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Abstract
The vertices of an infinite locally finite tree T are labelled by a collection of i.i.d. real random
variables {X,}ser which defines a tree indezed walk S, = Z X.. We introduce and study the
#<r<o
oscillations of the walk:
— Xo
0SCe(¢) = llma—;ceorm,

where ®(n) is an increasing sequence of positive numbers. We prove that for each & belonging to a
certain class of sequences of different orders, there are £’s depending on & such that 0 < OSCs(£) < 0o.
Ezact Hausdorff dimension of the set of such §’s is colculated. An application is given to study the local

variation of Brownian motion. A general limsup deviation problem on trees is also studied.

Key words limsup deviation, tree-indezed walk, oscillation, Hausdorff dimension, Brownian mo-

tion, Percolation, random covering, indezed martingale, Peyriére measure.
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1 Introduction

Consider an infinite and locally finite tree T. Let @ be the root of T and let 8T be the
boundary of T', which is the set of infinite paths emanating from the root and going through no
vertex more than once. Suppose that we are given a family of real valued i.i.d. random variables

*This paper was presented in the Fractal Satellite Conference of ICM 2002 in Nanjing.
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{X,}ser indexed by the vertices of T. The process defined by

So= Y X

d<r<o

is called a walk indexed by the tree T, where 7 < ¢ means that 7 is on the shortest path from
o to the root. When T = N, we recover the usual walks.

In this paper, we study the oscillations of such a walk. For a boundary point § € 8T, we
use the symbol ¢ — £ to mean that the vertex o tends to the infinity through the path £. Let
® = {®(n)}a>1 be a sequence of increasing positive real numbers. We define the ®-oscillation of

the walk by
X
0SsC =li —, € a7,
¢(£) n;lj?p ‘I’(|U|) f
where |o| denotes the length of o which is the number of edges on the shortest path from o to

the root.

We would like to study the following problem. Given a sequence ®, are there points £ such
that OSCg(€) is non-zero and finite? We shall prove that in most cases, there is an infinite

number of such sequences ® of different orders (two sequences ® and ¥ have the same order if
$(n)
¥(n)
along different paths are different.

are between two constants). Therefore, we may conclude that the oscillations of the walk

More precisely, the following sets will be studied and their Hausdorff dimensions will be
calculated. For a real number a € R, denote

E*(®,a) = {€ € 0T : 0SCa(€) < a},
E.(®,a) = {€ € 0T : 0SCq(€) > a},
E(®,0) = E.(®,a) N E*(3,a).

To get the feeling, let us state our results for the special case (general results are stated in
§5) where T is a tree such that its branching number brT > 1 and equals to its upper growth
rate g7 and X = |Z| with Z ~ N(0,1), the normal law of mean 0 and variance 1 (see §2.2
for the definitions of brT and grT'). Let A be the solution of P(X < 4) = E%T We use "a.s.”
to abbreviate "almost surely” and use dimg to denote the Hausdorff dimension relative to the
natural metric of 87, i.e., d(¢,n) = e~ 77, where £ A n denotes the common path of £ and 7,
and [€ A 7| denotes the number of vertices on € A 7.

Theorem A. Keep the above assumption and notation. Then
(1) a.s. for all £ € 3T,

A<0SCi(E),  OSCz(£) < V2loghiT.
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(2) If B> A, then a.s.
. . _ 1
dimy E*(1, B) = logbrT - log PX<D)
(3) Ifa < /2loghtT, then a.s.

2
dimy E(vn.a) = dimy E.(vn,a) = logbtT — %

(4) Ifogy< % and ¢ > 0, then a.s.

dimy E(n",c) = dimy E.(n”,¢) = dimy E*(n”,¢) = logbrT.

Notice that logbrT = dimy 8T where dimgy denotes the Hausdorff dimension.

These results may be translated into local variation properties of Brownian motion. Let

B(t) be a linear Brownian motion. We define its symmetric variations at t € [0, 1] as

AnB(t) = 2B(tY) - B(t{) - B(t"),

(c) (o)

where i, ¢ and ) are respectively the center, left-end and right-end points of the dyadic

interval of length 27" containing t. Let A be the number such that

1

P(X < 4)= 3.

We have
(1) as. for all t € [0,1]

B A.B
Aslimsuplé"—(t)—| lim sup 12 5)]

b 1 e -—
n—o00 V2 n—ooo /227" log2"

(2) If B> A, then as.

, e o [AaB() l-log, — L
dim {t € [0,1]: llyrln_’solépﬁ < B =1-log, PX<B)

(3) If0< a <1, then as.

AnB(t .
dim {t €[0,1]: limsup—l—llg(—)l-— = a} =1-da
n—,00

V2 -2 "log2n

(4)If0< B <1and ¢ >0, then as.

B
dim {t € [0,1] : limsup _18.BOL__ = c} =1,

noo  [9.9-n]ogh on

here dim denotes the Hausdorff dimension relative to the Euclidean metric.
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Actually we will study a more general problem (more abstract to some extent). Given an
infinite and locally finite tree T and a sequence q = {gn}>1 of positive numbers such that
0 < ¢n < 1. We label each vertex (or equivalently the edge preceding the vertex) good or bad
independently with probability g, where n is the distance from the root to the vertex. A path
is said to be good (more exactly g- good) if it has infinitely many good vertices. Otherwise, it
is said to be bad (more exactly q-bad). We denote by G(q) the set of good paths and by B(q)
the set of bad paths. It is clear that 8T = G(q) |J B(q). We address the following questions.

Question 1. when is there almost surely a good path?

Question 2. what is the Hausdorff dimension of the set of good paths G(q) (when it is
non-empty)?

Question 3. when is there almost surely a bad path ?

Question 4. what is the Hausdorff dimension of the set of bad paths B(q) (when it is
non-empty)?

Let us state our answers to these questions for Markov trees (see §§3-4 for the general case).
The boundary of a homogeneous tree may be considered as the product space {0,1,--- ,m — 1}V
(m > 2 being an integer) if we consider every sequence as a path and make the convention that
every path is joint to a common root. A Markov tree is a subtree of a homogeneous tree with
boundary {0,1,--- ,m — 1}N (m > 2 being an integer). Let A be a m x m-matrix with entries 0
or 1. We assume that there is an integer M > 0 such that AM > 0 (i.e., all entries are strictly
positive). Let

Ya= {(zn)nzl : Azh,z‘h =1, Vk > 1} .

We call £4 the Markov tree with incident matrix A (we should say X4 is the boundary of a
Markov tree). In the theory of dynamical systems, X 4 is called subshift of finite type. Let p(A)
be the spectral radius of A. For n > 1, let T}, be the set of vertices having a distance n to the
root and let |T,| denote the cardinal of T,. It is well known that |T| ~ cp(A)"® (as n = o0)
with some constant ¢ > 0.

Theorem B. Keep the above assumption and notation.

(1) a.s. G(q) # 0 if and only if

0o
Z qann| =x®
n=1

(2) a.s. B(q)) # 0 if and only if

Z (1-q) (1 @n)|Tn I

3) If hm sup & +log - < dimpy OT, then a.s.

dimy G(q) = dlmHHT—hmsup-l-logql.

nsoo N
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< dimy 8T, then a.s.

n—oe

: 1¢
4) IfhmsuP;;bgl—qn

dim”B(q)=dimyaT—limsuplZlog !
j=1

n—oo TN P 1_qn.

We may qualify good path and bad path respectively as limsup deviation path and liminf

deviation path. Tree-indexed walks were first studied by Joffe and Moncayol?°M! where they were
24

interested in the limit distribution of \/l—l when |o| tends to the infinity. Many subsequent works
o

have been donelBP-LP.LPP] (see also [Bi, Fall, Fal2, GMW, H, Liu]). A work closely related to
Brownian motion is due to Y. Peres’ intersection equivalence [P]. Our consideration is motivated,
on one hand, by the study on local properties of Brownian motion, and on the other hand, by the
author’s previous work with J.P. KahanelFK! on random dyadic covering which itself is motivated
by the Dvoretzky covering problem [D1].

One tool for our study is the multiplicative chaos, developed in a general setting by Kahane
[K4] (see also [WW)]). A prototype is the Mandelbrot’s random cascades model [KP,Man] which
goes back to Kolmogoroff’s log-normal model for turbulence [Kol] (see also {Fri]). The main
gradient that we need is the Peyritre’s probability measure (see [K4]). Another tool is a version
of Frostman theorem which, in the case of tree, is a consequence of the max-flow min-cut theorem
due to Ford and Fulkerson(FFl. We also use a capacity criterion of percolation due to Fan!F1.F2

and Lyons(Lt:L2],

The materials are organized as follows. The section §2 starts with a recall of notation and
basic notions concerning trees, then it develops the needed tools mentioned above. The bad sets
and good sets are respectively studied in §3 and §4. In §5, we apply the results obtained in §§3-4
to study the oscillations of random walks. In §6, we examine the Gaussian case and translate

the results into local properties of Brownian motion.

2 Preliminaries

In this section, necessary notation is introduced and basic notions on trees are recalled
([Bo,C,N]). Several known results are stated for later use. These concern capacity, Frostman

theorem, dimension of measure, percolation, random covering and multiplicative chaos.

2.1 Basic Notions on Trees and Notation

Let N be the set of positive integers and 7 = |Jjo, N¥ (with convention N0 = {#}), the

family of all finite sequences. There is a binary operation on T, called juxtaposition, defined by

T%0 = (T, " ,Tn, 01, ,Om), for T=(Tj)?=l, o= (ok)i-
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(We may also write 70 = 7 *0). T is partially ordered by 7 < o, which means ¢ = 7 * 7’ for
some 7' € T (o is then called an extension of 7). The length of a sequence ¢ € T will be
denoted by |o|.

A tree T is a subset of 7 satisfying the two conditions
(i) 0eT,

(i)oceT=71€T (VTéO’).
The points in a tree T are called vertices. @ is called the root. The couples (r,7 * j) belonging
to T x T with |j| = 1 are called edges and then 7 * j is called a (direct) descendent of 7 which
is called the parent of 7 * j. Let N, be the number of descendants of ¢ € T. We shall always
assume that

(i) 1< N,<o00 (Vo€T).
That is to say, the tree T has no leaves and is locally finite. The number N, + 1 is called the
degree of o if 0 # 0.

Given an infinite sequence § = (& )r>1 € N*°. For any n > 1, we write {|n, = (&1, ,&n),
which is called the k-curtailment of £. If all k-curtailments of £ belong to a tree T, we say £ is
a boundary point of T. We denote by 8T the set of all boundary points of T. As a subspace of
N>, 8T is a compact metric space because of the local finiteness of T. We shall use the following
metric

d(g,n) =e KMl ¢ near,
where £ A 7 is the longest common curtailment of £ and 7. A boundary point £ € 8T is also

called an (infinite) path of T.

For £ € 8T and 7 € T, 7 < £ means the path £ passes by 7 or 7 is a curtailment of £. We
denote B, = {£ € 8T : 7 < £}. It is the ball of radius e~!"! centered at any path passing by 7.

2.2 Growths, Dimensions and Capacities

Let T, be the set of vertices of length n (considered as finite sequences). The lower and
upper growth rates of T are defined as

grT = liminf [T,|Y/", T = lim |T,[*/",
& n—00 n—00

where |T},| means the cardinality of T,,. When the limit exists, their common value grT is called
the growth rate . A more important quantity brT, called branching number, was introduced
by R. Lyons [L1]. It accounts more for the structure of the tree. It is defined as follows

brT = sup{/\ >1:infy A7lol> 0},

gEN
where 7 is an arbitrary cutset of T', that means a set of vertices such that any path £ € T

passes one and only one vertex in .
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These three notions are just the exponentials of three kinds dimension of 8T. In fact, the
boundary being a metric space, for any subset F C T we can define, as usual, its Hausdorff
dimension dimg F, lower box dimension dimgF and upper box dimension dimgF. We have
the relation

brT = edim" 07', ng — CMB&T, ET - edimBBT_

See [Mat] for a general account on dimensions. Actually, the logarithm of the branching number

of a tree was first introduced by H. Furstenberg just as the "dimension” of the tree [Fur].

In order to study the Hausdorff dimension, a useful tool is the capacity. Let @ > 0. The a-
Riesz kernel is defined by

Ro(€,m) = d(€,n)™% = e®®M1 | €5 € OT.

More general kernels may be defined as follows. A function ¥ on T is increasing if ¥(7) < ¥(0)
for 7 < 0. Any such a function defines a kernel K(£,n) = ¥(£ A7) (with the convention that
¥ (&) = lim ¥(a)).

a—&

Given a Borel probability measure p on 9T, we define its energy relative to a kernel K by

Ix = // K (& n)du(§)dp(n).
The K- capacity of a compact set F C 97T, denoted Capy F, is defined by
(Capg F)™! == inf{I} : p € M{T (F)},

where M (F) is the space of all probability measures concentrated on F. The K- capacity of
a Borel set B C 9T is defined by supy Capg F where the supremum is taken over all compact
subsets of B. When K = R,, we shall write I}, = I# and CapgF = Cap,F. The capacity
dimension of F C 8T is defined as

dimc F = sup{a : Cap, F > 0} = sup{a: 3p € M} (F), I¥ < o}.

Proposition 2.1. dimyg F = dim¢ F for any F C 9T.

This result allows us to estimate Hausdorff dimensions of sets through energy integrals
of measures. Such a result was first obtained by Frostman [Fro] in Euclidean spaces and was
generalized to homogeneous spaces by Assouad [A]. However 0T is not homogeneous unless the
degrees of T are uniformly bounded. But, in the case of trees, the last proposition is just a
consequence of the max-flow min-cut theorem on networks due to Ford and Fulkerson [FF]. We
point out that R. Kaufman [Kau] has recently generalized the equality dimy F = dim¢ F to
every complete separable metric space, including 0T for any infinite and locally finite tree T'.

We shall refer to the last proposition as Frostman theorem, despite of its different sources.

Recall now the (lower) dimension of a measure p defined by

dim g = inf{dim F : u(F) > 0}.
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(See [F1,F3] for more information). The following proposition, a consequence of Frostman theo-
rem, provides a way to estimate the Hausdorff dimension of a set by estimating the dimensions

of measures.

Proposition 2.2. Let F C JT be a Borel set F and u be a measure. Then
(1) dim F > dim g if u(F) > 0.
(2) dimp > 7 if I* < oc0.

2.3 Percolation and Covering

Let p = (pn)n>1 be a sequence of positive numbers such that 0 < p, < 1. We remove
edges at random from a tree T, keeping each edge in the n—-th generation with probability p,
and making decisions independently for all different edges of all generations. This procedure is
called p-Bernoulli percolation. If, with a positive probability, an infinite path emanating from
the root remains in the tree, we say that the percolation occurs. Let

JtAs|

1

ey Pn

K(t,8) := Kp(t,s) := (2.1)

There is a complete solution, in term of the above kernel K, to this p—Bernoulli percolation
problem, due to A. H. Fan(F1.F2) and R. Lyons([L1:L2D)

Proposition 2.3. A necessary and sufficient condition for the p—Bernoulli percolation to
occur i8 the Capg 0T > 0 where K is the kernel defined by (2.1).

This result was first stated in [F1,F2] for the special case of trees of uniformly bounded
degrees as a solution to a random covering problem. But the proof is the same for the general
case stated above. A different proof involving the electrical network technique was used in [L2]
and the dependence on the vertices of the probability is allowed.

Actually, the above result may be interpreted from random covering point of view in the
following way. In stead of saying that an edge is removed, we say it is covered. So that an edge
of n~th generation is covered with probability ¢, = 1 — p,,. We say a path ¢ € T is covered if
one of the edges (or equivalently vertices) on £ is covered. Let Jp (C 8T) be the (random) set of
all covered paths. We say a path £ is infinitely covered if an infinite number of edges on £ are
covered. Let Ji be the set of all infinitely covered paths. It is clear that

G(a) = Jg", Bla) =0T\ "

with g = (1 = pa)n>1.

2.4 Multiplicative Chaos on Trees

The general theory of multiplicative chaos was developed by J.P. Kahane®4l, The theory
holds on any metric space. But we recall it here just for the case of trees. The key part for us is
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the Peyriére probability measure. Let (P,) be a sequence of non-negative independent random
functions defined on 8T such that EP, (€) = 1 (V€ € T). They are called weights. Consider
the finite products

N
Qn€) =[] Pa(®)-
n=1

We call Qn(€) an indexed martingale because it is a martingale for each £ € 8T. For any u €
M{(8T), it was proved in [K4] that a.s. the random measures @ n(£)du(€) converge weakly to a
(random) measure that we denote by @ or @#. The random measure @ is called a multiplicative
chaos. If the following L? condition

[ [ T er@Pamauterdutm < oo (2:2)
n=1

is satisfied, the measure @ is not vanished and a probability measure @ on Q2x 9T, called Peyriére
measure, may be defined by the relation

/ (@, 6)dQ(w,€) = E / o, E)dQ(€)
Qx8T 8T

(for all bounded measurable functions ). If the distribution of the variable P, (&) is independent
of € € 8T, the weight P, is said to be homogeneous. The following fact will be useful to us.

Proposition 2.4. If the L*-condition (2.2) is satisfied and if the weights P, (n > 1) are
homogeneous, then Py(w,€)’s, considered as random variables on Q x 8T, are Q-independent.

Furthermore, we have the formula
EQh(Pn) = Eh(Py) Py

(for any Borel function h).

Remark that if a property relative to (w, £) holds @-almost everywhere, then almost surely
the property holds for @-almost every £. In the sequel, "almost surely” will be shortened to
"a.s.” and ”almost everywhere” to "a.e.”. The first is referred to the random sampling and the
second to the boundary point of a tree.

3 Bad Set B(q)

3.1 General Case

For any N > 1, consider the set J{," of paths which are covered at least N times. The
following relations are obvious

o]

=, =) JY. (3.1)
N=1 N=1
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If Jp, = OT a.s., we simply say that 0T is covered. Thus we have the following interpretation.
The percolation occurs if and only if 8T is not covered with positive probability. Or equivalently,
the percolation doesn’t occurs if and only if 9T is covered with probability 1. Now we state the
necessary and sufficient condition for the bad set B(q) to be not empty.

Theorem 3.1. Consider the p-Bernoulli percolation described above associated to the
kernel K defined by (2.1). We have
CapygdT = 0= P(0T = J:,"f) =1,
Capg 8T > 0 == P(8T = Ji) =0.
In other words, B(q) # 0 a.s. if and only if Cap, 8T > 0,.u)here gn=1—-p,.

Proof. Suppose Capy 8T = 0. For any v € T, let T be the subtree rooted at v. It is clear
that Cap, 8T = 0 (8T may be identified with a subset, a ball in 8T). By Proposition 2.3, 87"
is a.s. covered so that (J ¢, 0T is as. covered for any n > 1. Therefore 8T is a.s. infinitely
covered, i.e. J_li,"f = 8T a.s. because

[o o]

{Jinf =0T} =) { (J a7 is covered }
n=1 \veT,

Thus the first assertion is proved.

Suppose now CapgdT > 0. Then, by Proposition 3.1, we have
P(8T = Ji") < P(AT = J,) < 1.
However, the above argument shows that {8T = Ji*} is a tail event. Therefore we must have

P(OT = Ji) = 0.

Let p’ = (p!,) be a sequence similar to p. By pp’-Bernoulli percolation we mean a p-
Bernoulli percolation followed by an independent p’-Bernoulli percolation. We shall use this
device to estimate the size of the set of path which are not infinitely covered, i.e., the set Bq
with q = 1 —p (the notation should be self-understood). This idea was used in [K3] for studying
Dvoretzky covering. The following result gives estimates on the size of the bad set B(q) = 6T\J:,"‘
in terms of capacity.

Theorem 3.2. Consider a p-Bernoullt percolation with kernel K defined by (77). Con-
sider also a similar kernel K'. We have

CapK, (aT \ J‘i,nf) >0 as. < CapKKlaT > 0.

Proof. Suppose Capg 0T = 0. It is clear that KK’ is the kernel of the pp’-Bernoulli
percolation. By Theorem 3.1, P(8T = Jiol) = 1. That is to say, 87T is infinitely covered



Fan Asthua : Limsup Deviations on Trees - 123 -

by one of these two covering procedures corresponding to the p-Bernoulli percolation and the
p’-Bernoulli percolation. Notice that the o-stability of capacity implies

Capy (8T \ Jg¥) = sup Capyc: (9T \ VADE (3.2)

(see the formula (3.1)). Notice also that OT \J"," may be regarded as the boundary of the subtree,
obtained by cutting the tails of the paths which are covered at least N times. More precisely, if
€ = (&)r>1 € OT is covered at least N times and if &, is the N-th covered vertex, then {£c}i>n is
cut. Since the paths in 8T \J",V are not infinitely covered by the covering procedure corresponding
to the p—Bernoulli percolation, they must be infinitely covered by the covering procedure corre-
sponding to the p’~Bernoulli percolation. Apply once more Theorem 3.1, Cap. (8T \ Jl’;’ )=0
a.s. This, together with (3.2), leads to Capg: (8T \ Ji*f) = 0 as.

Suppose Capg k0T > 0. We claim that with positive probability we have
CapKI (aT \ J‘];) > 0.

Otherwise, 9T \ J}, is a.s. covered by the covering procedure corresponding to the p'-Bernoulli
percolation. So, 0T is a.s. covered by the covering procedure corresponding to pp’-Bernoulli
percolation, which contradicts Capg x0T > 0. Thus with positive probability we have

Capy (0T \ J) > Cap. (8T \ J}) > 0.
Since {Capy. (8T \ Ji*f) > 0} is a tail event, we have a.s. Capy. (8T \ Jirf) > 0.
It follows the Hausdorff dimension formula
dimy B(q) = sup {a > 0: Capg_x8T >0} as., (3.3)

where

3.2 Markov Trees and Spherically Symmetrical Trees

We examine two examples: the Markov trees and the spherically symmetrical trees. The
preceding results take more explicit forms. For two functions u and v, if there is a constant
C > 0 such that C~'v < u < Cv, we write u ~ v.

Lemma 3.1. Let v be the Parry measure on £ 4. We have

o]

1
Uityx S e\, V€ Ta, 3.4
02, p(A)"p1p2 - pn A (34)

n=1

where the kernel K is defined by (2.1), p(A) is the spectral radius of A. Consequently we have

n=1 n
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Proof. Let u and v be positive left and right eigenvector of A associated to p := p(A4), i.e.
u!A = pu® and Av = pv. Suppose that u and v are normalized so that

T= (770’771"" a7rm—1)

with m; = u;v; is a probability vector. Let

Uj

pij = Aij—-.

H " pu;

Then the Parry measure is,the Markov measure with transition matrix P = (p; ;) and initial

probability 7. That means

V(In(T1,Z2," yTn)) = Mz, Peyyza* " *Prac1za-

Notice that

V(In(zhz?: Ut axn)) = P—(n—l)“nAzx.za te Azn—lznvzn'

Let I,(t) be the n—cylinder containing ¢. Since Io(t) = £ 4, we have
= 1
Urt) = — / dv(z)
,;; D1P2 " P J I, (t)\In41(2)
= Z — Z V(Int1(t1, -+ ytn, Sn41))
n=0 PipzPn 8nt1Ftnt1
o0

1
= Z —T—_ﬂutl Atl t2 tte Atn—l in Z Atn 7‘n+lv‘n+l
n=0 PiP2" Pnp . Sn41Fbn41

kad 1

Q

,f;,plpz---pnp"'

Theorem 3.3. Consider a Markov tree T4 defined by the primitive matriz A (whose
spectral radius is denoted p(A)). For a given sequence q = (¢n)n>1 with 0 < g, < 1. Then

(a) a.s. B(q) # 0 if and only if
= 1

2 A1 —g)—g0) A—gn) =

n=1

(3.6)

(b) Furthermore, for any kernel K' defined by a sequence (p),), we have Capg.(B(q)) > 0
a.s., if and only if ’

o
2 A= AR en R (37)
(c) In particular, under the condition (3.8), we have a.s.
18
dimg B(q) = log p(A) — lirrln_’s;p - Z log o (3.8)

j=1
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Proof. Lemma 3.1 tells us that the potential Uk (t) of the Parry measure is nearly a
constant on %4, a property shared by the equilibrium measure of £ 4. Suppose the series in
(3.6) is divergent, i.e. the potential is every everywhere infinite. Then the argument used in
[F1,F2] shows that £ 4 is covered by the covering according to the p-Bernoulli percolation with
Pn = 1 — ¢gp. That means B(q) = @ a.s. Suppose now the series in (3.6) is convergent. Then
Capg(Z4) > 0 by (3.5) in Lemma 3.1. So, according to Theorem [NFL), B(q) # 0 a.s. Thus (a)
is proved.

The assertion (b) is a direct consequence of Theorem 3.2, because (3.7) means Capy g X4 >
0 by Lemma 3.1 and the proof of (a).

For (c), consider p}, = e=* (Vn > 1). The corresponding kernel is the Riesz kernel R,. Let
z = e® and consider the following Taylor series

o0 :L-ﬂ
,,g p(A" A -q)(1 —g2) - (1~ gn)

By (b) and the formula (3.3), edi™# B() j5 equal to the radius of convergence of the Taylor series.

Thus we get the formula (3.8) by using the Cauchy-Hadamard formula.

Suppose that T is a spherically symmetrical tree with numbers of descendants {mn}n>1.
We can consider 9T as the infinite group @, Z/m,Z. The natural measure on T is the Haar

measure v: any n-cylinder has a measure (myms---my)~!.

This measure is invariant under
the group translation. It is easier to prove the following lemma than Lemma 3.1 by using the

translation invariance.

Lemma 3.2. Suppose that T is a spherically symmetrical tree with numbers of descendants
{mn}n>1. Let v be the Haar measure on T. We have
- 1

Uty ~ Y — . VteoT, (3.9)

e ..pnmlmz-..mn

where the kernel K is defined by (2.1). Consequently we have

o0

/ / K(t - s)dv(t)dv(s) ~ oo -pnnlnmz e (3.10)

n=1

We can prove

Theorem 3.4. Consider a spherically symmetrical tree T with numbers of descendants
{mn}nzl. Let q = (gn)n>1 be a sequence of numbers with 0 < ¢, < 1. Denote |T,,| =
myms---my,. Then

(a) a.s. B(q) #0iff

3 1
nz=:1 ITnl1— @)= g2)-- (1 - qn) < 0.

(3.11)
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(b) Furthermore, for any kernel K' defined by a sequence (p},), we have Capg.(B(q)) > 0

a.s. iff
1

"gl ITnlpll (1 = ‘h)plz(l -q)-- 'pln(l — n)

(c) In particular, under the condition (3.11), we have a.s.

< . (3.12)

. e | i
dimy B(q) = llnn_l_’loléf ~ log |T,| — Zlog (3.13)

peri

4 Good Set G(q)

4.1 Existence of Good Path

We start with a simple fact. Given any measure x4 on 8T. By the notation A = 8T u-a.e.,
we mean that the symmetrical difference (A \ 8T) U (8T \ A) has null y—measure. If

then a.s. G(q) = 8T p-a.e. If the above series converges, B(q) = @ p-a.e. In fact, it suffices to
apply the Borel-Cantelli lemma and the Fubini theorem.

The above condition (the divergence of the series) is much stronger than the real condition
for the existence of good path. Recall that for any vertex o, we denote by 77 the subtree
emanating from ¢. The following is a criterion for the good set G(q) to be non empty. It is
actually a criterion for G(q) to be dense in JT'.

Theorem 4.1. The good set G(q) =@ a.s. if

ZQnITnI < oo. (4.1)
n=1

The good set G(q) # O a.s. if for any vertez 0 € T we have

0o
Z 9|a|+an:| = ©0. (4-2)
n=1

In this case, the good set is a.s. dense in OT.

Proof. Suppose the series in (4.1) is convergent. By the Borel-Cantelli lemma, there is
a.s. only a finite number of good edges on the tree, a fortiori G{(q) = @ a.s. Suppose now the
divergence of the series in (4.2). The same Borel-Cantelli lemma says that on any subtree there
is a.s. an infinite number of good edges. So, a.s. there is an infinite number of good edges
on any subtree T7, because such subtrees are countable. We claim that a.s. the tree contains
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a good path. Take a sampling and construct a good path in the following manner. An edge
joins a parent vertex to a descendent vertex. In stead of saying the edge is good, we say the
(descendent) vertex is good. So, a good path is one passing an infinite number of good vertices.
Since there is an infinite number of good vertices on the tree T', we choose a good one a,. Since
there is yet an infinite number of good vertices on the subtree T7', we choose a second good
vertex oo, different from o7, on T!. Now consider the subtree 772 and so on. In this way we
get a sequence of good vertices {on}n>1. The path passing these vertices is a good path. This
proves G(q) # #. In the same way, we can construct a good path on any subtree. Thus we prove
the density of G(q)

Remark 4.1. In general, the condition

)
Z gn|Tn| = 00
n=1

is not sufficient for ensuring G(q) # @ a.s.
Let us consider the Markov tree (not primitive) defined by
A=
11

and the probabilities g, = n~2. We have |T,| = n + 1 so that

x>
> gulTal = 0.
n=1

However, any path is a.s.bad because

x
> gn < 0.
n=1

Since there are only a countable paths, a.s. any path is bad, i.e. G(q) =0 a.s.

Remark 4.2. But for trees sharing some symmetry or periodicity, the condition

oo
Z qn|Ty| = oo is necessary and sufficient for G(q) # 0 a.s.
n=1

We call a tree T growth-periodic if for any vertex o € T there is a constant
C = C(o) > 0 such that

Ijl,T"‘ | >C(o), Vn2>1
jo|+n

Corollary 4.1. Suppose T is a growth—periodic tree. Then the good set G(q) #
a.s. iff

)" ulTn| = 0. (4.3)
n=1
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In this case, the good set is a.s. dense in OT.

Proof. We have only to show that the condition (4.3) implies the condition (4.2).

It is true because

o0
Y QonlTI 2 Cl0) D alTil

n=1 k=|o|+1

where C(0) is the constant involved in the definition of the growth-periodicity.

Corollary 4.2. IfT be a (primitive) Markov tree £ 4 or a spherically symmetrical
tree @y Z/mnZ, then it is growth-periodic. Consequently, either G(q) is a.s. dense
in 8T if '

oo
Z inTnl =
n=1

or G(q) is a.s. empty if the series converges, where |T,,| = p(A)" for the Markov tree or

|Tw| = mimg - - - my, for the spherically symmetrical tree.

Proof. For the spherically symmetrical tree, it suffices to notice that
my -y Ty | = [Togyell-
We may take C(o) = (my - myq) .
For the Markov tree, it suffices to notice that
T3 =D Alar Avsar  Azaor,zn = P(A)" = p(A) T[Tyl
The condition (4.3) of non-existence of good path is implied by

lim inf log -ql— > dimpdT.
n

n—s00 1N

The condition of existence of good path for growth-periodic tree is implied by

1 1
limsup — log o < dimgdT.
n

nooo T

We are now going to estimate the Hausdorff dimension of the good set.

4.2 Hausdorff Dimension of G(q)

Theorem 4.2. Let

. 1 1
o = limsup — log —.
n—oo T dn
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Suppose dimy 0T > «. Then the good set G(q) is of positive Hausdorff dimension and

dimyg 0T — o < dimg G(q) < dimpdT —a  a.s. (4.4)

In stead of saying good edges, we say good vertices. Fix ¢ > 0. Consider the

random subset of the n-level cutset T,
Cpn = {0 €Ty : 0 is good}

and the set of paths covered by balls B, with o € C,, i.e.

e U B

o€Cy

For a good path ¢ there is an infinite number of G,’s which contain £. In other words,
8 : ,

el Mo

Using the o-stability of the Hausdorff dimension and the fact dimy F < dimgF', we

uDg

have
dimy G(q) < sup dimpg ﬂ G,.
N>1 neN
However -
. .. .logCardC,
dimp (] Gn < limint ==

n=N
We are then led to estimate CardC,,. Notice that

ECardC,, = |Tn|gn-

Let £ = liminf,(|T|gn)"/™. Then for any £’ > £ > ¢ there is a subsequence nj such
that |Ty, |gn, < €. Next consider the event B, = {CardC, < ¢"}. By the Chebyshev

inequality, we have

P(E,) <

glln k

ECardCo, _ (e'

It follows that
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Notice that E, are independent. By the Borel-Cantell lemma, we have a.s.

log CardC,,
n

lim inf < log?”.
n—oo

Since #" > £ is arbitrary, we have

i inf log CardC,,

n—o0 n

e |
llnn_l’lolgf n log(|Tn|gn)

< dimpgdT - limsup 1 log qi
n

n—oo T

In order to get the lower bound we consider a family of independent Bernoulli

variables indexed by the tree {€, }yer such that
P(ey =1) = gy =1~ P(e, = 0).
Then consider the multiplicative process with weights

PL(€) = exp(bneﬂ")
" 1-gn+ Qneb" ,

where the sequence of numbers b = (b,,) will be chosen later.

Take B and D such that & < § < D < dimg 0T. By the Frostman theorem, there

is a probability measure u € M; (0T) with

If)<oo.

(4.5)

Consider the multiplicative chaos measure Qf,‘ associated to u. Notice that, by the

definition of a, there are constants ng > 1 such that

1
log — < Bn, Yn > ng.

qn

For any k > 0, it may be calculated that

EI%

lim / / Re(€,1)E Qn(6)Qn(m)du(€)du(n)

N-oo

1<n<enn|

where cp(z) = log(1 — gn + gn€®). In virtue of the elementary inequality

(1 ~a+ay?) <y(1 - a+ay)?

[ [Retem TT explen(zbn) - 2enmldi©)dto)

(4.6)
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holding for 0 < a <1 and y > 1, we have

Cn(2bn) - ch(bn) < by. (4-7)
Take now an integer A > 2 and define {b,} as follows:

; 1
bp=0 if n#A, bpi = log —. (4.8)
aas

Then, by the inequality (4.7) and the choice of by,’s, EI ,? b is bounded by

/ / Re&mexp S basdu(€)du(n)

1<A7 <Jgnn|

_ / / Re&mexp Y (~logpas)du(€)du(n)

1<AT <A

B
Using (4.6), we see that IEI,? ® is bounded up to a multiplicative constant by

[ [Reemen (ﬂ 5 N’) dp(€)dp(n)

1<Ad <lgnn|

< [ [ rdemesn (p5=l Anl) dute)anto
=

x+ﬁﬁ.
The last energy integral of u is bounded by It} then is finite (see (4.5)) if & verifies
A
— < D.

k+f A1 S D
For k = 0 and for large A, the finiteness of IZ +A/(A-1) implies that the L2-condition
(2.2) is fulfilled. Then with a positive probability Q} # 0. Notice that since P, (€) are
strictly positive, the event Q) # 0 is a tail event. We conclude that a.s. Qf # 0. It
follows (Proposition 2.2 (2)) that a.s.

On the other hand, by the formula in Proposition 2.4, we have

El{gl=1) exP(bnlig=1}) = gne™
1 — gy + gpebr 1 = gn + gnetn’

Equlig,=1) =

Thus
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Therefore, by the Borel-Cantelli lemma, a.s. G(q) is of full Q}-measure. So, using (4.9)

and Proposition 2.2(1), we have a.s.

dimy G(a) > dim @} > D~ Bzt
The RHS approaches to dim 0T — « if we let D — dimy 0T, A — oo and then § — a.

Remark 4.3. The inequalities in (4.4) become equalities if the tree is regular in the
sense that dimg T = dimpdT. It is the case for primitive Markov trees. Thus Theorem

B in the introduction is proved.

5 Oscillations

From now on, we concentrate on growth-periodic trees T such that dimg 0T > 0
( or equivalently brT > 1) and dimy 8T = dimp8T. For sake of simplicity, these

assumptions will be not repeated in the statements of theorems.

We can consider random walks a little more general than those mentioned in the
introduction. Namely, we only require that the n-th level variables { X, }ser, are iden-
tically distributed (of course, all variables are independent). We use X, to denote the
common law of the n-th level variables defining our tree-indexed walk. Recall that

® = ®(n) is a sequence of positive numbers and

X,
0OSsC = lims —U,
#(¢) =limsup 20

£ e dT.
5.1 Uniform Lower and Upper Bounds
Theorem 5.1. We have supgegr OSCs(£) = Ymax a.s. where
w .
Ymax = inf {'y eR: Z |Tn|P (Xn > 7®(n)) < oo} . (5.1)
n=1

We have infeegr OSCo(€) = Ymin a.5. where

~Ymin = Sup {'y eER: CapK,'(aT) > 0} , (5.2)
where Capg, refers to the capacity relative to the kernel

tAs
[tAs] 1

Ky(ts) =[] P(X, < v®(n))’

n=1




Fan Aihua : Limsup Deviations on Trees - 133 -

Proof. If ¥ > ~Ymax, the condition an|Tn| < oo is satisfied with ¢, = P(X, >

n
7®(n)). By Corollary 4.1, G(q) = @ a.s. It follows that a.s. for all { € 0T we have
X¢), < 7®(n) for all but a finite number of n. Then sup; OSCg(£) < 7 a.s. So that Ymax
is a uniform upper bound. If ¥ < ymax, we have Z gn|Tn| = 0o. Then, by Corollary 4.1,

n
G(q) # 0 a.s. It follows that a.s. there is a point £ € 0T such that Xy, > v ®(n) for
an infinite number of n. For this ¢, we have OSCg(£) > 7. So, sup; OSCs(£) > Ymax-

Notice that K,(t,s) is decreasing as function of y so that Capg. 0T is decreasing as
function of . Suppose ¥ < Ymin- Since Cap K73T = (), by Theorem ?? we have B(q) = §
a.s. with gn = (Xp > ¥®(n)). That is to say, a.s. for all £ € 0T we have X¢|. 510(n)
for an infinite number of n. It follows that inff OSCg(£) > 7. S0, Ymin is a uniform
lower bound. Suppose ¥ > Ymin. We have Capg. 8T > 0, then B(q) # a.s. This implies
infe OSCe(£) < 7.

Remark 5.1.  The condition dimg 8T = dimgdT is not required by the last the-
orem. On primitive Markov trees and spherically symmetrical trees, we have a formula

for min simpler than (5.2):

= 1 G 1
Ymin = SUP {WER:Z’THI H BXs < 19(8)) <oo}. (5.3)

n=1 k=1

We may compare it to (5.1).

Corollary 5.1. Suppose (X,) is an i.i.d. sequence. Let F(z) = P(X < z) be
their common distribution and F* be the inverse of F, defined as
F*(y) =sup{a € R: F(a) < y}.

Then we have a.s.

irflf 0SCy (&) = F*(1/brT), sup OSC;(§) = ess supX.
§

Proof. Notice that

1

Ky(t,s) = B < gyt = Post/pxsnn|

t,s).
So, by the Frostman theorem, we have
Ymin = inf{y € R:log(l/P(X <)) < dimp 0T}
= inf{y€R: P(X <%)) > 1/brT}
= sup{y € R: P(X <4)) <1/brT} = F*(1/br).
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The essential bounded is of course a upper bound of lim, X .. If v < ess supX, we will
have P(X > «) > 0 so that Z |Tn|P(X, > v) = oco. This implies that a.s. there is a

n=1
point £ € 8T such that limsup X¢, > 7.
n

If a suitable normalization sequence ®(n) is found so that —oco < Ymin < 00,
we would like to ask if, for 3 given number v > 4nin, there are points £ such that
Ymin < OSCs(€) < 7. Such points, if exist, will be called slow points (or slow paths).
For the case where all the variables X, are identically distributed, we can choose the
constant sequence ®(n) = 1 as normalization sequence, as is shown by the last corollary.
Usually, the good choice of the normalization sequence depends on the distributions of

X, through the following quantities

1
< y®(k))’

(5.4)

n—oo T

. 1o
B(®,v) = hmsup—long; BX;

Roughly speaking, the sequence ® may be chosen as a normalization if 5(®,~) > dim T
for some v and B(®,~) < dim 8T for some other +.

" There is also a similar question of finding a normalization sequence ®(n) in order
to get —00 < ymax < 00. Suppose such sequence is found. For a given number v < ymax,
points £ such that v € OSCs(€) < “Ymax, if exist, will be called quick points (or
quick paths). Concerning this maximum normalization, even for the case where all the
variables X, are identically distributed, the determination of normalization sequence

depends on the distribution of the variable X. Consider the following quantities

1 1
a(®,v) = limsup — lo

n—oo T 8 P(Xy, > '7‘1)(”)). (5:5)

Roughly speaking, the sequence ® may chosen as a maximum normalization if a(®,vy) >
dim 8T for some 7 and a(®,v) < dimdT for some other y. We will see that we can
choose ®(n) = y/n as a maximum normalization sequence for the random walk on dyadic
tree determined by a gaussian variable X.

Suppose that we have found a minimum normalization ®,;;, and a maximum nor-

(I)min(n)

(I)max(n)
n — o00). In most cases, there are sequences ¢ with the property ®nim < & < Pmax

malization ®p,x. Usually we have ®pin < Prax (we mean tends to 0 as
such that OSCg(€) is finite and non zero for some £. Such points will be called in-

termediate points (or intermediate paths). Of cause, for intermediate points £ we have
05Cg,y, (€) = 00 and 0SCe,, (€) = 0.
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Before going further in the study of different kinds of point that we have classified,

let us look at two examples and examine their possible normalizations.

Suppose that the common law X is uniformly distributed in [0,1]. In this case, it
is natural to take ®pin(n) = Pmax(n) = 1. Then we have ypin = Fr1—7" and Ymax = 1.
Notice that the oscillations of random walk in this case are all of the same order along
any path. But paths can be classified by OSC¢(¢) = a according to B‘:T <a<l,as we

shall see.
Suppose now that the common law X is an exponential law with mean value 1. In

this case, we will take ®in(n) = 1 and ®pax(n) = n. Then we have ypin = log b—f;%l

and Ymax = loggrT. In this case, the oscillations are of all possible orders ®(n) = n*

with 0 <s < 1.

We will examine in more details the case of gaussian random walks (§ 6).

5.2 Slow Oscillations

Recall that ymi, is the best lower bound. Now we study the set of slow paths £ € oT
such that ymin < 0OSCy(£) < 7y for some ¥ > Ymin-

Theorem 5.2. Suppose Ymin < 00. Let ¥ > Ymin. Then we have a.s.

dimy {£ € 8T : OSCy(€) < v} = sup {oz > 0: Capg, , 0T > 0} .

Proof. Let ag be the number at the right hand side. Let S, be the set of all
points £ € 9T such that OSCe(£) < . For any o > ag, we have Capp g, 0T = 0 or
Cappyr, ,k.,0T =0 for any B € (a0, @). So, by Theorem 3.2, CapgB(q') = 0 a.s. with

q,n = e—(a_ﬂ)P(Xn > 7®(n)) = P(Xn > 1®(n)),

where v, > v + € for some € > 0. So, dimy B(q') < 8 a.s. We claim that S, C B(q'),
because ¢ € S, implies X¢|, < (v + €)®(n) (Ve > 0,Vn > n(e)) while { € B(q') means
X¢l, < m®(n) for all but a finite number of n. Thus we have proved dim Sy < ag.

For any a < ag, we have Capp_ g 0T > 0. So, by Theorem 3.2, Cap,B(q) > 0
a.s. with g, = P(X;, > v®(n)). So, dimg B(q) > « a.s. We claim that S, D B(q).

Corollary 5.2. Suppose T be a primitive Markov tree or a spherically symmetrical
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tree. For v > “Ymin, we have a.s.

dimg {¢ € 8T : 0SCs(¢ <'y}—11mmf— log|T|+ZlogPX < y®(n))| .
k=1

Proof. The proof is the same as that of Theorem 3.3(c).
5.3 Quick Oscillations

For a fixed sequence ®, we introduce the following function of v € R

1
1)) =
o(®,7) = “,’,’Li‘é" 8 B X > 78 (m)

Theorem 5.3. Suppose that a(®,7) is left-continuous at ¥ > 0 and that o(®,v) <
dimygd8T. Then a.s.

dimy 8T — a(®,7) < dimy E,(®,7) < dimpdT - o(®, 7). (5.6)

If, furthermore, there is a sequence €, | 0 such that

= (1 + €n)72(n))
— < 00, 5.7
Zl Pt 3780 (51
then a.s.
dimg 8T — a < dimg E(®,1) < dimgdT — a. (5.8)

Proof. Without loss of generality, we assume that v = 1. For the first assertion,

it suffices to apply Theorem 4.2 and to notice the following relation
G(a”) C E.(8,1) CG(q¥),  Ve>0,

where q( J = = P(Xg, > (1 —€)®(n)) (even for € = 0).

In order to prove the second assertion, we go back to the proof of Theorem 4.2
where a random measure Qé‘ is constructed by a family of Bernoulli variables ¢,. We
now define ¢, = 1 or 0 according X, > ®(|v|) or X, < ®(|v|). Thus we have only to
show that a.s. for Q}-almost every £ we have

limsup —~ E‘" =1

nsco 2(n)
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We first show that a.s. for Q}-almost every ¢, the limit is bounded by one from above.

This is true because, according to the choice of b, (see (4.8)), we have

> Q¥ (Xgp, > (1+ €)@ (n))

n=1

bnl{x g, >®(n)}

B iEl{X€|n>(l+en)¢(n)}e

n=1 IEI{Xe|n>‘1’(ﬂ)}
_ P(Xpn > (14 €,)®(n))
B 2:: 1 — gn + ebngy
_ 1 P(Xn > (1+6)0(n))
- X P(Xn > (1 + €n)®(n)) +n§j e P, S o)
N P(Xn > (14 €,)®(n))
<0 L ERsay <

where ¢, = P(X, > ®(n)). We apply once more the Borel-Cantelli lemma. The extra
condition (5.7) was used. It is easier to show that the limit is bounded by one from

below without using the extra condition. In fact, we have

o0 [o0] ebn o0 1
O Xe >P(n) =Y ———k— > = o0.
n;l b( ln () nzz:l l—gn+ eb"Qn ; 2—qp;

5.4 Intermediate Oscillations

Roughly speaking, if the tail probability P(X, > ®(n)) decays exponentially, the
paths such that 0 < OSCeg(€) < oo are rapid; if the tail probability is bounded from
below, the paths such that 0 < OSCg(£) < oo are slow. We shall see that sub-exponential
decay of the tail probability corresponds to intermediate oscillations. The following result
is a particular case of the last theorem. But we state it as a theorem because it will

provide us important intermediate points.

Theorem 5.4. Suppose that the function a(®,7) is left-continuous at v > 0 and
a(®,v) = 0. Suppose furthermore

- P(X, 2> (1+ €n)7®(n))
2 P(Xn 2 v%(n))

< oo, with some ¢, | 0.
n=1

Then a.s. dimy E(®,v) = dimy oT.

For intermediate points to exist, it suffices to find an intermediate sequence & (i.e.

Prin < P < Prax) such that a(P,7y) = 0 for some 7’s.



- 138 - Analysis in Theory and Applications 20:2, 2004

Let us finish our discussion by mentioning ordinary paths. A natural probability

measure on 7T is defined as follows: for any descendent 7 of ¢

where N, is the degree of 0. We may consider A as the Lebesgue measure of the tree.

Theorem 5.5. Suppose that for any 0 < € < 1 we have

iP(X > (1+€)2(n)) < oo, iP(X > (1-¢€)®(n)) = co.
n=1 n=1

Then a.s. OSCg(€) =1 for A-a.e. £ € OT.

Proof. Fix £ € JT, the conditions implies that a.s. 1 —¢ < OSCg(£) <1+ € for
all € > 0. So, a.s. OSC¢(&) = 1. Then the Fubini theorem implies the desired result.

The points in the conclusion of the last theorem are called ordinary points. Ac-
tually, the result in the last Theorem remains true if A is replaced by any measure on
O0T. So, if the condition in the theorem is satisfied, in the support of any probability
measure, there are ordinary points and moreover almost all points are ordinary points
with respect to the given measure. The interest of the present paper is just to discover

unusual behaviors along non ordinary paths.

6 Gaussian Walks and Brownian Motion

We examine a special gaussian walks by checking the conditions in the preceding

theorems. Then we translate the results into local properties of Brownian motion.

6.1 Gaussian Walks

By gaussian walks we mean the tree-indexed walks determined by a gaussian vari-
able Z ~ N(0,1). For the purpose of the study on Brownian motion, we consider the
absolute value of the gaussian variable X = |Z|. The associated walk is still said to be

gaussian.

The main property needed of X = |Z| is the following. For u > 1, we have

2

2 u z? e 2
P(XZu)=2P(Z2u)=\/;/ e 7dr~ . (6.1)
0

U
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In particular, take 4 = an” with a > 0 and v > 0. We get

2
gn'=P(X > an") = n~ve" T, (6.2)

\/EA_gd 1

Theorem 6.1. Suppose T is a growth-periodic tree such that dimy 8T = dimgdT >
0 and X = |Z| where Z ~ N(0,1). For the random walk on T defined by X, we have
(1) a.s. OSCy(&) > A for all £ € OT.

(2) as. OSC 4(€) < V2loghtT for all € € OT.
(3) IfB> A, then a.s.

B
dimy E*(1, B) = dimg 8T + log (\/%/ e'Td:z:> .
0

(4) Ifa < 2loghtT, then a.s.

Let A be defined by

2
dimpy E(v/n,a) = dimy E.(vn,a) = dimy 8T — “-2_

(5) Forany0<y< % and any ¢ > 0, a.s.
dimyg E(n”,c) = dimy 9T.

(6) a.s. OSC pgm(é) = V2 \-a.e. where ) is the Lebesque measure.
Proof.

1
(1) Since P(X < a) is continuous and strictly increasing and T < 1, the number

1
A = F*(1/brT) is the unique solution of P(X < A) = BT By Corollary 5.1, A = Ynin

(2) Apply the formula (5.1) to &(n) = \/n. By the estimate (6.2), we are led to

consider the convergence of the series

nZ=|Tn|P(Xn >’7\/ﬁ)f~“anz=—\-/——:_lz", z=e 7,
2
So, if Ymax denotes de upper bound associated to ®(n) = /n, then e~ ¥ must be the

convergence radius of the last Taylor series. That is to say

2
e™ ™ = limsup T, |/",

n-00
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(the factor 1/y/n being not important). It follows that ymax = V/2dimpdT. But
dimpdT = log brT by the hypothesis on the tree.

(3) It is a direct consequence of Corollary 5.2.

(4) Take ®(n) = y/n. By the estimate (6.2) we have a((I>,7) = 73. This function

is continuous even dlfferentlable. On the other hand, if ¢, = \/—, then

M

2 P(X > (1 +¢€p)ay/n) ie“/’_‘<oo
2T PEzam 2 '

Now we can apply Theorem 5.3.

(5) Take ®(n) = n? with 0 <y < 1/2. We have a(®,7) =0 for all v. If e, = &,

we have

i P(X > (1 +en)en?) i e < oo

n=1 P(X 2 cn7) n=1
Now it suffices to apply Theorem 5.4.
(6) Take ®(n) = /2logn. We have
X> 1+€ Vlogn) W,
1

P(X > (1-¢)/logn)~

Apply Theorem 5.5 to get the desired result.

n(1-9*/logn’

~ 6.2 Other Examples

Let us just state two other examples: the exponential variable and the uniform

variable. The first one is unbounded but the second one is bounded.

Suppose X obeys the exponential law of parameter A > 0. We have
o0
P(X>u)=X\ / e Mdz = e,
u

Suppose furthermore dimg 8T = dimgdT > 0. Then have
(1) as. OSCi(€) > A~!log gL for all £ € AT

(2) for B> A"llog 2L, ass.

dimH E‘(I,B) = dlmH oT — lOg It—e—_j\g
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(3) as. OSCn(g) < 4madT for all ¢ € T,
(4) fora < 9mudl 5

dimg E(n,a) = dimyg 0T — aA.
(5) Forany 0 <+ <1 andanyc>0,as.

dimyg E(n”,c) = dimpy o7T.

Suppose X is uniform distributed in [0, €] with £ > 0. For 0 < u < ¢, we have

P(X >u) = 5—}“

Suppose furthermere dimg 0T = dimpdT > 0. Then have
(1) as. g < 0SCy(¢) <1 for all z € 8T
(2) for b—:wf <B<1,as.

dimyg E*(1, B) = dimy 9T — log %

6.3 Symmetric Variations of Brownian Motion

Forn>1andte€[0,1)], let I,(¢) = [tg,g), t%d)] be the n-level dyadic interval contain-
ing t. Let t%c) = %( 5,9) + ts,d)) be the middle point of the interval I,(t). For a continuous
function f € C([0,1]), we define its n-th (symmetric) variation at ¢t by

Anf(t) =2 () — F(£9) — F(¢D).

The (symmetric) variation of f at a point ¢ may be described by a suitable decreasing

positive sequence ¢(n) such that

0 < limsup 14nf (@)
naoo  p(n)

< 00.

It is possible that different functions ¢ are needed for different points {. We shall see

that it is the case for the trajectories of Brownian motion.

Let B(t) be a linear Brownian motion. By using the Fourier-Franklin development,

we can get the following expression for the n-th variation of B(t):

)

o0
ApB(t) =212, .y, t=)

n=1

b
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where Z;, ..s, (n 2 1;1 < j < n;t; =0 or 1) are i.i.d. standard normal variables (see

[3]). Thus they define a tree-indexed walk, where the tree is the binary tree D = {0, 1}N.

On the binary tree, it is better to use the metric (¢, s) = 2~/ instead of d(t, s) =
e~ltAs| because the tree is usually identified with the interval [0, 1] on which we have the
Euclidean metric. The Hausdorff dimension relative to the Euclidean metric coincides
with the Hausdorff dimension relative to the metric §. To distinguish, we use dim to
denote the Hausdorff dimension relative to this new metric. Since d(t,s) = d(¢,s)'°82,
we have the relation dimE = Rﬁdimg E for E C D = [0,1]. The last theorem applied
to the binary tree can be translated into the variations of Brownian motion as follows.

That is what we stated as Theorem A in the introduction.
Theorem 6.2. Let B(t) be a linear Brownian motion. Then

(1) a.s. for all t € [0,1]

- |AnB(t)|
lim sup ———=—
n—»oop Vv2-n

where A is defined in the last theorem with brT = 2.
(2) a.s. forallt e|0,1]

> A =0,608,

lim sup 2 B(®)]

==
n—oo /2-2-"log2n

(3) If B> A, a.s.

. . |AB(t)] } /B _g2/o Az
dim<t € [0,1]:1 ——=-<B}=-1 =2
{[]‘,‘f‘fo‘é"\/é—_n- 2l Y -
(4) Ifo<a<l, as.
dim{te(0,1]: limsup—l—%ﬂﬂ—— =ap=1-a’
n—oo /227" ]og2n
(5) If0<B<landc>0, as.
dim {t €[0,1] : limsup 280 _ c} =1.

n-oo y/2.2°n logE 2n

(6) a.s. for a.e. t € [0,1]

im sup =1
n—0o \/2 27" log log 2™
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It is clear that (1) implies that Brownian motion is nowhere differentiable. We
call the points described in (3) symmetric slow points and the points described in
(4) symmetric quick points. These points have their counterparts of the slow points
discovered by J.P. Kahane [K1,K2]:

B —-
0 < limsup [B(t+h) — B?)| < 00, (K)
h—0 Al

and the quick points discovered by S. Orey and J. Taylor [OT):

0 < limsup B(t+h) — B{Y)l
h—o  /|h|log(1/]h|)

(OT)

The left inequality in (K) was earlier proved true for any ¢t by A. Dvoretzky [D2] and
the right inequality of (OT) was proved true for any ¢ by P. Lévy [L]. They correspond
to the lower and upper uniform bounds stated in (1) and (2). It is worthy to point out
that symmetric rapid points are rapid points in the sense of Orey-Taylor. Therefore the
result in (4) implies a well known result due to Orey and Taylor that the set of quick
points in sense of Orey-Taylor is of Hausdorff dimension 1. However, the result in (2)
on the symmetric slow points has no immediate consequence on the slow point in the

sense of Kahane.

We call the point described in (5) symmetric S-points. There are many symmetric
B-points ( 0 < B < 1) for the Brownian motion. It is proved in [F4] that there exist

(asymmetric) S-points for the Brownian motion. By S-point ¢ we mean

B -
0<limsup| (t+h) = BO) < 0o
A0 [1h| log? (1/1h])

A earlier work of Kono [Ko] also implies the existence of 3-points.
Kahane’s slow points may be called two-sided slow points. For ¢ > 0, let

S = {t: limsup Bt +h) -~ BQ)|

h—0 \/W

B. Davis had considered one side slow points by introducing

: B(t + h) —- B(t)|
St ={t:limsu | <c}.
{ h—vO-{-p vh <cf

We may classify symmetrical slow points by introducing

<c}.

SY™ = {¢ : limsup A B(1) <c}.

n—o0 V2"
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B. Davis and E. Perkins had proved that (see [DP] and the reference therein)

Se=0, Ve<w, S.#0, Ve>v, 7 =1.3069;
Sr=40, Ve<l1, Sf#40, Ye> 1.
It follows that there one-sided slow points which are not two-sided slow points. Theorem
6.2(3) means
SFM =0, Vec<A, Sym# 0, Ve> A, A =~ 0.608.

So, there are symmetric slow points which are not one-sided slow points.

We finish this section by trying to find the gauge function of the set of symmetric
B-points. For 0 < <1, ¢>0and -1 <€ <1, denote

o6) = pecls) = -0 (1 + O S 10gP)

Notice that for any a > 0, the function 2 s larger than any power z? ( and smaller

than any exponential e"*) when z is large. It follows that we always have

1 ds
b <=

for the above choice of 3, ¢ and €. Denote by H,, the Hausdorff measure defined by the
gauge function ¢.

Theorem 6.3. Let Eg, be the set discussed in Theorem 6.2(5) where 0 < f < 1
and ¢ > 0. We have a.s.

H‘Pﬁ,c,e (Eﬂ.C) = 00, Ve > 0; H‘PB.c,( (Eﬂ,c) = 0, Ve < 0.

Proof. We follow the proofs of Theorem 4.2 where we have estimated the expec-

tation of the x-energy integral of Qé‘ . Now we work with the Lebesgue measure p and
write simply Qy = Q).

First let 0 < € < 1. Consider I%’, the energy integral of (), with respect to the

kernel
1

Ke&om) = ey

By similar calculation, we can control EJ Qf, up to a multiplicative constant, by

| [Kantemaeen s [ 1 ;ﬂ—dfm <o
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It follows that a.s. Capg (Egc) > 0 then My, . (Egc) = 00. Since 0 < e < 1is

arbitrary, we get the first assertion.

Now let —1 < € < 0. Take the same notation as in the proof of Theorem 4.2, but
Crn={0€Th: X, > (1+¢€)c|o]f/?}.

We have

Bﬂ,cC D ﬁ Gn.

N=1n=N
In order to prove the second assertion, we have only to show that a. s.

o0
H‘PB.CJ( < ﬂ Gn) =0, VN 2>1,-1<2<0.
n=N

Notice that if n > N, {Bs}sec, is a 27"-cover of (o y Gn. So, by the definition of the

Hausdorff dimension
Hepene(Bpe) < linn_1)i£f ©g,c.2¢(27")CardCh.
By Fatou lemma, we have only to show that
lim inf g ¢ 2¢(27")ECardCy, = 0.
n—o0

However,

ECardC, = O <2”e_(1+f)5;("1°g2)ﬁ> |

Therefore 2
©p.cc/2(27)ECardC, = O (exp( 5 (n 1og2)ﬂ)) o(1).

7 Remarks
1. Notice that
liminf —— Xo — limsup ——%
oot O(l0)) oo <I>(I0|)

So, all the results on the (upper) oscillation OSCg can be modified to results on the

lower oscillation which is defined in a similar way, using the inferior limit.

2. We have required the positivity dim 8T > 0. Such trees T' have rich branches (a
parent has about brT" > 1 descendants). We have also required the regularity brT = grT.
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It is worthy to study the oscillations when the positivity and/or regularity are not
satisfied.

3. If X takes as values non negative integers, we can express our results in terms
of random covering (see [FK]).

4. The results on good and bad sets may be used to study random Fourier-Franklin

series with independent coefficients of arbitrary law.
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