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Abstract

In this paper, we firstly define a decreasing sequence {P™(S)} by the generation of the Sterpinski gas-
ket where each P"(S) can be obtained in finite steps. Then we prove that the Hausdorff measure H’(S)
of the Sierpinski gasket S can be approzimated by {P™(S)} with P*(S)/(1+1/2"~3)* < H*(S) < P™(S).
An algorithm is presented to get P"(S) for n < 5. As an application, we obtain the best lower bound of
H*(S) till now: H*(S) > 0.5631.
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1 Introduction

It is one of basic problems to calculate Hausdorff measure of sets in fractal geometry. It
is well known that the Hausdorff measure of the Cantor middle-third set is 1. In [AS99], Ayer
and Strichartz gave an algorithm for computing the Hausdorff measure of a class of Cantor sets
in finite steps. Zhou et al got some estimates of Hausdorff measure of fractal sets including the

*This paper was presented in the Fractal Satellite Conference of ICM 2002 in Nanjing.
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Sierpinski gasket, the Koch curve and so on (see [Z97A, ZF00}). However, there is no precise
value of Hausdorff measure obtained for any classical self-similar set with Hausdorff dimension
larger than 1. Even there is no algorithm to approximate the value arbitrary near in finite step.

The Sierpinski gasket S is one of the classical self-similar set. Its Hausdorff dimension
dimg(S) = s = log,3. Marion M87l showed that H*(S) < %3’ ~ 0.9508 and conjectured that

this upper bound is the actual Hausdorff measure. Zhou(2%7Al pointed out that the conjecture is
not true by showing that

1
H*(S) < =T7° =~ 0.9105.
(8) < 377" ~ 09105
In [Z97B] and {ZF00], the upper bound was improved to

2—°(§)’ ~ 0.8900

H(5) < 227

and 1927233 ,61
H(S) <

< 7509380 (0
Using the result of [Z97A], Wang("% obtained the best upper bound till now: H*(S) < 0.8179.

)* ~ 0.8308.

The lower bound is more difficult to be estimated. Recently, Jia et al?%% proved that
H?(S) > 0.5 by using mass distribution principle.

In this paper, we will present one method to approximate the Hausdorff measure H*(S) of
the Sierpinski gasket by a decreasing sequence {P"(S)} with

PM8)/(1+1/((V3-2"7%)* < H*(S) < P™(S)

where P™(S) can be obtained in finite steps.

The paper is arranged as follows. In section 2, we define the sequence {P"(S)} by the
generation of the Sierpinski gasket and present the main theorem. The proof of the main theorem
is given in section 3. Finally, in section 4, we give an effective algorithm to calculate P"(S) for
n < 5 and obtain the best lower bound estimate of H*(S) till now.

2 Main Results

The generation of the Sierpinski gasket S can be discribed as follows.

Choose an equilateral triangle AABC with side of length 1. Call it Sy. Join the midpoints
of sides with lines and remove the open inverted equilateral triangle. Call the remaining set
Sy. For each of the three remaining triangles, join the midpoints of sides with lines and remove
the open inverted equilateral triangle. Call the remaining set S, (see Figure 1). Repeating this
process, we obtain Sy 2 .51 D Sy D -+ D S, D ---. The non-empty set S = Nyu>0Sy is called
the Sierpinski gasket.

It is well known that the Hausdorff dimension of S equals log,3. In the sequel of this paper,
s will always denote the Hausdorff dimension of S.
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From the generation of the Sierpinski gasket S, we can see that for each n > 0, S, consists
of 3" equilateral triangles with side length 1/2%. We denote these by A}, A%,...,A%.. Each
A} is called a n-level triangle.

C o
A B 4 ;
So S,

Figure 1 The Generation of the Sierpinski Gasket

We define a measure v on R? such that

V(So) = 1,
v(A}) = glrr, foranyi=1,2,...,3" (1)
v(R?\ S) =0.

We call v the Sierpinski distribution.

Remark 2.1. 1t is clear that

v(U) = ———H,(U)
~ H(S)
for any Borel set U C R?.

Definition 2.1. Let ¢t be an integer satisfying 1 < t < 3". Let i; € {1,2,...,3"} for all
j=12,...,t and i; # i for j # k. We define

3n| Uf'i:l A:Z:'Ia - IU;'=1 A::-Is

P{&5}i=1) = i = YU ALY

Definition 2.2.  Let t be an integer satisfying 1 < ¢ < 3", we define
PP(S) = min{P({A],}j-1)},
where the minimum is over all possible subsets {Af }}..; of (AP},
Definition 2.3.  Define P*(S) = min{P*(S): 1<t < 3"}
We will show that H#(S) can be approximated by P"(S) as
Theorem 2.1. (i) {P™(S)}3, is a decreasing sequence.

) P(S) «(8) < pn
W) e gy S HE P,
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(i) H*(S) = lim P"(S) and

n—o0

[H*(S) = P(S)| < (L= (1+1/(V3-2")7*)PY(S) < 1~ (1+1/(V3-2"7%) ™.

3 Proof of Theorem 2.1

In order to prove the theorem, we need following lemmas.

Lemma 3.1. (Mass distribution principlé, see [F90]) Let E C R™, let u be a measure with
support contained in E such that 0 < u(E) < co0. Suppose that there existt > 0,¢> 0 andd >0
such that

p(U) < U
for all sets U with |U| < &, then HY(E) > u(E)/c.

Lemma 3.2. (see [ZF00]) Let E C R™ be a self-similar set satisfying the open set
condition and B{R™) be the Borel o-algebra on R™. Let t be the Hausdorff dimension of E. For
any U C R", we define

Fp(U)=[H'(E)/H(ENU)}U|"

if H(ENU) #0, Fe(U) = +o0 if HENU) = 0. Then
HY(E) = inf{Fg(U) : U € B(R™)}.

We will prove the following lemma by Lemma 3.1.

Lemma 3.3. Let s be the Hausdorff dimension of the Sierpinski gasket S. Let v be the
Sierpinski distribution. Suppose that there erists ¢ > 0 such that

v(U) < UJ?
for all Borel sets U C S with 1 > |U| > V/3/8, then H*(S) > v(S)/c = 1/c.
Proof. First we will prove that for all Borel sets U C S,

v(U) < c|UP. (2)

Figure 2 S; and A?, i=1,2,...,9.
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If U contains only one point in S, then v»(U) = |U|* = 0 so that (2) is satisfied. Thus we
can assume that [U] > 0.

We establish a rectangular coordinate system and arrange A?,i = 1,2,..., 9 as Figure 2.

Let Al = AZUAZUAS AL =AU AZUAE and A} = AZUAZU AL

A? and A? are called adjacent if they have a common vertex. Otherwise, they are called
seperated. It is obvious that when A? and A? are seperated,

= -— if:veA?andyEA?. (3)

Case 1. IfUNA} #0fori=1,2,3, we can choose z,y,2z € U such that z € Al,y € A}
and z € A} If d(z,y) < V3/8, then £ € A3 by (3). Using (3) again, we can see that
d(z,z) > v/3/8. Hence |U| > v/3/8 so that v(U) < c|U|*.

Case 2. If there exist only two 1-level triangles A} satisfying U N A} # . Without loss
of generality, we can assume that UN Al #0,UNA} #0and UNn AL = 0.

Case 2.1. fUNA? #0or UNA} # 0, then for any y € A NU, we have d(z,y) > V3/8.
Thus |U| > v/3/8 so that v(U) < c|U|*.
Case 2.2. IfUNAZ#0or UnAZ#8, we can prove [U| > v/3/8 and v(U) < c|U|* by

the same method as in case 2.1.

Case 2.3. IfU C A2UAZ Let U* = {(z - 1/4,y) : (z,y) € U}. Then v(U*) = v(U)
and U* C Al. We will prove v(U*) < c|U*|* in case 3.
Case 3. If U is contained in some A!. Without loss of generality, we can assume that

UcAl

Let Uy = 2U. From the generation of S and the definition of Hausdorff measure, we can
easily see that v(U;) = 3v(U). Thus, we have

v(Uy) — v(U)
[l U

It is clear that U; C S.
If U, is a set satisfying one of case 1, case 2.1 and case 2.2, then [U;| > v/3/8 so that

v(U1) < c|Uy|°. Hence %%2 — VUgllJls} <e

If U; is a set satisfying one of case 2.3 and case 3, we can find U, such that

v(Uz) w(Uy) v(U)
Upl = 2], U»CS, and 522 = ACHY
|Uaf = 2|Uh|, U, A TF = 0]

By induction, there exitsts U,, such that

v(Us) _ v(U)

Unl > V3/8, UnCS, and = = 22t
Ul 23 AR
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v(Un)
lcrllls

Combining case 1, case 2 and case 3, we have v(U) < ¢|U)* for all Borel sets U C S. Thus,

From [Up| > V/3/8, we have < ¢ Thus v(U) < c|UP.

from the definition of v, we have
v(U) <u0) =v(UNS) <clUNSI <U)* = U
for all sets U C R?. By Lemma 3.1, H*(S) > v»(S)/c = 1/c.
Proof of Theorem 2.1.

(i) It is clearly true.

(i) By Remark 2.1 and Lemma 3.2, H*(S) < |U}*/v(U) for all U € B(R?), where we define
[UP/v(U) = 400 if v(U) = 0. Thus we have H*(S) < P™(S) for all n € N by the definition of
Pn(S).

w i ve H? P™(S)
Now we will prove H?(S) > 113 270

Let U C S is a set with |U] > v/3/8. Define A = {i|AZNU # 0}. Let V = U;c 4 AP, then
UcCV,vlU) <v(V)and V3/8 < |U| < |V|. For any 2,y € V, there exist z*,y* € U such
that z and z*, y and y* are contained in same n-level triangle, respectively. Thus |z — y| <
|z~ z*| + [a* =y + Jy* —y] <|U|+1/2"71 Hence |V| < (U} + 1/2771

From {U[| > 1/4 and the definition of P"*(S), we have

V(V) n—1ys U(V) iUI . 1 §
lvls (IUI + 1/2 ) S ]Vls (IUl + \/‘3’/8 271—1)
v(V

< IV(S)|U|S(1 + 1/(V3-271) < (PMS) ™1 + 1/(V3 - 27 H))*|U)°.

v(U) <v(V) <

By Lemma 3.3, we have

s PYI(S)
H(5) 2 (1+1/(V/3-274)s

(iii) Since P'(S) =1 from the definition, using (i) and (ii), we have

|H*(S) = PMS) < (1- (1+1/(V3-2°7%)*) P*(S) < 1 (1+1/(V3 - 2"~1)) =,
4 Numerical Analysis

It is easy to calculate P(S) and P?(S) by exhaust algorithm. Then, we design an efficient
algorithm to obtain P"(S) for n < 5 by using the symmetry of the Sierpinski gasket.

Definition 4.1.  We denote three midlines of AABC by Ly, I, and 3. We call AP and A}‘
are symmetrical triangles if they satisfy one of the following cases:

o A} and Al are symmetrical with respect to some [, where p € {1,2,3}.
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o There exist A}, I, and [, such that A} and A} are symmetrical with respect to I, A}
and A;-‘ are symmetrical with respect to l,, respectively, where p,q € {1,2,3} and k €
{1,2,...,3"}.

Note that Al is a symmetrical triangle of itself from the definition. Using the symmetrical
relationship, we can devide {AP}3, to different eqlvalent classes KT, K7,..., K} with K} =
{Ap(l), () p(up)}, where 1 < p(1) < p(2) < --- < p(up) < 3" and p(1) < ¢(1) for
1<p<g<n,. A:u) is called the first triangle in K'. We define r(A}) = p if A} € K.

Example 4. 1 In Fzgure 2, we can devide {A?})_; to K? and K2 with K? = {A2, A2, A2}
and K2 = {22, A2, A2, A2, A2, A2},

Definition4.2. Let M > 0 be a given real number. Let t € {1,2,...,3"} beagiven integer
We call A7 is a suitable triangle of K} with (¢, M) if r(A}) > pand [ATU A;‘(l)l Sgme M.
Denote the set of all suitable triangles of K7 with (t, M) by G(n,t,p, M).

Remark 4.1. Ap(l) € G(n,t,p, M) for any M > 0.

Definition 4.3.  Let p € {1,2,...,n,}. If #G(n,t,p, M) < t, we define P} ,, = M;
otherwise we define Py, ), = min{M,Rp, )/} with R}, \ = min{P({A}}}i-;)}, where the
minimum is over all possxble subsets {A} };o; of G(n,t,p, M).

Remark 4.2.  min{M,P}S)} < P[', ys < M.

Theorem 4.1. Let M; > 0 be any given real number, My, = t,?p,M,,’ p=12,...,n,.
Then M, +1 = min{My, P*(5)}.

Proof. It is easy to see that Py » > min{Mi, P*(5)} for any p € {1,2,...,n,} from
Remark 4.2. Thus M, 41 > min{M,, P?(S)}.

On the other hand, note that {M,,}""+1 is a decreasing sequence, we have My, 4, = M; if
M, < P}(S).
If My > PP(S), then there exist 1 < 4; < i3 < --- < iy < 3" such that P({AL}4.) =
PR(S) < M. Let
AL €Ky = {AL'(I)’AQ(z)’-~- A?(up)}
satisfy r(A],) < r(A}) for all j # k, where p(1) < p(2) < --- < p(up).

1 If A}, = AR, then from P({A], Yiz1) = PP(S) < My, we can see that {AD}l_, is a
subset of G(n,t,p, M,). Thus

Mg, 41 < Mpyy < P({A}}io1) = PA(S) < My 4.
Hence an+1 = Ptn(S)

2. If A} # A;‘(l) and there exists ¢ € {1,2,3} such that Al and A;‘(l) are symmet-
rical with g, then we can define {Ag}. ;-__:1 such that Ag, and A7, are symmetrical
with I, for j € {1,2,...,t}. By the symmetry, we haveP({A}, }i.,) = P({A! }i1)
PP(S).Sincedy,, = Ay and r(A7) < r(AF)) for all j # k, we have My, 41 = P[ (S)
from (i).
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3. FA} # A;‘(l) and there exist Ap_ € K7, and g, ¢z € {1,2,3} such that A}, and A7 , A7

and A;‘(l) are symmetrical with [y, and I,,, respectively. We can prove M, 41 = P*(S) by
the similar method as in (ii).

From Theorem 4.1, let

@i = min {F*(S)}, 1<t<3

1<i<t
we can calculate P*(S) by the following algorithm.

Algorithm 4.1.

e Set Q@ =1.0.

e Fort=1,2,...,3",

o Set M} =QP .
e Forp=1,2,...,n,,
e Determine G(n,t,p, M;).
o Calculate M, = P[,‘p‘M;-
e Set QF =M, .,

e Set P*(S) = Q%..

Using Algorithm 4.1, we can get P™(S),n <5 as follows.

P2(S) = P2(S) ~ 0.950754,

From Theorem 2.1, we have
H3(S) > P%(8)/(1 +1/2V3)°.

- Hence we obtain the best below bound estimate of H*(S):
Corollary 4.1. H*(S) > 0.5631.
Question 4.1. Which are the values of P*(S) for n > 67
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