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ABSTRACT

Parallel algorithms have been designed for the past 20 years initially
by parallelising existing sequential algorithms for many different parallel
architectures. More recently parallel strategies have been identified and
utilised resulting in many new parallel algorithms. However the analysis of
such algorithms reveals that further strategies can be applied to increase the
parallelism. One of these, i.e., increasing the computational capacity in each
processing node can reduce the congestion/communication for shared
memory/distributed memory multiprocessor systems and dramatically improve
the performance of the algorithm.

Two algorithms are identified and studied, i.e., the cyclic reduction
method for solving large tridiagonal linear systems in which the odd/even
sequence is increased to a 'stride of 3' or more resulting in an improved
algorithm. Similarly the Gaussian Elimination method for solving linear
systems in which one element is eliminated at a time can be adapted to
parallel form in which two elements are simultaneously eliminated resulting in
the Darallel Implicit Elimination (P.LE.) method. Numerical results are

presented to support the analyses.

KEYWORDS: Granularity, cyclic and stride reduction, Gaussian and Parallel

Implicit Elimination methods.

1. INTRODUCTION

The principal aim of exploiting parallelism in solving large scale
scientific and engineering problems is to increase the throughput of the
computing system by making it do more than one operation at the same time.
To take advantage of multiple processors on a parallel computer it is
necessary to restructure the sequential algorithm developed for uni-processor
computers and schedule as many computations in parallel as possible.
Because of these structural changes and rearrangement of computations the
best sequential algorithm and the parallel algorithm may require a different

amount of computation for solving the same problem.

For example the sequential algorithm for computing the inner product

of 2 vectors la; a,1 and Ib; byl ie,

bl
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This algorithm can be parallelised by the use of the fan-in algorithm as
follows:

P Pg B PR
a a
1\ 1 2\ b2 which takes log,n steps
T, =log,n
v
p
FIGURE 2

The ratio T;/ T, which gives the speed-up Sp = n/log,n certainly looks
impressive. However on further close examination we can notice a number
of disadvantages. For instance, as we move down the tree the degree of
parallelism is halved, hence the fan-in algorithm does not fully exploit all the
processors. Also the solution is formed only in 1 processor which then has to
be communicated to the other processors. A better solution is to calculate the
partial solutions on all processors thus obviating the need to return the final
result.

Further if we now consider the outer product of 2 vectors la; a;| and
Iby byl e,

a;b; a;b,

oP=abT= Y Ib b, | =
—’é‘—' - a2 l 2 - azbl 32b2

we see that the amount of computation at 2ach stzge increases.
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FIGURE 3

Thus the amount of computational work increases as we move down the tree

to be computed on less processors which makes the S ~ nl
P log2™1)

~ 1 which is

not impressive at all!!
Fortunately on todays distributed machines, the processors are
connected by by-directional channels which makes it possible for 2 processors

to exchange messages simultaneously. Thus, the situation can be restored as
shown in Figure 4.

P b Py F .
a; b 2, by
RS
a,b, a;by
a, a,y T, =log,n
bl — -— b-z
l k/l ‘,

alb2 albl a2b1
a;by

FIGURE 4
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This suggests that there is an optimal granularity size for each sub-problem
which must be exploited to improve the performance of the parallel

algorithm.

2. SOLUTION OF TRIDIAGONAL LINEAR SYSTEMS

The cyclic odd-even reduction method [1] is a well known algorithm
for the parallel solution of tridiagonal linear systems. We briefly describe the
algorithm for the normalised constant term symmetric system Au =d of the

form,

b
1

-
1
b 1 O
1b1
1 b1

1 b1

O 1 b1
1 bl

7

L u, ]

]

(2.1)

We now multiply equations 2, 4, 6 by -b, adding the two adjacent rows to each
of them. Then the system (2.1) becomes

b
0

where

——

1
w0 1 o
1 b1
1 0 b0 1
1 b1
O 1 0 b0
1 b_

b =2-b2d% =
"7

__U7 ]

d)-l -b d) + di+1, for j=2,4,6.

dl ]
2]
d;
dy
= | q@
ds

21
dg

L d, |

, (2.2)

Now since the even rows are independent of the odd rows they may be
separated as follows

42 4
1 621 ||y,
16| |

(2.3)



No. 3/4 [).]. Evans: On increasing the parallelism in numerical algorithms 297

Applying the above process once more to the system (2.3), i.e. multiplying the
second row of (2.3) and adding the first and third rows, the system (2.3)

becomes
2
o b0 ||u | = | 24
1 blzl ug dg]

where b3l = 2-b(21)2, a') = g - pl21 g 4 g7,

Separating again the second row of system (2.4) we obtain
plu, =d} (2.5)
which can be easily solved to obtain the solution u,.
By a process of backsubstitution and in terms of uy, the first and third
rows of system (2.4) gives the values of u, and ug in the form,
b2l uy = a7 - uy and b2 ug = P - (2.6)
to give the values of u, and u.
Continuing the backsubstitution in the same way to system (2.1) we can
calculate the values of uy, uz, us and u, to give the complete solution of (2.1).
The above solution process can be applied to any of the u values for
n=2™1 2M or 2™+! (m integer) choosing each time the even or odd rows of the
system. Further the strategy has also been extended to a wider range of
generalised tridiagonal systems.
The solution stages of the Cyclic Reduction algorithm are illustrated in
Figure 5 and resemble the well known fan-in algorithm.
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2.1 Stride of 3 Reduction Algorithm

It has been shown that the cyclic reduction algorithm consists of
successive reductions of the system (2.1) to similar reduced systems in a
'stride of 2'. Similarly, we can consider forming a stride algorithm with
reduced systems in a 'stride of 3' manner by increasing the complexity at each

node.
We now consider the reduced equations of (2.2), i.e,,
4 + bIZ] Uy + Us = d[32] ’
u3 + b[Z] us + U7 = d[52] . (27)

In addition, we have from (2.1) the equation

uz +buy +ug =d,. (2.8)
By adding equations (2.7) we obtain

w+ A+ uy+ A +bD ug+uy =P +d? . 9)

Then by multiplying (2.8) by (1+bl2]) and subtracting from (2.9) we obtain the
final results

u b4y +uy=dd +di-a4bg,. @10
If we now rewrite equation (2.10) in the form

uy =2y, +u, = aff‘ , (2.11)

which is the representative equation for a 'stride of 3' algorithm where

B2l=b(@1+b)y=b®2-3),
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and PA-d? e d? G-pyd,=d,+d4-b(d;+dg)-1-P 4. 12)

So the solution procedure for n = 3P - 1 for p=2, i.e. n=8 is as follows. The

system
Au=d
or
_ - —
b 1 ] u, d,
1 b 1 0 u, d,
1 b1 uy d3
1 b1 u, _ d, , 213)
1 b1 us dS
O 1 b1 Ug dg
1 b1 u, d,
L 1 b_J __ug_J —d8 _J
is reduced to
Al2l 21 = §l2] ,
— =[2]
g2l u3
! = d2 ’ (2.19)
1 1'3[2] u6 —[2]

ds

which can be solved for U, and U, ie.,

ug=13y BN/ @-B2), uy= (-3 /a-592) . @)

Then, the remaining elements of the solution vector can be obtained by
solving the 3 (2x2) subsystems,

b 17y, d; b 17[u, dy-us b 17[u, du,
oLl e [ - L [ - )
(2.16)
The solution stages of the 'Stride of 3' Reduction are illustrated in Figure 6

and can be seen to have been reduced when compared with Figure 5.
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FIGURE 6: Stride of 3 reduction algorithm

Finally it can be shown that the computational complexity of the
'Stride of 3' reduction algorithm is 14 operations/reduction stage for logsn

reductions in comparison to 9 operations/reduction stage for cyclic reduction,
i.e. log,n, which makes the stride reduction algorithm more efficient which

has been achieved by increasing the granularity.

In a similar manner, a 'Stride of 4' or quadstride algorithm can be
developed.

After the first reduction of the C.R. algorithm we have,

u +b gty = d[321 (2.17)
uy +b2lug +u, = dg] (2.18)
ug + b uy + ug = 4 (2.19)
where, as before,
bl2l = 2. l1)2, blil=p, (2.20)
dgzl =d- piil di+d,;. (2.21)

A further reduction stage is now carried out by multiplying equation
(2.18) by b2} and adding to equations (2.17) and (2.19) to obtain,

ul + b{3] uS + u9 = d[;] , (222)
and similar equations with a 'Stride of 4' where
b3l = 2 - (pl2))2 (2.23)
Bl _ 12 g 4021, 402]
clj --dj_2 b dj +cij - (2.24)

Alternatively we can avoid the initial reduction stage and proceed to

equation (2.22) by reformulating b3l and d[j3] as,

b3l =2.2- )22 =4p2-b4-2, (2.25)
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and d” dy+dg-bd,+d)-(1-b)d+d,)+bQ-bDd,.  (226)

2.4 The Stride of 5 or Quinstride Reduction Algorithm

The stride reduction algorithm can be extended to 'strides of 5' or more
but gains achieved by reducing the number of reduction stages is offset by the
increased complexity at each node which makes only the strides of 3 or 4
competitive. These issues as well as the extension to block tridiagonal
systems are further discussed in {2].

2.5 Stability of the Stride Reduction Algorithm
It is well known that the cyclic reduction method is unstable and this
instability occurs in the updates of the right hand sides of the system.
Bunemann [3] presented an improved version of the algorithm in which he
achieved greater stability by expressing the update in the following form,
di=boy +B;, (2.27)
where «; and [3; have a standard form for all i.

We now present a similar decomposition of the R.H.S. for the stride
reduction algorithm.

Now we need to write d{2} so that it is of the form,

=9l @ obw2-3) P (229)
From (2.12) we have,
d™ =y +di-b(dy g +diyp) - (1-bD) ;. (2.29)
Now if we let q[i” = d;, then (2.29) becomes,

-[”l (1] (1 e
= ql 2 + ql+2 B b(q1 1 + q1+1) (1- bZ) q (230)

Combining (2.18) and (2.30) we obtain
2 2] 1 1
b(b? - 3) pE . qE = qf é + q[H], b (q{lll + qu) (1- bz) ql . (2.31)
If we let p{iz] =bl qgu then (2.31) becomes,

p bl (232)

21 1l [1] [1] (1] [21
and g qlz+q“z-b<qn+ql+0-qi +3bp, (2.33)

Similarly a recursive sequence can be set up for d; as,
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a?] =il p[ij] + q[ij] ,for j=3,4,..., (2.34)
which proves the stability of the Stride of 3 reduction algorithm.

3. PARALLEL SOLUTION OF LINEAR EQUATIONS

The application of finite element methods for solving partial
differential equations generates a system of simultaneous linear equations of
the form,

Au=b, (3.1)
where A is a coefficient matrix of order n where n is the number of interior
mesh points, b is a column vector containing the known sources and
boundary terms and u is the unknown column vector.

The most commonly used-strategy for the numerical solution is the
Gaussian elimination method in which the variables u;, i=1,2,..,n are
successively eliminated one at a time resulting in a triangular system which
is finally resolved by a process of backsubstitution in a sequential manner.

This method has remained practically unchanged since it was
introduced by Gauss in 1830 apart from the introduction of pivoting to
preserve numerical stability against the growth of rounding errors.

3.1 Parallel Implicit Elimination (PIE) Method

A new elimination scheme suitable for the parallel solution of the
linear system (3.1) wab introduced by Evans [4] who proposed the strategy of
simultaneously eliminating 2 elements at the same time which when applied
on a parallel computer produces improvements in efficency.

Step 1: Parallel Implicit Elimination
Let the (nxn) matrix ay; be partitioned in the form, i.e.

| : ]
{

gt e - S ) Zn

a1 13p ! 40

S b

A=) e (3.2

| |

Snll 12 ! 2n-ln

%1 %2 4nn1! nn |

be denoted in abbreviated form as,
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T
an &y 3y
T
1 %y % |

where a;; and a;,,, i=2,...,n-1 are (n-2) vectors. Similarly for the vectors _@?i and

T .
a,“f' j=2,....,n-1.

Now consider the matrix W consisting of the vector elements w;; and

Wi »1=2,...n-1, 1.e.,_
-
1 0 0
W=l-w, In2 -w_ (3.4)
0 1
where I, is the unit matrix of order n-2.
Now consider the matrix product WA, i.e.,
— —
T
411 ' &y , 1n
= T T
WA = -ay wy+agIno-ag Wy, - Wy ag+ Ay-wiay -2, W+ ag Ino-g  w |
T
L n1 ’ 2y ’ %nn B
3.5)
Now choose the values of vectors w;; and w, . such that,
411 Wiy + 251 Win = 3y
A1p Wip + 8pp Wi =y 3.6)
for i=2,...,n-1 to give,
“2n1 210 * A 3y 211 8in " 21n &1
Wi = = (3.7)

W: = .
a325n-31pay T T appan, -a),any

Thus the simultaneous elimination of the two vector terms a;; and a;,
requires the determination of the w;; and w;,, for i=2,..,n-1 which requires
the solution of (2x2) sets of equations.

These values will yield a Z matrix of the form,
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— —
T
a1 1n
Z=10 Ay, 0 (3.8)
T
_anl -a—nj ann_
for j=2,...,n-1, where,
A1 =-w aT+ -w aT (3.9)
n2n2 ™ " Wit 2y + Ang g - Win g, :

is the reduced matrix of order n-2.

When this procedure is continued for (n-1)/2 steps, then the final

matrix Z is of the form,

a1 2 a,n1 31n
(1) (1)
4 42.n-1
N )
N Ve
\ 7/
n-1/2
Z= O n+l n+l O for n = odd
.22
7/ \
/7 \
v AN
1) 1
an—l,?. R an-l,n—l
Lanl a4 an,n-l ann_
and
a1 32 a1 2
(1) (1)
42 4 n-1
N :
AN /
N\ /7
n-1/2
aD.,D. aﬂ,L
Z = O 222 22 O for n =even ,
a a
LS 191 LR gl }
2072 27772
/ N
// \\
(1) 1)
an~1,2 an—l,n-l
___anl an2 a‘n,n-l ann

The solution of the reduced system is thus,

WAu

=Wb or Zu=d,

(3.10a)

(3.10b)

(3.11)

where d = Wb and Z is given by eqns. (3.10a) and (3.10b) which requires a new
solution process which will now be described.
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Step 2: Bidirectional Substitution process

The evaluation of the RH.S. in eqn.(3.12) can be determined after the
evaluation of the Wij by a bidirectional substitution process. Thus we have,

1 0 b,
Wy 1 Won by
d=Wb= “.’31 W2 “.,3“ : (3.12a)
W11 0 Woin| |Pal
0 1 b,
. _— L.

which can be evaluated in the recursive form,

dy=by; 4y =Dy

d2 = WZl b-l + b2+W2n b b

dp1 = Wn1101+ 2n-1 + Wi n P

n’
-1 n j-1
d.j = z W]k bk + b’ + Z W]k bk’ dn-l = 2 Wn-j,k + bk + bn—j + X Wn-j bl\ P
1 i+l k=1
(3.12b)
for j=2(1)n-1/2.

After the evaluation of d, the solution process now requires a further
stage which is described as follows:

Step 3: Bidirectional Solution Process.

The solution of the reduced systems (3.10) and (3.11) can be described as
follows:

We commence with n=odd and equation (3.10a) and the solution

process at the central element (n+1/2, n+1/2) immediately yields the solution

an41/2.n+1/2 Yne1/2 = Gne/2- (3.13)

Then the n-1/2 and n+3/2 equations can be solved as a set of equations as
described earlier

n2/2 + 22 _d 22
Ah1/2n-172-1/2 ¥ 3 1/2043/2 Unt3/2 = Ga 2T 372 041 /2 B2
n2/2 n-2/2 _ a2/ ‘
An+3/2,n-1/2 Yn-1/2 Y 3043/2 04372 Une3/2 = dns3/27 2 103/ 2.001/2 Ynel/2

(3.14)
to yield the solution values for u, 4 /, and u,3 /5.
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This procedure continues bidirectionally from the centre until the final
equations to be solved are:
n-1
U tanmup=di- B gy,

n-1

2 u1+annun=dn'_22 ani Yy, | (3.15)
1=

For n=even, we commenceé with eqn.(3.10b) and we see immediately

that by omitting the initial stage (3.13) the procedure is identical with the case
n=0dd as described above.

3.2 Parallel Pivoting Scheme
For the first step of the parallel pivoting process we find a row i; such
that

laioll =max la; | ,

1<i<n
and exchange the places of row iy and row 1. Secondly, we now find a row
number j; in the last column such that
( ) (l)

= max |
2<i<n %n
g a
where the entries a.(ll\) =y, _Ella_lfl , j=2,...,n are obtained from the elimination
11 :

of the first column but are not returned. This ensures that the maximum
a11 31
an1 4m

proceed to carry out the operations described in equation (3.7) where we have
ensured that lw, | <1, for i=2,..,n-1, which implies numerical stability

(2x2) pivot, i.e. , is used in the parallel elimination. We now

against rounding error growth in the parallel elimination process.
A comparison of the solution strategies of the Gaussian Elimination
(GE) and Parallel Implicit Elimination (PIE) methods are given in Figure 7.
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n=odd

n=even

GE PIE
FIGURE 7

3.3 Numerical Results

The numerical tests were completed in single precision on the

following matrix A

A=a;=2N; ay; = li-jl rorij=1.2,. N for N=50, 100, 200, 400.
The average timing results (in secs.) for the Gaussian Elimination method for
P processors where P=1, 2, 5, 10 are tabulated in Table 1.

The parallelisation of the algorithm was achieved by suitably
partitioning the rows among the available processors. Similarly, the timing
results for the Parallel Implicit Elimination method are given in Table 2 for
the same values of P.

Finally, the comparison of the speed-up values for the GE and PIE
methods are given in Table 3.

Matrix No of Processors P

Order N 1 2 5 10
50 3.99 2.52 14s - 1.49
100 28.59 15.07 6.91 | 5.48
200 223.16 11:.52 47.53 26.6
400 1790.12 911.29 374.2 199.29

TABLE 1: Computation Time (in secs.} of the Gaussian Elimination Method
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Matrix No. of Processors P
Order N 1 2 5 10
50 4.01 2.27 1.44 1.41
100 28.28 14.62 6.74 4.39
200 21547 108.81 45.25 26.69
400 1697.92 858.94 349.69 179.67

TABLE 2: Computation Time (in secs.) of the Parallel Implicit Elimination Method

GE PIE
Matrix No. of Processors P No. of Processors P
OrderN 1 5 | 10 | 2 5 10
50 1.720 | 2.678 | 2.678 | 1.767 | 2.785 | 2.844

100 1.897 | 4137 | 5.217 | 1.934 | 4.196 | 6.442
200 1.994 | 4.695 | 8.389 | 1.980 | 4.762 | 8.073
400 1.964 | 4.784 | 8.982 | 1.977 | 4.856 | 9.450
TABLE 3: Comparison of Speed-Up Values for GE and PIE Methods

4. CONCLUSIONS

It can be seen from the results presented that greater parallelism results

from increasing the granularity computation at each processor node, however

this is offset by the increased complexity at each node.

Thus, the

determination of the optimal granularity size for each algorithm results in
increased processor performance.
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