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ABSTRACT 

Parallel algorithms have been designed for the past 20 years initially 

by paraUelising existing sequential algorithms for many different parallel 

architectures. More recently parallel strategies have been identified and 

utilised resulting in many new parallel algorithms. However the analysis of 

such algorithms reveals that further strategies can be applied to increase the 

parallelism. One of these, i.e., increasing the computational capacity in each 

processing node can reduce the congestion/communication for shared 

memory/distributed memory multiprocessor systems and dramatically improve 

the performance of the algorithm. 

Two algorithms are identified and studied, i.e., the cyclic reduction 

method for solving large tridiagonal linear systems in which the odd/even 

sequence is increased to a 'stride of 3' or more resulting in an improved 

algorithm. Similarly the Gaussian Elimination method for solving linear 

systems in which one element is eliminated at a time can be adapted to 

parallel form in which two elements are simultaneously eliminated resulting in 

the Parallel Implicit Elimination (P.I.E.) method. Numerical results are 

presented to support the analyses. 

KEYWORDS: Granularity, cyclic and stride reduction, Gaussian and Parallel 

Implicit Elimination methods. 

1. INTRODUCTION 

The pr incipal  a im of exploi t ing para l le l i sm in solving large scale 

scientific and engineer ing  problems is to increase the th roughput  of the 

computing system by making it do more than one operation at the same time. 

To take advantage  of mul t ip le  processors on a paral le l  computer  it is 

necessary to restructure the sequential algorithm developed for uni-processor 

computers  and schedule  as m a n y  computat ions  in paral lel  as possible.  

Because of these structural changes and rearrangement  of computations the 

best sequential algori thm and the parallel algorithm may  require a different 

amount  of computation for solving the same problem. 

For example the sequential algorithm for computing the inner product 

of 2 vectors I a 1 a 21 and I b 1 b 21 i.e., 

IP=aTb=  
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P1 
a 1 b 1 a 2 b 2 which takes (n-l) steps 

T 1 = n - 1  

FIGURE 1 

This algori thm can be parallelised by the use of the fan-in a lgori thm as 

follows: 

P1 P2 P3 P4 
a 1 bl a2 b 2 

Ii,p 
FIGURE 2 

which takes log2n steps 

T n = log2n 

The ratio T1/T p which gives the speed-up Sp = n/ log2n certainly looks 

impressive. However  on further close examination we can notice a number  

of disadvantages.  For instance, as we move down the tree the degree of 

parallelism is halved, hence the fan-in algorithm does not fully exploit all the 

processors. Also the solution is formed only in 1 processor which then has to 

be communicated to the other processors. A better solution is to calculate the 

partial solutions on all processors thus obviating the need to return the final 

result. 
Further if we now consider the outer product  of .2 vectors l a 1 a21 and 

I b I b 2 I, i.e., 

l alb alb 2 
OP=_a.b T =  1~121 I b l b  21 = a2bl a2b2 

we see that the amount  of computation at eack stzge increases. 
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P1 P2 P3 P4 
a 1 bl a 2 b2 

a l b  1 a2b2 

a I a2 

mp 
OPp = a lb  1 alb2 

a2b 1 a2b2 

which takes log(2n-1) steps 

Tp = log(2n-1] ~ 

FIGURE 3 

Thus the amount  of computational work increases as we move down the tree 
n-1 

to be computed on less processors which makes the Sp log(2n.1) 1 which is 

not impressive at all!! 

For tuna te ly  on todays d is t r ibuted  machines ,  the processors  are 

connected by by-directional channels which makes it possible for 2 processors 

to exchange messages simultaneously. Thus, the situation can be restored as 

shown in Figure 4. 

Pl P2 P3 P4 
a I bl a 2 b 2 \U "U 

a lb  1 a2b 2 

a I a2 
b 1 ~ ~ b 2 

a lb  2 a lbl  a2bl 

a2b2 

T n = log2n 

FIGURE 4 
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This suggests that there is an optimal granularity size for each sub-problem 

which must  be exploited to improve the performance of the parallel 

algorithm. 

2. SOLUTION OF TRIDIAGONAL LINEAR SYSTEMS 

The cyclic odd-even reduction method [1] is a well known algorithm 

for the parallel solution of tridiagonal linear systems. We briefly describe the 

algorithm for the normalised constant term symmetric system Au = d of the 

form, 

b 1 

1 b 1 O 

1 b 1 

1 b 1 

1 b 1 
O 1 b 

1 

u 1 

u 2 

u 3 

u 4 

u 5 

1 u 6 

b _  _ u  7 _ 

dl 

d2 
d 3 

d 4 

d 5 

d 6 

_d  7 _ 

(2.1) 

We now multiply equations 2, 4, 6 by -b, adding the two adjacent rows to each 

of them. Then the system (2.1) becomes 

m 

b 

0 

1 
bl210 1 

1 b 1 
1 0 bI210 

1 b 
O 1 0 

O 

1 
1 
bI210 

1 b_ 

B 

u 1 

u 2 

u 3 

u 4 

u 5 

u 6 

- - u  7 

- -7 
dl 

d3 ai ,l 
d5 I 
d[621 ] 

_ d  7 / 

, (2.2) 

[2] - b dj + for j=2,4,6. w h e r e  b [2] = 2 - b 2, dj = dj_ 1 dj+ 1, 

Now since the even rows are independent of the odd rows they may be 

separated as follows 

i ,2, i flu21 1 [2] U4 

bl b ll2l u6 IdI2Jl 
L6_J 
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A p p l y i n g  the above process once more  to the sys tem (2.3), i.e. mul t ip ly ing  the 

s econd  r o w  of (2.3) and  a d d i n g  the first and  th i rd  rows ,  the sys t em (2.3) 

becomes  

I~ [2] 1 t IU21 Ida[4223]] ] b [31 0 u 4 = 

1 b [21 u s ~d~2l 2 

(2.4) 

wh+re b 3'= b'2'>2 d l= 4'-b 2' 4 '+ 
Separa t ing again the second row of sys tem (2.4) we obtain 

b[31 u 4 = d~ j]'- , (2 .5)  

which  can be easily solved to obtain the solution u 4. 

By a process of backsubst i tu t ion  and in terms of u 4, the first and  third 

rows  of sys tem (2.4) gives the values of u 2 and  u 6 in the form, 

u 2 = d~"] - u 4 " -  and b [21 u 6 = d~ 21-'- u 4 , (2.6) b[2l 

to give the values of u 2 and u 6. 

Cont inu ing  the backsubst i tut ion in the same w a y  to sys tem (2.1) we can 

calculate the values of u 1, u 3, u 5 and  u 7 to give the complete  solut ion of (2.1). 

The above  solut ion process can be appl ied  to any  of the u values  for 

n=2 m-l, 2 m or 2 m+l (m integer) choosing each time the even or odd  rows  of the 

sys tem.  Fur the r  the s t ra tegy  has also been e x t e n d e d  to a w ide r  r ange  of 

genera l i sed  tr idiagonal  systems. 

The solution stages of the Cyclic Reduct ion a lgor i thm are i l lustrated in 

Figure  5 and  resemble the well k n o w n  fan-in a lgor i thm.  
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1 2 3 4 5  6 7 

b 

1 2 3 4 5 6 7 
FIGURE 5 

2.1 Str ide  of 3 Reduc t ion  Algor i thm 

It has  been  s h o w n  that  the cyclic r educ t ion  a l g o r i t h m  consis ts  of 

success ive  reduc t ions  of the sys tem (2.1) to s imi lar  r e d u c e d  sys t ems  in a 

' s t r ide  of  2'. Similar ly ,  we  can cons ider  f o r m i n g  a s t r ide  a lgo r i t hm wi th  

r educed  sys tems in a 'stride of 3' m a n n e r  by increas ing the complexi ty  at each 

node .  

We n o w  consider  the reduced  equat ions of (2.2), i.e., 

u 1 + b[2] u 3 + u 5 

u 3 + b[21 u 5 + u 7 

In addi t ion ,  we  have  f rom (2.1) the equat ion 

u 3 + b u 4 + u 5 

By add i ng  equat ions  (2.7) we obtain 

= d~ 21 , 

= d~ 21 (2.7) 

u 1 + (1 + b [21) u 3 + (1 + b [21) u 5 + u 7 = d [21 + d~ 21 . (2.9) 

Then  by  mul t ip ly ing  (2.8) by ( l+b [21) and  subtract ing f rom (2.9) we  obtain the 

f inal  resul ts  

u 1 - b (1 + b [21) u 4 + u 7 = d~ 21 + d~ 21 - (1 + b [21) d 4 . (2.10) 

If w e  n o w  rewr i te  equat ion  (2.10) in the form 

U 1 = 9 21 U 4 + U 7 = 21 , (2.11) 

wh ich  is the representa t ive  equat ion  for a 'str ide of 3' a lgor i thm where  

~J21 = -b (1 + b [2l) = b (b 2 - 3) ,  

= d 4 . (2.8) 
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and  a~2l= 4 21 + d~ 21- (3- b 2) d 4 = d 2 + d 6 - b (d 3 + ds)-  (1- b 2) d 4 . (2.12) 

So the solution procedure for n = 3P - 1 for p=2, i.e. n=8 is as follows. 

system 

A u = d  

o r  

b 1 

1 b 1 

1 b 

1 

O 

m 

is reduced to 

1 

b I 

1 b 

1 

O 

1 

b 

1 

1 

b 1 

1 b_ 

1 I 1 u 1 d 1 

u 2 d 2 

u 3 d 3 

u4 = d4 

1 "j u6 i d6 
!d U7 1 7 

_ u  8 ~Cl 8 

The 

~[2] u[21 = ][21, 

, (2.13) 

]iu31 I 21 
1 ~j2] U 6 La~a'A 

which can be solved for u 3 and u 6, i.e., 

(2.14) 

u6 = [ a~ 2] _ ~2] a~2]] / (1-~212 ),  u3= [ a~ 2]- ~[2] a~2]]/(1 - ~2])2 ) (2.15) 

Then, the remaining elements of the solution vector can be obtained by 

solving the 3 (2x2) subsystems, 

1 b u2 = d2"u3 ' 1 b u5 = Lds-u6J ' 1 b Us = 

(2.16) 

The solution stages of the 'Stride of 3' Reduction are illustrated in Figure 6 

and can be seen to have been reduced when compared with Figure 5. 
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1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 

FIGURE 6: Stride of 3 reduction algorithm 

Finally it can be shown that  the computa t iona l  complexi ty  of the 
'Stride of 3' reduction algori thm is 14 opera t ions / reduc t ion  stage for log3n 

reductions in comparison to 9 opera t ions / reduct ion stage for cyclic reduction, 
i.e. log2n, which makes the stride reduction algori thm more efficient which 

has been achieved by increasing the granularity. 

In a similar manner ,  a 'Stride of 4' or quads t r ide  a lgor i thm can be 

developed.  

After the first reduction of the C.R. algorithm we have, 

where, as before, 

u 1 + b[21 u 3 + u 5 = dI321 

u 3 + b [ 2 ] u  5 + u  7 = d ~  1 

u 5 + b[21 u 7 + u 9 = d~  1 

b [21 = 2 - (b[1]) 2 b [11 = b ] 

d! 21 - b Ill dj + 
I = dJ -1 dJ +1' 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

A further  reduct ion stage is now carried out by mul t ip lying equation 

(2.18) by b [21 and adding to equations (2.17) and (2.19) to obtain, 

u 1 + b [3] u 5 + u 9 = d~ 31 , (2.22) 

and similar equations with a 'Stride of 4' where 

b I31 = 2 - (b[2l) 2 (2.23) 

[31 = ,~[21_ b[2l [2l d[2l dj "~j-2 dj + j+2" (2.24) 

Alternat ively we can avoid the initial reduction stage and proceed to 

equation (2.!2) by reformulating b [31 and d! 31 as, 
J 

b [31 = 2 -'(2 - (b[1])2) 2 = 4b 2 - b 4 - 2, (2.25) 
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2.4 The Stride of 5 or Quinstride Reduction Algorithm 

The s t r ide  r educ t ion  a lgo r i t hm can be e x t e n d e d  to ' s t r ides  of  5' or  m o r e  

b u t  ga ins  ach ieved  by  r e d u c i n g  the n u m b e r  of r e d u c t i o n  s tages  is offset  by  the  

i n c r e a s e d  c o m p l e x i t y  at  each  n o d e  w h i c h  m a k e s  o n l y  the  s t r ides  of  3 or  4 

c o m p e t i t i v e .  These  i s sues  as wel t  as the  e x t e n s i o n  to b lock  t r i d i a g o n a l  

s y s t e m s  are  fu r the r  d i scussed  in [2]. 

2.5 S t ab i l i t y  of  the St r ide  R e d u c t i o n  A l g o r i t h m  

It is wel l  k n o w n  tha t  the cyclic r e d u c t i o n  m e t h o d  is u n s t a b l e  a n d  this 

i n s t a b i l i t y  occu r s  in the  u p d a t e s  of the  r i g h t  h a n d  s ides  of  the  s y s t e m .  

B u n e m a n n  [3] p r e s e n t e d  an i m p r o v e d  ve r s i on  of the  a l g o r i t h m  in w h i c h  he 

ach i eved  g rea te r  stabi!i ty by  express ing  the u p d a t e  in the  fo l lowing  form,  

d i = b % + 13 i , (2.27) 

w h e r e  o~ i and  [3 i have  a s t a n d a r d  fo rm for all i. 

W e  n o w  p r e s e n t  a s imi la r  d e c o m p o s i t i o n  of the  R.H.S.  for  the  s t r ide  

r e d u c t i o n  a lgo r i t hm.  

N o w  w e  need  to wr i te  d [21 so that  it is of the fo rm,  

d[21 ~-~1 [21 [21 [21 {2l 
i = " Pi + qi = be~ 3) Pi + qi " (2.28) 

F r o m  (2.12) we  have,  

d121 = di_ 2 + di+ 2 - b (di_ 1 + di+ 1) - (1 - b 2) d i . (2.29) 

N o w  if we  let q[i 11 = d i, then (2.29) becomes ,  

-[21 [1] [11 , ,  [11 [11, [11 
di = qi-2 + qi+2 - ~ + qi+l r "(1 - b 2") qi " (2.30) 

C o m b i n i n g  (2.18) and  (2.30) we  obta in  

[11 Ill , [11 [11, [11 
b(b 2 - 3) p[21 + q[i21 = qi-2 + qi+2 " b  tqi_l + qi+l J - (1 - b 2) qi " 

If w e  let pti 21 = b q q{ll then (2.31) becomes ,  

(2.31) 

[21 = b q  [11 
Pi qi , (2.32) 

[21 [11 [ll , [11 [1], [11 [21 
a n d  qi = qi-2 + qi+2 - b ~qi-1 + qi+l j - qi + 3b Pi ' (2.33) 

S imi la r ly  a recurs ive  sequence  can be set up  for  d i as, 
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~l[J ] ~Jj] -[J] ~[j] for j=3,4,... 
= F i  + H i  , 

which proves the stability of the Stride of 3 reduction algorithm. 

(2.34) 

3. PARALLEL SOLUTION OF LINEAR EQUATIONS 

The appl ica t ion  of finite e lement  m e t h o d s  for so lv ing par t ia l  

differential equations generates a system of s imultaneous linear equations of 

the form, 

Au = b ,  (3.1) 

where  A is a coefficient matrix of order n where n is the number  of interior 

mesh  points ,  b is a column vector containing the known  sources and 

boundary  terms and u is the unknown column vector. 

The most  commonly used" strategy for the numerical  solution is the 
Gauss ian  e l iminat ion me thod  in which the var iables  ui, i=1,2,...,n are 

successively eliminated one at a time resulting in a tr iangular system which 

is finally resolved by a process of backsubstitution in a sequential manner.  

This me thod  has remained  pract ica l ly  u n c h a n g e d  since it was 

in t roduced  by Gauss in 1830 apart  from the in t roduct ion  of pivot ing to 

preserve numerical stability against the growth of rounding errors. 

3.1 Parallel Implicit Elimination (PIE) Method 
A new elimination scheme suitable for the paral lel  solution of the 

linear system (3.1) wag introduced by Evans [4] who proposed the strategy of 

s imultaneously eliminating 2 elements at the same time which when applied 

on a parallel computer  produces improvements  in efficiency. 

Step 1: Parallel Implicit Elimination 
Let the (nxn) matrix aij be partitioned in the form, i.e. 

A _ 

I I 
a l l  ~ a 1 2  �9 . . a l , n . l~  a l n  

a21 a22 . . .  a ~  
o 

an.l,1 an.l,2. �9 �9 an_l, n 

a n l  ~ an2  �9 . . a n , n . l ~ a n n  q 

(3.2) 

be denoted in abbreviated form as, 
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A = 

all  a_Tj aln 

ai 1 Aij ain 

a T 
an1 -nl ann 

i , j  = 2(1)n-1, (3.3) 

T 
where a_il and ain, i=2,...,n-1 are (n-2) vectors. Similarly for the vectors alj and 

ant j, j=2,...,n-1. 

Now consider the matrix W consisting of the vector elements -~-il and 

Win, i=2,...,n-1, i.e., 

1 

W = -w_i l  

0 

m 

0 0 

In-2 -_W_in 

0 1 
u 

, ( 3 . 4 )  

where In. 2 is the unit matrix of order n - 2 .  

Now consider the matrix product  WA, i.e., 

WA= 

q 

all  , _aTlj , aln 

-w..aT.+ Ai:-w. a T. , "a11-~il+ailIn-2-anl--W-in' - -~ - i  l j--m--nj -aln-W-il+-ainIn'2"~.nn--W-in 

a T . 
an1 ' - n !  ' ann 

Now choose the values of vectors wil and Win such that, 

al 1 Wil + anl Win = ail 

aln --_Wil + ann Win = ain , 

for i=2,...,n-1 to give, 

- an1 aln + ann ail 
Wil = 

al l  a-in - aln ~il 
all  ann" aln an1 ' --~in = al 1 an n _ al n an 1 

(3.5) 

(3.6) 

(3.7) 

Thus the s imul taneous  el iminat ion of the two vector  terms ~il and ain 

requires the determinat ion of the w__il and Win , for i=2,...,n-1 which requires 

the solution of (2x2) sets of equations. 

These values will yield a Z matrix of the form, 



304 Wuhan University Journal o f  .N'~tu,'a[ Sciences Vol. [ 

Z = 

m 

all  

0 

a n 1  

for j=2,...,n-1, where,  

aTj aln 

A~-2,n-2 0 

a T 
-n!  ann  

(3.8) 

A 1 T T 
n-2,n-2 = " Wil  -alj + An-2,n-2 - Win -anj, (3.9) 

is the reduced matrix of order n-2. 

W h e n  this procedure  is cont inued for ( n - l ) / 2  steps,  then the final 

matrix Z is of the form, 

and 

Z = 

Z = 

a l l  a12 �9 �9 �9 al,n_ 1 a l n  

(11 (1) 
a22 �9 . . a2,n_ 1 

\ / 
\ J 

\ / 

n - l / 2  
O an+l  n+l  O 

I 
2 2 

/ N 
J N 

f \ 

a(n ) (1) 
-1,2 " " ' an-l,n-1 

an l  an2 �9 �9 an,n_ 1 ann  

a l  1 

an1 

a12 �9 . . al,n_ 1 
(11 (1) 

a22 �9 . . a2,n. 1 
\ / 

\ / 
\ / 

a n '1 /2  a 
n n n n+l  

O 2 2  2 2  O 

aln 

a n + l , n  an  _ + 1 ,  n+l  
2 2 2 2 

/ \ 
/ \ 

a(1) (1) 
. . . an_l,n_ 1 l'~-I ,2 

an2 �9 . . an,n_ 1 an n 
m 

for n = odd (3.10a) 

for n = even , (3.10b) 

The solution of the reduced system is thus, 

W A u = W b  or Z u = d ,  (3.11) 

where  d = Wb and Z is given by eqns. (3.10a) and (3.10b) which requires a n e w  

solution process which will  n o w  be described. 
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Step 2: Bidirectional Substitution process 

The evaluation of the R.H.S. in eqn.(3.12) can be determined after the 
evaluation of the wij by a bidirectional substitution process. Thus we have, 

d = W b =  

1 0 

w21 1. /w2n 
W31 W ~ W 3 n  

W _l, 1 0 w q ,  n 
0 1 

(3.12a) 

which can be evaluated in the recursive form, 

d 1 = b 1 ; 

d 2 = w21 bl + b2+w2n b n ; 
j-1 n 

dj = T wjk bk + bj + Y~ Wjk b k ; 
j+l 

for j=2(1)n-1/2. 

d i 1  --= b n  r 

dn-1 = Wn-l,1 bl + }n-1 + Wn-l,n bn 
j-1 

dn_ 1= Y~ Wn_j, k + b  k+bn_ j+Zwn_ jbk,  
k=l 

(3.12b) 

After the evaluation of d, the solution process now requires a further 

stage which is described as follows: 

Step 3: Bidirectional Solution Process. 

The solution of the reduced systems (3.10) and (3.11) can be described as 

follows: 

We commence with n=odd and equation (3.10a) and the solution 

process at the central element (n+1/2, n+1/2) immediately yields the solution 

an+l/2,n+l/2 Un+l/2 = dn+l/2 . (3.13) 

Then the n - l / 2  and n+3/2 equations can be solved as a set of equations as 

described earlier 

n-2/2 n-2/2 n-2/2 
an-1/2,n-1/2 Un-1/2 + an-1/2,n+3/2 Un+3/2 = dn-~/? - an-!/2j~+i/2 ~:n+l/2, 

n-2/2 n-2/2 q-2,/2 
an+3/2,n_l/2 Un_l/2 + an+3/2,n+3/2 Un+3/2 = dn+3t 2 - a ~+3/2,n+1/':: 'dn+l/2 ' 

(3.14) 

to yield the solution values for Un_l/2 and Un+3/2. 
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This procedure continues bidirectionally from the centre until the final 
e q u a t i o n s  to be so lved  are: 

n-1 
a l l  Ul + aln Un = d 1 - ~ a l i  u i ,  

i =2 
n-1 

an1 Ul + ann Un = dn- i ~=2 ani u i '  (3.15) 

For n=even, we commence with eqn.(3.10b) and we see immediately 

that by omitting the initial stage (3.13) the procedure is identical with the case 

n=odd as described above. 

3.2 Parallel Pivoting Scheme 
For the first step of the parallel pivoting process we find a row i 0 such 

that 
l ai011 = max r laian dill ' 

and exchange the places of row i 0 and row 1. Secondly, we now find a row 

number J0 in the last column such that 

(1) ~(1 n) aj0 n = m a x  I . I 
2<_i~n 

where the entries alln)= ajn- ajl aln , j=2,...,n are obtained from the elimination 
all 

of the first column but are not returned. This ensures that the maximum 

(2x2) pivot, i.e. I allan 1 an naln], is used in the parallel elimination. We now 

! I 

proceed to carry out the operations described in equation (3.7) where we have 
ensured that tWin I < 1, for i=2,...,n-1, which implies numerical stability 

against rounding error growth in the parallel elimination process. 

A comparison of the solution strategies of the Gaussian Elimination 

(GE) and Parallel Implicit Elimination (PIE) methods are given in Figure 7. 
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FIGURE 7 

3.3 Numer ica l  Results  

The  n u m e r i c a l  tests we re  c o m p l e t e d  in s ing l e  p rec i s ion  on  the  

fo l lowing matr ix A 

A = aii = 2N ; aij = l i - j l , ~o~ ' i,j=1,2 .... N for N=50, 100, 200, 400. 

The average t iming results (in secs.) for the Gaussiav_ El imina t ion  m e t h o d  for 

P processors where  P=I, 2, 5, 10 are tabulated in Table 1. 

The  p a r a l l e l i s a t i o n  of the  a l g o r i t h m  was  a c h i e v e d  by  s u i t a b l y  

par t i t ion ing  the rows among  the avai lable  processors .  Similarly,  the t iming  

resul ts  for the Parallel  Implici t  E l imina t ion  m e t h o d  are g iven  in Table 2 for 

the same values of P. 

Final ly,  the compar i son  of the speed -up  va lues  for the GE and  PIE 

methods  are given in Table 3. 

Matrix 

Order N 

N(~ of Processors,, P 

t 10 

1.49 50 3.99 

100 28.59 I 5.48 

200 223.16 26.6 

'2 5 

2.:;.: 1.49 

15.07 6.91 

111.92 47.53 

911.29 374.2 1790.12 400 199.29 

TABLE 1: Computation Time (in sec~.~ of the Gaussian Elimination Method 
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Matrix 

Order N 1 

No. of Processors F 

10 

50 4.01 1.41 

100 28.28 4.39 

200 215.47 26.69 

400 

2 5 

2.27 1.44 

14.62 6.74 

108.81 45.25 

858.94 349.69 1697.92 179.67 

TABLE 2: Computation Time (in secs.) of the Parallel Implicit Elimination Method 

Matrix 

Order N 

50 

100 

200 

400 

GE PIE 

No. of Processors P 

2 

1.720 

1.897 

1.994 

1.964 

No. of Processors P 

5 10 

2.678 2.678 

4.137 5.217 

4.695 8.389 

4.784 8.982 

2 5 10 

1.767 2.785 2.844 

1.934 4.196 6.442 

1.980 4.762 8.073 

1.977 4.856 9.450 

TABLE 3: Comparison of Speed-Up Values for GE and PIE Methods 

4. CONCLUSIONS 

It can be seen from the results presented that greater parallelism results 

from increasing the granularity computation at each processor node, however 

this is offset by  the increased complexi ty  at each node. Thus,  the 

determinat ion of the optimal granulari ty size for each algori thm results in 

increased processor performance. 
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