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A b s t r a c t  

The vertices of an infinite locally finite tree T are labelled by a collection of i.i.d, real random 

variables {Xo}oeT which defines a tree indexed walk So = y ~  X , .  We introduce and study the 
0<r<o 

oscillations of the walk: 

go 
OSCr = limo--,r ,I,([al)' 

where r is an increasing sequence of positive numbers. We prove that for each �9 belonging to a 

certain class of sequences of different orders, there are ~ 's depending on ~ such thi~t 0 < OSCe~(~) < ~ .  

Ezact Hausdorff dimension of the set of such ~ 's is calculated. An application is given to study the local 

variation of Brownian motion. A general limsup deviation problem on trees is also studied. 

Key words limsup deviation, tree-indexed walk, oscillation, Hausdorff dimension, Brownian mo- 

tion, Percolation, random covering, indexed martingale, Peyri~re measure. 
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1 In t roduc t ion  

Consider an infinite and locally finite tree T. Let O be the root of T and let 071 be the 

boundary of T, which is the set of infinite paths emanating from the root and going through no 

vertex more than once. Suppose that we are given a family of real valued i.i.d, random variables 

*This paper was presented in the Fractal Satellite Conference of ICM 2002 in Nanjing. 
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{X~}aeT indexed by the vertices of T. The process defined by 

S~ = ~ Xr 
0<r_<a 

is called a walk indexed by the tree T, where r _< a means that r is on the shortest path from 

a to the root. When T -- N, we recover the usual walks. 

In this paper, we study the oscillations of such a walk. For a boundary point ~ �9 Of,  we 

use the symbol a ~ ~ to mean that the vertex a tends to the infinity through the path ~. Let 

= {~I'(n)},>l be a sequence of increasing positive real numbers. We define the e-oscillation of 

the walk by 

OSCv(~) = limsup Xo 

where I~'1 denotes the length of ,, which is the number of edges on the shortest path from ~ to 

the root. 

We would like to study the following problem. Given a sequence ~, are there points ~ such 

that 0SCr is non-zero and finite? We shall prove that in most cases, there is an infinite 

number of such sequences r of different orders (two sequences @ and �9 have the same order if 

are between two constants). Therefore, we may conclude that the oscillations of the walk ~(~) 
along different paths are different. 

More precisely, the following sets will be studied and their Hausdorff dimensions will be 

calculated. For a real number a �9 N, denote 

E*(r = {~ E OT : OSC~(~) _< a}, 

E.(V,a) = {~ �9 OT: OSC~(~) > a}, 

E(r = E.(~,a)  NE*(r  

To get the feeling, let us state our results for the special case (general results are stated in 

w where T is a tree such that its branching number brT > 1 and equals to its upper growth 

rate ~ and X = I Z] with Z ~ N(0, 1), the normal law of mean 0 and variance 1 (see w 
1 

for the definitions of brT and ~---T). Let A be the solution of P(X  < A) = ~r-rT" We use "a.s." 

to abbreviate "almost surely" and use dimH to denote the Hausdorff dimension relative to the 

natural metric of Or, i.e., d(~,r/) = e -I~^~l, where ~ A ~/denotes the common path of ~ and ~/, 

and [~ A ~}[ denotes the number of vertices on ~ A r}. 

T h e o r e m  A. Keep the above assumption and notation. Then 

(1) a.s. for all ~ e aT, 

A _< OSCs ([), OSCv,-~'(~ ) _< v / ~ b r T .  
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(2) I / B  > A, then a.s. 

dimH E* (1, B) = log brT - log 
P(X < B )  

(3) / f  a < ~ ,  then a.s. 

a 2 

dimH E(v/n ,a)  = dimu E,(v/-n,a) = logbrT 2 

(4) I f O < 7 <  �89 andc>O, thena.s. 

dimH E(n ~, e) = dim/! E. (n ~, c) = dimH E* (n "y, c) = log brT. 

Notice that  log brT = dimH OT where dimtt denotes the Hausdorff dimension. 

These results may be translated into local variation properties of Brownian motion. Let 

B(t) be a linear Brownian motion. We define its symmetric variations at t E [0, 1] as 

A . B ( t )  = 2B(t~)) - B(tl~ )) - B(t~)), 

where t (c) § and t~  ) ,~ , ~n are respectively the center, left-end and right-end points of the dyadic 

interval of length 2 -'~ containing t. Let A be the number such that 

1 
P ( X < _ A ) = ~ .  

We have 

(1) a.s. for all t E [0, 1] 

A _< limsup IA"B(t)I l imsup [AnB(t)l < 1. 
n--*c~ x/2 -n  ' n--*~ X/2" 2 -n  Iog 2 n -- 

(2) If B > A, then a.s. 

dim {t  E [O, 1]:limsup,,~ - -  
1 

IA'~B(t)[ < B  = l - l o g  2 P ( X < _ B )  
- 

(3) If 0 < a < 1, then a.s. 

dim { t  E [0, 1] : lira supn_~ 
IA.B(t)I 

~/2 .2  -n  log 2" 
----a} ---- l_a 2. 

(4) If 0 < fl < 1 and c > 0, then a.s. 

dim { t  E [0, 1] : limsup [A,B(t)[  = c }  = 1 ,  
n ~  ~/2 �9 2 -n  log ~ 2 n 

here dim denotes the Hausdorff dimension relative to the Euclidean metric. 
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Actually we will study a more general problem (more abstract to some extent). Given an 

infinite and locally finite tree T and a sequence q = {qn}n_>l of positive numbers such that 

0 < qn < 1. We label each vertex (or equivalently the edge preceding the vertex) good or bad 

independently with probability qn where n is the distance from the root to the vertex. A path 

is said to be good (more exactly q- good) if it has infinitely many good vertices. Otherwise, it 

is said to be bad (more exactly q-bad). We denote by G(q) the set of good paths and by B(q) 

the set of bad paths. It is clear that aT = 9(q) LJ B(q). We address the following questions. 

Ques t ion  1. when is there almost surely a good path? 

Ques t ion  2. what is the Hausdorff dimension of the set of good paths G(q) (when it is 

non-empty)? 

Ques t ion  3. when is there almost surely a bad path ? 

Ques t ion  4. what is the Hausdorff dimension of the set of bad paths B(q) (when it is 

non-empty)? 

Let us state our answers to these questions for Markov trees (see w167 for the general case). 

The boundary of a homogeneous tree may be considered as the product space {0, 1, . . .  , m -  1} N 

(m > 2 being an integer) if we consider every sequence as a path and make the convention that 

every path is joint to a common root�9 A Markov tree is a subtree of a homogeneous tree with 

boundary {0, 1,.-- ,m - 1} N (m _> 2 being an integer)�9 Let A be a m x m-matrix with entries 0 

or 1. We assume that there is an integer M > 0 such that A M > 0 (i.e., all entries are strictly 

positive). Let 

r.A = { ( z . ) . > l  : Az ,x  = 1, Vk >_ 1} .  

We call EA the Markov tree with incident matrix A (we should say ZA is the boundary of a 

Markov tree). In the theory of dynamical systems, ~'a is called subshift of finite type. Let p(A) 

be the spectral radius of A. For n >_ 1, let Tn be the set of vertices having a distance n to the 

root and let [T,[ denote the cardinal of T,. It is well known that [T,[ ... cp(A)" (as n -+ co) 

with some constant c > 0. 

T h e o r e m  B. Keep the above assumption and notation. 

(1) a.s. ~(q) ~ 0 if and only if 
o o  

q.l l = co. 

n---1 

(2) a.s. B(q)) # 0 if and only if 

oo 1 

2--, (1 - ql)"'" (1 - q,)lT,[ 
< OO. 

n = l  

11o_ 1 (3) Iflimsupg S~ < dimHOT, then a.s. 
n..-@ oo 

1 1 
dimH G(q) = dimH OT - lim sup n log --. 

n.-"~ OO qn 
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(4) /f  lim sup -1 ~ log 1 
n-~oo  n 1 - qn  

< dimH Or, t h e n  a.s. 

n 

dimH/3(q) = dimH 0T - lim sup -1 ~ log _1 
n - - + c o  n j = l  1 - qn" 

We may qualify good path and bad path respectively as limsup deviation path and liminf 

deviation path. Tree-indexed walks were first studied by Joffe and Moncayo [J~ where they were 

interested in the limit distribution of ~ when [a I tends to the infinity. Many subsequent works 

have been done [BP'LP'LPP] (see also [Bi, Fall, Fal2, GMW, H, Liu]). A work closely related to 

Brownian motion is due to Y. Peres' intersection equivalence [P]. Our consideration is motivated, 

on one hand, by the study on local properties of Brownian motion, and on the other hand, by the 

author's previous work with J.P. Kahane [FK] on random dyadic covering which itself is motivated 

by the Dvoretzky covering problem [D1]. 

One tool for our study is the multiplicative chaos, developed in a general setting by Kahane 

[K4] (see also [WW]). A prototype is the Mandelbrot's random cascades model [Ke,Man] which 

goes back to Kolmogoroff's log-normal model for turbulence [Kol] (see also [Fri]). The main 

gradient that we need is the Peyri~re's probability measure (see [K4]). Another tool is a version 

of Frostman theorem which, in the case of tree, is a consequence of the max-flow min-cut theorem 

due to Ford and Fulkerson [FFI. We also use a capacity criterion of percolation due to Fan [m'F2] 

and Lyons ILl'L21. 

The materials are organized as follows. The section w starts with a recall of notation and 

basic notions concerning trees, then it develops the needed tools mentioned above. The bad sets 

and good sets are respectively studied in w and w In w we apply the results obtained in w167 

to study the oscillations of random walks. In w we examine the Gaussian case and translate 

the results into local properties of Brownian motion. 

2 Pre l iminar ies  

In this section, necessary notation is introduced and basic notions on trees are recalled 

([Bo,C,N]). Several known results are stated for later use. These concern capacity, Frostman 

theorem, dimension of measure, percolation, random covering and multiplicative chaos. 

2.1 Basic Not ions  on Trees and Notation 

Let N be the set of positive integers and 7" = (.J~~ N k (with convention N o = {0}), the 

family of all finite sequences. There is a binary operation on T, called juxtaposition, defined by 

(r~)" r * a = ( r l ,  , rn ,al ,  ,am), for T =  j--l, a = ( a k )  m . . . . . .  k = l  " 
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(We may also write r a  = r �9 a). T is partially ordered by 7- < a, which means a = v * v ~ for 

some r ~ E T (a is then called an extension of v). The length of a sequence a E T will be 

denoted by laB. 

A tree T is a subset of 7- satisfying the two conditions 

(i) 0 �9 T, 

(ii) a � 9 1 4 9  (VT~a) .  

The points in a tree T are called vertices�9 0 is called the root�9 The couples (r, 7-, j )  belonging 

to T x T with [Jl = 1 are called edges and then 7- * j is called a (direct) descendent of 7- which 

is called the parent of 7- �9 j .  Let N~ be the number of descendants of a �9 T. We shall always 

assume that  

(iii) I<_Nr < o o  ( V a � 9  

That  is to say, the tree T has no leaves and is locally finite. The number Na + 1 is called the 

degree of a if a r 0. 

Given an infinite sequence ~ = (~k)k>l �9 N ~176 For any n _> 1, we write ~[n = (~1,"" , ~n), 

which is called the k-curtailment of 4. If all k-curtailments of ~ belong to a tree T, we say ~ is 

a boundary point of T. We denote by OT the set of all boundary points of T. As a subspace of 

N ~176 0T is a compact metric space because of the local finiteness of T. We shall use the following 

metric 

d(~,r/) = e -1~^'71, { , r / � 9  0T, 

where ~ A 0 is the longest common curtailment of ~ and r/. A boundary point ~ �9 07' is also 

called an (infinite) path of T. 

For ~ �9 OT and 7- �9 T, Z < ~ means the path ~ passes by 7- or 7- is a curtailment of ~. We 

denote BT = {~ �9 OT : T <_ ~}. It is the ball of radius e -141 centered at any path passing by T. 

2.2 G r o w t h s ,  D i m e n s i o n s  a n d  Capacities 

Let Tn be the set of vertices of length n (considered as finite sequences). The lower and 

upper growth rates of T are defined as 

grT = liminflTnl l/n, ~ = lim ITnI I/n, 
- -  n---at  OO n - - ~  

where [Tn[ means the cardinality of T, .  When the limit exists, their common value grT is called 

the growth r a t e .  A more important quantity brT, called branching number, was introduced 

by R. Lyons ILl]. It accounts more for the structure of the tree. It is defined as follows 

b r T = s u p { A _ > l :  infZA-I~l~c,~ > 0 } ,  

where zr is an arbitrary cutset of T, that means a set of vertices such that  any path ~ E OT 

passes one and only one vertex in ~r. 
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These three notions are just tile exponentials of three kinds dimension of 0T.  In fact, the 

boundary being a metric space, for any subset F C 07' we can define, as usual, its Hausdorff 

dimension dimg F,  lower box dimension d imBF and upper box dimension dimBF. We have 

the relation 

brT = e d iml l  OT grT =- e dir~---ABoT, ~ : e dimBoT. 

See [Mat] for a general account on dimensions. Actually, the logarithm of the branching number 

of a tree was first introduced by H. Furstenberg just as the "dimension" of the tree [Fur]. 

In order to study the Iiausdorff dimension, a useful tool is the capacity. Let a > 0. The a- 

Riesz kernel is defined by 

Ra(~,rl) = d(~,rl) -a  = e al~^nl, ~,~7 e OT. 

More general kernels may be defined as follows. A function @ on T is increasing if ~ ( r )  _< ~(a )  

for r _< a. Any such a function defines a kernel K(~,r/) = ~2(~ A 7/) (with the convention that  

�9 = l i r a  
a - - ~  

Given a Borel probability measure # on OT, we define its energy relative to a kernel K by 

// I~- = K(~, r/)d#(~)dl~(V ). 

The K- capacity of a compact set F C OT, denoted CapKF, is defined by 

(CapKF)-1  �9 t, /~4 + := mf{I  K : # E (F)}, 

where M1 +(F)  is the space of all probability measures concentrated on F.  The K- capacity of 

a Borel set /3 C OT is defined by suPF CapKF where the supremum is taken over all compact 

subsets of B. When K = R~, we shall write I~  = I~ and CapKF = Cap~F.  The capacity 

dimension of F C 0T is defined as 

dime F = sup{a :  Cap~F > O} = sup{a : 3# E M+(F) ,  I~ < oo}. 

P r o p o s i t i o n  2.1. dimH F = dime F for any F C Or.  

This result allows us to estimate Hausdorff dimensions of sets through energy integrals 

of measures. Such a result was first obtained by Frostman [Fro] in Euclidean spaces and was 

generalized to homogeneous spaces by Assouad [A]. However OT is not homogeneous unless the 

degrees of T are uniformly bounded. But, in the case of trees, the last proposition is just a 

consequence of the max-flow min-cut theorem on networks due to Ford and Fulkerson [FF]. We 

point out that R. Kaufman [Kau] has recently generalized the equality dimH F = dime F to 

every complete separable metric space, including OT for any infinite and locally finite tree T. 

We shall refer to the last proposition as Frostman theorem, despite of its different sources. 

Recall now the (lower) dimension of a measure # defined by 

d im# = in f{d imF : # ( F )  > 0}. 
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(See [El,F3] for more informatiSn). The following proposition, a consequence of Frostman theo- 

rem, provides a way to estimate the Hausdorff dimension of a set by estimating the dimensions 

of measures. 

Proposit ion 2.2. Let F C OT be a Borel set F and # be a measure. Then 

(1) d imE _> dim# i~#(F) > O. 

(2) dim # _> v if Ir ~ < oo. 

2.3 Percolation and Covering 

Let p = (P,~),~>I be a sequence of positive numbers such that 0 < Pn _< 1. We remove 

edges at random from a tree T, keeping each edge in the n-th generation with probability Pn 

and making decisions independently for all different edges of all generations�9 This procedure is 

called p-Bernoulli percolation�9 If, with a positive probability, an infinite path emanating from 

the root remains in the tree, we say that the percolation occurs�9 Let 

It^81 1 (2.1) 
K( t , s )  := K p ( t , s ) : =  ~ p--~ 

n----1 

There is a complete solution, in term of the above kernel K, to this p-Bernoulli percolation 

problem, due to A. H. Fan ([FI'F2]) and R. Lyons(ILl'L2])�9 

Proposit ion 2.3. A necessary and sufficient condition for the p-Bernoulli percolation to 

occur is the CapKOT > 0 where K is the kernel defined by (2.1). 

This result was first stated in [F1,F2] for the special case of trees of uniformly bounded 

degrees as a solution to a random covering problem. But the proof is the same for the general 

case stated above. A different proof involving the electrical network technique was used in [L2] 

and the dependence on the vertices of the probability is allowed. 

Actually, the above result may be interpreted from random covering point of view in the 

following way. In stead of saying that an edge is removed, we say it is covered. So that an edge 

of n- th  generation is covered with probability qn = 1 - p,~. We say a path ~ E' OT is covered if 

one of the edges (or equivalently vertices) on ~ is covered. Let Jp (C 0T) be the (random) set of 

all covered paths. We say a path ~ is infinitely covered if an infinite number of edges on ~ are 

covered. Let .1 i"r be the set of all infinitely covered paths. It is clear that v p  

= -Tinf B(q) ---~ oaT \ -7~nf G ( q )  v p  , _p  

with q = (1 -pn) , ,>l .  

2.4 Multiplicative Chaos on Trees 

The general theory of multiplicative chaos was developed by J.P. Kahane [K4]. The theory 

holds on any metric space. But we recall it here just for the case of trees. The key part for us is 
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the Peyri~re probability measure. Let (Pn) be a sequence of non-negative independent random 

weights. Consider functions defined on 07' such that EPn(~) = 1 (V~ E 07'). They are called 

the finite products 
N 

QN(~) = I-~ Pn(~). 

We call QN(~) an indexed martingale because it is a martingale for each ~ E OT. For any p E 

M+(0T), it was proved in [K4] that a.s. the random measures Qg(~)dlz(~) converge weakly to a 

(random) measure that we denote by Q or Q' .  The random measure Q is called a multiplicative 

chaos. If the following L 2 condition 

f f ffl EP.(,)P,,(o)d~(Od#(rj) < (2.2) 

is satisfied, the measure Q is not vanished and a probability measure Q on flx OT, called Peyri~re 

measure, may be defined by the relation 

(for all bounded measurable functions ~). If the distribution of the variable Pn(~) is independent 

of ~ E Or, the weight Pn is said to be homogeneous. The following fact will be useful to us. 

P ropos i t ion  2.4. If the L 2-condition (g.g) is satisfied and if the weights Pn (n >_ 1) are 

homogeneous, then Pn(w,~)'s, considered as random variables on f l x  OT, are Q-independent. 

Furthermore, we have the formula 

EQh(Pn) = Eh(Pn)Pn 

(for any Borel function h). 

Remark that if a property relative to (w, ~) holds Q-almost everywhere, then almost surely 

the property holds for Q-almost every ~. In the sequel, "almost surely" will be shortened to 

"a.s." and "almost everywhere" to "a.e.". The first is referred to the random sampling and the 

second to the boundary point of a tree. 

3 Bad Set B(q) 

3.1 General  Case 

For any N >__ 1, consider the set jpN of paths which are covered at least N times. The 

following relations are obvious 

oo oo 

, .r of n (3.1) J p = U J ;  -p : 
N = I  N = I  
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If Jp - 0T a.s., we simply say that  0T is covered. Thus we have the following interpretation. 

The percolation occurs if and only if 07" is not covered with positive probability. Or equivalently, 

the percolation doesn't occurs if and only if 07' is covered with probability 1. Now we state the 

necessary and sufficient condition for the bad set B(q) to be not empty. 

Theorem 3.1. Consider the p-Bernoulli percolation described above associated to the 

kernel K defined by (2.1). We have 

CapKOT = 0 ==v P(0T = jipnf) = 1, 

CapKOT > 0 ==r P(0T = j~nf) = 0. 

In other words, Y(q) # 0 a.s. if and only if CapKOT > 0, where qn = 1 - pn. 

Proof. Suppose CapKOT = 0. For any v E T, let T v be the subtree rooted at v. It is clear 

that  CapKOT v = 0 (0T v may be identified with a subset, a ball in 0T). By Proposition 2.3, 0T" 

is a.s. covered so that  [JveT, OT~ is a.s. covered for any n _> 1. Therefore 0T is a.s. infinitely 

covered, i.e. j ipnr = 0T a.s. because 

Thus the first assertion is proved. 

Suppose now CapKOT > 0. Then, by Proposition 3.1, we have 

P(0T  = jipnr) _< P(0T = gp) < 1. 

However, the above argument shows that  {0T = j~nf} is a tail event. Therefore we must have 

P(OT i.r )=0. 

Let p '  -- (p~) be a sequence similar to p. By pp'-Bernoulli percolation we mean a p- 

Bernoulli percolation followed by an independent p'-Bernoulli percolation. We shall use this 

device to estimate the size of the set of path which are not infinitely covered, i.e., the set/3q 

with q -- 1 - p (the notation should be self-understood). This idea was used in [K3] for studying 

Dvoretzky covering. The following result gives estimates on the size of the bad set B(q) = OT\J~ nf 

in terms of capacity. 

Theorem 3.2. Consider a p-Bernoulli percolation with kernel K defined by (??). Con- 

sider also a similar kernel K ~. We have 

C a p K , ( 0 T \ J i p n f ) > 0  a.s. ~ CapKK,OT>O. 

Proof. Suppose CaPKK,0T = 0. It is clear that K K '  is the kernel of the pp'-Bernoulli  

percolation. By Theorem 3.1, P (0T  = ~pp'rinf J~ = 1. That  is to say, 0T is infinitely covered 
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by one of these two covering procedures corresponding to the p--Bernoulli percolation and the 

p~-Bernoulli percolation. Notice that the a-stability of capacity implies 

CaPK, (0T \ jipnf) = sup CaPK, (07" \ Jp~), (3.2) 

(see the formula (3.1)). Notice also that 0 T \ J p  N may be regarded as the boundary of the subtree, 

obtained by cutting the tails of the paths which are covered at least N times. More precisely, if 

= (~k)k>l e OT is covered at least N times and if~n is the N-th covered vertex, then {~}k>n is 

cut. Since the paths in 0 T \ J ~  are not infinitely covered by the covering procedure corresponding 

to the p-Bernoulli percolation, they must be infinitely covered by the covering procedure corre- 

sponding to the p'-Bernoulli percolation. Apply once more Theorem 3.1, CapK, (07' \ J~ )  = 0 

a.s. This, together with (3.2), leads to CapK, (07" \ jipnf) = 0 a.s. 

Suppose CapK/(,0T > 0. We claim that with positive probability we have 

Cap/(, (OT \ jpl) > 0. 

Otherwise, ~T \ jpl is a.s. covered by the covering procedure corresponding to the p~-Bernoulli 

percolation. So, 07' is a.s. covered by the covering procedure corresponding to pp'-Bernoulli 

percolation, which contradicts Cap/(K, OT > 0. Thus with positive probability we have 

CaPK, (07" \ jipnf) >__ Cap/(, (OT \ J~) > O. 

Since {CaPK, (o~ \ dipnf) > 0} is a tail event, we have a.s. CaPK, (07' \ dipnf) > 0. 

It follows the Hausdorff dimension formula 

dimH B(q) = sup {a >_ 0: CapRoKOT > 0} 

where 

a.s., (3.3) 

ItAsl 1 , Ra(t,s) = e ~lt^~ 
K ( t , s ) =  H 1 - q n  

n = l  

3.2 Markov  Trees  and  Spher ical ly  S y m m e t r i c a l  Trees 

We examine two examples: the Markov trees and the spherically symmetrical trees. The 

preceding results take more explicit forms. For two functions u and v, if there is a constant 

C > 0 such that C - i v  < u < Cv, we write u ~ v. 

L e m m a  3.1. Let v be the Parry measure on ~A. We have 

, Vt  E ~ A ,  (3.4) 
1 

U~(t) ,,m p(A)"plp2 . . .pn 
n = l  

where the kernel K is defined by (2. I), p(A) is the spectral radius o] A. Consequently we have 

r r  ' 
K(t  - s)dv(t)dv(s) ~ Z p(A)nptp2...pn" (3.5) 

J J  t l=l  
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Proof. Let u and v be positive left and right eigenvector of A associated to p := p(A), i.e. 

utA = pu t and Av = pv. Suppose that  u and v are normalized so that  

71" = (71"0,71"1,''" ,71"m- l )  

with 7ri = uivi is a probability vector. Let 

Pi,j = A,o ~vi" 

Then the Parry measure is, the Markov measure with transition matrix P = (Pid) and initial 

probability It. That  means 

v(I,(zx, z 2 , . . - ,  z , ) )  = 

Notice that  

u(In(zl ,  z 2 , ' "  , xn)) = p-(n-X)ux~Az,,z, "" Az ._ ,x .  vz . .  

Let In(t) be the n-cylinder containing t. Since Io(t) = r,A, we have 

u"(t) oo 1 f ( )  
= n ~  ~ d v z  = PlP2 ~''pn .(0\I.+1(0 

~: o 1 E v(In+l(tx, " ,tn,Sn+l)) ~  

PlP2 ~ " " Pn 
= 8 n + l ~ t n +  1 

- w~.OPIN-"I -- Ut, At,,t~ "'" At ._ ,  ,t. Z A t . , , .+ ,  v , . +  1 pap n 
= @n-l- 1 ~$nq- 1 

oo 1 

P l  P ' 2 =  " ' "  P n P  n 

T h e o r e m  3.3. Consider a Markov tree EA defined by the primitive matrix A (whose 

spectral radius is denoted p(A)). For a given sequence q = (qn)n>l with 0 < q, < 1. Then 

(a) a.s. B(q) # r if and only if 

oo 1 

p(A)n(1 - ql)(1 - q2)""" (1 - qn) 
n = l  

< oo. (3.6) 

(b) Furthermore, for any kernel K '  defined by a sequence (P'n), we have CapK, (B(q)) > 0 

a.s., if and only if 
oo 1 

Z p(A)np~(1 _ ql)p~(1 - q2)'" "//n(1 - qn) < oo. (3.7) 
71=1 

(c) In particular, under the condition (3.3), we have a.s. 

1 ~ I (3.8) dimH B(q) = log p(A) - lim sup n j ,~  log n q ~ ' l  
n"- ' ) '  O0 ._~..~ - -  
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Proof. Lemma 3.1 tells us that the potential U~(t)  of the Parry measure is nearly a 

constant on EA, a property shared by the equilibrium measure of EA. Suppose the series in 

(3.6) is divergent, i.e. the potential is every everywhere infinite. Then the argument used in 

[F1,F2] shows that ~A is covered by the covering according to the p-Bernoulli  percolation with 

Pn = 1 - qn. That  means B(q) = 0 a.s. Suppose now the series in (3.6) is convergent. Then 

CapK(EA ) > 0 by (3.5) in Lemma 3.1. So, according to Theorem [NFL], B(q) ~ ~ a.s. Thus (a) 

is proved. 

The assertion (b) is a direct consequence of Theorem 3.2, because (3.7) means CaPK K, ~A > 

0 by Lemma 3.1 and the proof of (a). 

For (c), consider p" = e -~  (Vn >__ 1). The corresponding kernel is the Riesz kernel R~. Let 

x = e ~ and consider the following Taylor series 

oo  ~ r t  

Z p(A)"(1 - ql)(1 - -  q2)""" (1 -- qn)" 
n : l  

By (b) and the formula (3.3), e dimn B(q) is equal to the radius of convergence of the Taylor series. 

Thus we get the formula (3.8) by using the Cauchy-Hadamard formula. 

Suppose that  T is a spherically symmetrical tree with numbers of descendants {ra,},,>l.  
oo  We can consider 07' as the infinite group @n=l Z / m n Z .  The natural measure on T is the Haar 

measure v: any n-cylinder has a measure ( m l m 2 . . . m ~ )  -1. This measure is invariant under 

the group translation. It is easier to prove the following lemma than Lemma 3.1 by using the 

translation invariance. 

L e m m a  3.2. Suppose that T is a spherically symmetrical tree with numbers of descendants 

{mn}n>l.  Let v be the Haar measure on T.  We have 

1 uy,(t) 
n = l  P l P 2  " " " p n m l r a 2  �9 �9 �9 r a n  

where the kernel K is defined by (2.1). Consequently we have 

o o  

Vt e Or/', (3.9) 

1 (3.10) 
n----1 P l P ' 2  " " " P n r a l r a 2  " " " r a n  

We can prove 

T h e o r e m  3.4. 

"{mn},~>l. Let q = (qn)n>l 

m l m 2 " " m n .  Then 

(a) a.s. B(q) # 0 iff 

Consider a spherically symmetrical tree T with numbers of descendants 

be a sequence of numbers with 0 < qn < 1. Denote IT.I = 

oo 1 

E IT, f(1 - ql)(1 - q 2 ) ' "  (1 - qn) < ~"  (3.11) 
rt----1 
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(b) 

a.,q. / f f  

Furthermore, for any kernel K '  defined by a sequence (.p'), we have CapK, (B(q)) > 0 

IT,,Ip  (1 - qx)p (1 - q 2 ) . . .   r - q,,) n.--~l 

< r (3.12) 

(c) In particular, under the condition (3.11), we have a.s. 

(3.13) 

4 Good Set G(q) 

4.1 Existence of  Good Path 

We start with a simple fact. Given any measure/~ on OT. By the notation A = 0T #-a.e., 

we mean that the symmetrical difference (A \ 0T) U (07' \ A) has null #-measure. If 

c~ 

~-~qn = ~  
n = l  

then a.s. •(q) = aT #-a.e. If the above series converges, B(q) = 0 #-a.e. In fact, it suffices to 

apply the Borel-Cantelli lemma and the Fubini theorem. 

The above condition (the divergence of the series) is much stronger than the real condition 

for the existence of good path. Recall that for any vertex a, we denote by T ~ the subtree 

emanating from a. The following is a criterion for the good set G(q) to be non empty. It is 

actually a criterion for ~(q) to be dense in 0T. 

Theorem 4.1. The good set ~(q) = 0 a.s. if 

o o  

q,,lT,,] < c~. (4.1) 
n = l  

The good set G(q) ~ 0 a.s. i f /or  any vertex a e T we have 

( x )  

qi~l+n]T,~ I = ~ .  (4.2) 
n = l  

In this case, the good set is a.s. dense in Or. 

Proof. Suppose the series in (4.1) is convergent. By the Borel-Cantelli lemma, there is 

a.s. only a finite number of good edges on the tree, afortiori G(q) = 0 a.s. Suppose now the 

divergence of the series in (4.2). The same Borel-Cantelli lemma says that on any subtree there 

is a.s. an infinite number of good edges. So, a.s. there is an infinite number of good edges 

on any subtree T", because such subtrees are countable. We claim that a.s. the tree contains 
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a good path. Take a sampling and construct a good path in the following manner. An edge 

joins a parent vertex to a descendent vertex. In stead of saying the edge is good, we say the 

(descendent) vertex is good. So, a good path is one passing an infinite number of good vertices. 

Since there is an infinite number of good vertices on the tree T, we choose a good one al. Since 

there is yet an infinite number of good vertices on the subtree T ~ we choose a second good 

vertex o'2, different from al, on T ~ . Now consider the subtree T ~2 and so on. In this way we 

get a sequence of good vertices {a,~}n>l. The path passing these vertices is a good path. This 

proves ~(q) # 0. In the same way, we can construct a good path on any subtree. Thus we prove 

the density of G(q) 

Remark 4.1. In general, the condition 
OQ 

q~lr, d = cc 
r~: l  

is not sufficient for ensuring 6(q) r 0 a.s. 

Let us consider the Markov tree (not primitive) defined by 

and the probabilities q,~ = n -2. We have ITnl = n + 1 so tha t  

oo  

n = l  

However, a n y  path  is a.s.bad because 
oo 

E qn <oo. 
n : l  

Since there are only a countable paths, a.s. any path  is bad, i.e. @(q) = 0 a.s. 

Remark  4.2. But for trees sharing some symmetry  or periodicity, the condition 
0(3 

~Z~ q~ir~l = oc is necessary and sufficient for G(q) # 0 a.s. 
n : l  

We call a tree T growth-periodic if for any vertex a E T there is a constant  

C = C(a )  > 0 such that  

C o r o l l a r y  4.1. 

a . s .  i J ~  

iTl ,+ni 
> C(a) ,  Vn > l. 

Suppose T is a growth-periodic tree. Then the good set ~(q) # O 

E q~IT~i = c~. (4.3) 
n : l  
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In this case, the good set is a.s. dense in 07". 

Proof. We have only to show that the condition (4.3) implies the condition (4.2). 

It is true because 

ql~l+~lTgl > C(a) ~ qklTkl 
n=l k=lal+l 

where C(a)  is the constant involved in the definition of the growth-periodicity. 

C o r o l l a r y  4.2. I f  T be a (primitive) Markov tree ~ A or  a spherically symmetrical 

tree @n~=l 7./mn7Z, then it is growth-periodic. Consequently, either ~(q) is a.s. dense 

in OT if  

or g(q) is a.s. 

IT.I = m l m 2  . . . mn for  the spherically symmetrical tree. 

Proof. For the spherically symmetrical tree, it suffices to notice that 

OO 

Y ~  q. lT.I  = oo 
n = l  

empty i f  the series converges, where [T.I ~ p(A) n for  the Markov tree or 

7/~1 "'" ml~llTgl = IT.+I~II. 

We may take C(a)  = ( m l ' "  ml#l) -1. 

For the Markov tree, it suffices to notice that 

I~1 = ~ AM,z,  Azl,z2 "'" Az ._ , , z .  .~ p(A) n = p(A)-I~IITI~I+n[. 

The condition (4.3) of non-existence of good path is implied by 

lim inf 1 log 1 - - -  > dimBOT. 
n~oo n qn 

The condition of existence of good path for growth-periodic tree is implied by 

1 1 
l i m s u p -  l o g -  < dimBOT. 

n~oo ~z qn 

We are now going to estimate the Hausdorff dimension of the good set. 

4.2 Hausdorf f  D i m e n s i o n  of  g(q) 

T h e o r e m  4.2. Let 

= lira sup 1 log __t 
n ~  n qn 
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Suppose dimH OT > a. Then the good set ~(q) is of positive Hausdorff dimension and 

dimg 071 - a <_ dimH g(q) <_ dimBOT - a a.s. (4.4) 

In stead of saying good edges, we say good vertices. Fix e > 0. Consider the 

random subset of the n-level cutset Tn 

On = {a E Tn : a is good} 

and the set of paths covered by balls B~ with a E Cn, i.e. 

Gn = U B~. 
aECn 

For a good path { there is an infinite number of Gn's which contain (. In other words, 

oo oo 

~(q) C U r"l c,,. 
N = I  n = N  

Using the a-stability of the Hausdorff dimension and the fact dimH F < dimB F, we 

have 

dimH G(q) _< sup dim B N Gn. 
N > I  

- n = N  

However 
c~ log CardCn 

dimB N Gn _< lim inf 
n--+oo n 

n : N  

We are then led to estimate CardCn. Notice that 

ECardCn = [Tnlqn. 

Let ~ = liminfn(ITnlqn) 1/n. Then for any g' > s > g there is a subsequence n k such 

that ITnk Iqnk <- e'nk. Next consider the event En = {CardCn < g,n}. By the Chebyshev 

inequality, we have 

Ec ECardCnk (g,,~nk e' 
P(nk)< e <-kF} <F<I. 

It follows that 

E P ( E n ) > - - E  P ( E n k ) > - - E  1 - ~ ;  
n = l  k=l  k = l  

~ (:X). 
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Notice that En are independent. By the Borel-Cantell lemma, we have a.s. 

lim inf log CardCn _< log g". 

Since g" > g is arbitrary, we have 

log CardCn 1 
lim inf _< lim inf -- log(ITnlqn ) 

_< d imBOT- l imsup  l o g - -  

In order to get the lower bound we consider a family of independent Bernoulli 

variables indexed by the tree {ev}vET such that 

P(ev = 1) = qlvl = 1 - P(ev = 0). 

Then consider the multiplicative process with weights 

p n ( ~ ) =  exp(bne~]n) 
1 - qn + qne bn ' 

where the sequence of numbers b = (bn) will be chosen later. 

Take/3 and D such that a </3 < D < dimH 0T. By the Frostman theorem, there 

is a probability measure/~ E M1 + (Off') with 

If) < o0. (4.5) 

Consider the multiplicative chaos measure Q~ associated to /~. Notice that, by the 

definition of a, there are constants no > 1 such that 

1 
l o g -  _</3n, Vn _> no. (4.6) 

qn 

For any ~ _> 0, it may be calculated that 

EIQ~ = N-~cclim/UR~(~,T/)E QN(~)QN(71)d#(~)d#(u) 

i<_n_<l~A,71 

where ca(x) = log(1 - qn + qneX). In virtue of the elementary inequality 

( 1 - a + a y  2) <_ y ( 1 -  a + ay) 2 
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holding for 0 < a < 1 and y > 1, we have 

cn(2bn) - 2an(bn) < bn. (4.7) 

Take now an integer A > 2 and define { b n }  as  follows: 

b n = O  if n # A J ,  bzx~ = log  1 
q A J  

Then, by the inequality (4.7) and the choice of bn's ,  E I  Q~ is bounded by 

f f R~(~, r/) exp E bAJ d#(~)d#(~?) 
l_<,",J_< Is 

= f Z (- l~ 

(4.8) 

Using (4.6), we see that E1 ff~ is bounded up to a multiplicative constant by 

E AJ)  d#(~)d#(r/) 
l<zxJ <1(̂ ~1 

( f lA- -~[~  A 771 ) d#(~)d#(r/) 

The last energy integral of # is bounded by I~) then is finite (see (4.5)) if ~ verifies 

A 
~ + 3  < D .  A - l -  

For n = 0 and for large A, the finiteness of l ~ + A / ( n _ l  ) implies that the L2-condition 

(2.2) is fulfilled. Then with a positive probability Q~ # 0. Notice that since P,~(() are 

strictly positive, the event Q~ # 0 is a tail event. We conclude that a.s. Q~ r 0. It 

follows (Proposition 2.2 (2)) that a.s. 

A 
dimQ~ _> D - ~A - 1" (4.9) 

Thus 

On the other hand, by the formula in Proposition 2.4, we have 

EO~, l{~l, ,=x } = 
EI{~I,,=I} e x p ( b n l { ~ l , ~ = l } )  qne  b" 

1 - qn + qn eb" 1 - qn + qn eb'~ " 

0r 1 f i  eb" qn > E - -  
l) = 1 - qn + eb'~qn -- 2 -- qAJ n=l j=l 
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Therefore, by the Borel-Cantelli lemma, a.s. ~(q) is of full Q~-measure. So, using (4.9) 

and Proposition 2.2(1), we have a.s. 

A 
d img~(q)  >__ dimQ~ _> D - / ~ A _  1" 

The RHS approaches to dim 0T - a if we let D ~ dimg 07', A --+ c~ and then/3 ~ a. 

Remark 4.3. The inequalities in (~.~) become equalities if the tree is regular in the 

sense that dimH 0T = dimBOT. It is the case for primitive Markov trees. Thus Theorem 

B in the introduction is proved. 

5 Osci l la t ions  

From now on, we concentrate on growth-periodic trees T such that dimH 0T > 0 

( or equivalently brT > 1) and dimH 07' = dims0T. For sake of simplicity, these 

assumptions will be not repeated in the statements of theorems. 

We can consider random walks a little more general than those mentioned in the 

introduction. Namely, we only require that the n - th  level variables {X~}~eT, are iden- 

tically distributed (of course, all variables are independent). We use Xn to denote the 

common law of the n - th  level variables defining our tree-indexed walk. Recall that 

= r  is a sequence of positive numbers and 

OSCr = limsup ~ E 0T. 
r 

5.1 U n i f o r m  Lower and U p p e r  B o u n d s  

T h e o r e m  5.1. We have sup~eo TOSC~,(~) = 7max a.s. where 

7max = inf 7 e ] ~ :  IT, I P ( X , > 7 r  
n = l  

We have inf~e0T OSC,I,(~) = q'min a.s. where 

7rain = sup {7 E ~ : CaPK, ( 0 T ) > 0 } ,  

where CapK ~ refers to the capacity relative to the kernel 

ItAsl 1 

K'rCt's) = ~ P(Xn < 7r 
n = l  

(5.1) 

(5.2) 
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Proof. If 7 > 7max, the condition ~ q~lTnl < oo  is satisfied with qn = P(Xn  > 
n 

7r  By Corollary 4.1, ~(q) = $ a.s. It follows that a.s. for all r E 0T we have 

Xr _< 7~(n) for all but a finite number ofn.  Then supr 0SCr162 _< 7 a.s. So that 7max 

is a uniform upper bound. I f7  < 7max, we have ~ qn[Tn[ = oo. Then, by Corollary 4.1, 
n 

G(q) r 0 a.s. It follows that a.s. there is a point ~ E 0T such that Xr n > 7he(n)  for 

an infinite number of n. For this 4, we have OSC~(~) > 7. So, supr 0SCr > 7max. 

Notice that KT(t, s) is decreasing as function of 7 so that CapK 0T is decreasing as 

function of'),. Suppose 7 < 3'rain. Since CaPK 0T = 0, by Theorem ?? we have B(q) = 0 

a.s. with qn = (Xn > 7~(n)).  That is to say, a.s. for all r �9 07' we have Xr ) 

for an infinite number of n. It follows that infr 0SCr _> 7. So, 7rain is a uniform 

lower bound. Suppose 7 > 7rain. We have CaPK 0T > 0, then B(q) r a.s. This implies 

infr 0SCr _< 7. 

Remark 5.1. The condition dimH 07' = dimBOT is not required by the last the- 

orem. On primitive Markov trees and spherically symmetrical trees, we have a formula 

for 3"min simpler than (5.2): 
f 

7min : s u p  / V  

We may compare it to (5.1). 

E R :  ~ r v k  7r < cc . 
n--1 ---- -- 

(5.3) 

Coro l l a ry  5.1. Suppose (Xn) is an i.i.d, sequence. Let F(x) = P ( X  <_ x) be 

their common distribution and F* be the inverse of F, defined as 

F*(y) = sup{a E R:  F(a) <_ y}. 

Then we have a.s. 

inf OSC1 (r = F* (1/brT), sup OSC1 (~) = ess supX. 

Proof. Notice that 

1 
KT(t, s) = P ( X  < 7)ltAsl 

So, by the Frostman theorem, we have 

---- Rlog(1/P(X<_7) ) ( t ,  s ) .  

7min = inf {7 E R:  log(1/P(X _< 7)) < dimH 07'} 

= inf{3" E I~: P ( X  _< 7)) > 1/brT} 

= sup {3' E II~: P ( X  < 3')) < 1/brT} -- F*(1/br).  
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The essential bounded is of course a upper bound of limn X~I,,. If 7 < ess supX, we will 

have P(X > "7) > 0 so that  E ]TnlP(Xn > 7) = ~ .  This implies that  a.s. there is a 
n----1 

point ~ E 0T such that  lim sup X~I" >__ 7. 
n 

If a suitable normalization sequence @(n) is found so that  - ~  < ')'min < oo, 

we would like to ask if, for ~ given number 7 > ")'min, there are points ~ such that  

7rain < 0SCr < 7. Such points, if exist, will be called slow points (or slow paths). 

For the case where all the variables Xa are identically distributed, we can choose the 

constant sequence @(n) -= 1 as normalization sequence, as is shown by tile last corollary. 

Usually, the good choice of the normalization sequence depends on the distributions of 

Xn through the following quantities 

t 1 (5.4) - -  o ~(@,3') = l imsup 1 log P(Xk < 7@(k)) 
n---+ c~ ?'t k = l  - -  

Roughly speaking, the sequence @ may be chosen as a normalization if fi(@, 7) > dim 07' 

for some 7 and fl(@, 3') < dim Or/' for some other 7. 

There is also a similar question of finding a normalization sequence @(n) in order 

to get - ~  < ")'max < ~ .  Suppose such sequence is found. For a given number 3' < ")'max, 

points ~ such that  7 < 0SCr < ")'max, if exist, will be called quick points (or 

quick paths). Concerning this maximum normalization, even for the case where all the 

variables Xa are identically distributed, the determination of normalization sequence 

depends on the distribution of the variable X. Consider the following quantities 

i (5.51 ~(@,7) = limsupn~ log P(Xn > 7@(n))" 

Roughly speaking, the sequence @ may chosen as a maximum normalization if o~(@, 3') > 

d i m 0 T  for some 7 and o~(@,'7) < dim 0T for some other % We will see that  we can 

choose @(n) = ~ as a maximum normalization sequence for the random walk on dyadic 

tree determined by a gaussian variable X. 

Suppose that  we have found a minimum normalization @min and a maximum nor- 

malization @max. Usually we have @rain -~ @max (we mean @rain(n) tends to 0 as 
@max(n) 

n --+ cx)). In most cases, there are sequences @ with the property @min "K @ ~ @max 

such that  0SCr is finite and non zero for some ~. Such points will be called in- 

termediate points (or intermediate paths). Of cause, for intermediate points ~ we have 

OSCcm,, (~) = =kco and OSCcm~x (~) = 0. 
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Before going further  in the s tudy  of different kinds of point  tha t  we have classified, 

let us look at two examples and examine their possible normalizations.  

Suppose tha t  the common law X is uniformly dis t r ibuted in [0, 1]. In this case, it 

is na tura l  to take 4Pmin(n ) = 4Pmax(n ) = 1. Then  we have 7rain = ~ and 7max = 1. 

Notice tha t  the oscillations of random walk in this case are all of the same order along 

any path.  But  pa ths  can be classified by 0SCr  = a according to ~ < a < 1, as we 

shall see. 

Suppose now that  the common law X is an exponential  law with mean valuc 1. In 

this case, we will take (I)min(n) = 1 and ~max(n) = n. Then  we have 7rain = log brT-1 
b r T  

and ")'max = loggr__.T. In this case, the oscillations are of all possible orders 42(n) = n s 

w i t h 0 < s < l .  

We will examine in more details the case of gaussian r andom walks (w 6). 

5.2 S low O s c i l l a t i o n s  

Recall that  q'min is the best lower bound.  Now we s tudy the set of slow pa ths  { E Or/, 

such tha t  7rain _< 0SCr  <_ 7 for some ~, > 7mi,,. 

T h e o r e m  5.2. Suppose 7rain < oo. Let "), > "Ymin. Then we have a.s. 

dim,,  {~ E OT:  0SCr  _< -y} = sup {~ _> O: CapR~IGOT > 0} .  

Proof. Let c~0 be the number  at the right hand side. Let S~ be the set of all 

points  ~ E 0/" such that  OSCr < 7. For any a > a0, we have CapR~K 0T  = 0 or 

CapR~R~_BK 0T  = 0 for any j5 E (s0, a).  So, by Theorem 3.2, Cap~B(q ' )  = 0 a.s. wi th  

! 
qn = e - (a -~ )P(Xn  > r e ( n ) )  = P ( X n  > % ~ ( n ) ) ,  

where % > q, + e for some e > 0. So, dimH B(q') _< fl a.s. We claim tha t  S.~ C B(q') ,  

because ~ E S. r implies X~I n < (7 + e)~(n) (Ve > 0,Vn _> n(e)) while ~ E B(q I) means 

X~I,, < "tn~(n) for all but  a finite number  of n. Thus  we have proved d imS.  r <_ a0. 

For any a < a0, we have C a p / G g  oqT > 0. So, by Theorem 3.2, CapaB(q  ) > 0 

a.s. wi th  qn = P ( X n  > 7r  So, d i m g  B(q) > a a.s. We claim that  S~ D B(q). 

C o r o l l a r y  5.2. Suppose T be a primitive Markov tree or a spherically symmetrical 
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tree. For 7 > 7 m i n ,  toe have a.s. 

dimH {( e 0 T :  0SCr  _< 7} = l iminf  1 loglT.I + ~ l o g P ( X n  < 7~(n) )  �9 
n--~c~ n k = l  

Proof. The proof is the same as that of Theorem 3.3(c). 

5.3 Q u i c k  Osc i l l a t ions  

For a fixed sequence (I), we introduce the following function of 7 E iR 

1 1 
a (~ ,  7) = lim sup - log 

n-~oo n P(Xn > 7(~(n))" 

T h e o r e m  5.3. Suppose that a(r 7) is left-continuous at 7 > 0 and that a(q~, 7) < 

dimHOT. Then a.s. 

dim/ /07 '  - a ( r  3') < dimH E ,  ((I), 3') < dimBOT - a((I), 3'). (5.6) 

If, furthermore, there is a sequence en $ 0 such that 

O0 
P(Xn >_ (1 + en)7+(n)) 

P(X.  > .yr 
n = l  

< (5.7) 

then a.s. 

dimHOT - a < dimH E((I), 1) < dimBOT - a. (5.8) 

Proof. Without  loss of generality, we assume that  q' = 1. For the first assertion, 

it suffices to apply Theorem 4.2 and to notice the following relation 

~(q(O)) C E , ( r  1) C G(q(e)), Ve > O, 

where q(e) = P(X~I" > (1 - e)f(n))  (even for e = 0). 

In order to prove the second assertion, we go back to the proof of Theorem 4.2 

where a random measure Q~ is constructed by a family of Bernoulli variables ev. We 

now define ev = 1 or 0 according Xv > (I)(Ivl) or Xv <_ r Thus we have only to 

show that  a.s. for Q~-almost every ~ we have 

X~I" = 1. 
limn_+oosup ~(n)  
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We first show tha t  a.s. for Q~-almost every 4, the limit is bounded  by one from above. 

This  is t rue because, according to the choice of bn (see (4.8)), we have 

E 
n = l  

Q~(X~I ~ 2> (1 + en)~(n)) 

= ~ El{x~l">( l+e 'Or  

~=1 Ellx~l->'~(n)} 

= ~-~eb"P(X~>(l+en)~(n))  

n = l  qn + eb'~ qn 

1 
= E P ( X n > ( l + e n ) r  E 2 - q n  

n r  n=AJ 

<_ C E P(Xn >_ (1 + en)r  
n=l P(Xn k ~(n)) < oo, 

P(Xn >_ (1 + en)i~(n)) 
P(Xn >_ ~(n)) 

where qn = P(Xn > (I)(n)). We apply once more the Borel-Cantelli lemma. The  extra  

condi t ion (5.7) was used. It is easier to show that  the limit is bounded  by one from 

below wi thout  using the extra condition. In fact, we have 

c~ o( eb n oo 1 

Q~(X~[, > ~(n)) = 1 - qn + eb"qn -- 2 -- qAJ 
n=l n = l  j= l  

5.4 I n t e r m e d i a t e  O s c i l l a t i o n s  

Roughly  speaking, if the tail probability P(Xn >_ Og(n)) decays exponentially, the 

pa ths  such that  0 < OSCr < o0 are rapid; if the tail probabil i ty is bounded  from 

below, the paths  such tha t  0 < 0SCr  < co are slow. We shall see tha t  sub-exponent ial  

decay of the tail probability corresponds to intermediate  oscillations. The  following result 

is a part icular  case of the last theorem. But  we state it as a theorem because it will 

provide us impor tan t  intermediate  points. 

T h e o r e m  5.4. Suppose that the function ~( ~,7) is left-continuous at 7 > 0 and 

o~((I), 7) = O. Suppose furthermore 

~ P(Xn >_ (1 + en)7r 
n=x P(Xn >_ 7(I)(n)) < co, with some en $ O. 

Then a.s. d i m g  E((I),7) = dimH 0T. 

For intermediate  points to cxist, it suffices to find an intermediate  sequence (I) (i.e. 

(I)min -~ (I) -< (I)max) such that  a (~ ,  "y) = 0 for some 7's. 
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Let us finish our discussion by mentioning ordinary paths�9 A natural probability 

measure on 0T is defined as follows: for any descendent 7- of a 

= 

where Na is the degree of a. We may consider A as the Lebesgue measure of the tree. 

Theorem 5.5. Suppose that for any 0 < e < 1 we have 

Oo Oo 

Z P(X  >_ (1 + e)~(n)) < oo, Z P(X >_ (1 - e)~(n)) = oo. 
n = l  n = l  

Then a.s. OSC+(+) = 1 for A-a.e. ~ E OT. 

Proof. Fix ~ E Or,  the conditions implies that  a.s. 1 - e _< OSC~(() < 1 + e for 

all e > 0. So, a.s. 0SCr = 1. Then the Fubini theorem implies the desired result. 

The points in the conclusion of the last theorem are called ordinary points�9 Ac- 

tually, the result in the last Theorem remains true if A is replaced by any measure on 

0T. So, if the condition in the theorem is satisfied, in the support  of any probability 

measure, there are ordinary points and moreover almost all points are ordinary points 

with respect to the given measure. The interest of the present paper is just  to discover 

unusual behaviors along non ordinary paths. 

6 G a u s s i a n  Walks  a n d  B r o w n i a n  Motion 

We examine a special gaussian walks by checking the conditions in the preceding 

theorems. Then we translate the results into local properties of Brownian motion. 

6.1 G a u s s i a n  Walks  

By gaussian walks we mean the tree-indexed walks determined by a gaussian vari- 

able Z ,~ N(0, 1). For the purpose of the study on Brownian motion, we consider the 

absolute value of the gaussian variable X = [Z[. The associated walk is still said to be 

gaussian. 

The main property needed of X = IZ[ is the following. For u >_ 1, we have 

u 2 

P(X >_ u) = 2P(Z >_ u) = V ~ Jo e - Y d x  ,,~ --u (6.1) 
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In particular, take u = an "t with a > 0 and -), > 0. We get 

a 2 

qn := P ( X  >_ an "t) "~ n - ~ e - ~  n2~ . (6.2) 

Let A be defined by 

y• f A ~2 
Jo e-  T dx = 1 brT" 

T h e o r e m  6.1. Suppose T is a growth-periodic tree such that dimH 07' = d imsOT > 

0 and X = JZJ where Z ,,~ N(O, 1). For the random walk on T defined by X ,  we have 

(1) a.s. OSCI(~) >_ A for all ~ E OF. 

(2) a.s. OSCv~(~ ) <_ ~/21ogbrT for all ~ e OT. 

(3) I f  B > A, then a.s. 

dimH E*(1, B) = dimH 07' + log e - r d x  . 

(4) I f  a < ~/2 log brT, then a.s. 

a 2 

dimH E ( V ~ ,  a) = dimH E,(~/n, a) = dimH 0T - - - .  
2 

(5) For any 0 < ~ < �89 and any c > O, a.s. 

dimH E(n  ~t, c) = dimH 0T. 

(6) a.s. O S C ~ ( ~ )  = v ~  A-a.e. where A is the Lebesgue measure. 

Proof. 

1 
(1) Since P ( X  <_ a) is continuous and strictly increasing and ~ < 1, the number 

1 
A = F*(1/brT)  is the unique solution of P ( X  _< A) = ~-r-r-r-~' By Corollary 5.1, A = 7rain 

with (I)min(r~) _= 1. 

(2) Apply the formula (5.1) to (I)(n) = v ~ .  By the estimate (6.2), we are led to 

consider the convergence of the series 

E JT,~JP(Xn > ~/V~) ~ E - ~ z " ,  z = e - ,  
n =  n.-~ 

So, if ")'max denotes de upper bound associated to (I)(n) = v~ ,  then e-  

convergence radius of the last Taylor series. That  is to say 

e '~ = limsupJTnl l/'~, 
n - - ~ o o  

~Ax 
2 must be the 
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(the factor 1/v/'n being not important). It follows that ")'max = 42d--~BOT. But 

dimBOT = log brT by the hypothesis on the tree. 

(3) It is a direct consequence of Corollary 5.2. 

(4) Take ~(n) = v/n. By the estimate (6.2) we have a( r  7) = ~ .  This function 

is continuous even differentiable. On the other hand, if en = ~ ,  then 

oo 
P ( X p ( x  >- (l>+ax/_n)en)a~/-n) ~ ~ e -v~ < c~. 

n----1 n=l  

Now we can apply Theorem 5.3. 

(5) 
we have 

1 Take r  = n "t with 0 < 3, < 1/2. We have a( r  3') ~- 0 for all 7. If en = n'-V, 

~ P ( X  > (1 + en)cn "t) oo 
e < oo  

n=l n=l 

Now it suffices to apply Theorem 5.4. 

(6) Take r  = v/2-~gn. We have 

P ( X  >_ (1 + e) lox/i-0-~ ) 

P(X > (1-  lov/i-0 ) 

Apply Theorem 5.5 to get the desired result. 

n(1-,)2 y~-g n 

6.2 O t h e r  Example s  

Let us just state two other examples: the exponential variable and the uniform 

variable. The first one is unbounded but the second one is bounded. 

Suppose X obeys the exponential law of parameter ,k > 0. We have 

/? P(X >_ u) = ,~ e- '~dx = e -au. 

Suppose furthermore dimH 0T = dimBOT > 0. Then have 

(1) a.s. OSC I (~ )  ~> )~-l,log ~brW for all ~ E Or. 

(2) for B > A -1log brT ~ ,  a.s. 

1 
dim//E*(1, B) = dim//07'  - log 1 - e -~B" 
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(3) a . s .  O S C n ( ~ )  < d im/ /OT for all ~ E 0T. 
--  A 

(4) for a < ~ ,  a.s. 

dimH E ( n ,  a) = dimH 0T - ak. 

(5) For any 0 < 7 < 1 and any c > 0, a.s. 

dimH E ( n  "y, c) = dimH Off'. 

Suppose X is uniform distributed in [0, ~] with s > 0. For 0 < u < s we have 

P ( X  > u) = g 

Suppose furthermore dimH 0T = diraBOT > 0. Then have 

(1) a.s. ~ <_ OSC1(4) _< 1 for all x e 07'. 
1 (2) for br--Fy < B <_ 1, a.s. 

1 
dimu E*(1, B) = dimH 071 - log ~ .  

6.3 Symmetric Variations of Brownian Motion 

For n >_ 1 and t e [0, 1], let In(t) = [ t~) , t~ )] be the n-level dyadic interval contain- 

ing t. Let t~ ) = �89 ) + t (d)) be the middle point of the interval In(t) .  For a continuous 

function f e C([0, 1]), we define its n-th (symmetric) variation at t by 

:,n/(t) = 2:(t~ ~)) - :(t~)) - f(t~)). 

The (symmetric) variation of f at a point t may be described by a suitable decreasing 

positive sequence ~(n) such that 

IAnf(t)l 0 < lira sup - -  < cx~. 
n~oo ~(n) 

It is possible that different functions ~ are needed for different points t. We shall see 

that it is the case for the trajectories of Brownian motion. 

Let B( t )  be a linear Brownian motion. By using the Fourier-Franklin development, 

we can get the following expression for the n-th variation of B(t): 

A n B ( t )  = 2-n/2zt l , . . . , t , , ,  
o o  

tn 

n = l  
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where Ztl,...,t, (n > 1; 1 < j _< n; tj = 0 or 1) are i.i.d, s tandard normal variables (see 

[3]). Thus they define a tree-indexed walk, where the tree is the binary tree D = {0, 1} N. 

On the binary tree, it is better  to use the metric ~(t, s) = 2 -It^sl instead of d(t, s) = 

e-lt^sl because the tree is usua!ly identified with the interval [0, 1] on which we have the 

Euclidean metric. The Hausdorff dimension relative to the Euclidean metric coincides 

with the Hausdorff dimension relative to the metric ~. To distinguish, we use dim to 

denote the Hausdorff dimension relative to this new metric. Since d(t, s) = ~(t, s) l~ 

we have the relation d imE = ~ dimH E for E C D ~ [0, 1]. The last theorem applied 

to the binary tree can be translated into the variations of Brownian motion as follows. 

Tha t  is what we stated as Theorem A in the introduction. 

T h e o r e m  6 . 2 .  Let B(t) be a linear Brownian motion�9 Then 

(1) a.s. for all t E [0,1] 

limsup I nB(t)l > A = 0,  6 0 8 ,  

where A is defined in the last theorem with brT = 2. 

(2) a.s. for all t e [0, 1] 

IAnBCt)I 
lim sup < 1. 

n~oo ~ /2 .2  -n log2 n - 

(3) If B > A, a.s. 

dim t E [ 0 , 1 ] : l i m s u p  ~ < B  = - l o g  2 e_Z2/2 dx 

(4) lfO < ~ < 1, a.s. 

dim { t E [O, 1] : limsup lAnB(t)l } a 2. 
n--*oo X/2.2 - n l o g 2  n =~ = 1 -  

(5) If O < ~ < l and c > O, a.s. 

dim { t e [O, 1l : limsup IAnB(t)l } 
n--,oo ~/2"2 - ^ l o g  ~2 n = c  = 1 .  

(6) a s .  Io,- a.e. t e [0,1] 

lim sup IAnB(t)l  = 1. 
n ~  ~/2 ' 2 -n  log log 2 n 
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It is clear that (1) implies that Brownian motion is nowhere differentiable. We 

call the points described in (3) symmetric slow points and the points described in 

(4) symmetric quick points. These points have their counterparts of the slow points 

discovered by J.P. Kahane [K1,K2]: 

0 < limsup IB(t + h) - B(t)[ < oo, ( g )  
h - - * 0  

and the quick points discovered by S. Orey and J. Taylor [OT]: 

0 < limsup [B(t  + h) - B( t ) l  < oo. (OT)  
h-~o x/Ihllog(1/Ihl) 

The left inequality in (K) was earlier proved true for any t by A. Dvoretzky [D2] and 

the right inequality of (OT) was proved true for any t by P. Lfivy ILl. They correspond 

to the lower and upper uniform bounds stated in (1) and (2). It is worthy to point out 

that symmetric rapid points are rapid points in the sense of Orey-Taylor. Therefore the 

result in (4) implies a well known result due to Orey and Taylor that the set of quick 

points in sense of Orey-Taylor is of Hausdorff dimension 1. However, the result in (2) 

on the symmetric slow points has no immediate consequence on the slow point in the 

sense of Kahane. 

We call the point described in (5) symmetric fl-points. There are many symmetric 

fl-points ( 0 < fi < 1) for the Brownian motion. It is proved in IF4] that there exist 

(asymmetric) fl-points for the Brownian motion. By ~-point t we mean 

I B ( t + h ) -  B(t)[ 
0 < lim sup < oo. 

n-~o ?lhl log'(I/]hi) 
A earlier work of K6no [Ko] also implies the existence of ~-points. 

Kahane's slow points may be called two-sided slow points. For c > 0, let 

S~ = {t: limsup [B(t  + h) - B( t ) l  <_ c}. 
h - + O  

B. Davis had considered one side slow points by introducing 

S + = {t " limsup 
h-*O-t- 

IB(t + h) - B(t)[ < c}. 

We may classit}r symmetrical slow points by introducing 

,qsym = {t : limsup - -  < c}. 
71"--+00 V ~  - n  
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B. Davis and E. Perkins had proved that (see [DP] and the reference therein) 

So=q), Vc < %, So#O, Vc>%, 7o,~,1.3069; 

S+=O, Vc<l, S + # 0 ,  Vc>I. 

It follows that there one-sided slow points which are not two-sided slow points. Theorem 

6.2(3) means 

~ y m = 0 ,  V c < A ,  ~ y m # 0 ,  V c > A ,  A,~0.608. 

So, there are symmetric slow points which are not one-sided slow points. 

We finish this section by trying to find the gauge function of the set of symmetric 

/3-points. For 0 </3 < 1, c > 0 and - 1  < e < 1, denote 

~o(s) = ~o#,c,,(s) = s .exp (1 + e)-~- I log sl a . 

Notice that for any a > O, the function e az~ is larger than any power x p ( and smaller 

than any exponential e 'lz) when x is large. It follows that we always have 

f0 
1 ds 

~(s--5 < ~ 

for the above choice of/3, c and e. Denote by 7"/~o the Hausdorff measure defined by the 

gauge function ~o. 

T h e o r e m  6.3. Let EB, c be the set discussed in Theorem 6.2(5) where 0 < fl < 1 

and c > O. We have a.s. 

7-t,a .... (Ea.c) = ~ ,  Ve > 0; 7 / , a  .... (Ea, , )  = 0, W < 0. 

Proof. We follow the proofs of Theorem 4.2 where we have estimated the expec- 

tation of the R-energy integral of Q~. Now we work with the Lebesgue measure # and 

write simply Qb = Q~. 

First let 0 < e < 1. Consider I qb the energy integral of Qb with respect to the Ks ' 
kernel 

1 
K~(~, 77) - ~(~(~, 7))" 

By similar calculation, we can control EI  Qb up to a multiplicative constant, by Ke ' 

/ /  f01 ds Kc/2(~, r/)d~dr/< < c~. 
- ~,c,,/2(s) 
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It follows that  a.s. CaPK, (E~,c) > 0 then 7/~,~.c.2,(E~,c ) = oo. Since 0 < e < 1 is 

arbitrary, we get the first assertion. 

Now let - 1  < e < 0. Take the same notation as in the proof of Theorem 4.2, but  

Cn = {a e Tn : Xa > (1 + e)cl lel2}. 

We have 
oo oo 

U Na . 
N = I  n = N  

In order to prove the second assertion, we have only to show that  a. s. 

Notice that  if n 2_ N, {B~}aec, is a 2-n-cover of ["lnC~=N Gn. So, by the definition of the 

Hausdorff  dimension 

7/~oB,c,2, (B~,e) _< lim inf ~oZ,e,2r (2-n)CardCn. 
n---4 oo  

By Fatou lemma, we have only to show that  

lira inf r (2-n)IECardCn = O. 
n - - ~ o o  

However, 

Therefore 

ECardCn=O(2ne-O+~)~(nl~ 

~oz,e,,/2 ( 2-n )ECardCn = O (exp ( eC----~ ( n log 2 )~ ) ) =o(1). 

7 R e m a r k s  

1. Notice that  
Xo - X ~  

lira inf ~ = - lim sup 
~-~ ~(lal) ~-+~ ~(lai)" 

So, all the results on the (upper) oscillation OSCr can be modified to results on the 

lower oscillation which is defined in a similar way, using the inferior limit. 

2. We have required the positivity dim 0T > 0. Such trees T have rich branches (a 

parent  has about  brT > 1 descendants). We have also required the regularity brT = gr--YT. 
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It is worthy to s tudy the oscillations when the positivity and /o r  regularity are not 

satisfied. 

3. If X takes as values non negative integers, we can express our results in terms 

of random covering (see [FK]). 

4. The results on good and bad sets may be used to s tudy random Fourier-Franklin 

series with independent  coefficients of arbi trary law. 
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