The Role of Dislocations in the Flow Stress

Grain Size Relationships

J.C.M. LI AND Y. T. CHOU

Calculations involving pileups of dislocations, both analytical and numerical, using either dis-
crete dislocations or continuous distribution of dislocations of infinitesimal Burgers vectors,

are reviewed in the light of their effects on the relation between yield or flow stress and grain
size. The limitations of the pileup models are discussed and some nonpileup theories of yield-
ing are critically reviewed also. More critical experiments are still needed to reveal the fun-

damental mechanicm of yielding.

FoLLOWING the work of Hall' and Petch,? many ex-
perimental and theoretical studies have been conducted
to understand the linear relationship between the flow
stress and the reciprocal square root of grain size, see
Fig. 1. The original mechanism proposed by Hall' in-
volves a pileup of dislocations against the grain bound-
ary as shown in Fig. 2. The flow stress is the external
stress which, with the help of the pileup, creates a
critical stress concentration at a certain distance
ahead of the pileup. His model was modified later by
Cottrell® who suggested that the critical stress con-
centration is that which can unpin a dislocation source
near the grain boundary. A similar mechanism was
proposed by Petch® except that the stress concentra-
tion is af the grain boundary. Yielding is to take place
when such stress concentration reaches the strength
of the grain boundary.

Since all these early mechanisms involve pileups of
dislocations, many theoretical studies have been con-
ducted to examine the properties of various kinds of
pileups. These include single-layer single-ended pile-
ups in homogeneous, heterogeneous, and anisotropic
media, single-layer double-ended pileups, circular
pileups, and multiple-layer pileups. No attempt will be
made to review all these studies. Some relevant ones
will be selected and their effects on the Hall-Petch
relation examined.

More recently observations have been reported
which indicate the need to search for mechanisms which
do not involve pileups. These observations include the
lack of direct evidence of pileups in pure metals, dis-
location generation in the preyield microstrain region,
an increase of Hall-Petch slope in alloys where pile-
ups are observed, and the effect or segregation of im-
purities to grain boundaries. Some of these nonpileup
mechanisms will be reviewed and critically assessed.

1) THEORY OF DISLOCATION PILEUPS

There are two approaches to the studies of disloca-
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tion pileups, the discrete approach and the continuum
approach. In the first approach, discrete dislocations
of normal Burgers vectors are arranged to assume
equilibrium positions. It is a problem of solving simul-
taneous nonlinear algebraic equations. In the second
approach, a continuous distribution of dislocations of
infinitesimal Burgers vectors is used to replace the
discrete dislocations. It is a problem of solving an
integral equation involving such a distribution function.
Analytical as well as numerical methods are available
for both approaches.

1.1) Single-Layer Pileups. This is the case in which
all dislocations are in the same slip plane.

1.1.1) Single-Ended Pileups. a) The oviginal Eshelby-
Frank -Nabarvo problem. Eshelby, Frank, and Nabarro®
gave exact solutions to a single-layer single-ended
pileup of discrete edge, screw, or mixed dislocations
in isotropic or anisotropic media. Their solution is
briefly described below. Consider a pileup of disloca-
tions, all of the same Burgers vector, as shown in Fig.
2. The slip plane is the xz plane and all dislocations
are parallel to the z axis. At equilibrium, the force
exerted on each free dislocation is zero.
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Fig. 1—The Hall-Petch relation.
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where A =ub/2r and 0 =0,, for screw dislocations,
and A =pb/27(1 - v) and ¢ =0y, for edge dislocations
in an isotropic medium of shear modulus g and
Poisson’s ratio v. For mixed dislocations in an iso-
tropic medium,

A =pb[sin® ¢ + (1 — v)cos® ¢]/2r(1 —v) (2]
and
0 =0yy Sin ¢ + 0y, cOS ¢ {3]

where ¢ is the angle between the dislocation line and
the Burgers vector. For an anisotropic medium,

A = (b/21)(K, sin® ¢ + K cos® ¢) [4]

where K, and K are for pure edge and pure screw
pileups, respectively. These can be expressed ex-
plicitly in terms of elastic constants if the mixed dis-
location has simple orientations, see for example,
Chou and Mitchell.®

For simplicity, let the unit of distance be A/20 so
that Eq. [1) becomes

15 1 _1o0 =12 ..,0-1 [5]
xi st xi—xj 2 ’ y Sy vy
j#i

Now consider the following polynomial whose zeros
are the solutions of Eq. [5]:

f(x) = (x—xl)(x"xZ) see (x_xn—l) [6]
Then

fx) 1 =

m-x—xi—gx—xj [7]

Lid
When x — x;, the left side of Eq. [7] approaches
f'e;)/2f (x;) and the right hand side approaches
3 — (1/x;) according to Eq. [5]. Hence the problem
can be solved if ¢g(n, x) in the following second order
differential equation

76 +(2 - 1)7) + alo, 2)5) = 0 (8]

can be so chosen that the differential equation has a
polynomial solution of the (n — 1) degree with all real
and distinct roots, and that g, x) has no pole at any
of the roots. It turns out that the following equation

xf'x) + 2-x)f'(x) + m—-1)flx) =0 (9]

is satisfied by the first derivative of the nth Laguerre
polynomial Lj(x):

' . .
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Fig. 2—A pileup of dislocations against a grain boundary.
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the roots of which are then solutions for Eq. [5].
With the substitution of v(x) = xf(x) exp(~x/2), Eq.
{9] is transformed into

Lyl) = [10]

v"(x) +<§ —-;)v(x):o [11]
which, for x <« 4n, has the solution:
v(x) = Vx - 41(2Vnx) [12]

and hence near the tip of the pileup the position of the
ith dislocation is given by

X ﬁjz-/‘l" [13]

in units of A /20 with j; being the ith zero of the
Bessel function J,. In particular, x, = 1.84A /no.
Furthermore, since v” and v must differ in sign, an
upper limit for x is 4n. Hence for large =, the length
of the pileup approaches:

1 =4n(A/20) = 2nA/0 {14]

Although the lower limit of ! is given by Eshelby
et al.,* this result is the simplest and is pertinent to
the subject of this review.

The stress concentration oy, exerted on the pinned
dislocation can be obtained from the external forces
exerted on all the free dislocations which sum up to

(n ~ 1)ob. Since the system is at equilibrium, (o4, —o)b
= (n — 1)ob, and hence,

Gtip =no [15]

Following Petch,” these results can be used to de-
rive the flow-stress grain size relationship by assum-
ing a yield condition of o6tjp = 0., a critical stress re-
quired at the grain boundary in order to propagate the
plastic deformation, and by assuming that the length
of the pileup, {, is the same as the grain size. By sub~
stituting n = 0,/0 into Eq. [14] and solving for o and
by including a possible frictional stress, o*, inside
the grain, the Hall-Petch relation is obtained:

o =0* + Y240, I”? [16]

The Hall-Petch slope, k, is then identified as V240, .
For o, = /30 and A =pub(2 — v)/4n(1 — v) for mixed
dislocations, this slope is 0.115uVb for v = +. Direct
numerical determination by Li and Liu® using only a
few mixed dislocations gives a slope of 0.1w/b— indi-
cating the extent of applicability for small n. Experi-
mentally, using Hall’s data' for mild steel, & = 1
kg/mms/é(the shear stress is taken as one half of ten-
sile stress), and taking p = 7.9 X 10° kg/mm® and

b = 2.48A, o, is found to be 1/6.3, a reasonable value.

Numerical computations of the equilibrium positions
or the roots of the Laguerre polynomials are given by
Head,” by Chou et al.,” and by Mitchell ef al.° Stress
contours are plotted by Mitchell,'® and by Basinski and
Mitchell."

b) The effect of the pinned dislocation having a dif-
ferent Burgers vector. Chou'” modified the foregoing
problem by considering the case in which the pinned
dislocation is of a different Burgers vector. This is
motivated by the fact that the pinned dislocation is at
the grain boundary and therefore could have a Burgers
vector, mb, different from the lattice dislocations
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forming the pileup. The problem can be solved by fol-
lowing the procedure given by Eshelby et al.,* by
starting with an extra factor m (a positive real num-
ber) at the first term of Eq. [1], and similarly of Eq.
[5]. The factor (2/x) — 1 in Eq. [8] becomes (2m/x) — 1
and the factor (2 — x) in Eq. [9] becomes 2m — x. Then
instead of Eq.[10] the solution is the generalized
Laguerre polynomial:
em~1) _ =l n+2m — 2 (_x)k

Ly -kZ“(,)( n—k—l) 3

A substitution of v(x) = x™f(x) exp(~x/2) gives the
following differential equation instead of Eq. [11]:

v”(x)+['l +m-1 mm-1) __‘,] v(x) = 0

[17]

x x2 [18]

which, for small x (so that 4 can be neglected in the
bracketed quantity) has the solution (Jahnke and Emde,"
p. 146):

v(x):‘/;'t]zm_l(z'(n +m - l)x) [19]

and, hence, near the tip of the pileup the pbsition of
the ith dislocation is given by

%5 = (Jam=1,1)"/400 +m — 1) {20]
in units of A/20 With jyp,-, ; being the ith zero of
the Bessel function J,y,-,. In particular, for

m =73, x1=0.723A/(n — %)o

m =1, x; = 1.84A/nc

m =2, %, =5.1A/(n + 1)o
and for

m =3, x1=9.64/(n +2)0 [21]

Here again, since v”(x) and v(x) must differ in sign,
the bracketed quantity in Eq. [18] must be positive and
hence for large n, the length of the pileup approaches

l=2m+m-1A/0 [22]

The stress concentration 0y, exerted on the pinned
dislocation can be obtained as before, namely,
(0tip — 0)mb = (n — 1)ob, and hence

Otip= +m — 1)o/m (23]

By using a yield condition of otjp =0 at the grain
boundary, Eq. [23] can be combined with Eq. [22] and,
after introducing the lattice friction stress o*, the
Hall-Petch relation becomes

0 =0* + (2Amo, )7 V? [24]

from which the Hall-Petch slope, %, is identified as
V2Amo,. A comparison with Eq. [16] shows that the
slope is modified by a factor of Vm. By using Hall’s
data' again for mild steel, mo, is found to be /6.
This gives m =5 if o, is p/30. Based on the ledge
structure of grain boundaries to be discussed later,
it is conceivable that grain boundary ledges can have
large Burgers vectors.

¢) Continuous distribution of dislocations. Instead
of discrete dislocations each having the same Burgers
vector b, the pileup problem can be viewed as a con-
tinuous distribution of dislocations of infinitesimal
Burgers vectors, A distribution function f(x) is sought
such that bf(x)dx is the total Burgers vector of dis-
locations between x and x + dx and hence it produces
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a stress field Af(x)dx/(t — x) at a distance . Such dis-
tribution function has to satisfy the following integral
equation:
I
Afﬂxf%‘;x=o for any 0 < < [25]
0
The number of dislocations in the pileup is then given
by:
I
J flo)dx =n [26]
o]
The solution is given by Leibfried™ and by Head and
Louat:*

o l—x
fle) = — P
from which the total number of dislocations is given
by n =0l/2A in agreement with Eq. [14]. The stress
concentration can be calculated from the total applied
force on the system by assuming that this force is ex-
erted on the pinned dislocation of Burgers vector b:

(27]

! 2
otip = J flx)odx = % =no [28]
0
in agreement with Eq. [15]. By using the same yield
criterion, namely a critical stress concentration o,
at the grain boundary, the same Hall-Petch relation,
Eq. [16], is obtained.
The strain energy of the pileup can be obtained by
making a cut in the slip plane from x =0 to x =R
(R is the size of specimen), replacing the external
stress with equal and opposite forces on the two cut
surfaces to maintain the elastic state of the system,
and reversibly reducing these forces to zero so as to
remove the pileup. Per unit area of the slip plane,
these forces are ¢ within the pileup, and are op ata
distance & outside the pileup:

0y =A ! gf(_x)x dx = 0<1 - 5—2—1) [29]
The displacement # inside the pileup is

u=h Ofx flx)dx [30]
and outside the pileup at £ =] is

ug =b Oflf(X)dx =nb =bal/2A [31]

The energy is then (per unit length in the z direction):
o 1 au o R du
E = 0(—) dxdo + o (——ﬁ) dxdo
J of 00/ oj lf t\30 /

272
= bTUAL(ln‘l—f- +§) =n2A—2b(ln4lR; +%)

which is given also by Stroh.'®

This result can be used to derive Eq. [28] as fol-
lows: The change of energy for constant ¢ from a
pileup of length [ to that of length ! + Al can be ob-~
tained from Eq. [32]. This change can be obtained also
by direct reversible extension of the pileup. This
would involve the work of o and o, upon a change of
displacement in # and #; caused by the extension of
[, as well as the work of oy, (negative) which amounts
to boyi, Al. The procedure is an application of Moutier’s
theorem'” and will be used later in the case of double

[32]
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ended pileups for which the stress concentration can-
not be obtained from the total force exerted on the
system.

Another continuum approach is advanced by Web-
ster and Johnson'® for screw pileups. Since the field
of a screw dislocation is mathematically equivalent to
the velocity field of a vortex in fluid flow, it is possible
to apply the complex potential method used in hydro-
dynamics to screw pileups. The results are of course
the same, but one important advantage is that, for
certain boundary conditions, the conformal mapping
technique can be exercised.

d) The effect of nonuniform stress field. So far the
stress field other than that produced by the dislocations
themselves is uniform along the slip plane. The effect
of a nonuniform stress field on the continuous distribu-
tion of dislocations has been examined by Chou and
Louat.'® The problem is the same as the previous one
except that Eq. [25] is now

A f f(x dx - ) [33]
where o(t) is a given function and Eq. [33] has to be
satisfied for any ¢ between 0 and /. For this case in
which f(x) is unbounded at x = 0 and bounded at x =1,
the solution is, accordmg to Mushelishvili®®

l—x

[34]

169 = 2
A simple example is o) =
is a constant. Then for A > —

5
o+ 2 ST 3)

TA
ool 3X
f s = g3 (1 + )
The stress concentration is again obtained from the
total external forces exerted on the system:

1 2 2
= Jf(x)o(x)dx = ____ool()S\A+ 2)

By using the yield criterion mentioned earlier and by
taking o, as the applied stress and oo,Ax/! as the in-
ternal stress, the Hall-Petch relation becomes:

'SAOC l_l/z
T+ 2

which reduces to Eq. [16] for A = 0. The Hall-Petch
slope, k, is now v8Ao./(x + 2) and is seen to be af-
fected by the internal stress through the magnitude
and sign of A. However, Eq. [38] shows that the Hall-
Petch relation is exact only if A is independent of I.
If instead of A, oA is independent of I, the Hall-Petch
relation becomes inexact. This signals caution in ap-
plying the Hall-Petch relation to work hardened states
in which cells or subgrains are formed so that non-
uniform internal stresses exist within a grain.
Although in the foregoing example the internal stress
is of one sign within the pileup region, it is to be re-
membered that a pileup of negative dislocations under
the influence of the same internal stress distribution
except for the sign should exist somewhere in another
grain in the same specimen. Thus, the average in-
ternal stress is zero as required by elastic equilibrium
without the external stress.

oo[1 + (At/1)] where A

[35]

[36]

Otip [37]

[38]

0o =0% +
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The effects of nonuniform stress distribution upon
the dislocation distribution and upon the stress concen—
tration are discussed also by Yokobor1 and Ich1kawa
by Chaudhari and Scattergood,?” and by Smith.?*>**

e) Pileups of extended dislocations. The effect of
stacking fault energy, or the extent each dislocation
dissociates into partial dislocations, on the properties
of pileups has been studied by Li.*® The equilibrium
positions of all the partial dislocations are determined
numerically. As expected, the equilibrium width of the
stacking fault varies along the length of the pileup—
being smaller near the tip than farther away from the
tip. However, the stress concentration at the tip and
the number of dislocations for a given pileup length
are both independent of the stacking fault energy.
Hence for a given critical stress concentration for
yielding, the Hall-Petch slope is also independent of
stacking fault energy. This result is somewhat ex-
pected in view of the fact that the results of discrete
dislocations and those of continuous distribution of
dislocations of infinitesimal Burgers vectors are the
same, indicating that any prescribed interaction be-
tween dislocations of infinitesimal Burgers vectors
is immaterial.

f) Dynamic effects involving dislocation pileups. In
view of the large effect of stress on the dislocation
mobility, Rosenfield and Hahn®® pointed out that the
time for the formation of a pileup depends greatly on
the parameter 8 = p(@ln v/30) where v is dislocation
velocity and p is the shear modulus. By assuming
that B is 1ndependent of stress, the time for the tip
stress to reach + of the equ1hbr1um value is com-
puted numerlcally and is given approximately by

t1/2/to = €xp(0.75 X 107%8) (39]

where {, is the time required for the case of 8 =0.
These dynamic effects undoubtedly contribute to the
yield stress at different strain rates and to the delay
time phenomena.

g) The effect of a second phase. Dislocation pileups
against a second phase were studied by Chou®” for a
single-layer, single-ended pileup of screw disloca-
tions. The second phase in front of the pileup is as-
sumed rigid. The results, based on a continuous dis-
tribution of dislocations, are

2 _
flx) = 112—3}’ cosh'll;l', K=1 [40]
and
al
where
= _ M2 — pi _ pib
K = _—_Mz e o [42]

and p,; and p. are the shear moduli of the first and
second phase, respectively. For a more general case,
Chou®” proposed a linear relation as implied by the
numerical results of Head:*®

l=%[2+(7r—2)1_{]n, 0=K=1 [43]

Eq. [43] was proved fairly accurate with a maximum
error of 1 pct by Smith® and by Barnett.’® Using Eq.
[40] Barnett was able to find the following general
solution
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- 1 . )
flx) 1rA SIn0a/2) smh()\ cosh ;),
_2 ., [1-K
A= — sin 5 [ 44]
_ ol A
T A" sin A7 [45]
and the stress component 0yz Dear the tip in the
second phase at y =0,
o cos
ol s — H)—Zcos— ll— > 1 [46)
¥z 2 )\ﬂ X

The validity of Eq. [43] was checked also by Barnett
and Tetelman®’ in the case where the second phase is
a circular inclusion. By using a critical force cri-
terion, the Hall-Petch relation can be derived as shown
by Chou.*

More recently, Kuang and Mura®® analyzed the case
of single-layer, single-ended pileups of edge disloca-
tions, using the Wiener-Hopf technique.’® The analysis
is rather complex but the results show that Eq. [43] is
also valid in the case of edge dislocations.

Numerical calculations for pileups in two-phase
media were performed by Head,28 Armstrong and
Head,*® and Chou,*®

1.1.2) Double-Ended Pileups. a) Continuous distvibu-
tion of dislocations. Instead of piling up against one
boundary, a more realistic situation is for a source
inside the grain to emit dislocations of both signs so
that they pile up at diametrically opposite grain bound-
aries as shown in Fig. 3. Analytical methods for cal-
culating the equilibrium positions of discrete disloca-
tions are not yet available. Leibfried" and Head and
Louat'® give solutions for the continuous distribution
of dislocations of infinitesimal Burgers vectors. The
distribution function is

X
R e 1

and the number of dislocations of either sign is

flx) =

a
n = [ flx)dx = oa/1A [48]
[¢]

The strain energy of the pileup can be obtained by
making a cut in the slip plane between the two ends of
the pileup, replacing the external stress by equal and
opposite forces (o per unit area) on the two cut sur-
faces, and reversibly reducing these forces to zero
so as to remove the pileup. The displacement at x is

w _0ob — 2
u —bxff(x)dx— 1V«
The energy is then (per unit length in the z direc-
tion):
a g 2 2
_ du _ba’e
E= ] J 80) dxdo = =47
which is given also by Hirth and Lothe.””
The stress concentration at the tip can be calculated
by application of Moutier’s theorem. The energy dif-
ference between pileups of length 2a and 2(a + Aaq) is
AE =bao®Aa/2A. This difference can be obtained also

[49]

[50]
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Fig. 3—Single-layer, double-ended pileups.

by direct reversible extension of the pileup. In this
reversible extension, both ¢ and o, contribute to the
work. The part with o is, from Eq. f49

2 a+iq a 2
G_b . CR] _ ‘/—_2 — 3 - bag Aa
nAl: J Y{a + aa)?— x? dx j a® —x? dx 1

-(a+oa) -a
The part with oy, is —2boy;, Aa. Hence
2
ola _n
otip = —4—A— = Z n [51]
This result is given also by Hirth and Lothe®” except

that their application of Moutier’s theorem is in-
complete.

Eq. [51] leads to the following Hall-Petch relation
based on the yield condition that o, reaches a criti-
cal value o, and taking ! = 2a:

g =o* +2V240, 17" [52]

A comparison of this result with Eq. [16] shows that
the Hall-Petch slope is exactly twice as much in the
case of the double-ended pileups as in the case of the
single-ended pileup. By using Hall’s data’again for
mild steel, £ = 1 kg/mm*?, ¢, is found to be p/25
based on the double-ended pileups of screw disloca-
tions.

The effect of a second phase on double-ended screw
pileups was recently studied by T. W. Chou'*® and by
Smith.'"" For a pileup between x =0 and x = against
a boundary at x =0,

_C 1 -1l
f(x) = %—14—, W [Slnh()\ cosh x)

- lz%xz cosh()\ cosh™ )l;)}
where A’ is given by Eq.[42] and A by Eq.[44]. It is
of interest to note that the result given by Eq. [53] is
a superposition of two separate distribution functions.
The first term is the distribution of a single-ended
pileup of positive screw dislocations under the applied
stress o, see Eq. [44]; whereas the second term
represents the distribution of a double-ended pileup of
negative screw dislocations under zero stress. Such
superposition is in fact generally applicable. The
stress distribution near the tip of the pileup was
found''® to be the same as in a single-ended pileup,
Eq. [46], as expected.

Eq. [53] takes simpler forms for the limiting cases
of pi/pz—0 or x—0 and pu,/p, — or A—1. In each
case the number of positive or negative screw disloca-
tions can be found by integration. For the case of
pi/pe — 0, the number is 0.8438 (0l/27A’) and for the

(53]
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case of pi/p2 — <, the number is 2 (0l/2nA’) where
(ol/2nA") is the number for the homogeneous case,
namely, p, = f.

b) Nwmerical solutions fov discvete dislocations.
Armstrong et al.’® studied the equilibrium positions by
numerical methods and found that, for any =, ¢, and a,
there are two configurations, one is stable and the other
unstable. These two configurations will approach each
other upon reducing o until a critical o is reached
such that the two configurations become identical. A
further reduction of o will lose a pair of dislocations
and two possible new configurations will result with
one pair less of dislocations. Since the yield stress
is taken to be the minimum applied stress required
to create a given stress concentration at the boundary,
it is also the stress that can maintain the largest num-
ber of dislocations. This is the situation discussed
previously in the continuous distribution.

By using a different yield criterion based on a
critical separation (10b) between the first two dis-
locations in a pileup, Armstrong et al.®® compared
numerical results for discrete dislocations with ana-
lytical results for a continuous distribution and found
that the Hall-Petch relation can be extended to very
small grain sizes with only a few dislocations in the
pileup at the time of yielding. The Hall-Petch slope
for the double-ended pileups is about twice that for
the single-ended pileups.

By using a critical stress concentration of p/30, Li
and Liu® calculated numerically for the double-ended
pileups of mixed dislocations a Hall-Petch slope of
0.22 uVb. For the same stress concentration, Eq. [52]
predicts a slope of 0.23 p\/l—)_. The agreement also in-
dicates the applicability of continuous distribution even
for only a few dislocations.

1.1.3) Civcular Pileups. a) Continuous distribution of
dislocation loops. The application of the Hall-Petch re-
lation to very small grain sizes requires considera-
tion of more realistic pileups such as circular or
polygonal loops instead of infinite straight dislocations.
An equilibrium continuous distribution of circular dis-
locations within a circular boundary of radius a can be
obtained from the displacement of a shear circular
crack in an isotropic medium:

80(1 —v) v
bR —v) Vez_ 2

where f{r)dr is proportional to the density of loops be-
tween » and » + dr. The total number of loops is then:

# 8oa(l — v)

[54]

fr) =

n = Off(r)dr = 2@ =) {55]
The displacement at » is
u=h rff(r)dr = 8"(111;(;)_“ CS—”Z [56]

These results can be used to calculate the energy
of the pileups as illustrated before:

E = f}"f c<a—1f>rdrd9do _ 8a'o*(l-v) [57]
363 \OO u2—v)

which can be used to calculate an average stress con-

centration by the application of Moutier’s theorem:

_dact*(l-v) _

SNno

T pb@—vlm T * [58]

Otip
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Eq. [52] leads to the following Hall-Petch relation

o (ub(@ =IO YR _1)e
0=0 +(———2(1_V) ) l
where I = 2a and the yield condition is o4, = 0.
A comparison of Eq. [59] with Eq. [16] shows that
the Hall-Petch slope in the case of circular pileups
is 7 times that of single-ended pileups of mixed
straight dislocations [A = ub(2 — v)/4r(1 — v) in iso-
tropic medium].

b) Numevical vesults on discrete civcular loops.

Li and Liu® examined circular dislocation pileups by
numerical means so as to compare with the results
for a continuous distribution. Equilibrium configura-
tions are obtained by requiring that all the loops are
circular and that the average force exerted on each
free loop is zero. The outermost loop is of radius a
and is blocked everywhere by grain boundaries. Un-
der an applied shear stress ¢, n loops are intro-
duced and their equilibrium radii determined. For
each set of values of a, 0, and #n, two equilibrium con-
figurations are possible, one stable and the other un-
stable, similar to the case of double ended pileups.
Upon reduction of o, these two configurations ap-
proach each other and become identical when a criti-
cal o is reached. Further reduction of ¢ loses one
loop and two possible configurations appear again with
one less loop. Since the yield stress is taken to be the
minimum stress required to create a given stress
concentration at the boundary, the largest number of
loops is used for each set of a and o. This is the
case studied in the continuous distribution.

An added complication in the case of discrete loops
is the line tension of dislocations which is neglected in
the continuous distribution. This introduces a param-
eter 7., the core radius of dislocations, which is of
the order of b. For a = 10007, the minimum stress
necessary to maintain # loops in units of yb/2ar (1 — v),
is compared with Eq. [55] as follows (v = $):

n 2 3 4 5 6 7 8
o 8.8 13.1 17.3 21.4 25.6 29.9 33.9

Eq.[55] 8.2 12.3 16.5 20.6 24.7 28.8 32.9
It is seen that the numerical results agree with those
required for continuous distribution, especially at
large n.

The Hall-Petch slope for discrete loops is found to
be 0.37 ub/\/r_o for a critical stress concentration at
the boundary, ub/30r,. For the same critical stress
concentration, Eq. [59] predicts a slope of 0.36ub/Vr.
The slight difference could be caused by the line
tension neglected in the continuous distribution.

1.2) Double-Layer Pileups. This is the case in which
dislocations are arranged in two identical layers, one
above the other. Because of their mutual interaction,
the results are different from those of a single layer.

1.2.1) Single -Ended Pileups. Two identical layers
of a continuous distribution of edge dislocations at
¥y =0 and y = h are piled up between x =0 and x =1
against a grain boundary at x = 0. The dislocation
lines are all parallel to the z axis. The distribution
function f(x) along each layer should satisfy the fol-
lowing:

1
Aoftff"l{l +

[59]

¢ -x)¢ — x)° - 1]
[(t _x)z + h2]2

dx =0 [60]
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An analytical solution for f(x) is not yet available,

By approximating part of the integrand with a finite
Fourier series of m + 2 terms (m being arbitrary, and
the larger the more accurate) Yokobori and Ichikawa*®
solved numerically the system of m + 2 simultaneous
equations. The results on the number of dislocations,
7z, in each layer as compared with that of a single
layer, n,, are

R/l 0 0.15 0.30 0.50 1.0 2.0 )
ny/n; 0.5 0.674 0.805 0.948 1.0656 1.0437 1.000

The limiting ratio of 0.5 at z =0 is expected because
then it becomes a single pileup of dislocations of
double Burgers vectors, When %/l increases it is
seen that »n,/n, first increases, reaches a maximum,
and then decreases. This is reasonable since for small
h/l, most dislocations repel each other across the two
layers and for large %/! they attract each other in-
stead. Based on the critical stress concentration at the
boundary, the ratio of Hall-Petch slopes is simply
ko/ky = (ny/nz)?. .

1.2.2) Double-Ended Pileups. Two identical layers
(separation %) of double-ended pileups of a continuous
distribution of screw dislocations within a length 2a
were considered by Smith*' for the case of a < k. The
integral equation was approximated by expanding the
distribution function into a power series of a/h. The
number of dislocations in each half layer is found to be

_ 20a a  a*
n=m (g e ) L61]
For edge dislocations, the result is
_ 20a(1-v) at  13a*
n= e (L g ) [62]

It is seen that, relative to the single-layer pileups,
less screw dislocations but more edge dislocations
can be contained in the double-layer pileups. Ac-
cordingly, the Hall-Petch slope is larger for screw
dislocations and smaller for edge dislocations in the
case of double-layer pileups. However, for 7 «< a,

n = oa/ub for screw dislocations and ca(l — v)/ub
for edge dislocations since they both approach single-
layer, double-ended pileups of dislocations of twice
the Burgers vector.

1.3) Triple-Layer Pileups. Three layers (y =0, &,
and 2h) of single-ended pileups of a continuous dis-
tribution of edge dislocations (0 = x = I) against a
grain boundary at x = 0 were investigated by Yokobori
and Ichikawa*’ by approximating the integral equation
with eleven terms of a finite Fourier series. The
number of dislocations in the outer layer, »:, and that
in the middle layer, nj, are calculated numerically and
are compared with that for a single layer pileup, n,,
as follows:

r/l 0 0.15 0.30 0.50 1.00 2.00 w©

ns/n, 0.333 0.635 0.818 1.0106 1.1170 1.0597 1.000
ni/ny 0.333 0.392 0.606 0.8902 1.1372 1.0890 1.000

It is seen that for large h/I, the stress concentration
is larger at the tip of the middle layer than at the tips
of outer layers. However, the situation is the opposite
for small 7/I. The Hall-Petch slope, ks, for the
triple-layer pileups, is given by k3/k, = Vn,/n; or
n,/n; whichever is smaller. Similarly, when com-
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pared with double-layer pileups, ks;/kz = Vny/n; or
ny/nj whichever is smaller.

1.4) Infinite- Layer Pileups. 1.4.1) Single-Ended
Pileups. a) Continuous distvibution of scvew disloca-
tion walls. An infinite number of layers of screw dis-
locations, with a uniform spacing % between layers,
are here considered to pile up between x =0 and v =
against a grain boundary at x = 0. The slip planes
are parallel to y = 0 and all the dislocation lines are
parallel to the z axis. The distribution function along
each layer is given by Louat*® and later also by Web-
ster and Johnson:'®

_ 2 wl\[sinh[7(l —x)/K}]| "'?
f&) ub (sech ﬁ)( sinh (rx/h) [63]
The number of dislocations in each layer is
1
_ 20wl
n J Flo)dx b tanh 5 [64]

Since [ is usually larger than #, the hyperbolic tan-
gent function in Eq. [64] is very close to unity. The
simplified Eq. [ 64] can be obtained directly from the
stress field of screw dislocation walls*® which is
ub/2k per wall at any distance larger than % from
the wall. This gives o = (¢ — 1)ub/2h which agrees
with Eq. [ 64].

From equilibrium considerations the stress con-
centration at the tip is no. Hence by the critical
stress criterion for yielding, the Hall-Petch relation
is

o =0* + Vyubo,l/2nl"Y?

It is seen that, for the Hall-Petch relation to be
valid, !// must remain constant for all /. If, how-
ever, h is constant instead of £/!, Eq. [65] predicts
a stress which is independent of /. This casts some
doubt on the multilayer pileup model for yielding.

To compare with the Hall-Petch slope %, for a
single-layer pileup of screw dislocations, Yubo, /7,
Eq. [64] gives k. as

[65]

kw/ky = Y (wl/2k) coth(nl/2h) [66]
which is shown in Fig. 4 together with that for the
pileup of edge dislocation walls.

b) Numerical vesults on the pileups of discrete
scrvew dislocation walls. Since the number of disloca-
tions, n, is proportional to stress but is nearly in-
dependent of I, it is interesting to see how the dislo-
cations arrange themselves in the slip planes. This is
obtained numerically** and is shown in Fig. 5 for
twenty walls of screw dislocations. The dotted line is
for the case of a single layer. It is seen that upon in-
creasing ! or decreasing ’, more and more disloca-
tions are concentrated at the tip of the pileup. The
stress to maintain the pileups is shown in Fig. 6. For
n — =, the stress approaches that required for con-
tinuous distribution as expected. For any realistic
value of nl/h such as 10 or more, the stress required
is almost exactly (@ — 1)ub/2k for any n = 2,

¢) Pileups of edge dislocation walls. An analytical
solution for the continuous distribution of pileups of
infinite edge dislocation walls is not yet available.
Yokobori and Ichikawa®® approached the problem
numerically based on a method proposed by Hanaoka.*®
The following integral equation
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il tffxi I:ﬂ ¢ ; %) csch n(th— x)]zdx =0/A [67]

where A =ub/2r(1 - v), is approximated by expanding
part of the integrand into a finite Fourier series of

m + 2 terms (m being arbitrary, the larger the more
accurate) so that the integral equation becomes a set
of simultaneous equations of m + 2 unknowns which is
then solved numerically. The results on the number of
dislocations, n. (as compared to that of single pileup,
n1), are as follows (m = 19):

n/l ) 2.0 1.5 1.0 0.65 0.6
Ne/n, 1.0000 1.1839 1.3040 1.5810 2.0674 2.4963
R/l 0.4 0.3 0.2 0.15 0.12 0.10
no/ny 2,966 3.7563 5.30 6.7 7to8 6to 10

The Hall-Petch slope, k., when compared with that for
a single layer pileup of edge dislocations, k., is

bo/ky = V0, /na [68]

which is shown in Fig. 4.

Numerical results on the pileup of discrete edge
dislocation walls** are shown in Figs. 7 and 8. Fig. 7
shows the equilibrium positions for a pileup of 20
walls of edge dislocations as a function of the relative
size of I/h. It is seen that the distribution becomes
more uniform upon increasing I/h. This arises from
the decreasing repulsion between walls. Fig. 8 shows
the stress required to maintain » walls of edge dis-
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Fig. 4—Effect of multiple-layer pileups on the Hall-Petch
slope.
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Fig. 5—~Equilibrium positions in a pileup of twenty walls of
screw dislocations.
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Fig. 6—Stress to maintain a pileup of n walls of screw dis-
locations.

locations. When 7 — », the results agree with those
of Yokobori and Ichikawa®® for the continuous dis-
tribution of dislocations.

1.4.2) Double-Ended Pileups. a) Continuous distvibu-
tion of scvew dislocation walls. Infinite layers of
identical double-ended pileups of screw dislocations
between x =— and +¢ and of a uniform spacing k
between layers were investigated by Louat.* He ob-
tained the following distribution function:
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o) = 20 sinh(nx/h)

pb [sinh®@a/h) — sinh®@x/h)]"*
which is given also by Smith.*® The number of dislo-
cations in each half layer is given by Smith:*

[69]

_ # _ 20h -1 Ta
n = 0ff(x)alx = mtan smh—h—

It is seen that » decreases with decreasing k and
hence the Hall-Petch slope increases with increasing
a/h.

The distribution of screw dislocation walls in aniso-
tropic media is given by Chou.'” Chou and Barnett*®
studied pileups of screw dislocation walls against a
second phase.

b) Continuous distribution of edge dislocation walls.
Infinite layers of identical double-ended pileups of
edge dislocations between x =—a and +a¢ and of a
uniform spacing % between layers were examined by
Smith*® for the case of a < h. The integral equation is
approximated by expanding the distribution function
into a power series of a/h, with the following result

[70]

_20(1—-v) x LA
f(x) - “b ‘/(12 _ xz (1 + 6h2 + ) [71]
n = ff(x)dx=ﬁ1—;5"—)°—“-(1+% = [72]

It is seen that » increases with decreasing #, con-
trary to the results of screw dislocation walls. The
Hall-Petch slope decreases with increasing a/h in
this case.

2) NONPILEUP THEORIES OF YIELDING

Several considerations lead one to question the gen-
eral applicability of the pileup model for yielding.

1.0

1

15 20

WALL NUMBER, i

Fig. 7—Equilibrium position in a pileup of twenty walls of edge
dislocations.
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Fig. 8—Stress to maintain a pileup of # walls of edge dislo-
cations.

The first is the lack of direct observation of pileups
in pure metals although pileups are seen in alloys of
low stacking fault energy or of long range order. Yet
the Hall-Petch relation is found valid in both pure
metals and alloys. In fact, Ku, McEvily, and Johnston*®
examined the Hall-Petch slopes in copper and its al-
loys as a function of stacking fault energy and found
that the Hall-Petch slopes have one value when pileups
are not observed and increase to a higher value when
the pileups are observed. Such increase is not easily
understood in terms of solute pinning of dislocations
or of grain boundaries. Secondly, Worthington and
Smith*° found that in Fe-3 pct Si, dislocations are
emitted from grain boundaries at stresses much below
the yield stress without the help of pileups and that
these stresses do not seem to depend on grain size.
According to the pileup model for yielding, the func-
tion of the pileup is to create a stress concentration

at the grain boundary so as to activate dislocation
sources. If these dislocation sources can be activated
without a pileup and at stresses below the yield stress,
the function or the usefulness of the pileup is then
lost. Motivated by these considerations, theories
without the use of pileups have been proposed and
some of them are reviewed here.

2.1) Work Hardening Theories. In this class of theo-
ries pileups are disregarded and a linear relation
between yield or flow stress and the square root of
dislocation density is taken as an established experi-
mental fact:

(73]

where o is one half of the tensile yield or flow stress,

o =0* +aub‘/;
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p is average dislocation density, and a is about 0.4
according to Keh® for iron. The value of @ would be
different if a different Taylor factor (see Wilson and
Chapman® and Worthington and Smith*) is used and/or
a forest density is preferred instead of the average
density for dislocations. The essence of the work
hardening model is that the average distance of slip

of dislocations, x, is proportional to the grain size, I:

x =Bl [74]
Since the plastic strain is given by
€ =pbx [75]

the total dislocation density could be calculated by as-
suming that all the dislocations remain in the system:

p =¢/bx =¢/bpl [76]
Substituting Eq. [76) into Eq. [73] gives
o =o* +apbVe/bpl™"? [77]

which is a Hall-Petch relation with the following slope
k =opbVe/Vbp [78]

The model or its equivalent seems to have been pro-
posed by many people including Louat as quoted by
Marcinkowski and Fisher,> Meakin and Petch,” and
Conrad.® Although no quantitative treatment was at-
tempted, Johnson® seemed to be the first to suggest
that kd™“? could be due to work hardening.

2.1.1) Supporting Evidences and Limitations. Since
Eq. [77] demands a parabolic stress-strain curve, the
work hardening model of yielding is applicable only to
those systems possessing such stress-strain behavior.
Such behavior is found in niobium (columbium) by Con-
rad, Feuerstein, and Rice.*®* They showed that the
flow stress is linear with the square root of strain as
required by Eq. [77] with a constant intercept, except
for the case in which the grain size is larger than the
specimen thickness. They showed further that the dis-~
location density is linear with strain as required by
Eq. {76] with a small intercept which they believe to
be the density after recrystallization and before de-
formation. These observations do imply the validity
of Eq. [74] which is the fundamental hypothesis of this
model.

On the other hand, in Fe-Co alloys, Marcinkowski
and Fisher® did not observe a linear relation between
the Hall-Petch slope and the square root of strain as
required by Eq. [78]. Neither did they observe a
strain-independent o* as suggested by Eq. [77]. Con-
trary to Eq. [78] the Hall-Petch slope was found to de-
crease with strain by Carreker and Hibbard®® for cop-
per, by Carreker® for silver, by Carreker and Hib-
bard® for aluminum, and by Ohba® for iron. In almost
all the cases, the intercept ¢* was found to increase
with strain, contrary to Eq. [77]. Also inconsistent with
Eq. [76], Dingley and McLean® found for iron that the
net rate of increase of dislocation density is greater
at the beginning of straining than later on. All the
foregoing observations are not in support of the work
hardening model of yielding. A demonstration of the
validity of Eq. [73] is only relevant to the theory of
work hardening and not to that of yielding.

2.1.2) Other Considerations. Instead of Eq. [74],
nonlinear relations between the average distance of
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slip and the grain size have been proposed by Con-
rad®>® and by Conrad and Christ.*” Such relations,
when combined with Egs. [73] and ['75] would invalidate
the Hall-Petch relationship. The data collected by
Conrad® for iron and steel in an attempt to show a
linear relation between stress and Vel~V* actually
showed curvature in almost all cases.

The effect of plastic strain on the Hall-Petch slope
was discussed also by Li® using a kinetic equation for
dislocation density as proposed by Johnston and Gil-
man® to include dynamic recovery. It was found that
without recovery, the Hall-Petch slope increases with
strain but the intercept ¢* remains unchanged. How-
ever, with recovery, the Hall-Petch slope may de-
crease with strain and the intercept may increase
depending on the relative rates of work hardening and
recovery.

2.2) Grain Boundary Source Theories. In this class
of theories, grain boundaries are assumed to act as
sources of dislocations. Their capacity to emit dis-
locations may change with the structure and compo-
sition of the grain boundary but is independent of grain
size. Let m be the total length of dislocations emitted
per unit area of grain boundary at the time of yielding.
Then the density of dislocations at the time of yielding
is, for a spherical grain:

p=s@lm)/gnl® = 3m/! [79]
where the factor 3 arises from the fact that each
boundary is shared by two grains. Substituting Eq.
[79) into Eq. [73] gives

g =0*% +aubV3m I7V? [80]

which is a Hall-Petch relation with the following slope:
kE=aubV3m [81]

The original version was proposed by Li®® with a
slightly different k. A similar version was proposed
by Crussard.”®"

2.2.1) Evidences of Grain Boundary Souvces. Eq.
[81] does not contain plastic strain and hence this the-
ory is not considered as a work hardening theory al-
though Eq. [73] is still accepted as an established ex~
perimental fact. The theory does depend, however, on
the assumption that grain boundaries can act as dis-
location sources. Hornbogen’ has shown a clear ex-
ample of dislocation loops emitted from grain bound-
aries in an Fe-3.17 at. pct P alloy although whether
such emission is caused by a pileup is not known.
More recently Carrington and McLean™ observed slip
lines originating at grain boundaries in Fe-3 pct Si at
stresses between o* and the lower yield stress. They
concluded the following: 1) The observed percentage
of yielded grains as a function of stress did not agree
with a relation calculated by Suits and Chalmers™
based on uniform distribution of sources inside the
grains. 2) About 95 pct of all the slip lines which did
not completely cross a grain are in contact with a
grain boundary at one end. 3) Typically there are slip
lines only on one side of the grain boundary in the
early stages of yielding. Similar results were ob-
served by Worthington and Smith.*® All these seem to
confirm the suggestion that grain boundaries can act
as dislocation sources without the stress concentra-
tion created by a pileup.

2.2.2) Observation of Grain Boundary Ledges. The
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next question is how a grain boundary can act as a
dislocation source. The original suggestion was made
by Mott”® and later independently by Li™ based on a
picture of a grain boundary structure taken by Keh."
The dislocation-like images in the grain boundary
were suggested” as ledges which were supposedly to
act as dislocation donors. The fact that a ledge can
actually become a dislocation is first indicated by a
picture taken by Swann™ showing a dislocation partly
in the grain and partly in the grain boundary as a
ledge. Further electron microscopic observations of
ledges in grain boundaries were made by many people
including Fisher et al.”” in iron, Weissmann™ in tung-
sten, Lin and McLean™ in nickel, Ishida and Brown™
and Ishida et al.?° in Fe-0.75 pct Mn alloy, and Wilson®
and Hook® in steels. Fig. 9 shows a picture taken by
Goodrich® indicating, probably for the first time, the
coexistence of positive and negative ledges in a grain
boundary. The possibility of dislocation-ledge inter-
conversion was shown also by Ishida and Brown.”
Direct observation of ledges in the field ion micro-
scope was reported by Ryan and Suiter.®®* Some
considerations of the interaction of dislocations with
high angle boundaries are given recently by Brandon.®
Hook and Hirth® called attention to the effect of both
elastic and plastic compatibility stresses at the grain
boundaries. While undoubtedly these stresses could
contribute to the operation of grain boundary sources,
the plastic part which depends on grain size is a re-
sult of plastic strain and hence depends on the avail-
ability of grain boundary sources. In other words,
grain boundary sources still may be the controlling
factor.

2.2.3) Effects of Quenching and Annealing. The fore-
going observations indicate that the ability of a grain
boundary to emit dislocations could be related to the
density of ledges in the grain boundary. The next
question is what factors may affect the ledge density.
An earlier thought®® was that both the annealing tem-
perature and the solute concentration could affect the
density of ledges in the grain boundary. It was based
on the hypothesis that segregation of solute atoms onto
the grain boundary may help to stabilize the ledge
structure and thereby increase the ledge density in

Fig. 9—Positive and negative ledges in a grain boundary.
(Aluminum-killed steel, annealed and temper rolled, courtesy
of Robert S. Goodrich, Materials Science Division, Vander-
bilt University.)
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the boundary. Several experiments have shed light

on this question: Cottrell and Fisher®® found that
quenched iron (10 ppm C and N) had a smaller Hall-
Petch slope than furnace cooled. Aging at 140°C after
quenching increased the Hall-Petch slope. Dingley

and McLean®* examined the Hall-Petch slope of iron
(70 ppm C and N) as a function of test temperature

and found a maximum around 450°K. Wilson®' studied
the effect of aging at 90°C after quenching on the Hall-
Petch slope and concluded from the time required to
reach the slowly cooled value that the effect was caused
by the diffusion of carbon onto the grain boundaries.

If Wilson’s interpretation was correct, aging would re-
duce the carbon concentration in the lattice. Based on
the work hardening theory of yielding, aging should
increase § in Eq. [74] and thereby decrease % in Eq.
[78] contrary to Wilson’s finding. However, the effect
of aging could be understood if diffusion of carbon onto
the grain boundary increased the ledge density in the
boundary.

Evidences for the segregation of solute atoms onto
grain boundaries have been reviewed by Westbrook.®
Many studies showed that solute atoms can diffuse onto
grain boundaries during aging. Floreen and Westbrook®’
reported that microhardness of grain boundaries in-
creases with the time of aging at 200°C in a quenched
Ni-6 ppm S alloy until a saturation value is reached.
Similar behavior is observed by Seybolt and West-
brook® in Ni-Ga containing oxygen, and by Braunovic
et al.® in an Fe-0.002 at. pct W alloy.

Recent results of Ohba,” on the effects of quenching
on the Hall-Petch slope for iron, seem to differ from
those of Cottrell and Fisher,* of Dingley and McLean >*
and of Wilson.?' The trouble may be traced to the fact
that Ohba prepared specimens of different grain sizes
by recrystallizing at and quenching from different
temperatures. Hook® corrected Ohba’s data by using
the known effects of quenching and showed that the
corrected results agree with those of previous workers.

In his studies of quenching and aging on the lower
yield and Liiders strain in steels, Hook® found that
guenched samples contain many dislocations (10° per
sq cm) but furnace-cooled ones contain none, While
undoubtedly these dislocations may affect the inhomo-
geneity of yielding and Liiders strain, the available
amount of information seems insufficient to formulate
a theory for the grain size effect based on the number
and arrangement of these dislocations. Hook® reported
further that the ledge density in the grain boundary
seemed to decrease upon annealing. It is to be noted
that when the ledge density is too high, the individual
contrast of ledges is smeared, as shown by Ishida
et al ®°

2.2.4) Effects of Neutron Irradiation. Another factor
which may affect the ledge density is neutron irradia-
tion. Chow and McRickard® found in Fe-C alloys that
irradiation reduced the Hall-Petch slope and increased
o*. The latter effect was expected because irradiation
introduced vacancies and interstitials into the lattice.
Interaction between carbon and vacancies® could re-
duce the activity of carbon and thereby cause desorp-
tion of carbon from the grain boundary. Such desorp-
tion then could reduce the ledge density and hence the
Hall-Petch slope. For higher carbon concentration,
the change of Hall-Petch slope was smaller for the
same neutron dose, or larger neutron doses were
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needed to produce the same change in the Hall-Petch
slope as found by Chow and McRickard,* all to be ex-
pected from the foregoing considerations. The results
of Hull and Mogford®® on high carbon alloys also can
be explained on this basis.

2.2.5) Effects of Pressurization. Pressurization
may be yet another factor which affects ledge density
in the grain boundary. Yajima and Ishii® found that
the Hall-Petch slope decreases after pressurization.
They found also that pressurization creates new dis-
locations around oxide particles. These new disloca-
tions could interact with carbon in the lattice, reduce
the carbon activity, cause carbon desorption from the
grain boundary, reduce the ledge density there, and
thereby reduce the Hall-Petch slope. These consider-
ations are supported by the fact that the effect of
pressurization is prominent only if enough oxides (600
ppm O) are there to create sufficient dislocations. A
smaller amount (200 ppm O) of oxides produces a
small effect and a still smaller amount (68 ppm O)
produces no effect. On the other hand, Yajima and
Ishii®® suggested that the new dislocations are the main
reason for the reduced Hall-Petch slope. By assuming
that the density of mobile dislocations is a constant
fraction of the total dislocation density, they obtained
a relation between the Hall-Petch slope, the Liiders
strain, and the initial dislocation density. The kd “/®
term is attributed to the effective stress which deter-
mines the average velocity of dislocations based on a
relation suggested by Gilman.®” While the new dislo-
cations introduced by pressurization may affect yield-
ing in many ways, it is difficult to believe that they
play a direct role in the lower yield stress-grain size
relationship.

2.2.6) Effects of Temperature and Strain Rate. Ac-
cording to Eq. [81], the Hall-Petch slope should not
change with test temperature unless the temperature
is such that it changes the ledge density in the grain
boundary or it alters @ by changing the dislocation ar-
rangement. For iron, Petch® found that % is virtually
independent of temperature between 18° and —79°C;
Conrad and Schoeck® reported a similar finding be-
tween 110° and 300°K. However, at 77°K, Hull and
Mogford®® found a higher %, probably because of a
larger a due to a different dislocation arrangement,
as shown by Keh.*' At higher temperatures, Dingley
and McLean® found that %2 decreases in the tempera-
ture range 300° to 600°K except for a hump between
400° and 500°K; Brindley and Barnby'® found a similar
behavior. For niobium, the value of # is small at all
temperatures and within experimental error, it is in-
sensitive to temperature between 76° and 293°K as
found by Johnson,'® and Churchman,'® and Adams
et al.*® In chromium, Marcinkowski and Lipsitt'*
found that % is independent of temperature between
~150° and 97°C. In magnesium, Hanser et al.'® found
that & decreases from 78° to 473°K and Wilson and
Chapman® found that it decreases from 78° to 290°K.
Similar results are found by Hauser ef al.'” in Mg-

2 pct Al alloys. In all cases o* decreases with in-
creasing temperature except when strain aging occurs.

Also according to Eq. [81], the Hall-Petch slope
should not change with strain rate unless it alters «
by changing the dislocation arrangement. Heslop and
Petch'® found that % in iron at —79°C is independent
of strain rate between 2 x 10> and 107° per sec.
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Campbell and Harding'” found in both iron and steel,
that 2 is independent of the mean strain rate at 1073,
960, and 2600 per sec by impact testing at room tem-
perature. In all cases o* increases with strain rate

as expected.,

2.2.17) Other Considerations. Some results on Fe-Ti
alloys by Castagna et al.'® indicate that the Hall-Petch
slope is greatly reduced (~20 pct of the usual value) by
as little as 0.04 pet Ti addition. This is consistent
with the grain boundary source model by considering
that the addition of titanium reduces interstitial seg-
regation onto the grain boundaries.

Gouzou'® proposed a theory of yielding also based
on grain boundary sources. Unfortunately his theory
involved an assumption that the yield stress required
to emit dislocations from the grain boundary was to
supply the interaction energy between solute atoms
and grain boundary dislocations by moving the disloca-
tion a distance which is proportional to the grain size.
The validity of this assumption is not obvious. As
mentioned earlier, Worthington and Smith®° observed
dislocation emission from grain boundaries at stresses
much below the lower yield stress independent of
grain size. Obviously the stress necessary for emit-
ting dislocations from grain boundaries is not the
stress required for yielding.

Cottrell and Fisher®® also used the concept of grain
boundary sources but required stress concentration
at the end of a pileup as did Dingley and McLean.*
These should be classified as pileup theories of yield-
ing.

2.3) Dislocation Dynamics Theories. Both the work
hardening theory and the grain boundary source theory
suggest that at low temperatures kd™'® is the athermal
part of the flow stress due to dislocations. The other
part o* consists of the thermal part o** and the
athermal part og of other origin such as precipitates.
Let v be the average velocity of all the mobile dislo-
cations and let the stress dependence of v be given by

v = Blo**)m* [82]
where B and m* may depend on temperature. Then
o =ag +kd™"? + @/B)™" [83]

The quantity o** is also known as the effective stress
which is approximately equal to the difference be-
tween the applied stress and the internal stress.''®
The athermal part o¢ + kd”~"/> should depend on tem-
perature only as the shear modulus, provided that the
structure is independent of temperature.

2.3.1) The Problem of Strain Rate in Inhomogeneous
Deformation. A question often being asked is ‘“what
is the strain rate in inhomogeneous deformation?’’
The answer is really very simple: it depends on the
definition of the density of mobile dislocation. The
essence of dislocation theory is that no deformation is
homogeneous on the microscale, Whether all the mo-
bile dislocations are uniformly distributed on a macro-
scopic scale, or concentrated at the Liders front will
not affect the elongation rate of the specimen provided
that they have the same average velocity. Hence, if
the strain rate is the elongation rate divided by the
gage length, the dislocation density is the total length
of dislocations divided by the volume of the specimen
independent of the distribution of these dislocations.
On the other hand, if one insists that the density of mo-
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bile dislocations should be defined as the local one at
the Liders front, the strain rate is then defined like-
wise. However, one then has to know the strain profile
at the Lidders front.

Thus, the strain rate amplification suggested by
Gokyu and Kihara''' is not really needed. However, if
the number of mobile dislocations associated with each
Liiders front is independent of the number of Liiders
fronts, the average velocity ¥ of these dislocations is
inversely proportional to the number of Liiders fronts
for the same elongation rate of the specimen as sug-
gested correctly by Gokyu and Kihara and earlier by
Butler."? Gokyu and Kihara suggested further that the
strain rate amplification is inversely proportional to
the grain size. What they really suggested was that v
is inversely proportional to the grain size, or that
g** decreases with increasing grain size. Qualita-
tively it follows that the activation area,™’

BT (3 In é/30**), increases, or the strain rate sensi-
tivity decreases with increasing grain size, as indeed
observed by Gokyu and Kihara.' .

2.3.2) The Problem of Stress in Inhomogeneous De-
Sformation. Another problem in inhomogeneous defor-
mation is that a specimen has at least two cross sec-
tional areas, Which area should be used in calculating
the lower yield stress? Based on the pileup theory
or the grain boundary source theory, the stress should
be that immediately behind the Liiders front. The
area to use is then the area of the undeformed region.
On the other hand, based on the work hardening the-
ory, the stress is that of the strained region; the
same strain should be used for all grain sizes.

To apply dislocation dynamics, the applied stress
varies from the strained region to the unstrained re-
gion according to the strain profile:

(84]
where o0, is the stress at zero strain. Let the veloc-

ity of a Liiders front be vy, the local strain rate at
any point is

0 =0y,exp €

é =vL%§— = pmbBlo —0,)"* [85]
where x is in the direction of propagation, p,, is the
local density of mobile dislocations, and ¢; is internal
stresses of all origins. The elastic strain rate is
neglected. Hahn'*® seems to be the first to apply dis-
location dynamics to inhomogeneous deformation. He
integrated Eq. [85] to obtain a strain profile by making
the following assumptions: 1) p,, is a constant frac-
tion of the total dislocation density p which is linear
with a single power of strain. 2) The internal stress
is proportional to strain. With proper choice of param-
eters, the calculated profiles indeed resemble the ex-
perimental ones.

The average dislocation velocity in Eq. [83] can be
obtained from Eq. [85]:

v = =
f pmAdx bL
where A is local cross sectional area, A, is A at
€ =0, €7 is Liders strain, L is the total length of
mobile dislocations, and ¥ is the cross head speed,
which is equal to vy €r. Eq. [86] suggests that the
velocity of Liders front or the cross head speed can

L-ee)~ 3% [se]
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be used to approximate the average velocity of mo-
bile dislocations if L can be assumed to be nearly
constant. It suggests also that if one knows v by other
means, L can be calculated,

Eq. [86] suggests that the stress o at which x =0
is given by

f(o — 0" pmAdx =0 [87]
where the sign of (0 — 0,)™" is that of o ~ 0;, no mat-
ter what m* is. This stress is an average internal
stress, as can be seen for m* = 1:

_ fcipmAdx

g = (88]
f PmAdx

and can be determined experimentally such as in a

stress relaxation test. On the other hand, Eq. [83]

shows that the internal stress is equal to og + kd~ "%,

These problems are being studied by Prewo.™*

2.3.3) The Stress Dependence of Liiders Band
Velocity. Prewo'' found that the average internal
stress during the propagation of a Liiders band in
polycrystalline iron obtained by a stress relaxation
technique''® is independent of the velocity of the
Liiders band, the Liiders strain, or the applied stress
but depends on material variables such as grain size
and carbon content. However, the Liiders band veloc-
ity is a simple power function of effective stress
with an exponent of 3.5 at 300°K, 5.5 at 243°K, 7.5 at
213°K, and 10 at 183°K, independent of carbon con-
tent or heat treatment. During stress relaxation, the
Liders band is found to propagate further at a rate
and to the extent predictable from dislocation dy-
namics.,

3) SUMMARY AND CONCLUSIONS

It is seen from this review that calculations on pile-
ups of dislocations are quite extensive. However, the
following are still lacking: 1) analytical solutions for
discrete dislocations in double-ended, circular, ellip-
tical, or multilayer pileups, 2) analytical solutions for
continuous distribution of dislocations of infinitesimal
Burgers vectors in double~layer and triple-layer pile-
ups, and in infinite-layer pileups of circular or edge
dislocations, and 3) numerical results for discrete
dislocations in double layer or triple-layer pileups.
The significance of these calculations has diminished
considerably because of the lack of direct observation
of these pileups in many systems. Even for alloys in
which dislocations do tend to stay on their slip planes,
grain boundaries seem to act as dislocation sources
without the help of pileups, These and other observa-
tions give rise to serious doubt of the validity of the
pileup model of yielding as a fundamental mechanism.

It is indeed disappointing that simple arrangements
of dislocation pileups are not sufficient to understand
yielding. Nonpileup models are still vague in their
details. Among them the work hardening model de-
mands a dislocation density-strain relationship which
is valid only for certain systems. It has no provision
for the understanding of Liiders strain nor the effect
of grain boundary structure. The grain boundary source
model avoids these difficulties by introducing the con-
cept of source density in the grain boundary. Al-

VOLUME 1,MAY 19701157



though there are numerous observations of grain
boundary ledges, dislocation emission from these
ledges, and indirect evidence of how the ledge density
can be changed by heat treatment, pressurization, and
neutron irradiation, direct quantitative determination
of source density in the grain boundary is still lack-
ing. After dislocations are emitted from grain bound-
aries, they immediately interact with each other

and move according to the stress dependence of dis-
location velocity. It seems unavoidable that the Liiders
front velocity and the strain profile must be under-
stood from the dynamics of dislocations. Experiments
along these lines are needed to shed light on the mech-
anistic details of yielding.

ACKNOWLEDGMENT

The authors wish to thank Dr. N. Louat for some en-
lightening discussions.

REFERENCES

1. E. O. Hall: Proc. Phys. Soc. London, 1951, vol. B64, p. 747

2. N. J. Petch: J. Iron Steel Inst., 1953, vol. 174, p. 25.

3. A. H. Cottrell: Trans. TMS-AIME, 1958, vol. 212, p. 192.

4.J. D. Eshelby, F. C. Frank, and F. R. N. Nabarro: Phil. Mag., 1951, vol. 42,
p. 351.

5.Y. T. Chou and T. E. Mitchell: J. Appl. Phys., 1967, vol. 38, p. 1535.

6.J.C.M. Liand G. C. T Liu: Phil. Mag., 1967, vol. 15, p. 1059.

7. A. K. Head: Phil. Mag., 1959, vol. 4, p. 295.

8.Y. T. Chou, E Garofalo, and R. W. Whitmore: Acta Met., 1960, vol. 8, p.
480

9. T. E. Mutchell, S. S. Hecker, and R. L. Smialek: Phys. Stat. Sol, 1965, vol. 11,
p. 585.

10. T. E. Mitchell: Phil. Mag., 1964, vol. 10, p. 301.

11. Z. S. Basinski and T. E. Mitchell: Phil. Mag., 1966, vol. 13, p. 103.

12. Y. T. Chou: J. Appl. Phys., 1967, vol. 38, p. 2080.

13. E. Jahnke and F. Emde: Tables of Functions with Formulas and Curves,
Dover, New York, 1945.

14. G. Leibfried: Z, Phys., 1951, vol. 130, p. 214.

15. A. K. Head and N. Louat: Austr. J. Phys., 1955, vol. 8, p. 1.

16. A. N. Stroh: Proc. Roy. Soc., 1953, vol. A218, p. 391.

17. E. A. Guggenheim: Thermodynamics, p. 78, Interscience, New York, 1949.

18. L. D. Webster and H. H. Johnson: J. Appl. Phys., 1965, vol. 36, p. 1927.

19.Y. T. Chou and N. Louat: J. Appl. Phys., 1962, vol. 33, p. 3312.

20. N. J. Muskhelishvili: Singular Integral Equations, Noordhoff, Groningen,
Holland, 1953.

21. T. Yokobori and M. Ichikawa: J. Phys. Soc. Japan, 1964, vol. 19, p. 2337;
Int. J. Fracture Mech., 1965, vol. 1, p. 129.

22, P. Chaudhari and R. O. Scattergood: Acta Met., 1966, vol. 14, p. 685.

23. E. Smith: Acta Met., 1967, vol. 15, p. 1193.

24. E. Smith: J. Appl. Phys., 1968, vol. 39, p. 4865.

25.J. C. M. Li: Phil. Mag., 1969, vol. 19, p. 189.

26. A. R. Rosenfield and G. T Hahn: Acta Met., 1968, vol. 16, p. 755.

27.Y. T. Chou: Acta Met., 1965, vol. 13, p. 779.
A. K. Head: Austr. J. Phys., 1960, vol. 13, p. 278.
E. Smith: Acta Met., 1967, vol. 15, p. 249.

30. D. M. Barnett: Acta Met., 1967, vol. 14, p. 589.
D. M. Barnett and A. S. Tetelman: J. Mech. Phys. Solids, 1966, vol. 14, p.

329; Can. J. Phys., 1967, vol. 45, p. 841.

32.Y.T. Chou: Can. J. Phys., 1967, vol. 45, p. 559.

33.J. G. Kuang and T. Mura: J. Appl. Phys., 1968, vol. 39, p. 109.

34. B. Noble: Methods Based on the Wiener-Hopf Technique for the Solution of
Fartiai Differential Equations, Pergamon Press, New York, 1958.

35.R. W. Armstrong and A. K. Head: Acta Met., 1965, vol. 13, p. 759.

36. Y. T. Chou: J. Appl. Phys., 1966, vol. 37, p. 2425.

37. 1. P. Hirth and J. Lothe: Theory of Dislocations, p. 701, McGraw-Hill, Book
Co., New York, 1968,

38. R. W. Armstrong, Y. T. Chou, R. M. Fisher, and N. Louat: Phil. Mag., 1966, vol.

14, p. 943,
39, 1. D. Eshelby: Phys. Stat. Sol., 1963, vol. 3, p. 2057.

40. T. Yokobori and M. Ichikawa: Repts. Res. Inst. Strength Fracture Mater., Tohoku

Univ., 1967, vol. 3, pp. 1-14.
41. E. Smuth: Int. J. Eng. Sci., 1966, vol. 4, p. 451.
42.N. Louat: Phil. Mag., 1963, vol. 8, p. 1219.
43.J. C.M. Liand C. D. Needham: J. Appl. Phys., 1960, vol. 31, p. 1318.

1158-VOLUME 1,MAY 1570

44 J. C. M. Li: unpublished results.

45, T. Hanaoka: J Soc. Naval Architects Japan, 1953, no. 86, p. 91.

46 E. Smuth: Proc. Roy. Soc., 1964, vol. A282, p. 422

47.Y T Chou: Phys Staz. Sol, 1967, vol. 20, p. 285.

48. Y. T. Chou and D. M. Barnett: Phys. Stat. Sol., 1967, vol. 21, p 239.

49.R.C.Ku, A.J. McEvily, and T. L. Johnston: Met. Trans., n press.

50. P.J. Worthington and E. Smith: Acta Met., 1964, vol 12,p. 1277.

51. A S. Keh: Direct Observation of Imperfections in Crystals, p. 213, Newkirk
and Wernick, ed , Interscience, New York, 1962

52.D. V. Wilson and J A. Chapman: Phil. Mag, 1963, vol 8, p. 1543.

53.P J. Worthington and E. Smith: Phil. Mag., 1964, vol 9,p 211.

54. M. J. Marcinkowski and R. M. Fisher: Trans. TMS-AIME, 1965, vol. 233, p
293.

55.J.D. Meakin and N J. Petch: ASD-TDR-63-324, Orlando, Flonda, 1963, p.
243

56. H Conrad: Electron Microscopy and Strength of Crystals, Ed. by Thomas and
Washburn, Interscience, 1963, p. 299.

57. A. A. Johnson: Phil. Mag., 1962, vol. 7,p. 177.

58. H. Conrad, S. Feuerstein, and L. Rice: Mater Sci. Eng., 1967, vol. 2, p. 157.

59. H. Conrad, S. Feuerstewn, and L. Rice. Trans. Japan Inst. Metals, 1968, vol. 9,
Suppl , p. 481.

60. R. P. Carreker, Jr., and W. R Hibbard, J1.: Acta Met., 1953, vol. 1, p. 654.

61. R. P. Carreker, Jr.: AIME Trans., 1957, vol. 209, p. 112.

62. R. P. Carreker, Jr. and W. R. Hibbard, Jr.: AIME Trans., 1957, vol. 209, p.
1157.

63.Y. Ohba: Trans. Nat. Res. Inst. Metals, 1967, vol. 9, p. 293.

64.D. J. Dingley and D. McLean: Acta Met., 1967, vol. 15, p. 885.

65 H. Conrad: Acta Met., 1963, vol. 11, p. 75.

66. H. Conrad: NPL Symp. Relation Substructure and Strength Metals and Alloys,
p. 244, HMSO, London, 1963.

67. H. Conrad and B. Christ: Recovery and Recrystallization of Metals, p. 124,
L. Himmel, ed., Interscience, New York, 1963.

68.J. C. M. Li: Trans. TMS-AIME, 1963, vol 227, p. 247.

69. W. G. Johnston and J.J. Gilman: J. Appl. Phys., 1959, vol. 30, p. 129.

70. C. Crussard: NPL Symp. Relation Structure and Strength Metals Alloys, p.
548, HMSO, London, 1963.

71. C. Crussard: J. Austr. Inst. Metals, 1963, vol. 8, p. 317.

72, E. Hornbogen: Trans, ASM, 1963, vol. 56, p. 16.

73. W. E. Carrington and D. McLean: Acta Met., 1965, vol. 13, p. 493.

74.J. C. Suits and B. Chalmers: Acta Met., 1961, vol. 9, p. 854.

75.N. F. Mott: J. Inst. Metals, 1946, vol. 72, p. 367.

76. J. C. M. Li: Direct Observation of Imperfections in Crystals, p. 234; New-
kirk and Wernick, eds., Interscience, New York, 1962;J. Austr. Inst. Metals,
1963, vol. 8, pp. 206, 381.

77. R. M. Fisher, H. Hashimoto, and J. W. Negele: Sixth Inst. Congr. Electron
Microscopy, Kyoto, 1966, p. 79.

78.T. L. Lin and D. McLean: Met. Sci. J., 1968, vol. 2, p. 108.

79. Y. Ishada and M. H. Brown: Acta Met., 1967, vol. 15, p. 857.

80. Y. Ishida, T. Hasegawa, and F. Nagata: Trans. Japan Inst. Metals, 1968, vol.
9 Suppl., p. 504.

81.D. V. Wilson: Mez. Sci. J., 1967, vol. 1, p. 40.

82. R. E. Hook: Met. Trans., 1970, vol. 1, p. 85.

83. R. S. Goodrich: Research Center, Jones and Laughlin Steel Corp., Pittsburgh,
Pa., now at Department of Mech. Engr., Vanderbilt Univ., Nashville, Tenn.

84. H. F. Ryan and J. Suiter: Phil. Mag., 1964, vol. 10, p. 727.

85. H. F. Ryan and J. Suiter: Acta Met., 1966, vol. 14, p. 847.

86. D. G. Brandon: Trans. Japan Inst. Metals, 1968, vol. 9 Suppl., p. 497.

87.R. E. Hook and J. P. Hirth: Trans. Japan Inst. Metals, 1968, vol. 9 Suppl., p.
778.

88. A. H. Cottrell: NPL Symp. Relation Structure and Strength Metals Alloys,
p. 456, HMSO, London, 1963.

89.J. H. Westbrook: Met. Rev., 1964, vol. 9, p. 415.

90. S. Floreen and J. H. Westbrook: Acta Met., 1969, vol. 17, p. 1175.

91. A. U. Seybolt and J. H. Westbrook: Acta Met., 1964, vol. 12, p. 449.

92. M. Braunovic, C. W. Haworth, and R. T. Weiner: Mer. Sci. J., 1968, vol. 2,
p.67.

93.J.G. Y. Chow and S. B. McRickard: Phi. Mag., 1963, vol. 8, p. 2097.

94. H. Wagenblast and A. C. Damask: J. Phys. Chem. Solids, 1962, vol. 23, p. 212.

95.D. Hull and 1. L. Mogford: Phil. Mag., 1958, vol. 3, p. 1213.

96. M. Yajima and M. Ishii: Trans. Japan Inst. Metals, 1968, vol. 9 Suppl., p. 325.

97.J. 1. Gilman: J. Appl. Phys., 1965, vol. 36, p. 3195.

98. N. J. Petch: Phil. Mag., 1958, vol. 3, p. 1089.

99. H. Conrad and G. Schoeck: Acta Met., 1960, vol. 8, p. 791.

100. B. J. Brindley and J. T. Barnby: Acta Met., 1966, vol. 14, p. 1765.

101. A. A. Johnson: Acta Met., 1960, vol. 8, p. 737.

102. A. T. Churchman: J. Inst. Metals, 1960, vol. 88, p. 221.

103. M. A. Adams, A. C. Roberts, and R. E. Smallman: Acta Met., 1960, vol. 8,

328.
104. M. J. Marcinkowski and H. A. Lipsitt: Acta Met., 1962, vol. 10, p. 95.

METALLURGICAL TRANSACTIONS



105 F.E. Hauser, P. R. Landon, and J. E. Dom: AIME Trans, 1956, vol 206, p.
589.

106. . Heslop and N. J. Petch: Phil. Mag., 1958, vol. 3, p. 1128,

107.J. D. Campbell and J. Harding: Response of Metals to High Velocity Defor-
mation, p. 51, Shewmon and Zackay, eds., Interscience, New York, 1961.

108 M. Castagna, A Ferro, F. S Rossi, 1. Sebille, and G. Szabo-Miszent1: Mem Sci.
Rev. Met , 1966, vol. 63, p. 555.

109. J. Gouzou Acta Met., 1964, vol. 12, p. 785.

110. J. C. M. Lu: Dislocation Dynamics, p. 87, A. R. Rosenfield et al., eds , McGraw-

METALLURGICAL TRANSACTIONS

Hill Book Co., New York, 1968.
111.1. Gokyu and J. Kihara. Trans Japan Inst. Metals, 1968, vol. 9 Suppl., p.
427.
112.J. F. Butler: Acta Met., 1962, vol 10,p 258.
113 G T. Hahn: Acta Met., 1962, vol. 10, p. 727.
114. K. M. Prewo: Ph.D. dissertation, Columbia University, 1969
115.3. C. M. Li: Can. J. Phys., 1967, vol. 45, p. 493.
116 T W. Chou: Ph.D. dissertation, Stanford University, 1969, Met Trans., in press.
117 E Smuth: Scripta Met., 1969, vol 3, p. 415.

VOLUME 1, MAY 1970-1159



