9 F o r t = l , 2 , . . . , 3  n, 

�9 Set M~ = QP-1. 

�9 F o r p = l , 2 , . . . , n u ,  
�9 Determine G(n,t ,p,M~).  

�9 Calculate M~+ 1 = Ptn, p,M~. 
�9 Set Qp = M~.+I 

n �9 Set pn(s)  = Q3.. 

Using 

P ' ( S )  

p2(S )  

P (S) 
p4(S)  

Algorithm 4.1, we can get p n ( S ) , n  ~ 5 as follows. 

~ 1 ,  

= P~(S) ~ 0.950754, 

= P ~ 4 ( S )  ~ 0.910411, 

=P~0(S )  ~ 0.8697754, 

p5 (S)  = P586(S ) ~ 0.841718. 

From Theorem 2.1, we have 

Hs(S)  >_ pS ( s ) / (1  + 1 /2v~)  s. 

�9 Hence we obtain the best  below bound estimate of Hs(s):  

C o r o l l a r y  4.1.  Hs(s )  >_ 0.5631. 

Q u e s t i o n  4.1.  Which are the values of pn(S)  for n >_ 6? 
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