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A b s t r a c t  

We consider the iterated function system { ,kz - 1 ,  ,kz + 1} in the complex plane, for A in the open unit 

disk. Let ~ be the set of )~ such that the attractor of the IFS is connected. We discuss some topological 

and geometric properties of the set M and prove a new result about possible corners on its boundary. 

Some open problems and directions for further research are discussed as well. 
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1 In t roduc t ion  and S t a t emen t  of Resul ts  

Consider the family of iterated function systems (IFS) in the complex plane {,kz- 1, Az + 1} 

depending on a parameter A E D := {z E C : [z] < 1}. Let A~ denote the attractor of the IFS, 

that is, A~ is the unique nonempty compact set such that 

Ax = (-1 + ,kAx) U (1 + AAx). 

The set 

M := {)~ E D : Ax is connected} 

(1.1) 

* This paper was presented in the Fractal Satellite Conference of ICM 2002 in Nanjing. 
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was studied by Barnsley and Harrington [4], who called it the "Mandelbrot set for the pair of 

linear maps," by analogy with the classical Mandelbrot set in complexdynamics. It is discussed 

at length in Barnsey's book [3,Ch.8], and studied in [8,5,7,6,10,1]. It is shown in [4] that 

{,~ E D : I~1 ~ 2-~/2} C s~A C {A �9 D :  I~l ~ 1/2). (1.2) 

Bousch [5], using the ideas of [9], proved that M is connected and locally connected. 

The following description of M is well-known; it follows from the fact that Ax is connected 

if and only if the sets in the right-hand side of (1.1) intersect: 

JP/= A e D : 3 { a k } ~ ,  a k e { - 1 , 0 , 1 } , l +  ak)~ k = O  . (1.3) 
k = l  

From (1.3) it is easy to deduce that ,Z4 is relatively closed in the unit disc D. 

The set A/I is clearly symmetric with respect to both axes, so we can always confine ourselves 

to the first quarter of the plane. See Figure 1, made by Christoph Bandt, which shows the part 

of A4 in {z: Rez) >_ O, Im(z) > O, Iz I < 1/V~}. 

"~".. " ~ :" :i ' ':" ~; '.r . ~.~ i . -  �9 , . . . .  . ~ .  

�9 b ; ; (  . . : : . . . : . # . . .  

Figure 1 The "Mandelbrot set'.s 

A peculiar feature of the set A4 is the "spike", or "antenna", on the positive real axis, from 

0.5 to about. 67, see [4,10,1] (of course, there is a symmetric one, on the negative real axis). It 

is exaggerated in the figure to make it visible. Bandt [1] conjectured that every nonreal point of 

the set ]vl is a limit point of the interior points of Jk4, in other words, M \ R C clos(int(.M)). 

In joint work with Hui Xu, we obtained a partial result in this direction. 

T h e o r e m  1.1 [11]. The set ~/[ f] {)~ E D : ]AI < 2 -1/2} has nonempty interior. Moreover, 
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let 

then 

1 1 31.X] 2 - 1}; 
H : = { A : ~ §  and 0 _ < ~ <  2 

~4 A int(H) C clos(intM)). 

In this paper we continue the investigation of the set 3/[, focusing on the local geometry of the 

boundary 0 M .  We address the following question: does A/I \ R have any "comers"? By a 

"corner" we mean a point zo E 0A/[ \ R such that  for some r > 0 and a < 7r, the intersection 

B(r ,  Zo) N sg[ is contained in a sector with the vertex at z0 and the interior angle a(here  B(r ,  Zo) 

denotes the open disk of radius r centered at z0). Figure 1 may suggest that  "corners" exist, but  

we conjecture that  there are none. So far, we have been able to prove a weaker result, showing 

that  if "corners" do exist, they are very special. 

T h e o r e m  1.2. Suppose that zo ~ OM \ R is such that B(r,  Zo) N , ~  is contained in a 

sector with the vertex at zo and the interior angle ~ < 7r. Then 

(i) zo is algebraic, and it has at most one algebraic conjugate in B(2 �9 t -5/s,  O) other than 

-20. 

(ii) The angle arg(zo) is rational modulo ~. I] 

arg(zo) ~P 
q 

for some p, q E N mutually prime, then q >_ 3, and a >_ - -  
1) 

271" 
Remark. If there is a "corner", then its interior angle is at least -~-, so there are no 

"antennas" other than those on the real axis. It also follows that  for any ~ > 0, there are finitely 

many "corners" with interior angle less than ~r - ~. 

2 P r o o f  o f  T h e o r e m  1.2 

Let 

Note that  

/ 3=  1 +  akzk :ak E {--1, O, 1},Vk �9 

k-----I 

by (1.3)i Fix zo E 0J~4 \ R. We can assume that Iz0[ < 1; then Izol < 1/v  by (1.2). Fix f E B 

such that  f (zo)  = 0; let 

f ( z )  -= 1 + E akzk" 
k = l  
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It follows from [2, Theorem 2] (taking k = 4) that functions of the class 13 cannot have a noreal 

double zero of modulus less that 2 . 5  -5/s ~ .73143. Thus, 

For any n �9 N we have 

f'(Zo) ~t O. (2.1) 

a .  = 0 r S (z )  + z" �9 13; 

an = 1 ~ f ( z )  - z n �9 B; (2.2) 

am = - 1  ~ / ( z )  = z" �9 I3. 

A simple application of Rouch~'s Theorem shows that g(z) = f ( z )  + bz n, for b �9 { -1 ,  1}, has 

a zero zl close to Zo, and zl �9 A/I for the appropriate choice of the sign. We need to know the 

approximate location of this zero. A good guess is provided by Newton's method, which yields, 

for n sufficiently large, in view of (2.1), 

Z l  ~ Z 0  - -  - -  

bz~ bz~ 
g'(z0) ~ zo S'(zo)" 

The needed estimates are contained in the following lemma. We introduce notation for a sector: 

S(zo, O, a) := {z = zo + re ir r > 0, r E [0 - c~/2, ~ + a/2]}. 

L e r n m a  2.1. For any r > O, there exist C1 > 0 and N E N such that ]or all n > N and 

all b �9 { -1 ,  1}, the ~unction f ( z )  § bz • has a zero in 

B(  C1 ]zo] n, z0) n S(zo, -barg(z~ / f '  (Zo), ~). 

Next we deduce the theorem, postponing the proof of the lemma to the next section. 

Assume that  there exist r > 0, a �9 (0, ~r), and 0 �9 [0, 2r),  such that 

B(r, Zo) n M c S(zo, O, a). (2.3) 

As explained above, for any n �9 N there exists b �9 { -1 ,  1} such that the zeros of f ( z )  + bz" lie 

in A~. By Lemma 2.1 and (2.3), it follows that for any ~ > 0, for all n sufficiently large, we have 

SCzo,O,~) O (S(zo,arg(z~lf ' (zo)) ,e)  U S(zo,-arg(z~/f 'Czo)) ,e))  ~t {zo}. (2.4) 

This immediately implies that arg(zo)/Tr �9 Q since otherwise {arg(z~/f '(zo)) :n  �9 N} is dense 

in [0, 21r), contradicting (2.4), see Figure 2. 
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Let arg(zo) = 7rp for some 0 < p < q, with p, q 6 N mutually prime (we can of course 
q 

assume that  Im(z0) > 0). Observe that q # 2. Indeed, otherwise we would have z0 = ilz01 �9 It is 

easy to verify that  

{iy:  y > 0} n M  = [2-1/2i,i),  

and 2-1/2i is not a "corner", in view of (1.2). 
E 

/ ~ \ 

Figure 2 

Let 0 < s < - -  
�9 / r  - -  o ~  

�9 Then for any n 6 N and any r 6 [0, 2~r), either 
2 

S(zo, r E) n S(zo, o, a) = {zo}, 

o r  

S(zo, -~,~) n S ( zo , e , e )  = {zo}. 

In view of Lemma 2.1 and (2.2), for all n sufficiently large, an E { -1 ,  1} is uniquely determined 

by the condition 

S(zo + anarg(z~'/f'(zo),~) n S(zo, 0, ~) # {zo}. 

The sequence {arg(z~ / f ' ( zo) )} ,>l  is periodic, so {an} is eventually periodic. This implies that  

f ( z )  is rational, hence Zo is algebraic. (More precisely, there is a polynomial, with integer 

coefficients not greater than two in modulus and constant coefficient one, which has Zo as a 

root)�9 All algebraic conjugates of zo zre zeros of f ,  and every nonreal zero comes with a complex 

conjugate�9 By [2, Theorem 2], the number of zeros of f ,  that  are less than 2 . 5  -~/s in modulus, 

is less than four, which implies the claim about the cojugates in Theorem 1.2(i). 

Finally, observe that  the set {barg(z~/f ' (zo))  : n 6 N,  b 6 { -1 ,  1}} has cardinality 2q and 

intersects every sector with interior angle greater or equal to lr/q. If 

~r(q - I) 
OL< - - ,  

q 

then we can find n arbitrarily large and b E {-I, I} such that 

barg(z$/f'(zo)) E (0 + ~/2 - 7r/2q,# + 7r/2 + 7r/2q) 
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which contradicts (2.4) for c > 0 sufficiently small�9 The theorem is proved. 

3 P r o o f  o f  L e m m a  2.1 

First we need the following 

S u b l e m m a  3.1. Suppose that g(z) is analytic in B(R ,  zo),[g(zo)] < rh,[g'(zo)[ _> 02, 

and [g"(z)[ <_ L for all z e B(R ,  zo). I] ~1 < rlg/2L and 2T/l/r/2 < R, then there is a unique 

zl e B ( 2~h /~ , zo )  such that g(zl) = O. 

Proof. Since [g"(z)[ _< L for z e B(R ,  zo), we have by Taylor's formula, 

[g(z) - g(zo) - g'(zo)(z - zo)[ < (L/2) .  [z - Zo[ 2 for z e B(R ,  Zo). (3.1) 

gCzo) Notice that  ~ = Zo g'(zo) is the unique zero of p(z) := g(zo) + g'(zo)(z - zo), and [~ - Zol -- 

g(zo) < rh On the circle { z :  [ z -  Zo[ = 2r/---L 1 we have 
g ' ( z o )  - ~" ~ 

27h 
Ip(z) l  > I g ' ( z o ) l .  Iz - z01 - Ig(~o)l  > r n .  - -  - 71 = ~1�9 

7/2 

Since 2 r h / ~  < R, the inequality (3.1), together with r/z < rlg/2L, implies 

[g(z) - p ( z ) [  < (n /2 ) .  (2rh/r/2) 2 < rh, for [z - z o ]  = 2rh/712, 

so by Rouch~'s Theorem, g(z) has a unique zero in B(2r/1/r/2, Zo), as desired. 

We are going to use the sublemma for g(z) = f ( z )  + bz n, with n sufficiently large. Let 

C1 := 4/[f'(zo)[. Since [zo[ _< 2 -1/2, then disk B(CI[Zo[n,Zo) is contained in B(0.8,0) for n 

sufficiently large; in this ball g is analytic and satisfies 

Ig"(z)l < 4(1 - I z l )  -3 < L 

for L = 4-53. We have [g(zo)[ = [Zo[ n and 

Ig' (zo) l  = I f ' ( z o )  + ~ z ~ ' - a l  _ I/'(zo)l/2 

for n sufficently alrge (recall that f ' (zo) # 0). Let R = 0.8 - 2-z2/2,rh = Izol", and r/2 = 

I f ' ( z o ) l / 2 .  Clearly, the assumptions of Sublemma 3.1 are satisfies for n sufficiently large, and we 

obtain that g(z) has a zero zl E B(41zol"/l/'(zo)l, zo) = B(C11zol n, Zo) for n sufficiently large. 

Using (3.1) again, we get 

Ig (Z l )  -- g ( Z O )  - -  ~ t ( Z o ) ( Z l  - -  Z0)l _____ ( L / 2 ) l z z  - Zol 2, 
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and since g(z l )  = O, 

Now observe that  

[ Z l  - -  (2 :0  - -  bz~/g'(zo))l = 12:1 - (2:0 - g ( 2 : o ) / g ' ( Z o ) ) l  

<_ (21g'(zo)l)-'Llzl - z o l  2 

5 lY'(zo)l-lL'C lzol 2n. 

g' zo) 1 i - n l z ~  
s ls <- 

2nlzol "-1 
If'(zo)l z 

(3.2) 

<_ C2lzol (~-')n (3.3) 

for some C2 = C2(3') > 0 since 3' < 2. Combining (3.3) with (3.2) yields that  

zl e B C3lzo[ n ' ,  zo fT-~o) / 

for some C3 > 0. But zx E B(C1]zo]n,zo) as well, 

large, Zl lies in the sector S(z0,-barg(z~/f ' (zo)) ,  

and since 3' > 1, we see that  for n sufficiently 

r as desired. 

4 C o n c l u d i n g  R e m a r k s  a n d  O p e n  Ques t i ons  

4.1 " C o r n e r s "  and  Spiral  Po in t s  

We think that  the set 0 M  \ R has no "corners". Theorem 1.2 implies that  if there is a 

"corner" at zo = pe ir then p is algebraic and e ir is a root of unity. Perhaps one could rule them 

out by a a combination of algebraic and analytic tools. 

Figure 1 suggests that many prominent points on the boundary of .h~ are spiral points. 

For example, Bandt [1, Example 6.2] states that  the solution A ~ 0.5739495 + 0.3689894i of 
z 3 

the equation 1 - z + - 0 is the tip of the biggest spiral. It should be possible to check 
1 - - z  

rigorously that  A is in 0.s and is in fact a spiral point. 

4.2 Local  S t r u c t u r e  of  A/t N e a r  t he  B o u n d a r y  

It is mentioned in [3] that the local structure of M near A E 0 M  resembles that  of the 

corresponding attractor Ax. While this is true to some extent, it appears that  there is more 

resemblance with the set A~{-1,0 ,  1}, attractor of the IFS consisting of three maps {Az - 

1, Az, Az+l}.  For one thing, if A E 0.~//\R, then it seems that [A] < 2 -1/2, except for A = -t-2-1/2i 

(this is based on Figure 1 and other computer pictures; we certainly do not have a proof of this). 

Then, assuming Re(A) ~ 0, we have that Ax has zero zrea and hence empty interior, whereeas 

it is conjectured that A is a limit point of interior points of M (and proved in Theorem 1.1 



�9 156. Analysis in Theory and Applications 20:2, 2004 

for )~ sufficiently close to the imaginary axis). On the other hand, Ax{-1,0,  1} has similarity 

dimension log3/logl)q, which is greater than two for I~1 > 1/vf3 ~ 0.577. Bandt [1, Example 7.4] 

states that  the point of minimum modulus on M \ R has modulus about 0.6366, so Ax{-1,  0, 1} 

at least has a chance to have nonempty interior. Computer pictures of the sets A~{-1, 0, 1} 

also support the idea that there is such a resemblance. There is a heuristic justification for the 

resemblance along the linear of [9], which runs as follows: 

Let A �9 r and let 
o o  

f(z) = 1 + Z akzk �9 I3 
k = l  

be such that f()~) = 0. For any n �9 N and any {bj}~= o �9 {-1,0,1} ~,  let 

Consider 

O0 

Rn(z) = Z aJzJ" 
j=n 

0(z) = / ( z )  - P (z) + z" e 
j=O 

For alrge n, the function g(z) has a zero r close to A, and similarly to the proof of Lemma 2.1, 

we can write 

Since 

{ ~'~bj~jj=0 : b j E  { -1 ,0 ,1}}  =Ax{-1 ,0 ,1} ,  

we see that r contains a subset which is "approximately" equal to 

A+ f,(A) Ax{-1 ,0 ,  1} �9 

Ques t ions .  Is it possible to make this correspondence rigorous? Which properties of 

Ax{-1,0 ,1} carry over into the local properties of ?4? In particular, if A~(-1 ,0 ,  1} has 

nonempty interior, is A necessarily a limit point of interior points of ~/[? 

It would also be interesting to estimate the local dimension (Hausdorff or boxcounting) of 

the boundary 0.h4, which seems to depend strongly on the argument of the point. Even if one 

can make a link with the sets A~{-1,0,  1}, it does not necessarily help, since the latter is a self- 

similar set with large overlaps, and we do not know of any meaningful estimates fo the dimension 

of its boundary. 
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