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Calcula t ions  involving pileups of d i s loca t ions ,  both ana ly t ica l  and n u m e r i c a l ,  us ing e i ther  d is -  
c re te  d is locat ions  or continuous d i s t r ibu t ion  of d is locat ions  of in f in i t e s ima l  B u r g e r s  vec to r s ,  
are  reviewed in the light of their  effects  on the re la t ion  between yield or flow s t r e s s  and gra in  
s ize.  The l imi t a t ions  of the pileup models  a re  d i scussed  and some nonpileup theor ies  of y ie ld-  
ing are  c r i t i c a l l y  reviewed also.  More c r i t i ca l  exper imen t s  a re  s t i l l  needed to r evea l  the fun- 
damenta l  mechan icm of yielding.  

FOLLOWING the work of Hall  1 and Petch,  z many  ex- 
pe r imen ta l  and theore t ica l  s tudies  have been  conducted 
to unders tand  the l inear  re la t ionsh ip  between the flow 
s t r e s s  and the r ec ip roca l  square  root of g ra in  s ize ,  see 
Fig.  1. The or ig inal  m e c h a n i s m  proposed by Hall  1 in-  
volves a pileup of d i s loca t ions  against  the gra in  bound-  
a ry  as shown in Fig.  2. The flow s t r e s s  is  the ex te rna l  
s t r e s s  which, with the help of the pileup, c r ea t e s  a 
c r i t i c a l  s t r e s s  concen t ra t ion  at a ce r t a in  d is tance  
ahead of the pileup. His model  was modif ied l a te r  by 
Cot t re l l  3 who suggested that the c r i t i ca l  s t r e s s  con-  
cen t ra t ion  is  that which can unpin a d is loca t ion  source  
nea r  the g ra in  boundary .  A s im i l a r  mechan i sm  was 
proposed by Petch ~ except that the s t r e s s  concen t r a -  
t ion is at the grain  boundary .  Yielding is  to take place 
when such s t r e s s  concen t ra t ion  reaches  the s t rength  
of the gra in  boundary .  

Since al l  these ea r l y  m e c h a n i s m s  involve pi leups of 
d i s loca t ions ,  many theore t i ca l  s tudies  have been  con-  
ducted to examine the p rope r t i e s  of va r ious  kinds  of 
p i leups .  These include s i n g l e - l a y e r  s ing le -ended  pi le-  
ups in homogeneous,  he te rogeneous ,  and an i so t rop ic  
media ,  s i ng l e - l aye r  double-ended  pi leups,  c i r c u l a r  
p i leups ,  and m u l t i p l e - l a y e r  pi leups.  No a t tempt  will be 
made to review al l  these s tudies .  Some re l evan t  ones 
will be se lec ted  and the i r  effects on the Ha l l -Pe t ch  
re la t ion  examined.  

More recen t ly  obse rva t ions  have been r epor t ed  
which indicate the need to search  for m e c h a n i s m s  which 
do not involve pi leups.  These  observa t ions  include the 
lack of d i rec t  evidence of pi leups in pure m e t a l s ,  d is -  
locat ion genera t ion  in the prey ie ld  m i c r o s t r a i n  region ,  
an inc rease  of Ha l l -Pe t ch  slope in a l loys  where p i le-  
ups a re  observed,  and the effect or segrega t ion  of im-  
pur i t i e s  to gra in  bounda r i e s .  Some of these nonpi leup 
m e c h a n i s m s  will be rev iewed and c r i t i c a l l y  a s s e s se d .  

1) THEORY OF DISLOCATION PILEUPS 

There  are  two approaches  to the s tudies  of d i s loca-  
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t ion pi leups,  the d i sc re te  approach and the cont inuum 
approach.  In the f i r s t  approach,  d i sc re t e  d is locat ions  
of n o r m a l  B u r g e r s  vec tors  a re  a r r a n g e d  to a s sume  
equ i l ib r ium posi t ions .  It is a p rob lem of solving s imu l -  
taneous non l inea r  a lgebra ic  equat ions .  In the second 
approach,  a continuous d i s t r ibu t ion  of d is locat ions  of 
i n f in i t e s ima l  Bu r ge r s  vec tors  is used to replace  the 
d i sc re te  d is loca t ions .  It is a p rob lem of solving an 
in tegra l  equation involving such a d i s t r ibu t ion  function.  
Analyt ica l  as well as n u m e r i c a l  methods  are  avai lable  
for both approaches .  

1.1) S ing le -Layer  P i l eups .  This  is the case in  which 
al l  d i s loca t ions  a re  in the same  sl ip plane.  

1.1.1) Single-Ended Pileups. a) The original Eshelby-  
Frank-Nabarro problem. Eshelby ,  F r a n k ,  and Nabar ro  4 
gave exact  solut ions  to a s i n g l e - l a y e r  s ing le -ended  
pileup of d i sc re te  edge, sc rew,  or mixed  dis locat ions  
in isot ropic  or an iso t ropic  media .  The i r  solut ion is 
b r ie f ly  desc r ibed  below. Consider  a pileup of d i s loca-  
t ions ,  a l l  of the same B u r g e r s  vec to r ,  as  shown in Fig.  
2. The sl ip plane is the xz plane and al l  d is locat ions  
a re  pa ra l l e l  to the z axis.  At equ i l i b r i um,  the force 
exer ted  on each free d is locat ion  is  zero .  

2o" 

o" = o * +  k ~ -  I/2 

o" : FLOW STRESS 
o--x-: FRICTIONAL STRESS 

k : HALL-PETCH SLOPE 

2 . :  GRAIN SIZE 

2 o -  
Fig. l--The Hall-Petch relation. 
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A n- 1 A 
--- + ~  g = 0, i = 1, 2 , . . . , n -  1 [1] 
X z ITI= x i -- X j  

where A = ~b/27r and o = Oy z for sc rew d i s loca t ions ,  
and A = gb/27r(1 - v) and cr = g x y  for edge d i s loca t ions  
in an isot ropic  medium of shear  modulus ~ and 
P o i s s o n ' s  ra t io  v. For  mixed dis locat ions  in an i so-  
t ropic  medium,  

A = t~b[sin 2 r + (1 - v)cos 2 ~]/2~(1 - v) [2] 

and 

o = (~xy sin ~ + (Xy z cos ~b [3] 

where q5 is the angle between the dis locat ion l ine and 
the Burge r s  vector .  For  an aniso t ropic  med iu m,  

A = ff~/2~)(K e s in  2 (~ + K  s cos 2 ~b) [4] 

where K e and K s are  for pure edge and pure s c r e w  
pi leups ,  r espec t ive ly .  These can be exp re s sed  ex- 
p l ic i t ly  in t e r m s  of e las t i c  cons tants  if the mixed  d is -  
locat ion has s imple  o r i en ta t ions ,  see for example ,  
Chou and Mitchell .  s 

For  s impl ic i ty ,  let  the unit  of dis tance be A / 2 a  so 
that Eq. [1] becomes  

1 + ~  -~ 0, i 1, 2, . . . , n  1 [5] 
X i  FI"= X i -- X j  

Now consider  the following polynomial  whose ze ros  
a re  the solut ions of Eq. [5]: 

f ( x )  = (x  - x , ) ( x  - x ~ )  . . .  ( x  - x , , - O  [6] 
Then 

f'0v) 1 _ n-1 1 [7] 
X-- X i ]~=l X -- Xj 

When x ~ x i ,  the left side of Eq. [7] approaches  
f " ( x i ) / 2  f '  (x i) and the r ight  hand side approaches  
-~ - (1/x  i) accord ing  to Eq. [5]. Hence the p rob lem 
can be solved if q(n, x) in the following second o rde r  
d i f ferent ia l  equation 

f'(x) +(~ - 1)f'(x)+ q(., x ) f ( x )  = 0 [8] 

can be so chosen that the di f ferent ia l  equation has a 
polynomial  solut ion of the (n - 1) degree with al l  r e a l  
and dis t inct  roots ,  and that  q(n,  x)  has no pole at any 
of the roots .  It t u rns  out that the following equation 

x f ' ( x )  + (2 - x ) f ' ( x )  + (n - 1)f(x) = 0 [9] 

is  sa t i s f ied  by the f i r s t  der iva t ive  of the nth Lague r re  
polynomial  L~ (x): 

0" 

41 AL _L . L  . L  X 

X 0 X I X 2 X L Xn- I 

Fig. 2--A pileup of dislocations against a grain boundary. 

~Z, n-1 n i(_x)k [10] L~(x) 
- ~  kl(k  + 1 ) l ( n - k -  1)1 k=0 

the roots  of which a re  then solut ions  for Eq. [5]. 
With the subs t i tu t ion  of v (x) = xf(x)  e x p ( - x / 2 ) ,  Eq. 

[9] is  t r a n s f o r m e d  into 

v"(x) + ( ~  - - O v ( x )  = O [11] 

which, for x << 4n, has the solut ion:  

v(x) = ~x-x .J , (2  n~x) [12] 

and hence nea r  the tip of the pi leup the posit ion of the 
ith d is locat ion  is  given by 

x i ~-j~/4n [13] 

in units  of A / 2 o  with Ji being the ith zero  of the 
Besse l  function J1. In pa r t i cu l a r ,  x~ = 1 .84A/ha.  
F u r t h e r m o r e ,  s ince v" and v mus t  differ in sign,  an 
upper l imi t  for x is  4n. Hence for la rge  n,  the length 
of the pileup approaches :  

l = 4,(A/2cr) = 2nA/(~ [14] 

Although the lower l imi t  of l is  given by Eshelby 
et a l . ,  4 this  r e su l t  is the s imples t  and is  pe r t inen t  to 
the subjec t  of this review. 

The s t r e s s  concent ra t ion  crti p exer ted  on the pinned 
d is locat ion  can be obtained f rom the ex te rna l  forces  
exer ted  on a l l  the free d is loca t ions  which sum up to 
(n - l ~ b .  Since the sys tem is at equ i l i b r ium,  ((rti p -(x)b 
= (n - 1)(rb, and hence,  

oti p = n(r [ 15] 

Following Petch ,  2 these r e s u l t s  can be used to de- 
r ive the f l o w - s t r e s s  gra in  size r e l a t ionsh ip  by a s s u m -  
ing a yie ld  condit ion of crtip = cr c , a c r i t i c a l  s t r e s s  r e -  
qui red  at the gra in  boundary  in o rder  to propagate the 
plas t ic  deformat ion ,  and by a s s u m i n g  that  the length 
of the pileup,  l ,  is  the same as  the gra in  s ize .  By sub-  
s t i tu t ing n = (rc/O into Eq. [14] and  solving for  a and 
by including a possible  f r i c t iona l  s t r e s s ,  (~*, inside 
the g ra in ,  the Ha l l -Pe tch  re la t ion  is  obtained: 

(~ = (r* + ~/2-Ao c 1-1/2 [16] 

The Ha l l -Pe t ch  slope, k, is  then ident if ied as q ~ c  �9 
For  (x c = p /30  and A = t~b(2 - v)/47r(1 - v) for mixed 
d i s loca t ions ,  this  slope is  0.115t~4b for v = {.  Di rec t  
n u m e r i c a l  de t e rmina t ion  by Li and  Liu 6 using only a 
few mixed d is loca t ions  gives a slope of 0.1 t ~ b  - indi-  
cating the extent  of appl icabi l i ty  for sma l l  n. Exper i -  
men ta l ly ,  using Hal l ' s  data I for  mi ld  s tee l ,  k = 1 
k g / m m  (the shear  s t r e s s  is  taken as  one half of ten-  
si le s t r e s s ) ,  and taking t~ = 7.9 • l0  s k g / m m  2 and 
b = 2.48]k, a c is found to be t~/6.3, a reasonable  value.  

N u m e r i c a l  computat ions  of the equ i l ib r ium posi t ions 
or the roots  of the Laguer re  po lynomia l s  a re  given by 
Head, v by Chou et al . ,  a and by Mitchel l  et al. 9 St ress  
contours  a r e  plotted by Mitchel l ,  1~ and by Bas insk i  and 
Mitchel l .  ~1 

b) The e f f e c t  o f  the p inned  d i s loca t ion  having  a d i f -  
f e r e n t  B u r g e r s  v ec to r .  Chou 12 modified the foregoing 
problem by cons ide r ing  the case in which the pinned 
d is loca t ion  is  of a different  B u r g e r s  vector .  This  is  
mot iva ted  by the fact that the pinned dislocat ion is at 
the gra in  boundary  and therefore  could have a B u r g e r s  
vec to r ,  rob, different  f rom the la t t ice  d is locat ions  
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f o r m i n g  the pi leup.  The p r o b l e m  can be so lved  by fo l -  
lowing the p r o c e d u r e  given by Eshe lby  et a l . ,  4 by 
s t a r t i n g  with an e x t r a  f ac to r  m Ca pos i t ive  r e a l  num-  
b e r )  at  the f i r s t  t e r m  of Eq. [1], and s i m i l a r l y  of Eq. 
[5]. The fac tor  (2/x) - 1 in Eq. [8] b e c o m e s  ( 2 r e ~ x ) -  1 
and the f ac to r  (2 - x) in Eq. [9] b e c o m e s  2m - x. Then 
i n s t e a d  of Eq. [ 10] the so lu t ion  is  the g e n e r a l i z e d  
L a g u e r r e  po lynomia l  : 

L(2m-l) n-1 n + 2rn - 2) ( - x )  k [17] 
k, 

A subs t i tu t ion  of v (x) = x m f ( x )  e x p ( - x / 2 )  g ives  the 
fol lowing d i f f e ren t i a l  equat ion i n s t ead  of Eq. [ 11]: 

v " ( x ) + [  ~' +m-lx m(m-1)x2 : ' ~ v ( x ) = 0  [18] 

which,  for s m a l l  x (so that  -~ can be neg lec ted  in the 
b r a c k e t e d  quanti ty)  has  the solut ion (Jahnke and Emde ,  ~3 
p. 146): 

v(x)  = ~-x .d2m_~(2~(n + m -  1)x) [19] 

and,  hence ,  n e a r  the t ip  of the p i leup the Pos i t ion  of 
the /th d i s loca t ion  is  given by 

x i = (j2m_~,i)2/4(n + m - 1) [20] 

in units of A / 2 o  with Jzm-~, i  being the ith z e r o  of 
the B e s s e l  function J~m-x.  In p a r t i c u l a r ,  for  

= -- ~ ) ( r  rn -~, x~ = 0 . 7 2 3 A / ( n  

r~ = 1 ,  

rv, = 2, 

and for  

m = 3 ,  

x l  = 1 . 8 4 A / n g  

xl  = 5 . 1 A / ( n  + 1)o 

xl = 9 . 6 A / ( n  + 2)0 [21] 

H e r e  aga in ,  s ince  v"(x) and v(x) must  d i f fe r  in s ign ,  
the b r a c k e t e d  quant i ty  in Eq.  [18] mus t  be pos i t ive  and 
hence  for l a rge  n,  the length  of the p i leup  a p p r o a c h e s  

l = 2(n + m  - 1)A/o [22] 

The s t r e s s  concen t ra t ion  a t i  p e x e r t e d  on the pinned 
d i s loca t ion  can be ob ta ined  as  be fo r e ,  n a m e l y ,  
(oti p - o ) m b  = i n -  1)orb, and hence 

oti  p = (n + m - 1)ol in  [23] 

By using a y ie ld  condi t ion  of oti p = o c a t  the g ra in  
bounda ry ,  Eq.  [23] can be combined  with Eq. [22] and,  
a f t e r  in t roducing  the l a t t i ce  f r i c t i on  s t r e s s  or*, the 
H a l l - P e t c h  r e l a t i on  b e c o m e s  

o = o* + (2Amoc)1/2l-1/2 [24] 

f rom which the H a l l - P e t c h  s lope ,  k,  i s  i den t i f i ed  a s  
' /-2Amo c. A c o m p a r i s o n  with Eq. [16] shows that  the 
s lope  i s  modi f ied  by a f a c t o r  of ~-mm. By using H a l l ' s  
da ta  x again  for  m i ld  s t e e l ,  m %  i s  found to be  / , /6 .  
Th i s  g ives  m = 5 if o c i s  ~ /30 .  Based  on the ledge 
s t r u c t u r e  of g ra in  b o u n d a r i e s  to be d i s c u s s e d  l a t e r ,  
i t  i s  conce ivab le  that  g ra in  boundary  l e d g e s  can  have 
l a r g e  B u r g e r s  v e c t o r s .  

c) Cont inuous  d i s t r i bu t i on  o f  d i s loca t ions .  I n s t e a d  
of d i s c r e t e  d i s l oca t i ons  each  having the s a m e  B u r g e r s  
v e c t o r  b ,  the p i leup  p r o b l e m  can be v iewed  a s  a con-  
t inuous  d i s t r i bu t ion  of d i s l o c a t i o n s  of i n f i n i t e s i m a l  
B u r g e r s  v e c t o r s .  A d i s t r i b u t i o n  function f(x)  i s  sought 
such that  b f ( x )dx  i s  the to ta l  B u r g e r s  v e c t o r  of d i s -  
l oca t ions  be tween x and x + dx and hence  i t  p r o d u c e s  

a s t r e s s  f ie ld  A f ( x ) d x / ( t  - x )  at a d i s t ance  t. Such d i s -  
t r ibu t ion  function has to s a t i s fy  the fol lowing in t eg ra l  
equat ion:  

f ( x ) d x  
A ao ~-S_ x =~r for  any 0 <  t < l [25] 

The n u m b e r  of d i s loca t i ons  in the p i l eup  is  then given 
by :  

l 

f f ( x )dx  = n [26] 
o 

The so lu t ion  i s  given by L e i b f r i e d  '4 and  by Head and 
Louat  :1~ 

f(x) = ~ _ _  x [27] 

f rom which the to ta l  number  of d i s l oc a t i ons  i s  given 
by n = o l / 2 A  in a g r e e m e n t  with Eq. [14]. The s t r e s s  
concen t r a t i on  can be c a l c u l a t e d  f rom the to ta l  app l i ed  
fo rce  on the s y s t e m  by a s s u m i n g  that  th is  fo rce  is  ex-  
e r t e d  on the pinned d i s loca t ion  of B u r g e r s  vec to r  b:  

l ael 
Otip = of f(x)odx = ~ : no [28] 

in a g r e e m e n t  with Eq. [15]. By using the s a m e  y ie ld  
c r i t e r i o n ,  n a m e l y  a c r i t i c a l  s t r e s s  concen t ra t ion  o c 
at the g r a i n  boundary ,  the s a m e  H a l l - P e t c h  r e l a t i o n ,  
Eq. [16], i s  obta ined .  

The s t r a i n  ene rgy  of the p i leup  can be obta ined by 
making  a cut  in the s l ip  plane f rom x = 0 to x = R 
(R i s  the s i ze  of spec imen) ,  r e p l a c i n g  the e x t e r n a l  
s t r e s s  with equal  and opposi te  f o r c e s  on the two cut 
s u r f a c e s  to ma in ta in  the e l a s t i c  s t a t e  of the s y s t e m ,  
and r e v e r s i b l y  reduc ing  these  f o r c e s  to z e r o  so as  to 
r e m o v e  the pi leup.  P e r  unit a r e a  of the s l ip  p lane ,  
these  f o r c e s  a r e  o within the p i leup ,  and a r e  ~4 at  a 
d i s t ance  ~ outs ide  the p i leup:  

cr~ = A  Jo ~ - x d X  = o  1 -  [29] 

The d i s p l a c e m e n t  u ins ide  the p i leup  i s  

u = b f f ( x ) d x  [30] 
o 

and outs ide  the p i leup at  ~ -> l i s  
l 

u 4 = b f f ( x ) d x  = nb = b a l / Z A  [31] 
o 

The e n e r g y  i s  then (per unit length in the z d i r ec t ion ) :  

o ~ dxdo 

which i s  g iven a l so  by Stroh.  16 
This  r e s u l t  can be used  to d e r i v e  Eq. [28] a s  fo l -  

lows:  The change of e n e r g y  fo r  cons tan t  a f r o m  a 
p i leup  of length l to that of length l + t,l can be ob- 
ta ined  f rom Eq. [32]. This  change can  be ob ta ined  a l so  
by d i r e c t  r e v e r s i b l e  ex tens ion  of the pi leup.  This  
would involve the work  of a and o 4 upon a change of 
d i s p l a c e m e n t  in u mad u 4 c a u s e d  by the ex tens ion  of 
l,  a s  well  a s  the work  of oti p (negat ive)  which amounts  
to bo t ioA/ .  The p r o c e d u r e  i s  an app l i ca t ion  of M o u t i e r ' s  

-- 17 t h e o r e m  and wxll be used  l a t e r  in the ca se  of double 
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ended pileups for which the s t r e s s  concent ra t ion  can-  
not be obtained from the total  force exer ted  on the 
sys tem.  

Another continuum approach is advanced by Web- 
s te r  and Johnson ~8 for s c r ew  pileups.  Since the f ie ld  
of a sc rew dis locat ion is  mathemat ica l ly  equiva len t  to 
the velocity field of a vor tex in fluid flow, it is  poss ib le  
to apply the complex potent ia l  method used in hydro-  
dynamics  to sc rew pi leups.  The r e su l t s  a re  of course  
the same,  but one impor tan t  advantage is that,  for 
ce r t a in  boundary condi t ions ,  the conformal  mapping 
technique can be exerc i sed .  

d) The effect of  nonuniform s t ress  f ield.  So far the 
s t r e s s  field other than that produced by the d i s loca t ions  
t hemse lves  is  uni form along the sl ip plane.  The effect 
of a nonuniform s t r e s s  f ield on the continuous d i s t r i bu -  
t ion of d is locat ions  has been  examined by Chou and 
Louat.  ~9 The problem is the same as  the p rev ious  one 
except  that Eq. [25] is  now 

l f(x)dx _ a(t) [33] 
A of t - x  

where o(t) is  a given function and Eq. [33] has to be 
sa t i s f ied  for any t be tween 0 and l. For  this case in 
which f(x) is unbounded at x = 0 and bounded at x = l, 
the solution is ,  accord ing  to Mushel i shvi l i  2~ 

1 l/l/l/l/l/l/l/l/l/l~xx l i t  e(t) 
f (x)  = ~-~-A ~ / - - F -  ~o l - t t ~-x dt [34] 

A s imple  example is  or(t) = oo[1 + (Xt/l)] where )t 
is  a constant .  Then for  X > - ~ :  

O o ///////////////////~xx ~. f(x)=7~- i/--)--(l+~ +~--) [35] 
l 

, , :  : -d- 0 + I3 1 
o 

The s t r e s s  concen t ra t ion  is  again obtained f rom the 
total  ex te rna l  forces  exer ted  on the sys tem:  

l 
(Ztip = j f (x)a(x)dx  - a2~ + 2)2 [37] 

o 

By using the yield c r i t e r i o n  ment ioned e a r l i e r  and by 
taking a0 as the applied s t r e s s  and aoXx/l as the in-  
t e rna l  s t r e s s ,  the Ha l l -Pe t ch  re la t ion  becomes :  

8q~'~aC l_ ll2 a 0  = ~ *  + ~ [38] 

which reduces  to Eq. [16] for X = 0. The Ha l l -Pe t ch  
slope,  k, is now 8~]-g-Xdc/(X + 2) and is seen to be af-  
fected by the in t e rna l  s t r e s s  through the magni tude 
and s ign of X. However,  Eq. [38] shows that the Hal l -  
Petch  re la t ion  is exact  only if X is  independent  of l. 
If ins tead  of X, CoX is independent  of l, the Ha l l -Pe t ch  
re la t ion  becomes  inexact .  This  s ignals  caution in ap- 
plying the Ha l l -Pe tch  re la t ion  to work hardened  s ta tes  
in which cel ls  or subg ra in s  a re  formed so that non-  
un i form in te rna l  s t r e s s e s  exis t  within a gra in .  

Although in the foregoing example the i n t e rna l  s t r e s s  
is  of one sign within the pileup region,  it is  to be r e -  
m e m b e r e d  that a pileup of negative d is locat ions  under  
the influence of the same  in t e rna l  s t r e s s  d i s t r ibu t ion  
except for the sign should exis t  somewhere  in another  
g r a in  in the same spec imen .  Thus,  the average  in-  
t e rna l  s t r e s s  is  ze ro  as  r equ i r ed  by e las t ic  equ i l ib r ium 
without the ex te rna l  s t r e s s .  

The effects  of nonuniform s t r e s s  d i s t r ibu t ion  upon 
the d is locat ion  d is t r ibut ion  and upon the s t r e s s  concen-  
t ra t ion  a re  d i scussed  also by Yokobori and Ichikawa, ~1 
by Chaudhari  and Scattergood, 22 and by Smith. 23'24 

e) Pileups of  extended dislocations. The effect of 
s tacking fault  energy ,  or the extent each dislocat ion 
d i s soc ia tes  into par t ia l  d i s loca t ions ,  on the p roper t i e s  
of pileups has  been studied by Li. 25 The equ i l ib r ium 
posi t ions of al l  the par t ia l  d i s loca t ions  a re  de te rmined  
numer i ca l l y .  As expected, the equ i l i b r ium width of the 
s tacking fault  va r i e s  along the length of the pileup-- 
be ing s m a l l e r  near  the tip than fa r the r  away from the 
tip. However,  the s t r e s s  concen t ra t ion  at the tip and 
the number  of d is locat ions  for a given pileup length 
a re  both independent  of the s tacking fault energy.  
Hence for a given c r i t i ca l  s t r e s s  concen t ra t ion  for 
yielding,  the Ha l l -Pe tch  slope is  a l so  independent of 
s tacking fault  energy.  This  r e s u l t  is  somewhat  ex- 
pected in v iew of the fact that the r e s u l t s  of d i sc re te  
d is locat ions  and those of cont inuous d is t r ibut ion  of 
d is locat ions  of in f in i t es imal  B u r g e r s  vec to rs  are  the 
same ,  indica t ing  that any p r e s c r i b e d  in te rac t ion  be-  
tween d is loca t ions  of in f in i t e s ima l  B u r g e r s  vec tors  
is  i m m a t e r i a l .  

f) Dynamic effects involving dislocation pileups. In 
view of the la rge  effect of s t r e s s  on the dis locat ion 
mobi l i ty ,  Rosenf ie ld  and Hahn 26 pointed out that the 
t ime for the format ion  of a pileup depends grea t ly  on 
the p a r a m e t e r  /3 = p(0 In v/aa) where v is  d is locat ion 
veloci ty and ix is  the shear  modulus .  By a s suming  
that ~ is independent  of s t r e s s ,  the t ime for the tip 

1 s t r e s s  to reach  -~ of the equ i l ib r ium value is com- 
puted n u m e r i c a l l y  and is  given approximate ly  by 

t~lJto = exp(0.75 • 10-4/3) [39] 

where to is the t ime requ i red  for the case of r = 0. 
These dynamic effects undoubtedly contr ibute  to the 
yie ld  s t r e s s  at different  s t r a in  r a t e s  and to the delay 
t ime phenomena.  

g) The effect  of  a second phase. Dislocat ion pileups 
agains t  a second phase were s tudied by Chou 27 for a 
s i n g l e - l a y e r ,  s ingle-ended pileup of s c rew dis loca-  
t ions.  The second phase in front  of the pileup is  a s -  
sumed r igid.  The r e s u l t s ,  based  on a continuous d i s -  
t r ibut ion of d i s loca t ions ,  a re  

f(x) = ~ cosh -1 _g = 1 [40] 

and 

_ a l  [41] n ~A' 

whe re 

: ~ 2 -  P..____A A'  - uab [42] 
p2 + ~ 1 '  2~ 

and ~ and ~2 a re  the shear  modul i  of the f i r s t  and 
second phase ,  respec t ive ly .  For  a more  genera l  case ,  
Chou z~ proposed a l inear  re la t ion  as  impl ied by the 
n u m e r i c a l  r e s u l t s  of Head: 2s 

=A ' [2  + (n - 2)K-In, O -< ~" --<- 1 [43] l 

Eq. [43] was proved fa i r ly  accura te  with a max imum 
e r r o r  of 1 pct by Smith 29 and by Barne t t .  3~ Using Eq. 
[40] Barne t t  was able to find the following genera l  
solut ion 
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f ( x )  - ~ 4 '  sin(An/2) sinh c~ x ' 

)~ : _2 sin_~ [~/1 - K [44] 
n 2 

_ [ 4 5 ]  n A '  sin XTr 

and the s t r e s s  component  ay z near  the tip in the 
second phase at y = O, 

)ur 
. _ ~_ c~ 2_~ 

~yz  2sin2~_~_~ {(2 /)a--2cos~---~-~}, I / >> 1 [46] 

The val idi ty of Eq. [43] was checked also by Barne t t  
and Te te lman  3~ in the case where the second phase is 
a c i r c u l a r  inc lus ion.  By us ing a c r i t i ca l  force c r i -  
t e r ion ,  the Ha l l -Pe tch  re la t ion  can be der ived  as  shown 
by Chou/2 

More recen t ly ,  Kuang and Mura 33 analy~.ed the case 
of s i n g l e - l a y e r ,  s i ng l e - ended  pileups of edge d i s loca-  
t ions ,  using the Wiener-Hopf  t echn ique /a  The a n a l y s i s  
is  r a the r  complex but the r e su l t s  show that Eq. [43] is  
a l so  val id in the case of edge d is loca t ions .  

Numer i ca l  ca lcu la t ions  for pi leups in two-phase  
media  were pe r fo rmed  by Head, 28 A r m s t r o n g  and 
Head, 3~ and Chou. 36 

1.1.2) D o u b l e - E n d e d  P i l e u p s .  a) Cont inuous  d i s t r i b u -  
t ion o f  d i s l oca t i ons .  Ins tead  of pi l ing up aga ins t  one 
boundary ,  a more  r ea l i s t i c  s i tuat ion is for a source  
ins ide  the gra in  to emit  d is loca t ions  of both s igns  so 
that they pile up a t  d i ame t r i c a l l y  opposite gra in  bound- 
a r i e s  as  shown in Fig .  3. Analyt ical  methods for ca l -  
cula t ing  the equ i l i b r ium posi t ions of d i sc re te  d i s loca-  
t ions  a re  not yet avai lable .  Leibfr ied  ~a and Head and 
Louat ~5 give solut ions for the continuous d i s t r ibu t ion  
of d is locat ions  of i n f in i t e s ima l  Bu rge r s  vec to r s .  The 
d i s t r ibu t ion  function is  

f ( x )  - ~ x [4"/] 
~-n ~a~-x  2 

and the number  of d is loca t ions  of e i ther  s ign is  
t /  

n = J f ( x ) d x  = ~ a / ~ A  [48] 
o 

The s t r a in  energy of the pileup can be obtained by 
making a cut in the sl ip plane between the two ends of 
the pileup,  rep lac ing  the ex te rna l  s t r e s s  by equal  and 
opposite forces  (a per  unit  a rea)  on the two cut s u r -  
faces ,  and r e v e r s i b l y  reducing  these fo rces  to ze ro  
so as to remove the pileup.  The d i sp lacement  at x is 

a 

u = b f f ( x ) d x  = ab ~ _ x2 [49] 
x 

The energy is  then (per unit  length in the z d i r e c -  
t ion): 

E = f f o ( ~ ) x d x d ~ - b a ~  [50] 
0 -a 4 A  

which is  given also by Hir th  and Lothe.~7 
The s t r e s s  concen t ra t ion  at the tip can be ca lcula ted  

by appl icat ion of M o u t i e r ' s  theorem.  The ene rgy  dif- 
f e rence  between pi leups  of length 2a and 2(a + Aa) is  
A E  = ba~2Aa /2A .  This  di f ference can be obta ined a lso  

T 

X = - 0  

m 1 

T X 

Y 

. l_ 
1 

. t  
1 

Fig. 3----Single-layer, double-ended pileups. 

JL  i 
1 1 

X = Q  

by d i rec t  r e v e r s i b l e  extens ion of the pileup. In this 
r e v e r s i b l e  extens ion,  both a and (rti p contr ibute  to the 
work. The par t  with ~ is ,  f rom Eq. [49]: 

a2b ba~ 2 Aa 
nA f ~/ (a + Aa)~-- x 2 d x -  ~ / ~ -  x 2 - A 

-(a+~a) -a 

The par t  with (rti p is  -2b(rti p Aa. Hence 

o" 2a ?r 
~ t i p -  4A - 4n(r [51] 

This  r e su l t  i s  given also by Hirth and Lothe 37 except 
that their  applicat ion of Mou t i e r ' s  theorem is in-  
complete .  

Eq. [51] leads  to the following Ha l l -Pe t ch  re la t ion  
based on the yield condition that r p reaches  a c r i t i -  
cal  value cr c and taking l = 2a: 

cr = a* + 2~;~-~ c 1-1/2 [52] 

A compar i son  of this r e su l t  with Eq. [16] shows that 
the Ha l l -Pe t ch  slope is exactly twice as  much in the 
case of the double-ended pi leups as  in the case of the 
s ing le -ended  pileup. By using H a l l ' s  data ~ again for 
mi ld  s tee l ,  k = 1 k g / m m  ~/2, (r c is found to be ~/25 
based  on the double-ended pi leups of sc rew dis loca-  
t ions.  

The effect of a second phase on double-ended sc rew 
pileups was recen t ly  studied by T. W. Chou 1~6 and by 
Smith. H7 For  a pileup between x = 0 and x = l aga ins t  
a boundary  at x = 0, 

~-A' sin(~n/2)  s inh cosh -~ 

412 _ x2 

where A '  is given by Eq. [42] and X by Eq. [44]. It is 
of i n t e r e s t  to note that the r e su l t  given by Eq. [53] is  
a superpos i t ion  of two separa te  d i s t r ibu t ion  funct ions.  
The f i r s t  t e r m  is  the d i s t r ibu t ion  of a s ing le -ended  
pileup of posi t ive sc rew dis loca t ions  under  the applied 
s t r e s s  a,  see Eq. [44]; whereas  the second t e r m  
r e p r e s e n t s  the d is t r ibut ion  of a double-ended pileup of 
negative sc rew dis locat ions  under  ze ro  s t r e s s .  Such 
superpos i t ion  is  in fact genera l ly  appl icable .  The 
s t r e s s  d i s t r ibu t ion  near  the tip of the pileup was 
found n6 to be the same as in a s ing l e -ended  pileup, 
Eq. [46], as expected. 

Eq. [53] takes  s imple r  f o r ms  for the l imi t ing  cases  
of ~t~/~z ~ 0 or X ~ 0  and p~/Pz ~ o  or ;~ ~ 1. In each 
case the n u m b e r  of posit ive or negat ive sc rew d is loca-  
t ions can be found by in tegra t ion .  For  the case of 
/~/p2 ~ 0 ,  the number  is 0.8438 (vl/21rA') and for the 
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case  of ~1/~2 ~ ,  the number  is 2 (a l /2nA ' )  where 
(~ l /2nA ' )  is the number  for the homogeneous  ca se ,  
namely ,  ~1 = ~2. 

b) N u m e r i c a l  s o l u t i o n s  f o r  d i s c r e t e  d i s l o c a t i o n s .  
A r m s t r o n g  et  al. 3~ studied the equi l ib r ium pos i t ions  by 
n u m e r i c a l  methods and found that,  for any n,  c~, and a, 
t he r e  a re  two conf igura t ions ,  one is s table and the other  
unstable .  These  two conf igura t ions  will approach  each 
o ther  upon reducing  c~ until a c r i t i c a l  cT is  r e a c h e d  
such that the two conf igura t ions  become  iden t ica l .  A 
fu r ther  reduct ion of c~ will lose a pair  of d i s loca t ions  
and two poss ible  new conf igura t ions  will  r e s u l t  with 
one pair  l e ss  of d i s loca t ions .  Since the y ie ld  s t r e s s  
is  taken to be the m i n i m u m  appl ied s t r e s s  r e q u i r e d  
to c r e a t e  a given s t r e s s  concent ra t ion  at the boundary ,  
it is a l so  the s t r e s s  that can mainta in  the l a r g e s t  num- 
be r  of d is locat ions .  Th is  is  the s i tuat ion d i s c u s s e d  
p rev ious ly  in the cont inuous d is t r ibut ion .  

By using a d i f ferent  y i e ld  c r i t e r i o n  based  on a 
c r i t i c a l  separa t ion  (10b) be tween  the f i r s t  two d i s -  
loca t ions  in a pileup, A r m s t r o n g  et al. 38 c o m p a r e d  
n u m e r i c a l  r e su l t s  for d i s c r e t e  d is loca t ions  with ana-  
ly t i ca l  r e su l t s  for a continuous d is t r ibut ion  and found 
that the Ha l l -Pe t ch  r e l a t i on  can be extended to v e r y  
s m a l l  g ra in  s i ze s  with only a few d is loca t ions  in the 
pi leup at the t ime of y ie ld ing.  The H a l l - P e t c h  s lope 
for the double-ended p i leups  is  about twice that for  
the s ing le -ended  pi leups .  

By using a c r i t i c a l  s t r e s s  concent ra t ion  of p /30 ,  Li  
and Liu 6 ca lcu la ted  n u m e r i c a l l y  for the doub le -ended  
pi leups  of mixed  d i s loca t ions  a H a l l - P e t c h  s lope of 
0.22 ~t x/b. F o r  the same  s t r e s s  concen t ra t ion ,  Eq.  [52] 
p r e d i c t s  a s lope of 0.23 pv~-. The a g r e e m e n t  a l so  in-  
d i ca t e s  the appl icabi l i ty  of continuous d i s t r ibu t ion  even 
fo r  only a few d i s loca t ions .  

1.1.3) C i r c u l a r  P i l e u p s .  a) Cont inuous  d i s t r i b u t i o n  o f  
d i s l o c a t i o n  loops .  The appl ica t ion  of the H a l l - P e t c h  r e -  
la t ion to v e r y  sma l l  g ra in  s i z e s  r e q u i r e s  c o n s i d e r a -  
tion of more  r e a l i s t i c  p i leups  such as c i r c u l a r  or  
polygonal  loops ins tead  of infini te  s t ra igh t  d i s loca t ions .  
An equ i l ib r ium continuous d is t r ibu t ion  of c i r c u l a r  d i s -  
loca t ions  within a c i r c u l a r  boundary of rad ius  a can be 
obtained f rom the d i sp l acemen t  of a shear  c i r c u l a r  
c r a c k  in an i so t rop ic  med ium:  

8~(1 - v) r [54]  
f ( r )  = ~ b ( 2  - u) vr-~a 2= r e 

where  f ( r ) d r  is p ropor t iona l  to the densi ty  of loops be -  
tween r and r + dr .  The total  number  of loops is  then: 

t~ 
n = f f ( r ) d r  = 8 c a ( 1 -  u) [55] 

~ b ( 2  u) o 

The d i sp lacement  at r is  
a 

u = b  f f ( r ) d r  = 8a(1 - u)r  2 - r  ~ , ,u(2  - ~) [56]  

These  r e s u l t s  can be used to ca lcula te  the ene rgy  
of the pileups as i l l u s t r a t e d  be fo re :  

ii'io E=I E = o ~ rdrdOd~ = 3 V ( I - u )  

which can be used to ca lcu la te  an ave rage  s t r e s s  con-  
cen t ra t ion  by the appl ica t ion  of M o u t i e r ' s  t h e o r e m :  

- 4aa2(1 - u) = -~n~ [58] crti p - ~ ~)~ 

Eq. [52] leads  to the following H a l l - P e t c h  re la t ion  

{pb(2 - u )~c~  ~/2l-1/2 [59] 
c~ =a*  + \ 2 ( 1 - u )  ] 

where l = 2a and the yield condit ion is ati p = cr c. 
A c o m p a r i s o n  of Eq. [59] with Eq.  [16] shows that 
the H a l l - P e t c h  slope in the case  of c i r c u l a r  pileups 
is ~ t i m e s  that  of s ing le -ended  pi leups  of mixed 
s t ra ight  d i s loca t ions  [A = ~b(2 - u)/4~ (1 - u) in i so -  
t rop ic  medium] .  

b) N u m e r i c a l  r e s u l t s  on d i s c r e t e  c i r c u l a r  loops .  
Li and Liu 6 examined  c i r c u l a r  d i s loca t ion  pi leups by 
n u m e r i c a l  m e a n s  so as to c o m p a r e  with the r e s u l t s  
for a continuous dis t r ibut ion.  Equ i l i b r ium conf igura-  
t ions a r e  obtained by requ i r ing  that a l l  the loops a r e  
c i r c u l a r  and that  the ave rage  fo r ce  exe r t ed  on each 
f r ee  loop is z e r o .  The ou t e rmos t  loop is of radius  a 
and is b locked  e v e r y w h e r e  by g ra in  boundar ies .  Un- 
der  an appl ied shea r  s t r e s s  a ,  n loops a r e  in t ro -  
duced and the i r  equ i l ib r ium rad i i  de t e rmined .  For  
each se t  of va lues  of a, a ,  and n,  two equ i l ib r ium con-  
f igura t ions  a r e  poss ib le ,  one s table  and the other  un- 
s table ,  s i m i l a r  to the case  of double ended pi leups.  
Upon reduct ion  of a,  these two conf igura t ions  ap-  
proach each other  and become  iden t ica l  when a c r i t i -  
cal  a i s  r eached .  Fur ther  reduc t ion  of a loses  one 
loop and two poss ible  conf igura t ions  appear  again with 
one l e s s  loop. Since the yield s t r e s s  is taken to be the 
min imum s t r e s s  r e q u i r e d  to c r e a t e  a given s t r e s s  
concent ra t ion  at the boundary,  the l a r g e s t  number  of 
loops is  used for  each set  of a and a. This  is  the 
case  s tudied in the continuous d is t r ibu t ion .  

An added compl ica t ion  in the case  of d i s c r e t e  loops 
is  the line tens ion  of d i s loca t ions  which is neglec ted  in 
the continuous dis t r ibut ion.  This  in t roduces  a p a r a m -  
e t e r  ro, the c o r e  radius  of d i s loca t ions ,  which is of 
the o rde r  of b. For  a = 1000to, the min imum s t r e s s  
n e c e s s a r y  to main ta in  n loops in units of ~tb/2an(1 - u), 

-y): is c o m p a r e d  with Eq. [55] as fol lows (u = 1 

n 2 3 4 5 6 7 8 

a 8.8 13.1 17.3 21.4 25.6 29.9 33.9 

Eq. [55] 8.2 12.3 16.5 20.6 24.7 28.8 32.9 

It is seen that the n u m e r i c a l  r e s u l t s  a g r e e  with those 
r e q u i r e d  for continuous d i s t r ibu t ion ,  e spec i a l l y  at 
l a rge  n. 

The H a l l - P e t c h  slope for d i s c r e t e  loops is found to 
be 0.37 pb/rx~o for  a c r i t i c a l  s t r e s s  concent ra t ion  at 
the boundary ,  pb/30ro.  F o r  the s a m e  c r i t i c a l  s t r e s s  
concen t ra t ion ,  Eq. [59] p red ic t s  a s lope of 0.36pb/r~o.  
The s l ight  d i f fe rence  could be caused  by the line 
tension neg lec t ed  in the continuous d is t r ibut ion .  

1.2) D o u b l e - L a y e r  P i leups .  This  is  the case  in which 
d i s loca t ions  a r e  a r r a n g e d  in two iden t ica l  l aye r s ,  one 
above the other .  Because  of the i r  mutual  in te rac t ion ,  
the r e s u l t s  a r e  di f ferent  f rom those of a s ingle  l aye r .  

1.2.1) S i n g l e - E n d e d  P i l e u p s .  Two ident ica l  l aye r s  
of a continuous d is t r ibut ion  of edge d i s loca t ions  at 
y = 0 and y = h a r e  pi led up be tween  x = 0 and x = l 
agains t  a g ra in  boundary at x = 0. The dis locat ion 
l ines  a r e  a l l  p a r a l l e l  to the z ax is .  The d is t r ibut ion  
function f ( x )  along each layer  should sa t i s fy  the fol -  
lowing: 

} A fo f ( x )  f ( t - x ) 2 [ ( t  - x)  2 - h  2] dx =a  [601 
t Z - x / 1  + [ ( t - x )  2 + he] 2 
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An analy t ica l  solut ion for f (x)  is not yet ava i lab le .  
By approximat ing  par t  of the in tegrand with a f ini te  
F o u r i e r  s e r i e s  of m + 2 t e r m s  (m being a r b i t r a r y ,  and 
the l a rge r  the more  accura t e )  Yokobori and Ichikawa 4~ 
solved numer i ca l l y  the sys tem of m + 2 s imul t aneous  
equat ions.  The r e s u l t s  on the number  of d i s loca t ions ,  
n~, in each l ayer  as  compared  with that of a s ingle  
l aye r ,  n~, a re  

h/ l  0 0.15 0.30 0.50 1.0 2.0 

n2/nl 0.5 0.674 0.805 0.948 1.0656 1.0437 1.000 

The l imi t ing  ra t io  of 0.5 at h = 0 is  expected because  
then it  becomes  a s ingle  pileup of d i s loca t ions  of 
double Burge r s  vec to rs .  When h/l i n c r e a s e s  it is  
seen that n2/n~ f i r s t  i n c r e a s e s ,  r eaches  a m a x i m u m ,  
and then dec rea se s .  This  is  reasonable  s ince  for sma l l  
h/ l ,  most  d is locat ions  r epe l  each other a c r o s s  the two 
l a y e r s  and for  large h/ l  they a t t r ac t  each other  in -  
stead.  Based on the c r i t i c a l  s t r e s s  concen t ra t ion  at the 
boundary ,  the ra t io  of Ha l l -Pe tch  slopes is  s imply  

1.2.2) Double-Ended Pileups.  Two ident ica l  l a y e r s  
(separat ion h) of double-ended  pileups of a cont inuous 
d i s t r ibu t ion  of s c r e w  d is loca t ions  within a length 2a 
were cons idered  by Smith 4~ for the case of a < h. The 
in t eg ra l  equation was approximated  by expanding the 
d i s t r ibu t ion  function into a power s e r i e s  of a/h .  The 
n u m b e r  of d i s loca t ions  in each half layer  is  found to be 

2~a ( a2 7a4 .) 
n = - ~ -  1 -  2~z 2 + ~ - ~  + . .  [61] 

For  edge d i s loca t ions ,  the r e su l t  is 

_ 2(za(1 - u) (1 + a2 13a4 
n pb _ ~ --g-h-X-+ ...) [62] 

It i s  seen that,  r e l a t ive  to the s i n g l e - l a y e r  p i leups ,  
l e s s  s c rew dis loca t ions  but more  edge d is loca t ions  
can be contained in the doub le - l aye r  pi leups.  Ac- 
cord ingly ,  the Ha l l -Pe rch  slope is l a r g e r  for s c r e w  
dis loca t ions  and s m a l l e r  for edge d is loca t ions  in the 
case of doub le - l ayer  pi leups.  However,  for h << a,  
n = oa/llb for s c r ew  dis loca t ions  and era(1 - u)/pb 
for  edge d is locat ions  s ince  they both approach s ing le -  
l aye r ,  double-ended pi leups of d is locat ions  of twice 
the Burge r s  vector .  

1.3) T r i p l e - L a y e r  P i l eups .  Three  l aye r s  (y = O, h, 
and 2h) of s ing le -ended  pi leups of a cont inuous d i s -  
t r ibu t ion  of edge d i s loca t ions  (0 -< x -< l) aga ins t  a 
g ra in  boundary at x = 0 were inves t iga ted  by Yokobori 
and Ichikawa 4~ by approx imat ing  the in tegra l  equation 
with e leven t e r m s  of a f inite F o u r i e r  s e r i e s .  The 
n u m b e r  of d i s loca t ions  in the outer  l ayer ,  n3, and that 
in the middle l aye r ,  n~, a re  ca lcula ted  n u m e r i c a l l y  and 
a re  compared  with that for a single layer  pi leup,  n~, 
as  follows : 
h/ l  0 0.15 0.30 0.50 1.00 2.00 :o 

n3/n~ 0.333 0.635 0.818 1.0106 1.1170 1.0597 1.000 

n~/n~ 0.333 0.392 0.606 0.8902 1.1372 1.0890 1.000 

It i s  seen that for la rge  h/ l ,  the s t r e s s  concen t ra t ion  
is l a rge r  at the tip of the middle layer  than a t  the t ips 
of outer  l aye r s .  However ,  the s i tuat ion is  the opposite 
for sma l l  h/l .  The H a l l - P e t c h  slope,  k3, for the 
t r i p l e - l a y e r  pi leups,  i s  given by k~/k~ = ~ n ~ / ~  or 
~/n~/n~ whichever is  s m a l l e r .  S imi la r ly ,  when com-  

pared  with doub le - l ayer  p i leups ,  k3/k2 = ~n2/n3 or 
whichever  is s m a l l e r .  

1.4) In f in i t e -Layer  P i l eups .  1.4.1) Single-Ended 
Pi leups.  a) Continuous distribution o f  screw dis loca-  
tion walls .  An infinite n u m b e r  of l a y e r s  of s c r ew  d i s -  
loca t ions ,  with a uniform spacing h between l aye r s ,  
a r e  here  cons ide red  to pile up between x = 0 and v = l 
aga ins t  a gra in  boundary at x = 0. The slip planes 
a re  pa ra l l e l  to y = 0 and al l  the dis locat ion l ines  are  
pa ra l l e l  to the z axis .  The d i s t r ibu t ion  function along 
each l ayer  is  given by Louat 42 and l a te r  also by Web- 
s ter  and Johnson:  is 

2(r (sech nl ~[sinh[n(l - x ) /h] l  1'2 
f(X) = -~  2h/[  s i n h ~ x ~  J 

[63] 

The number  of d is locat ions  in each l ayer  is 
l 

n = J f (x)dx : 2~h nl [64] o - ~ -  tanh 2--h 

Since l i s  usual ly  l a rger  than h, the hyperbol ic  tan-  
gent funct ion in Eq. [64] is ve ry  c lose  to unity. The 
s impl i f ied  Eq. [64] can be obtained d i rec t ly  from the 
s t r e s s  field of sc rew dis locat ion walls  43 which is 
pb/2h per wall at any dis tance  l a r g e r  than h f rom 
the wall. This  gives (~ = (n - 1)pb/2h which ag rees  
with Eq. [64]. 

F r o m  equ i l ib r ium cons ide ra t ions  the s t r e s s  con- 
cen t ra t ion  a t  the tip is n(r. Hence by the c r i t i ca l  
s t r e s s  c r i t e r i on  for yielding,  the Ha l l -Pe t eh  re la t ion  
is  

o = a* + ~pb~cl/2h1-1/2 [65] 

It is seen that, for the Ha l l -Pe t ch  re la t ion  to be 
valid,  l / h  must  r ema in  constant  for al l  l. If, how- 
ever ,  h is  constant  ins tead  of h/ l ,  Eq. [65] predic ts  
a s t r e s s  which is  independent  of 1. This  cas ts  some 
doubt on the mu l t i l aye r  pileup model  for yielding.  

To compare  with the Ha l l -Perch  slope hi for a 
s i n g l e - l a y e r  pileup of s c rew d i s loca t ions ,  ~f~c/Tr ,  
Eq. [64] gives k~ as 

koo/k~ = ~/ (nl/2h) coth(nl/2h) [66] 

which is  shown in Fig.  4 together  with that for the 
pileup of edge dis locat ion wal ls .  

b) Numerica l  resu l t s  on the pi leups  of  d iscrete  
screw dislocation walls.  Since the n u m b e r  of d i s loca-  
t ions ,  n, is propor t ional  to s t r e s s  but  is  nea r ly  in-  
dependent  of l, it is  i n t e r e s t i ng  to see how the d is lo-  
cat ions  a r r a n g e  themse lves  in the s l ip  planes.  This is  
obtained n u m e r i c a l l y  44 and is shown in Fig.  5 for 
twenty walls  of s c rew d is loca t ions .  The dotted l ine is  
for the case of a s ingle layer .  It is  seen that upon in-  
c r ea s ing  l or dec reas ing  h, more  and more  d is loca-  
t ions a re  concent ra ted  at the tip of the pileup. The 
s t r e s s  to ma in ta in  the pi leups is  shown in Fig.  6. For  

--~o, the s t r e s s  approaches  that r equ i r ed  for con- 
t inuous  d i s t r ibu t ion  as  expected.  For  any r ea l i s t i c  
value of 7rl/h such as 10 or mor e ,  the s t r e s s  r equ i r ed  
is  a lmos t  exact ly (n - 1)pb/2h for  any n ~ 2. 

c) Pi leups  o f  edge dislocation walls .  An ana ly t ica l  
solut ion for the continuous d i s t r ibu t ion  of pi leups of 
infini te  edge dis locat ion walls  is not yet avai lable .  
Yokobori and Ichikawa 4~ approached the problem 
n u m e r i c a l l y  based  on a method proposed by Hanaoka. 4s 
The following in tegra l  equation 
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~ J! t~-;  L ~ i ( x )  r-~, (t - ~) cseh ~TT(t h x)]edx = a l A  [67] 

where  A = ~tb/2~(1 - v), is approx ima ted  by expanding 
par t  of the in tegrand into a finite F o u r i e r  s e r i e s  of 
rn + 2 t e r m s  (m being a r b i t r a r y ,  the l a r g e r  the m o r e  
a c c u r a t e )  so that the in t eg ra l  equation b e c o m e s  a set  
of s imul taneous  equat ions  of m + 2 unknowns which is  
then so lved  numer i ca l l y .  The r e su l t s  on the number  of 
d i s loca t ions ,  n,r (as c o m p a r e d  to that of s ingle  pi leup,  
n~), a r e  as follows (m = 19): 

h/l  oo 2.0 1.5 1.0 0.65 0.6 

n~/n t  1.0000 1.1839 1.3040 1.5810 2.0674 2.4963 

h/l  0.4 0.3 0.2 0.15 0.12 0.10 

n~/n~ 2.966 3.753 5.30 6.7 7 t o 8  6 t o  10 

The Ha l l -Pe t ch  s lope,  boo, when compared  with that for 
a s ingle  layer  pileup of edge d i s loca t ions ,  k~, i s  

k./k~ = Cn,/,. [68] 
which is  shown in Fig .  4. 

N u m e r i c a l  r e su l t s  on the pileup of d i s c r e t e  edge 
d is loca t ion  walls  44 a r e  shown in F igs .  7 and 8. F ig .  7 
shows the equ i l ib r ium pos i t ions  for a pileup of 20 
wal l s  of edge d i s loca t ions  as a function of the r e l a t i v e  
s ize  of 1/h. It is  seen that  the d is t r ibut ion  b e c o m e s  
m o r e  uniform upon i n c r e a s i n g  l/h. This a r i s e s  f rom 
the d e c r e a s i n g  repu l s ion  be tween walls .  Fig .  8 shows 
the s t r e s s  r e q u i r e d  to ma in ta in  n wal ls  of edge d i s -  
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locat ions .  When n - - %  the r e s u l t s  a g r e e  with those 
of Yokobori  and Ichikawa 4~ for  the continuous d is -  
t r ibut ion of d i s loca t ions .  

1.4.2) Double-Ended Pileups. a) Continuous distribu- 
tion of  screw dislocation walls. Infinite l a y e r s  of 
ident ica l  double-ended pi leups of s c r e w  d is loca t ions  
be tween x = - a  and +a and of a un i form spacing h 
between l a y e r s  were  inves t iga ted  by Louat.  42 He ob- 
tained the fol lowing d is t r ibut ion  function:  
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2or sinh @x/h) [ 69] 
/(x) - ,b [sinh-~(.a-~ - s-~nh2(~x/h)] "~ 

which is  given a l so  by Smith.  46 The number  of d i s lo -  
ca t ions  in each half l ayer  i s  given by Smith: 46 

r 

n : f f ( x ) d x  : 2 @  7ra [70] tan-  1 sinh --h- 
o 

It is seen that n d e c r e a s e s  with d e c r e a s i n g  h and 
hence the Ha l l -Pe t ch  slope i n c r e a s e s  with i n c r e a s i n g  
a / h .  

The d is t r ibut ion  of s c r e w  dis locat ion wal ls  in an iso-  
t rop ic  media  is given by C h o u .  a7 Chou and Barne t t  48 
s tudied pi leups of s c r e w  dis locat ion  walls  aga ins t  a 
second phase.  

b) Continuo~s d i s t r ibu t ion  o f  edge dis locat ion wal ls .  
Infinite l aye r s  of iden t ica l  double-ended pi leups  of 
edge d is loca t ions  be tween  x = - a  and +a and of a 
un i form spacing h be tween l aye r s  were  examined  by 
Smith 46 for  the case  of a < h. The in teg ra l  equat ion is 
approx ima ted  by expanding the d is t r ibut ion  function 
into a power s e r i e s  of a /h ,  with the fol lowing r e s u l t  

2or(1 - v) x (1 + 7r2az 
f(x) [71] /Jb ~ _ ~ + ""/ 

n = J f (x )dx  - 2(1 - u)aa 7r2a z o ~,6 1 + ~ + .. [72] 

It is  seen  that n i n c r e a s e s  with d e c r e a s i n g  h, con-  
t r a r y  to the r e su l t s  of s c r e w  dis locat ion  wal l s .  The 
H a l l - P e t c h  slope d e c r e a s e s  with i nc r ea s ing  a /h  in 
th is  case .  

2) NONPILEUP THEORIES OF YIELDING 

Severa l  cons ide ra t ions  lead one to ques t ion  the gen-  
e r a l  appl icabi l i ty  of the pileup model  for yie lding.  
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dislocations. 

50 20 I0 5 4 .3 2 
2.0 . o ~ .  . . . .  

r 

0 O. I 0.2 0.3 0.4 0.5 
l l n  

Fig. 8--Stress to maintain a pileup of n walls of edge dislo- 
cations. 

The f i r s t  is the lack of d i r ec t  obse rva t ion  of pileups 
in pure m e t a l s  although pi leups a r e  seen  in a l loys  of 
low s tacking  fault energy  or of long range o rde r .  Yet 
the H a l l - P e r c h  re la t ion  is found va l id  in both pure 
m e t a l s  and a l loys .  In fact ,  Ku, M c E v i l y ,  and Johnston 49 
examined  the H a l l - P e t c h  s lopes  in copper  and i ts  a l -  
loys as a function of s tacking fault  ene rgy  and found 
that the H a l l - P e t c h  s lopes  have one value when pi leups 
a r e  not o b s e r v e d  and i n c r e a s e  to a h igher  value when 
the pi leups a r e  observed .  Such i n c r e a s e  is not eas i ly  
unders tood  in t e r m s  of solute pinning of d i s loca t ions  
or  of g ra in  boundar ies .  Secondly,  Worthington and 
Smith s~ found that in F e - 3  pct Si, d i s loca t ions  a r e  
emi t t ed  f r o m  gra in  boundar ies  at s t r e s s e s  much below 
the yie ld  s t r e s s  without the help of pi leups and that 
these  s t r e s s e s  do not seem to depend on gra in  s ize .  
Accord ing  to the pileup model  for y ie ld ing,  the func- 
tion of the pi leup is to c r e a t e  a s t r e s s  concent ra t ion  
at the gra in  boundary so as  to ac t iva te  d is locat ion 
sou rce s .  If these  d is loca t ion  s o u r c e s  can be ac t iva ted  
without a pi leup and at s t r e s s e s  be low the yie ld  s t r e s s ,  
the function or  the usefu lness  of the pileup is  then 
los t .  Mot iva ted  by these c o n s i d e r a t i o n s ,  t heo r i e s  
without the use of pi leups have been  proposed  and 
some of them are  r ev iewed  he re .  

2.1) Work Hardening T h e o r i e s .  In this  c l a s s  of theo-  
r i e s  p i leups  a r e  d i s r e g a r d e d  and a l inear  r e l a t ion  
be tween  yie ld  or  flow s t r e s s  and the square  root  of 
d i s loca t ion  densi ty is taken as an e s t ab l i shed  e x p e r i -  
men ta l  fact :  

a : a* + ~ p b ~ p  [73] 

where  (r i s  one half of the t ens i l e  y ie ld  or flow s t r e s s ,  
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p is average dislocation density, and a is about 0.4 
according to Keh 51 for iron. The value of a would be 
di f fe ren t  if a d i f fe ren t  T a y l o r  f ac to r  (see Wilson  and 
Chapman 5~ and Worthington and Smith 53) i s  u sed  a n d / o r  
a f o r e s t  dens i ty  i s  p r e f e r r e d  ins t ead  of the a v e r a g e  
dens i ty  for  d i s l oca t i ons .  The e s s e n c e  of the work  
ha rden ing  model  i s  that  the ave rage  d i s t ance  of s l ip  
of d i s l oca t i ons ,  x ,  is  p r o p o r t i o n a l  to the g ra in  s i z e ,  l:  

; = f l l  [74] 

Since the p las t i c  s t r a i n  is  given by 

= p b ~  [75] 

the to ta l  d i s loca t ion  dens i t y  could be c a l c u l a t e d  by a s -  
suming  that a l l  the d i s l o c a t i o n s  r e m a i n  in the s y s t e m :  

p = ~ / b ;  = EIb~l [76] 

Subst i tu t ing  Eq. [76] into Eq.  [73] g ives  

(r =(r* + a p b  cV~/b/3/-1/2 [77] 

which is  a H a l l - P e r c h  r e l a t i o n  with the fol lowing s lope  

The model  or i t s  equ iva len t  s e e m s  to have been  p r o -  
posed  by many people  inc luding  Louat  a s  quoted by 
M a r c i n k o w s k i  and F i she r~  54 Meakin  and P e t c h ,  55 and 
Conrad .  s6 Although no quant i ta t ive  t r e a t m e n t  was a t -  
t emp ted ,  Johnson ~7 s e e m e d  to be the f i r s t  to sugges t  
that  kd- ~/e could be due to work  harden ing .  

2.1.1) Supporting Evidences  and Limi ta t ions .  Since 
Eq. [77] demands  a p a r a b o l i c  s t r e s s - s t r a i n  c u r v e ,  the 
work  ha rden ing  model  of y ie ld ing  is  app l i c ab l e  only to 
those  s y s t e m s  p o s s e s s i n g  such s t r e s s - s t r a i n  behav io r .  
Such behav io r  is  found in n iobium (columbium) by Con- 
r a d ,  F e u e r s t e i n ,  and Rice .  5s,59 They showed that  the 
f low s t r e s s  i s  l i nea r  with the square  roo t  of s t r a i n  a s  
r e q u i r e d  by Eq. [77] with a constant  i n t e r c e p t ,  excep t  
for  the case  in which the g r a i n  s ize  is  l a r g e r  than the 
s p e c i m e n  th ickness .  They showed fu r the r  that  the d i s -  
loca t ion  dens i ty  i s  l i n e a r  with s t r a i n  a s  r e q u i r e d  by 
Eq.  [76] with a s m a l l  i n t e r c e p t  which they b e l i e v e  to 
be the dens i ty  a f t e r  r e c r y s t a l l i z a t i o n  and b e f o r e  de -  
fo rma t ion .  These  o b s e r v a t i o n s  do imply  the v a l i d i t y  
of Eq. [74] which i s  the fundamenta l  hypo thes i s  of th is  
mode l .  

On the other  hand,  in F e - C o  a l l oys ,  M a r c i n k o w s k i  
and F i s h e r  5a did not o b s e r v e  a l i nea r  r e l a t i o n  be tween  
the H a l l - P e t c h  s lope  and the square  roo t  of s t r a i n  a s  
r e q u i r e d  by Eq. [78]. Ne i t he r  did  they o b s e r v e  a 
s t r a i n - i n d e p e n d e n t  a* a s  sugges t ed  by Eq. [77]. Con- 
t r a r y  to Eq. [78] the H a l l - P e t c h  s lope  was found to de-  
c r e a s e  with s t r a i n  by C a r r e k e r  and H i b b a r d  s~ for  cop-  
p e r ,  by C a r r e k e r  6~ fo r  s i l v e r ,  by C a r r e k e r  and Hib-  
b a r d  e2 for a luminum,  and by  Ohba e3 for  i ron .  In a l m o s t  
a l l  the c a s e s ,  the i n t e r c e p t  (r* was found to i n c r e a s e  
with s t r a i n ,  c o n t r a r y  to Eq. [77]. Also  i ncons i s t e n t  with 
Eq.  [76], Dingiey and McLean  6a found for  i r o n  that  the 
ne t  r a t e  of i n c r e a s e  of d i s loca t ion  dens i ty  i s  g r e a t e r  
a t  the beginning of s t r a i n i n g  than l a t e r  on. Al l  the 
fo rego ing  o b s e r v a t i o n s  a r e  not in suppor t  of the work  
ha rden ing  model  of y i e ld ing .  A d e m o n s t r a t i o n  of the 
va l i d i t y  of Eq. [73] i s  only r e l e v a n t  to the t h e o r y  of 
work  ha rden ing  and not to that  of y ie ld ing .  

2.1.2) Other Considerat ions.  In s t ead  of Eq.  [74], 
non l inea r  r e l a t i o n s  be tween  the a v e r a g e  d i s t ance  of 

s l ip  and the g r a i n  s ize have been  p r o p o s e d  by Con- 
r a d  ~5'6~ and by  Conrad  and Chr i s t .  67 Such r e l a t i o n s ,  
when combined  with Eqs .  [73] and [75] would inval ida te  
the H a l l - P e r c h  r e l a t i onsh ip .  The da ta  co l l ec t ed  by 
Conrad  6S for  i r on  and s t ee l  in an a t t e mp t  to show a 

1/4 l i nea r  r e l a t i o n  between s t r e s s  and e l -  ac tua l ly  
showed c u r v a t u r e  in a l m o s t  a l l  c a s e s .  

The effect  of p l a s t i c  s t r a i n  on the H a l l - P e t c h  s lope 
was d i s c u s s e d  a l so  by Li  68 using a k ine t ic  equation for  
d i s loca t ion  dens i ty  a s  p r o p o s e d  by  Johnston and Gi l -  
man 69 to inc lude  dynamic  r e c o v e r y .  It was found that  
without r e c o v e r y ,  the H a l l - P e t c h  s lope  i n c r e a s e s  with 
s t r a i n  but the i n t e r cep t  a* r e m a i n s  unchanged.  How- 
e v e r ,  with r e c o v e r y ,  the H a l l - P e r c h  s lope  may  de-  
c r e a s e  with s t r a i n  and the i n t e r c e p t  may  i n c r e a s e  
depending on the r e l a t i v e  r a t e s  of work  hardening  and 
r e c o v e r y .  

2.2) Gra in  Boundary  Source  T h e o r i e s .  In th is  c l a s s  
of t h e o r i e s ,  g r a i n  bounda r i e s  a r e  a s s u m e d  to act  a s  
s o u r c e s  of d i s l oca t i ons .  The i r  c a p a c i t y  to emi t  d i s -  
loca t ions  m a y  change with the s t r u c t u r e  and compo-  
s i t ion  of the g ra in  boundary  but  i s  independent  of g r a i n  
s i z e .  Let  m be the to ta l  length of d i s l o c a t i o n s  emi t t ed  
pe r  unit a r e a  of g ra in  boundary  a t  the t ime  of y ie ld ing .  
Then the de ns i t y  of d i s loca t i ons  at  the t ime  of y ie ld ing  
i s ,  for a s p h e r i c a l  g ra in :  

p = �89 (~ t2m) /~  t ~ = 3m/ t  [79] 

where  the f ac to r  ~ a r i s e s  f rom the fact  that  each 
boundary  is  s h a r e d  by two g r a i n s .  Subst i tu t ing Eq. 
[79] into Eq. [73] g ives  

cr =o*  + a/~b~/3m l -u2 [80] 

which is  a H a l l - P e r c h  r e l a t i on  with the fol lowing s lope :  

k = c~tb ~/3 m [81] 

The o r i g i n a l  v e r s i o n  was p r o p o s e d  by Li  68 with a 
s l igh t ly  d i f fe ren t  k. A s i m i l a r  v e r s i o n  was p r o p o s e d  
by C r u s s a r d .  7~ 

2.2.1) Evidences  o f  Grain Boundary Sources.  Eq. 
[81] does  not  contain  p l a s t i c  s t r a i n  and hence this  the -  
ory  is  not c o n s i d e r e d  as  a work  ha rden ing  theory  a l -  
though Eq. [73] i s  s t i l l  a ccep t ed  a s  an e s t a b l i s h e d  ex-  
p e r i m e n t a l  fac t .  The theory  does  depend,  however ,  on 
the a s s u m p t i o n  that  g ra in  b o u n d a r i e s  can  act  a s  d i s -  
loca t ion  s o u r c e s .  Hornbogen 72 has  shown a c l e a r  ex -  
ample  of d i s loca t ion  loops  e m i t t e d  f rom g ra in  bound-  
a r i e s  in an F e - 3 . 1 7  at .  pct  P a l l o y  al though whether  
such e m i s s i o n  i s  caused  by a p i leup  is  not known. 
More  r e c e n t l y  Ca r r ing ton  and M c L e a n  73 o b s e r v e d  s l ip  
l ines  o r ig ina t ing  at  g r a i n  b o u n d a r i e s  in F e - 3  pet  Si at  
s t r e s s e s  be tween  ~* and the lower  y i e ld  s t r e s s .  They 
concluded  the fol lowing:  1) The o b s e r v e d  pe rcen tage  
of y i e lded  g r a i n s  a s  a function of s t r e s s  did  not a g r e e  
with a r e l a t i o n  ca l cu l a t ed  by Sui ts  and C h a l m e r s  74 
b a s e d  on un i form d i s t r ibu t ion  of s o u r c e s  ins ide  the 
g r a i n s .  2) About 95 pct of a l l  the s l ip  l ines  which d id  
not c o m p l e t e l y  c r o s s  a g r a i n  a r e  in contac t  with a 
g r a i n  bounda ry  at  one end. 3) T y p i c a l l y  the re  a r e  s l ip  
l ines  only on one side of the g r a i n  bounda ry  in the 
e a r l y  s t a g e s  of y ie ld ing .  S i m i l a r  r e s u l t s  were  ob- 
s e r v e d  by Worthington and Smith .  s~ Al l  these  s eem to 
conf i rm the sugges t ion  that  g r a in  b o u n d a r i e s  can ac t  
a s  d i s l o c a t i o n  s o u r c e s  without the s t r e s s  c o n c e n t r a -  
t ion c r e a t e d  by a pi leup.  

2.2.2) Observation o f  Grain Boundary Ledges.  The 
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next quest ion is how a g ra in  boundary  can act  as  a 
d is locat ion  source.  The o r ig ina l  suggest ion was made 
by Mott vs and la ter  independent ly  by Li 76 ba sed  on a 
p ic ture  of a g ra in  boundary  s t ruc tu re  taken by Keh. 5~ 
The d i s loca t ion- l ike  images  in the g ra in  boundary  
were suggested 76 as  ledges which were supposedly to 
act  as dis locat ion donors .  The fact that a ledge can 
ac tua l ly  become a d i s loca t ion  is f i r s t  indica ted  by a 
p ic ture  taken by Swann 76 showing a d is locat ion  par t ly  
in the grain  and par t ly  in the gra in  boundary as  a 
ledge.  Fur the r  e lec t ron  mic roscop ic  obse rva t ions  of 
ledges in grain  boundar i e s  were made by many  people 
including F i she r  et al.77 in i ron ,  We i s smann  76 in tung- 
s ten ,  Lin and McLean 78 in n icke l ,  Ishida and Brown 79 
and Ishida et al. 8~ in Fe -0 .75  pct Mn al loy,  and Wilson 81 
and Hook 8~ in s tee ls .  Fig.  9 shows a p ic ture  taken by 
Goodrich 83 indicat ing,  probably for the f i r s t  t ime ,  the 
coexis tence  of posi t ive and negative ledges in a g ra in  
boundary .  The poss ib i l i ty  of d i s loca t ion- ledge  i n t e r -  
conver s ion  was shown a lso  by Ishida and Brown. ~9 
Di rec t  observat ion  of ledges in the f ield ion m i c r o -  
scope was repor ted  by Ryan and Suiter .  84''s Some 
cons ide ra t ions  of the in te rac t ion  of d i s loca t ions  with 
high angle boundar i e s  a re  given recent ly  by Brandon.  ~ 
Hook and Hirth 87 ca l led  a t tent ion to the effect of both 
e las t i c  and plast ic  compat ib i l i ty  s t r e s s e s  at the gra in  
boundar i e s .  While undoubtedly these s t r e s s e s  could 
cont r ibute  to the opera t ion  of g ra in  boundary  sou rce s ,  
the plas t ic  par t  which depends on gra in  size is  a r e -  
sul t  of plas t ic  s t r a in  and hence depends on the ava i l -  
abi l i ty  of grain  boundary  sources .  In other words ,  
g ra in  boundary  sou rces  s t i l l  may be the con t ro l l ing  
factor .  

2.2.3) Ef f ec t s  o f  Quenching and Annealing.  The fo re -  
going observa t ions  indicate  that the abi l i ty  of a g ra in  
boundary  to emi t  d i s loca t ions  could be r e l a t ed  to the 
dens i ty  of ledges in the g ra in  boundary.  The next  
ques t ion  is  what fac tors  may affect the ledge densi ty .  
An e a r l i e r  thought 68 was that both the annea l ing  t e m -  
pe ra tu r e  and the solute concen t ra t ion  could affect the 
densi ty  of ledges in the g ra in  boundary .  It was based  
on the hypothesis  that ~egregat ion of solute a toms  onto 
the gra in  boundary  may help to s tabi l ize  the ledge 
s t r uc tu r e  and thereby i n c r e a s e  the ledge dens i ty  in 

Fig. 9--Positive and negative ledges in a grain boundary. 
(Aluminum-killed steel, annealed and temper rolled, courtesy 
of Robert S. Goodrich, Materials Science Division, Vander- 
bilt University.) 

the boundary .  Several  expe r imen t s  have shed light 
on this ques t ion:  Cot t re l l  and F i s h e r  88 found that 
quenched i ron  (10 ppm C and N) had a sma l l e r  Hall-  
Petch slope than furnace cooled. Aging at 140~ after 
quenching i n c r e a s e d  the Ha l l -Pe tch  slope.  Dingley 
and McLean 64 examined  the H a l l - P e t c h  slope of i ron 
(70 ppm C and N) as a function of tes t  t empera tu re  
and found a max imum around 450~ Wilson 81 studied 
the effect of aging at 90~ af ter  quenching on the Hall-  
Petch slope and concluded f rom the t ime  r equ i r ed  to 
reach the slowly cooled value that the effect was caused 
by the diffusion of carbon onto the g ra in  boundar ies .  
If Wi l son ' s  in t e rp re ta t ion  was c o r r e c t ,  aging would r e -  
duce the ca rbon  concent ra t ion  in the lat t ice.  Based on 
the work harden ing  theory of y ie ld ing ,  aging should 
i n c r e a s e  /3 in Eq. [74] and thereby dec rease  k in Eq. 
[78] con t r a ry  to Wi lson ' s  finding. However ,  the effect 
of aging could be understood if diffusion of ca rbon  onto 
the gra in  boundary  i nc r e a se d  the ledge densi ty  in the 
boundary.  

Evidences  for the segregat ion  of solute a toms onto 
g ra in  bounda r i e s  have been reviewed by Westbrook.  89 
Many s tudies  showed that solute a toms  can diffuse onto 
g ra in  boundar i e s  during aging. F l o r e e n  and Westbrook 9~ 
repor ted  that m i c r o h a r d n e s s  of g ra in  boundar ies  in-  
c r e a s e s  with the t ime of aging at 200~ in a quenched 
Ni-6  ppm S alloy until  a sa tu ra t ion  value is reached.  
S imi lar  behav ior  is observed by Seybolt and West-  
brook 91 in Ni -Ga  containing oxygen, and by Braunovic  
et al. 9~ in an Fe-0 .002 at.  pct W al loy.  

Recent  r e s u l t s  of Ohba, 63 on the effects  of quenching 
on the Ha l l -Pe rch  slope for i ron ,  seem to differ f rom 
those of Cot t re l l  and F i s h e r ,  88 of Dingley and McLean,  64 
and of Wilson.  81 The t rouble  may be t r aced  to the fact 
that Ohba p repa red  spec imens  of d i f ferent  gra in  s izes  
by r e c r y s t a l l i z i n g  at and quenching f rom different  
t e m p e r a t u r e s .  Hook 82 c o r r e c t e d  Ohba ' s  data by using 
the known effects  of quenching and showed that the 
c o r r e c t e d  r e s u l t s  agree with those of previous  workers .  

In h is  s tudies  of quenching and aging on the lower 
y ie ld  and Lfiders s t r a in  in s t ee l s ,  Hook 82 found that 
quenched samples  contain many  d is loca t ions  (108 per  
sq cm) but  fu rnace -coo led  ones contain none. While 
undoubtedly these d is locat ions  may affect the inhomo- 
geneity of y ie ld ing and Lfiders s t r a i n ,  the avai lable  
amount  of in format ion  s e e m s  insuff ic ient  to fo rmula te  
a theory  for the g ra in  size effect based  on the number  
and a r r a n g e m e n t  of these d i s loca t ions .  Hook 82 repor ted  
fur ther  that  the ledge densi ty  in the gra in  boundary  
seemed  to dec rease  upon annea l ing .  It is  to be noted 
that when the ledge densi ty  is too high, the individual  
con t ras t  of ledges is s m e a r e d ,  as  shown by Ishida 
et al. 8~ 

2.2.4) E f f e c t s  o f  Neutron Irradiat ion .  Another factor 
which may affect the ledge dens i ty  is  neu t ron  i r r a d i a -  
t ion.  Chow and McRickard  93 found in Fe -C  a l loys  that 
i r r ad i a t i on  reduced the Ha l l -Pe t ch  slope and i n c r e a s e d  
a*. The l a t t e r  effect was expected because  i r r ad i a t i on  
in t roduced vacanc ies  and i n t e r s t i t i a l s  into the la t t ice .  
In te rac t ion  between carbon and vacanc i e s  94 could r e -  
duce the ac t iv i ty  of carbon and thereby cause desorp-  
t ion of ca rbon  from the g ra in  boundary .  Such desorp-  
t ion then could reduce the ledge dens i ty  and hence the 
Ha l l -Pe t ch  slope. For  higher  ca rbon  concen t ra t ion ,  
the change of Ha l l -Pe tch  slope was s m a l l e r  for the 
same neu t ron  dose,  or  l a r g e r  neu t ron  doses were 
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needed to produce the same  change in the Ha l l -Pe rch  
slope as found by Chow and McRickard,  ~z a l l  to be ex-  
pected from the foregoing cons idera t ions .  The r e su l t s  
of Hull and Mogford 9s on high carbon a l loys  a lso  can 
be explained on this bas i s .  

2.2.5) E f f e c t s  o f  P r e s s u r i z a t i o n .  P r e s s u r i z a t i o n  
may be yet another factor  which affects ledge dens i ty  
in the grain  boundary.  Yaj ima and Ishii  9s found that 
the Hal l -Pe tch  slope d e c r e a s e s  af ter  p r e s s u r i z a t i o n .  
They found a lso  that p r e s s u r i z a t i o n  c r ea t e s  new d i s -  
locat ions around oxide par t i c les .  These new d is loca-  
t ions  could in te rac t  with carbon in the la t t ice ,  reduce 
the carbon act iv i ty ,  cause  carbon desorpt ion f rom the 
g ra in  boundary,  reduce the ledge densi ty  the re ,  and 
thereby reduce the Ha l l -Pe t ch  slope. These cons i de r -  
a t ions  are supported by the fact that the effect of 
p r e s s u r i z a t i o n  is  p rominen t  only if enough oxides (600 
ppm O) a re  there  to c rea te  sufficient d is loca t ions .  A 
s m a l l e r  amount (200 ppm O) of oxides produces  a 
sma l l  effect and a s t i l l  s m a l l e r  amount  (68 ppm O) 
produces  no effect. On the other hand, Yaj ima and 
Ishi i  9e suggested that the new dis locat ions  a re  the ma in  
r e a s o n  for the reduced  Ha l l -Pe tch  slope. By a s s u m i n g  
that the densi ty of mobi le  d is locat ions  is a cons tant  
f rac t ion  of the total  d is loca t ion  densi ty ,  they obtained 
a re la t ion  between the Ha l l -Pe t ch  slope,  the L/iders  
s t r a i n ,  and the in i t ia l  d is locat ion  densi ty.  The k d  -~/2 
t e r m  is  a t t r ibuted  to the effective s t r e s s  which de t e r -  
m ines  the average veloci ty  of d is locat ions  based  on a 
r e l a t ion  suggested by Gi lman.  97 While the new d i s lo -  
ca t ions  introduced by p r e s s u r i z a t i o n  may affect y ie ld-  
ing in many ways, it i s  difficult  to bel ieve  that  they 
play a di rect  role in the lower yield s t r e s s - g r a i n  size 
re la t ionsh ip .  

2.2.6) E f f e c t s  o f  T e m p e r a t u r e  and  S t r a i n  R a t e .  Ac- 
cording  to Eq. [81], the Ha l l -Pe tch  slope should not 
change with tes t  t e m p e r a t u r e  un less  the t e m p e r a t u r e  
is  such that it changes the ledge densi ty  in the gra in  
boundary  or it a l t e r s  a by changing the d i s loca t ion  a r -  
r angement .  For  i ron ,  Perch 98 found that k is  v i r tua l ly  
independent  of t e m p e r a t u r e  between 18 ~ and -79~ 
Conrad  and Schoeck 99 r epor t ed  a s i m i l a r  f inding be -  
tween 110 ~ and 300~ However ,  at 77~ Hull  and 
Mogford 9s found a higher  k, probably because  of a 
l a rge r  c~ due to a d i f fe rent  dis locat ion a r r a n g e m e n t ,  
as  shown by Keh. 5~ At higher  t e m p e r a t u r e s ,  Dingley 
and McLean 64 found that k dec r ea se s  in the t e m p e r a -  
ture  range 300 ~ to 600~ except for a hump between 
400 ~ and 500~ Br ind ley  and Barnby 1~176 found a s i m i l a r  
behavior .  For  n iobium,  the value of k is  sma l l  at a l l  
t e m p e r a t u r e s  and within exper imen ta l  e r r o r ,  it i s  in -  
sens i t ive  to t empera tu re  between 76 ~ and 293~ as  
found by Johnson, T M  and Churchman,  '~ and Adams 
et  a l .  ~~ In ch romium,  Marcinkowski  and Lips i t t  T M  

found that k is independent  of t empera tu re  between 
-150  ~ and 97~ In m a g n e s i u m ,  Hanser  et  a l .  x~ found 
that k dec reases  f rom 78 ~ to 473~ and Wilson and 
Chapman 52 found that it d e c r e a s e s  from 78 ~ to 290~ 
Simi la r  r e su l t s  a re  found by Hauser  et  a l .  ~~ in Mg- 
2 pct A1 al loys.  In al l  cases  or* dec rease s  with in-  
c r ea s ing  t empera tu re  except  when s t r a i n  aging occurs .  

Also according to Eq. [81], the Hal l -Perch  slope 
should not change with s t r a i n  ra te  un less  it a l t e r s  a 
by changing the dis locat ion a r r angemen t .  Heslop and  
Petch  ~~ found that k in i ron  at -79~ is  independent  
of s t r a i n  rate  between 2 • 10 -3 and 10 -8 per  sec.  

Campbel l  and Harding 1~ found in both i ron  and s tee l ,  
that k is  independent  of the mean  s t r a i n  ra te  at 10 -3, 
960, and 2600 per sec by impact  tes t ing  at room tem-  
pe ra tu re .  In al l  cases  or* i n c r e a s e s  with s t r a in  ra te  
as  expected. 

2.2.7) O t h e r  C o n s i d e r a t i o n s .  Some r e su l t s  on F e - T i  
a l loys by Castagna et  a l .  ~~ indicate  that the Ha l l -Pe tch  
slope is  g rea t ly  reduced (~20 pct of the usual value) by 
as l i t t le as  0.04 pct Ti addit ion.  This  is cons is ten t  
with the g ra in  boundary source  model  by cons ider ing  
that the addi t ion of t i tanium r e duc e s  in t e r s t i t i a l  seg-  
regat ion  onto the gra in  boundar i e s .  

Gouzou ~ proposed a theory of yielding also based  
on gra in  boundary  sources .  Unfortunately  his theory 
involved an assumpt ion  that the yie ld  s t r e s s  r equ i r ed  
to emit  d is loca t ions  from the g ra in  boundary  was to 
supply the in te rac t ion  energy between solute a toms 
and gra in  boundary d is loca t ions  by moving the d i s loca-  
t ion a d is tance  which is  propor t ional  to the gra in  size.  
The val id i ty  of this assumpt ion  is not obvious. As 
ment ioned e a r l i e r ,  Worthington and Smith s~ observed  
d is locat ion  emi s s ion  from g ra in  boundar i e s  at s t r e s s e s  
much below the lower yie ld  s t r e s s  independent  of 
g ra in  s ize .  Obviously the s t r e s s  n e c e s s a r y  for emi t -  
ting d i s loca t ions  from gra in  bounda r i e s  is  not the 
s t r e s s  r equ i r ed  for yielding.  

Cot t re l l  and F i she r  88 also used the concept of grain  
boundary  sources  but r equ i red  s t r e s s  concent ra t ion  
at the end of a pileup as did Dingley and McLean.  84 
These  should be c lass i f ied  as  pi leup theor ies  of y ie ld-  
ing. 

2.3) Dis locat ion Dynamics  T h e o r i e s .  Both the work 
hardening  theory and the gra in  boundary  source theory 
suggest  that  at low t e m p e r a t u r e s  kd-~/2 is the a t h e r m a l  
par t  of the flow s t r e s s  due to d i s loca t ions .  The other 
par t  o* cons i s t s  of the t he rma l  par t  or** and the 
a the rma l  pa r t  a s of other or ig in  such as  prec ip i ta tes .  
Let ~ be the average  veloci ty of a l l  the mobile d i s lo-  
ca t ions  and let  the s t r e s s  dependence of ~ be given by 69 

= B (a**) '~* [82] 

where B and rn* may depend on t empe ra tu r e .  Then 

cr = a s + k d  -1/2 + ( v / B )  l /m* [83] 

The quanti ty a** is  also known as  the effective s t r e s s  
which is  approximate ly  equal to the difference be -  
tween the appl ied s t r e s s  and the i n t e r n a l  s t r e s s .  ~~ 
The a t h e r m a l  par t  a s + kd -1/a should depend on t em-  
pe ra tu re  only as  the shear  modulus ,  provided that the 
s t r uc t u r e  is  independent of t e m p e r a t u r e .  

2.3.1) The  P r o b l e m  o f  S t r a i n  R a t e  in  I n h o m o g e n e o u s  
D e f o r m a t i o n .  A quest ion often being asked is "what  
is  the s t r a i n  rate  in inhomogeneous d e f o r m a t i o n ? "  
The answer  is  r ea l ly  very  s imple :  it  depends on the 
defini t ion of the densi ty  of mobi le  dis locat ion.  The 
es sence  of dis locat ion theory is  that no deformat ion  is  
homogeneous on the m i c r o s c a l e .  Whether al l  the mo-  
bi le  d i s loca t ions  a re  un i formly  d i s t r ibu ted  on a m a c r o -  
scopic sca le ,  or  concent ra ted  at the Lfiders f ront  will 
not affect the elongation ra te  of the spec imen provided 
that they have the same average  veloci ty .  Hence,  if 
the s t r a i n  ra te  is  the elongat ion ra te  divided by the 
gage length,  the dis locat ion densi ty  is  the total  length 
of d i s loca t ions  divided by the volume of the spec imen  
independent  of the d is t r ibut ion  of these d is loca t ions .  
On the other hand, if one i n s i s t s  that the densi ty  of mo-  
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bile dislocations should be defined as the local one at 
the Lfiders front, the strain rate is then defined like- 
wise. However, one then has to know the strain profile 
at the Lfiders front. 

Thus, the strain rate amplification suggested by 
Gokyu and Kihara '~ is not really needed. However, if 
the number of mobile dislocations associated with each 
Lfiders front is independent of the number of L~ders 
fronts, the average velocity ~ of these dislocations is 
inversely proportional to the number of Lfiders fronts 
for the same elongation rate of the specimen as sug- 
gested correctly by Gokyu and Kihara and earlier by 
Butler."z Gokyu and Kihara suggested further that the 
strain rate amplification is inversely proportional to 
the grain size. What they really suggested was that 
is inversely proportional to the grain size, or that 
or** decreases with increasing grain size. Qualita- 

l l0  tively it follows that the activation area, 
kT(a In ~/0a**), increases, or the strain rate sensi- 
tivity decreases with increasing grain size, as indeed 
observed by Gokyu and Kihara. TM 

2.3.2) The Prob lem o f  S t r e s s  in Inhomogeneous  De-  
f o rma t ion .  Another p rob lem in inhomogeneous defor-  
mat ion  is  that a spec imen  has at leas t  two c r o s s  s ec -  
t ional  a reas .  Which a r e a  should be used in ca lcula t ing  
the lower yield s t r e s s  ? Based  on the pi leup theory  
or the gra in  boundary  source  theory,  the s t r e s s  should 
be that immedia te ly  behind the L~iders front.  The 
a r e a  to use is  then the a r e a  of the undeformed region.  
On the other hand, based  on the work harden ing  the-  
o ry ,  the s t r e s s  is that of the s t r a ined  region;  the 
same  s t r a in  should be used for a l l  grain  s izes .  

To apply dis locat ion dynamics ,  the applied s t r e s s  
va r i e s  f rom the s t r a ined  region  to the u n s t r a i n e d  r e -  
gion according to the s t r a i n  profi le :  

(~ = t~o exp �9 [84] 

where ao is the s t r e s s  at  ze ro  s t r a in .  Let the ve loc-  
ity of a L~iders front be VL, the local  s t r a i n  ra te  at 
any  point is  

d�9 
= VL~- ~ = pmbB(a  - (~i) m* [85] 

where x i s  in the d i rec t ion  of propagat ion,  Pm i s  the 
local  densi ty of mobile  d i s loca t ions ,  and ~i is  i n t e rna l  
s t r e s s e s  of all  o r ig ins .  The e las t ic  s t r a i n  ra te  is  
neglected.  Hahn ~3 s e e m s  to be the f i r s t  to apply d i s -  
locat ion dynamics  to inhomogeneous deformat ion .  He 
in tegra ted  Eq. [85] to obtain a s t r a in  profi le  by making 
the following a s sumpt ions :  1) Pm is a cons tant  f r a c -  
t ion of the total  d is loca t ion  densi ty p which is  l i nea r  
with a s ingle power of s t r a i n .  2) The i n t e r n a l  s t r e s s  
i s  propor t ional  to s t r a i n .  With proper  choice of p a r a m -  
e t e r s ,  the ca lcula ted  prof i les  indeed r e s e m b l e  the ex- 
p e r i m e n t a l  ones.  

The average d is locat ion  veloci ty in Eq. [83] can be 
obtained f rom Eq. [85]: 

f ( ~ / p m b ) p m A d x  _ A~ (1 - e-eL) -~ do~  [86] 

= f p m A d x  bL b L  

where A is local  c r o s s  sec t ional  a r ea ,  Ao is A at 
�9 = 0, �9 is Lfiders s t r a i n ,  L is  the total  length of 
mobile  d is loca t ions ,  and ~ is  the c ros s  head speed, 
which is  equal  to VLE L .  Eq. [86] suggests  that the 
veloci ty  of LiJders front or the c r o s s  head speed can 

be used to approximate the average velocity of mo- 
bile dislocations if L can be assumed to be nearly 
constant. It suggests also that if one knows ~ by other 
means, L can be calculated. 

Eq. [86] sugges ts  that the s t r e s s  ~ at which ~ = 0 
is given by 

f ( a  m* - ai) pmAdx = 0 [87] 

where the sign of ( a - a i )  m* i s  that of a - a i ,  n o m a t -  
ter  what m* is .  This  s t r e s s  is  an average  in te rna l  
s t r e s s ,  as  can be seen for m* = 1: 

f a i P m A d x  

f p m A d x  

and can be determined experimentally such as in a 
stress relaxation test. On the other hand, Eq. [83] 
shows that the internal stress is equal to a s + led - I~  

These problems are being studied by Prewo. I'4 
2.3.3) The S t r e s s  Dependence o f  L~ders  Band 

Veloci ty .  Prewo 1~4 found that the average  in te rna l  
s t r e s s  dur ing  the propagation of a L(iders band in 
po lycrys ta l l ine  i ron obtained by a s t r e s s  re laxat ion  
technique' iS is independent  of the veloci ty  of the 
L~iders band, the L~Jders strain, or the applied stress 
but depends on material variables such as grain size 
and carbon content. However, the Lfiders band veloc- 
ity is a simple power function of effective stress 
with an exponent of 3.5 at 300~ 5.5 at 243~ 7.5 at 
213~ and i0 at 183~ independent of carbon con- 
tent or heat treatment. During stress relaxation, the 
L~iders band is found to propagate further at a rate 
and to the extent predictable from dislocation dy- 
namics. 

3) SUMMARY AND CONCLUSIONS 

It is seen from this review that calculations on pile- 
ups of dislocations are quite extensive. However, the 
following are still lacking: 1) analytical solutions for 
discrete dislocations in double-ended, circular, ellip- 
tical, or multilayer pileups, 2)analytical solutions for 
continuous distribution of dislocations of infinitesimal 
Burgers vectors in double-layer and triple-layer pile- 
ups, and in infinite-layer pileups of circular or edge 
dislocations, and 3) numerical results for discrete 
dislocations in double layer or triple-layer pileups. 
The significance of these calculations has diminished 
considerably because of the lack of direct observation 
of these pileups in many systems. Even for alloys in 
which dislocations do tend to stay on their slip planes, 
grain boundaries seem to act as dislocation sources 
without the help of pileups. These and other observa- 
tions give rise to serious doubt of the validity of the 
pileup model of yielding as a fundamental mechanism. 

It is indeed disappointing that simple arrangements 
of dislocation pileups are not sufficient to understand 
yielding. Nonpileup models are still vague in their 
details. Among them the work hardening model de- 
mands a dislocation density-strain relationship which 
is valid only for certain systems. It has no provision 
for the understanding of Lfiders strain nor the effect 
of grain boundary structure. The grain boundary source 
model avoids these difficulties by introducing the con- 
cept of source density in the grain boundary. Al- 
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though there are numerous observations of grain 
boundary ledges, dislocation emission from these 
ledges, and indirect evidence of how the ledge density 
can be changed by heat treatment, pressurization, and 
neutron irradiation, direct quantitative determination 
of source density in the grain boundary is still lack- 
ing. After dislocations are emitted from grain bound- 
aries, they immediately interact with each other 
and move according to the stress dependence of dis- 
location velocity. It seems unavoidable that the Lfiders 
front velocity and the strain profile must be under- 
stood from the dynamics of dislocations. Experiments 
along these lines are needed to shed light on the mech- 
anistic details of yielding. 
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