The Relation Between Polycrystal Deformation
and Single-Crystal Deformation

U. F. KOCKS

A phenomenological description of crystallographic slip and pencil glide in single crystals is
outlined, with emphasis on the behavior under prescribed strains. Theoretical relations are
established between these single-crystal properties and the behavior of quasi-homogeneous,
quasi-isotropic polycrystals deforming uniformly on a macroscopic scale, at subdiffusive tem-
peratures. Experimental comparisons between single crystals and polycrystals are reviewed,
considering flow stress, work hardening, temperature and strain rate effects, and various ef-

fects of grain size.

IT is a fortunate circumstance that one does not need
to understand dislocation theory in order to be able to
discuss the physical processes underlying the behavior
of a material, say, in a rolling mill. In principle, it is
possible to proceed instead in a series of steps: to ex-
plain the behavior under real deformation conditions
in terms of the behavior under idealized test condi-
tions; to explain the properties of a polycrystalline
aggregate under ideal test conditions on the basis of a
phenomenological knowledge of single-crystal defor-
mation properties; to explain the mechanical behavior
of single crystals on the basis of dislocation theory;
and so on down to the atomic or subatomic scale. The
success of each step in the complete explanation often
does not depend on the degree of our understanding of
the other steps. However, the usefulness of these
separations depends on the degree to which the inter-
mediate steps in the model can be physically realized
by intermediate experiments. For example, the be-
havior of a material under idealized test conditions is
meaningful only to the extent to which friction and grip
effects can be separated out.

The model used to describe the mechanical behavior
of polycrystals in terms of that of single crystals is
based on an idealized concept of a ‘‘polycrystal’’ and
on an idealized concept of ‘‘single crystal properties.”’

A “‘polycrystal’’ is a polycrystalline specimen in
which each cross section contains a large number of
grains of each crystallographic orientation, distributed
at random, and very few surface grains. Experimen-
tally, it is virtually impossible to obtain specimens of
any material without a preferred orientation. While it
would be possible to analyze such textured specimens
on the basis of the concepts to be outlined below, the
theory would be more complicated and would be dif-
ferent for each case.

The influence of surface grains, on the other hand,

would be well nigh impossible to consider theoretically.

Experiments in which the number of surface grains is
a small fraction of the total number of grains are pos-
sible but expensive. It is frequently overlooked that a
wire containing 100 grains on the cross section has
about one-third of its grains at the free surface. If one
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wants the fraction of surface grains to be smaller

than 10 pct, the specimen diameter has to be at least
30 fo 40 times the grain diameter. Since it is often
hard to obtain well-annealed specimens with grain
sizes of less than 0.1 mm, the minimum wire size
should thus be about 3 mm or 4 in. If one wishes to
study grain size dependence up to a grain diameter

of, say, 1 mm, one needs specimens of over 1 in. diam,
and a suitably strong testing machine.

The models discussed in this paper also presuppose
an idealized behavior of single crystals. For example,
slip is assumed to be crystallographic but homogene-
ous. Since even this first-order description of single-
crystal plasticity leads to strong interactions between
neighboring grains, the physical realities of finite slip
plane spacing and finite dislocation mean free path
only lead to minor perturbations on the theory, which
will be discussed in the last section of this paper. It is
also ignored that there is generally some dislocation
activity, or ‘“micro-slip,’ on slip systems other than
those providing the bulk of the macroscopic deforma-
tion."”** Finally, it is assumed that a unique work-hard-
ening curve can be defined for a crystal of a given ori-
entation under a given stress state, whereas in reality
the reproducibility of stress strain curves is rarely
better than +5 pct.

For all these reasons and more, one will probably
have to be satisfied with an ‘‘explanation’’ of the
mechanical behavior of polycrystalline specimens
that establishes qualitative features and trends for all
properties on the basis of one model, but in which an
agreement of £10 pct between theory and experiment
on any specific property must be regarded as very
good. An explanation in this sense has, I believe, been
established with respect to flow stress and work
hardening, and their dependence on temperature,
strain rate, and grain size, for materials of face-
centered and body-centered cubic lattice structures,
deforming homogeneously. On the other hand, defor-
mation by the spreading of a Liiders band, the for-
mation of deformation textures, and the processes
limiting the ductility of polycrystalline specimens are
not as yet understood to such a degree.

THE YIELD LOCUS OF A SINGLE CRYSTAL

Grains in a polycrystal are generally not under such
simple boundary conditions of stress and strain as
single crystals in a tension test. One thus needs more
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general criteria for the meaning of ‘‘yield’’ and ‘‘work
hardening’’ in a grain than are used in free single
crystals.

The Schmid Law

For yield, the Schmid Law® may be stated in a form
that is applicable to any stress state: A single crystal
yields on any particular slip system if the shear stress
resolved on that slip plane and slip divection reaches a

critical value, the ‘‘yield strength’’ on that slip system.

If the stress state is specified by the tensor oy;, and
the yield strength on system s as 75, this law may be
expressed as

(i,j =1,2, 3) [1]*

*Summation over repeated subscripts and superscripts is always implied unless
the index 1s in parenthesis. The indices 1,j,k,1,m, n run through 1, 2, 3; Greek in-
dices run from 1 through 6; the superscript s runs through all slip systems, posi-
tive and negative.
where mfj is the tensor transformation matrix to be
defined below in more detail. The left-hand side of
Eq. [1] is the properly resolved applied stress, while
the right-hand side is a material property* depending,

8
mijjoy; = 78

*7 15 a scalar while o 15 a tensor; that 1s why the word “yield strength™ 1s to be
preferred over “yield stress.” (See also McClintock and Argon,? p. 279.)
for example, on the defect structure or, indirectly, on
the previous strain history. The equality sign in Eq.
[1] has to hold for every system that is active at a
particular time; the inequality (or the equality) may
hold for other systems. It is impossible to apply
stresses so high that they would violate Eq. [1]; 73 for
each overloaded system would then have risen along
with the applied stress through work hardening.

The magnitude of the yield strength, 75, may, in
some cases (for example, when it is controlled by the
Peierls stress), depend on other components of the
applied stress, such as the hydrostatic pressure or
the normal stress on the slip plane (which affect the
dislocation core structure). Such cases, in which the
Schmid Law' is said to be violated, shall be excluded
from treatment in this paper, although most of our
conclusions will be based on sfrair arguments and
would thus apply even for these materials.

For the case of single slip in system s =1 ina
single crystal under pure tension in the z direction,
mf‘j degenerates into the Schmid factor

[2a]

where ¢ and A are the angles between the slip plane
normal and the slip direction on the one hand and the
tensile axis on the other. If one defines nf as the slip
plane normal of system s, n§ as the slip direction of
system s, and (@i, az, a3) as the three unit vectors de-
fining the coordinate system in which the applied
stress tensor is given, then Eq. [2a] may be general-~
ized to

m =my, =CoS ¢-COS A

(s) (s)

mfj =n,% -a; 0% -a [2b]

It is often convenient to write out the two scalar
products in [ 2b] in terms of the components of all the
unit vectors in some third, ‘‘neutral’’ coordinate sys-
tem such as the cube edge directions in materials
with cubic lattice symmetry. Characterizing this third
coordinate system with the dummy indices k and 1,
we have
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mfy =mfag nfay  (k,1=1,2,3) (2]
as the most general definition of the tensor transfor-
mation matrix.

If one wants to retain the possibility of having dif-
ferent yield strengths in the forward and backward
direction on the same slip plane (for applications to
work hardened materials, to twinning, and to slipina
direction not perpendicular to a mirror plane, as it
occurs in bee crystals), one should label each conven-
tional ¢‘slip system’’ with two different numbers s,
one for the positive and one for the negative direction.
In this paper we shall use the term ¢‘slip system’’ in
this directional sense. 7° is then positive by defini-
tion, as is the increment of shear in each system:

dyS = 2 |def| [3]

The total strain dej; in a crystal in which the
equality in Eq. [1] is fulfilled in any number S of
systems s is (using o0yj = 0j;)

(s=1,...8) [4]

Inasmuch as the strength-strain relations during
plastic deformation depend very sensitively on the
strain path, through the path dependence of the devel-
opment of the dislocation structure with strain, it is
appropriate to use differential strains rather than
finite strains which are based on an arbitrary initial
state.*

dejj = 3(mfj + mf})dy®

*For shape measurements on single crystals, it 1s appropriate to use finte de-
formation gradient matrices.*

Eq. [1] is merely a special form of the general yield
criterion

fEif)=c (5]

commonly used in the mathematical theory of plas-
ticity. Similarly, Eq. [4] would follow from Eq. [1] by
use of the ‘‘associated flow rule’’

dy (6]

which is another basic hypothesis of this theory. Eq.
[6] is equivalent® to the statement that the function f
in the yield criterion [5] is also the plastic potential.*

U gy

*For a good discussion of the application of the concepts of the mathematical
theory of plasticity to physical problems, see McClintock and Argon.?

If one inverts m in the equality [1] and then multi-
plies 0ij(=0j;) with dej; as expressed in Eq. [4], one
can see that the work done by the external forces
equals the work done in the slip systems:

0ij deij = ’Tsd‘yS [7]

The Yield Locus
The above concepts may be expressed by means of
a geometrical representation called the yield surface
or yield locus. For this purpose it is useful to define
single row (or column) matrices for the six indepen-
dent components of stress and strain and for certain
combinations of direction cosines, as follows:

[8a]
[8b]

{OV} = {Uu, 022, 033, O23, 031, 012}
{el}} = {della d€22, d€33, 2d€23, 2d€31, 2d€12}

= s ) ) s
{m,,} = {mu, mgp, M33, mb + m§’2, mz; + mls3,

METALLURGICAL TRANSACTIONS



m$; + m$,} [8c]
so that Egs. [1] and [4] may be rewritten as follows:
mSc0, =7% for each active system [1a]
v=1,..6)
mSc, = 7% for each inactive system [1b]
and
de, =mjdy® s=1,..8)  [4a]

One may further complement these equations by de-
fining the increments of lattice rotation

dwy = rpdy® (9]
with

{dwy} = {2dwss, 2dws;, 2dw,»} [10a]
and

[10b)

Egs. [1a] may be interpreted as describing a set of
planes (one for each system) in a six-dimensional
space whose coordinates are the six components of
stress [8a]. The m$ are the inverse intercepts on the
v axis of the s plane. Similarly, Eq. [4a] shows that
the direction of the strain increment due to a single
slip system s is in the direction of m$, i.e. the nor-
mal to the plane s. (The coordinate system used in
the six-dimensional space is assumed to be ortho-
gonal.) Thus, the strain increment is perpendicular
to the yield locus as suggested by Eq. [6].

To illustrate the usefulness of these concepts, let
us derive the yield locus of an hexagonal single crys-
tal yielding in basal slip only.® Here, the yield stress
is infinite in all directions of the six-dimensional
stress space except in the two-dimensional plane
representing shears in the basal plane. There are six
slip directions in the basal plane (three positive and
three negative), and thus there are six facets of the
yield surface, which intersect the two-dimensional
plane in question in straight lines. The yield locus, by
virtue of the inequality in Eq. {1] or [1b], is the inner
envelope of these lines. Fig. 1 shows the requisite
picture.

{ri} = {mga - mg’z, m$; — m?s, m — mgl}

Ozy

de®

—*Ozx

(b) STRESS SPACE
{Strain Space Superimposed)

(a) REAL SPACE

Fig. 1—(a) Definition of a coordinate system in the basal
plane (perpendicular to z) of an hexagonal crystal. The slip
vector n; may be in the directions a;, —a,, a,, ~a,, 8, —4a,.
(b) Section at oxx = gyy = 0z; = oxy = 0 through the yield
locus of an hexagonal crystal yielding in basal slip. The
stress states o'’ and ¢‘¥’ will lead to the strain state de(?
= de®; any one of the strain increments de'® will demand
the same stress o'.
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Let us apply, in turn, three different stress states
to the crystal represented by Fig. 1, and let all of the
components of each of the stress states in turn be
raised proportionally until the yield surface is reached.
The three stress states at this stage are called
¢, 0'”, and 06", and are represented by arrows in
Fig. 1(b). In the first and second case, any strain in-
crement upon yielding will have to be in the ‘*direc-
tion”’ specified by the arrows de'*’ and de'®; they
are the same, although the stress directions are dif-
ferent. The Schmid law says nothing about how muckh
strain will occur upon yielding, only that it must be
positive (or zero) in the direction specified.

The stress state ¢'*’ was chosen in a special way,
namely such that two systems be activated simul-
taneously as soon as the yield surface is reached.
Again, the Schmid law does not specify how much
strain will occur on either system, only that it must
be positive (or zero) in the direction of the outward
normal to each of the facets. Thus, the total strain
increment may be in any direction contained within
the fan of normals de'® in this corner of the yield
surface. This is a generalization of Eq. [ 6] for dis-
continuities in the yield surface, i.e., when Eq. [5]
degenerates into a set of simultaneous equations.

The case of basal slip in hexagonal crystals was
deliberately chosen to be simple. In this case, the use
of the yield locus does not significantly advance our
understanding of the process. The usefulness of the
method will be more evident if we treat one more ex-
ample that has been extensively studied:* % fcc crys-
tals slipping on {111} planes in (110) directions.
Since there are twelve positive and twelve negative
slip systems, one will obviously have to find a straight-
forward procedure to define the yield surface, Such a
procedure is given by Egs. [1a], [8c], and [2]. For a
cubic crystal, it is sensible to choose as the coordi-
nate system a@; in Eq. [2] the cubic axes and not a
coordinate system defined by a specific external stress
state. Then,* aj, =8;; and a;) = §j;; the terms nfk

*5ij= 1 fori=j;81j=0fori¢j.

and nf’l become the normalized Miller indices of the
slip plane normal and slip direction, respectively.
The matrix m$ (Eq. [8c]) for all slip systems is then
easily obtained. It is given in Table I, where we again
assume

[11]

78 =1 for all slip systems s

For completeness, Table I includes the rotation
matrix rls{ also.® Now each m?$ defines the inverse
intercept on the v axis of the facet belonging to slip
system s. For a visualization of the yield surface,
one only needs to select specific sections through the
six-dimensional space by setting three stresses o, =0
and plotting the other three. Fig. 2 shows a section
obtained in this way for 0z = 033 = 023 = 0, With 0,
plotted in the X-direction, and so on.

Fig. 3 was obtained by the same method but by use
of the coordinate system appropriate for one particu-
lar slip system. The figure was derived merely to
show the comparison to basal slip in the hexagonal
crystal. The yield surface is now no longer infinite
in all directions other than those contained in the
plane corresponding to basal slip. For example, plot-
ting a tensile stress perpendicular to the slip plane
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as the third direction, as in Fig. 3, shows that six ¥4
systems will get simultaneously activated in fcc
crystals, although in a much less efficient way.

Corners of the Yield Locus

If one looks at the corners in Figs. 2 and 3, one
finds that either four, six, or eight systems are simul-
taneously activated. Drawing other sections through
the yield surface, one could have found® corners in Fig. 3—Section

which three or five systems are activated; further- through fcc yield
surface in coor-
dinates of glide
system, UP:

Table I. The Matrix mf, of All Single Shp Facets of the fce Yield Locus,
Referred to Cubic Axes, and the Miller Indices of the Plastic (X, ¥, z)

ion Axes. 1> - _
Rotation Axes, ri = (111, 110, 112);

Ship System (%s) m$=%1//6 X i Z X Y
1M 22 33 23 31 12 |23 31 12 (oxy) = )é g 8
Names* Plane  Dir. 1 2 3 4 5 6 1 2 3
a PK 1171 o011 o 1 1 o 1 1]2 1 1
b PQ 10t 1 0o 1 1 0 1|1 2 1
¢ PU 110 1 1 0 1t 1 o]1 1 12
d QU 111 011 o 1 1 o 1 12 1 1
e QP 101 1 o 1 1 o 1}1 2 1
f QK 110 r 1 0o 1 1 o1 1 2
g Kb 111 011 o 1 1 o 1 1]2 1 1
h KU 101 1 0o 1 1 o 1|1 2 1
1 KQ tto 1 v 6 1 b 0f 1 1 2 pyore, there are the edges in which only two systems
3 UQ 111 011 o 1 1 o 1 1|32 1 1 are activated. In six dimensions, it takes six planes
k UK 101 1 o 1 1 o 1|1 2 1 to make a real ‘‘corner’’, whose cone of normals has
1 Up r1rof ¢+ 1 0 1 1 O] 1 1 2 a finite angular extent in every one of the six dimen-
*The single lower-case letter is for use in Table II, the pair of capital letters 15 S%Ons-_ When fewer f?.cets .meet; the_pOSSible Strain.
the designation usually used by this author,®® which 1s useful for the study of directions are restricted in some dimensions, and it
dislocation interactions is arbitrary whether one calls such places corners
or edges.

Now it is evident that slip can never cause any
volume changes and, conversely, that a hydrostatic
stress can never have a resolved shear stress on an
slip system (see Eqgs. [1] and [2], remembering n 5nyy
=0). Thus, all yield surfaces will always extend to in-
finity in the {111000} direction, and no corner can have
a cone of normals extending into more than five di-
mensions. We shall call ‘‘covners of the yield locus™
only such stress states as ave capable of activaling a
finite range of strains in all vemaining five dimensions
and we shall call the process involved “polyslip’’.5*°
All stress states that activate more than one system
but do not qualify as corner states, are called ‘‘edge
states’’ and the process involved is called ‘“multiple
slip”’.

If one were to prescribe an arbitrary direction of
straining, this direction would in general be normal to
the yield surface only at one of the corners. Thus,
the stress state necessary to achieve such a defor-
mation will have to be one of a number of discrete
stress states. This is analogous to the case of a pre-
scribed arbitrary stress, in which the response of the
specimen will be any one of a number of discrete
straining directions.

Most single crystal experiments are performed on

Fig. 2—Section through fcc yield surface for wires, in which the proximity of free surfaces every-
Z X where forces the stress direction to be in the wire
o= [X 0 (’){} axis (even though the amount of the stress may not be
Y 0o prescribed by a dead weight, but rather by the speci-
in cubic coordinates. men’s response to a prescribed extension rate). In
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such tests, single crystals will generally yield in single
slip. The strain state will by no means be a pure ex-
tension; for example, the cross section will generally
change shape.

The case of a completely prescribed ‘‘direction’’ of
straining, in all components, is impossible to realize
in practice. Many technological forming operations,
such as forging in a closed die, are, however, of this
general type. Drawing a wire through a die'' or com-
pressing a specimen under lateral constraints (‘‘plane
strain compression’’)"'*? are relatively simple tests
that may be performed even on single crystals and that
approximate prescribed strain conditions. In all such
cases, the stresses are not well known because of the
unavoidable friction at the contact faces.

If the discrete stress states leading into any corner
¢ of the yield surface are defined by ¢$, and if Eq.
[11] holds, it is sensible to define a normalized corner
arrow MS$ such that, by virtue of the yield criterion,
Egs. [1a] and [1b],

MSm$ =1 for all (s) in (c) [12a]
wv=1,..,6)
MSmS5 <1 for all (s) not in (c) [12b]

Eq. [12a] defines M only in its deviatoric (i.e.,
nonhydrostatic) components,* as indeed the stress to

*The deviatoric components Aij of a tensor A are defined as A;J = Ajj - Akkdy-

activate a certain slip system combination can only
be defined in its deviatoric components. They are

(18]

In practical cases, it is usually not the hydrostatic
stress that is zero, but one or two of the individual
normal stress components. One may thus dispose of
the arbitrary hydrostatic component of the corner
arrows M in the same way and make as many of the
components for v =1, 2, 3 zero as possible. In this
definition, the MY matrix for fcc crystals is given in
Table I1.° In contradistinction to the m$ matrix, M$
has to be found by trial and error (or by a systematic
search).

Eq. [13] is the analogue of Eq. [1a], for the case of
prescribed strains. Similarly, an analogue of Eq. [4a]
describes the relation between sirains and shears. It
is most easily derived'® by writing down the work
expression

gy, =Mj7 for each corner

[14]

and equating it with the work done in the active slip
systems, 75dyS. If work hardening is isotropic (Eq.
[11]), and if the strain increment is, as usual, pre-
scribed only in its deviatoric components dej, it
follows that

! —_ 1
oyde, = TMde,

M,de}, = $dyS = dr [15]
s
where T is the algebraic sum of shears defined by
this equation.
Just as mS degenerates into the Schmid factor*

*The symbol m is variously used for the quantity defined in Eq. [16] or its
inverse.

7 _de
m:—:-—g

s~ @ [16]

for uniaxial stress,
so M$ degenerates into the Tavlor factor
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_dr _ o,

g ==
Here de; means the component of the strain in the
direction of the applied stress, and o, the component
of the stress in the direction of the applied strain, see
Fig. 4. These equations follow from Egs. [1a] and [4a],
and from Egs. [13] and [15], respectively.

Values for M in tension (or compression) in vari-
ous orientations in the stereographic unit triangle have
been obtained by Taylor." Fig. 5 reproduces contours
obtained by computer.'* There are five regions of the
triangle in which the final corner of the yield surface
is the same.

From the point of view of the crystallographic rela-
tionship between the various slip systems activated by
a given corner stress state, and the ensuing dislocation
interaction possibilities, corner states fall into five
different ‘‘polyslip types”.'? These are listed in Fig. 6
for fcc crystals. Each type is represented in one of
the five regions of the unit triangle for prescribed uni-
axial strain. The various polyslip types may be acti-
vated in a free single crystal by special stress states,

for uniaxial strain. [17]

Table 11. The Matrix Mg of All Polyslip Corner Stress States in the fcc Yield
Locus, Referred to Cubic Axes, and the Miller Indices Rﬁ of Strain-Free
Plastic Rotation Axes

C .8 =
Corner(*c) M§ =16 X R{ Nfl:rnt]; e;el
1122 33 23 31 12| 23 31 12  sip
Bishop” Name* 2 3 4 5 6/ 1t 2 3 systems
2 Aljl 0 0 0 O 0} beefhikl
3 2 0 1 0 0 0 0 Any acdfgijl
1 3/]0 0 1 _0 0 0 abdeghik
28 B1 |0 0 0 +1 +3 +4 +1 +1 +1 abefg
27 210 0 0 -} +1 +1 -1 +1 +1 acghki
26 310 0 0 +4 -3 +3 +1 -1 +1 bedejl
25 40 0 0 +3 +2 -4 +1 41 -1 dfhgk
4 ci1|{o0 o 0 1 0 o0 beefhik]
5 210 0 0 o0 1 0} Any acdfgijl
3/0 0o 0 0 0 1 abdeghjk
17 D1 |3 o0 0 0 +3 +_;§ o 1 1 2bekl
20 214 0o o o - -4 acefgh
19 3042 0 0 o0 +§ —-;g o 1 i dehy
18 43 0 o o - +§ bedfjk
13 5|10 4 0 +3 0 +§ E L o0 1 z_;l:e_f]}_
16 6|0 % 0 -1 o0 -3 bedegl
14 710 4 0o -1 o +-;E T o I achijyk
15 gt1o0 4 o + o -} dfghkl
21 9|0 0 3 +i +1 o% L1 o efgijk
24 w|o o 4 -4 -4 o0 abdfhi
23 1o o § +3 -3 0} i 1 o acdekl
22 120 o0 3 -3 + 0 beghjl
9 E1 {0 + -1 + o0 o abdfghl
10 210 +# -2 -1 o o0 acdegijk
7 3= o +f 0o + o Any beefghik
8 4 -3 0o + o -1 o0 abdehiki
11 5|+ -2 0 0 0 +3 bedfgikl
12 6 {+3 -3 0 0 0 -3 acefhijl

Note: A constant p® was added to each M§, M§, and M§ such as to make zeroes
out of as many of them as possible.

*A,B, C,D,E are the crystallographically distinct types of polyslip investigated
by Kocks.5:!?
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such as (100) tension, (111) tension, {100}(010) shear,
and so forth.’? In this manner the respective work
hardening curves have been obtained by Kocks.'? Hos-
ford’® has later determined the same polyslip curves

in ‘‘plane strain compression’’.

Rotations

The number of systems activated in any corner or
edge state may be larger than the number of dimen-
sions in which the cone of normals has a finite extent.
In this case, one says that they do not form a set of
independent slip systems. This term is somewhat mis-
leading,'® because dislocation motions in, for example,
eight different slip systems may be entirely uncoupled
from each other. However, different combinations of
slip may give the same macroscopic strain in all di-
rections; they would give different rotations of the
crystal lattice with respect to the specimen surfaces.
Such ‘‘plastic rotations’’ can, on the other hand, not be
enforced by any boundary conditions on the specimen.
It is in this sense that resolution of an applied stress
or strain state into more than five slip systems cannot
be unique, and that such a set of slip systems may be
called interdependent.

When eight slip systems meet in a corner, there
are three degrees of freedom left, and thus all rota-
tions are possible. When there are only six slip sys-
tems, however, rotations must be restricted to a
single axis. To find this axis, it is best to try to
produce a pure rotation by maximizing the differences
between various slip systems of the combination. Max-
imum difference between the contributions of coplanay
slip systems show, in the case of (111) tension of fec
crystals, that the arbitrary rotation can only be a
twist around the tensile axis. Table II lists the Miller
indices of the axis around which arbitrary additional
rotations are allowed, under Rj.

Card Glide and Pencil Glide

Ice slips on a crystallographic slip plane, but the
slip direction is approximately the direction of maxi-
mum resolved stress in this plane. This situation is
easily described in stress space. The yield locus is a
circle in the plane containing all shears on the slip
plane, and it is infinite in all four perpendicular direc-

g deg

tions. The direction of the stress state and the direc-
tion of the strain state are thus parallel in this plane
(Eq. [6]), although there may be additional stress com-
ponents out of this plane. This behavior may be de-
scribed as ‘‘card glide’’.

‘‘Pencil glide’’ is very similar: here the slip direc-
tion is crystallographically prescribed, but the slip
plane is that of maximum resolved shear stress con-
taining the crystallographic slip direction. Since the
terms slip plane and slip direction are interchangeable
from a point of view of macroscopic strain, any yield
locus for pencil glide in a particular slip direction can
also be described by a circular cylinder. For example,
if there were an hexagonal crystal that deformed in
pencil glide on any prismatic plane in the direction
normal to the basal plane, its yield locus would be
identical to that of ice described above.

In algebraic form, the yield condition for card glide
or pencil glide, with a crystallographically prescribed
slip plane or slip direction in the x-coordinate, is'’

Ogy +0xz =7 {18]

Pencil glide is often a good description of what
happens in bce single crystals: the slip direction is
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Fig. 5—The Taylor factor M for tension in fcc crystals, as
a function of the orientation of the tensile axis. According
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of (111) type and the slip plane is, on the average,
noncrystallographic. In other cases, {110} is a crys-
tallographically preferred slip plane. If again one
treats the terms slip plane and slip direction as inter-
changeable, the latter case is exactly equivalent to
slip in fee crystals, and thus the yield surfaces are
identical.

The yield locus for pencil glide may then be obtained
from the fcc yield locus by eliminating any distinction
between the slip directions in the fce {111} plane. This
amounts to replacing a number of hexagonal cylinders
by circular cylinders. However, not all corners and
edges are taken out of the yield surface, because the
different cylinders belonging to different fcc slip
planes (bcc slip directions) intersect to form some
edges and corners. Figs. 7 and 8 show the bcc pencil
glide equivalents to Figs. 2 and 3. It is worth noting
that there are some ‘‘points’’ where two cylinders in-
ter sect, which are, however, not corners in any sense
of the word: they have a unique normal.

Those points on Figs. 7 and 8 that look like true
corners are, however, not ‘‘corners’ by the definition
used here either: their cones of normals extend into
only three or four dimensions, not into five. Thus,

there are no polyslip corners at all in the bee pencil
glide yield surface, and by far the majority of all pre-
scribed strain states would be satisfied by a combina-
tion of fewer slip systems. ‘Also, there is never any
ambiguity of slip system selection that could lead to
arbitrary superimposed rotations.'®

The four slip directions available in bec erystals
are thus ample to insure the possibility of plastic re-
lief of any (deviatoric) prescribed strain, i.e., to in-
sure that the yield surface is closed in five dimensions.
Would three slip directions have been enough, in gen-
eral? It is easy to see that three slip directions aligned
with the edges of a cube could not produce any length
change in any of the edge directions, no matter what
slip plane were used.

The general condition for pencil glide to provide a
complete set of independent modes is that three slip
directions be available which are not coplanar and
which do not include any right angle.

Work Hardening and Latent Hardening

Work hardening in single crystals is usually de-
scribed by a series of yield strength vs shear curves

A

B C D E

[100] Tension

[111] Tension

(100)[ 010] Shear (100)[010] Shear

+{110}[ 1101 Shear

[100] Compression
+(160)[011] Shear

Fig. 6—The five types of polyslip.

Fig. 7T—Section through the yield surface for bee pencil glide,
in cubic coordinates.
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Fig. 8—Section
through bee yield
surface. X and Y:
shear stresses in
glide direction; Z:
normal stress in
glide direction.
Qualitative.
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(a) NONE (b} ISOTROPIC (c) HIGH

Fig. 9—Latent hardening.

for different orientations of the tensile axis with re-
spect to the crystallographic axes. In terms of the
yield locus, these curves show the rate at which those
facets of the yield surface that correspond to active
slip systems move away from the origin with increas-
ing shear. Nothing is known from such experiments
about the other, ‘‘latent’’ systems.

There are two simple assumptions one could make:
that the latent systems do not harden at all or that
they harden at the same rate as the active systems.’3
Figs. 9(a) and 9(b) show these two cases for two equal
increments of strength on the single (‘‘primary’’) sys-
tem that yielded first. In case (a), a second system
will get activated soon; after one additional equal
strength increment, the first system would in fact be
deactivated as a third system comes in. The yield
surface becomes very anisotropic. In case (b), work
hardening is “‘isotropic’’: the yield surface blows up
like a balloon.

From recent experiments, it seems that Fig.
9(c) typifies the realistic case: the latent systems
harden faster than the active ones; the ratio of the two
hardening rates (past easy glide) is roughly constant
and at most about 1.4. Latent slip systems on the same
slip plane harden at a rate equal to that on the pri-
mary slip system.®®® (The yield locus in Fig. 9 is a
symbolic one, not representing any special class of
crystals.) Fig. 9(c) also shows that there may be a
Bauschinger effect: the slip system that is the exact
opposite of the active one may harden less than the
active one,

In polyslip, one may expect little difference between
the various active slip systems. Again, the latent sys-
tems should harden at an equal or higher rate. In the
case of (111) compression in aluminum, this has been
shown® to be the case by alternately compressing and
twisting a thin-walled single crystal tube of hexagonal
cross section with its axis in the (111) direction.

The state of affairs described in Fig. 9(c) is not
very different from that postulated by Taylor,” Fig.
9(). Especially under prescribed strain, ‘‘isotropic
work hardening’’ is thus a reasonable assumption.

The expanded yield loci shown in Fig. 9 are no dif-
ferent in principle from the original one: if a crystal
is unloaded and then reloaded, its new yield criterion
is described by the new yield surface. The word
‘‘yield strength’’ is frequently used only for the stress
at which a material first becomes plastic. However,
since ‘‘yield strength’’ may refer to cold-worked ma-
terials as well as to annealed ones, one may regard
the stress-strain curve as nothing but the locus of
current yield strengths vs (pre-)strain and use the
words ‘‘yield strength’’, ‘‘yield surface’’, and so
forth, irrespective of whether they are initial or cur-
rent values,

9,19-24
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Rate Effects

Any influence of strain rate on the yield criterion
has been ignored up to now. In the plasticity litera-
ture, an assumed absence of rate effects is often stated
to be equivalent to a very low strain rate, as if one
were close to thermodynamic equilibrium. To achieve
a finite strain rate, one would then have to exceed the
“rate independent yield surface’’ by an amount that
increases with the rate demanded.

The physical situation is better described as pre-
cisely the reverse. Yield is not the consequence of a
small deviation from equilibrium; it may rather be
called a threshold phenomenon. In all materials, there
is a reasonably well defined threshold limiting all elas-
tic states, independent of strain rate, at the absolute
zero of temperature. At finite temperature, this
threshold gets lowered, in many materials, by ther-
mal activation, and the amount of decrease depends
on the strain rate. One may thus define, for any ma-
terial, a series of yield loci for any combination of
strain rate and temperature, all of which are contained
within the limiting yield locus for T = (0°K. Fig. 10 is
a schematic illustration.

If the stress is prescribed in a given experiment,
rather than the strain rate, one can define a precise
elastic limit only at zero temperature. At all finite
temperatures, stresses below the limiting yield locus
will lead to some finite strain rate which is the lower
the lower the stress. In principle, one could thus say
that the yield locus for infinitesimal strain rates is a
point at the origin. In practice, however, since the
strain rates decrease exponentially with the deviation
of the stress from the limiting yield locus, there is
usually a finite stress at which the testing times would
exceed the age of the universe. In this fashion, a yield
locus for infinitesimal strain rates would be definable,
although it would be less useful than the one for zero
temperature.

Fig. 10 also shows an interesting effect which bears
on the basic tenet of the Schmid law: that only those
systems may be operative for which the ‘‘yield
strength’’ is reached. Evidently, slip systems other
than the most highly stressed one will, in this picture,
provide some strain rate, although it will be lower
than that on the primary system. In practice, these
strain rates may again be vanishingly small, but this
depends on the deviation of the applied stress from
edges of the yield surface, and on the detailed model
of strain rate sensitivity.

In the remainder, we shall ignore strain rate and
temperature effects.

Fig. 10—The ‘‘rate
independent’’ yield
surface, i.e., the
one for absolute
zero temperature.
Inside it &) the
yield surfaces for
increasingly lower
strain rates. The
extensions (-~-)
allow for different
strain rates on dif-
ferent slip sys-
tems.
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THE THEORY OF POLYCRYSTAL DEFORMATION

We shall only deal with plastic deformation, not with
fracture. Since the absence of sufficient modes of plas-
tic deformation may lead to premature fracture, there
is a significant interaction between the two fields.
Some general observations on this relationship are
contained in a paper dealing with the specific case of
¢ph materials.?®

We shall also restrict ourselves to homogeneous
deformation throughout a specimen (or a sufficiently
large part of it to qualify as a ‘‘polycrystal’’), and
exclude cases in which the macroscopic strain gradient
is significant on the scale of the grain size, whether
by virtue of external boundary conditions or as a re-
sult of the particular deformation mode of the material.

Elasto-Plastic Solutions

A polycrystal in the ideal sense defined in the first
section contains very many grains of the same orienta-
tion (within a certain small range), each one of which
has a different set of surrounding grains. Since we as-
sume no correlation between the orientations of neigh-
boring grains, all these surrounding grains taken to-
gether are a large random set and are as isotropic as
the whole polycrystal is assumed to be. For this rea-
son, one may average out the effect of the surroundings
on the grains of any particular orientation. Kréner?%:*’
proposed a model, illustrated in Fig. 11, in which all
grains of one crystallographic orientation (within a
certain small range) are represented by a single
spherical grain, and the surrounding matrix is repre-
sented by an isotropic continuum. This case itself
may then be treated by the Eshelby®® method, and sub-
sequently averaged over grains of all orientations.

The Eshelby method may be described by the follow-
ing thought experiment. First, the spherical or ellip-
soidal grain is cut out of the isotropic matrix. When
surface tractions are applied to the matrix at infinity,
which give rise to the macroscopic average stress o,
surface tractions are applied at the hole such that the
surrounding material is under the same stress state
as it would be if the hole were filled with the isotropic
continuum also. The matrix will then deform elastically
and plastically in a certain uniform way; the plastic
strain of the hole may be described by €. (The elastic
strains in matrix and grain are assumed to be identi-
cal. For a consideration of elastic anisotropy also,
see Hook and Hirth®™ and Willis.>®) Now the surface

f

tractions that had to be applied to the inside surface

of the hole are applied, with opposite sign, to the sepa-
rated grain. Presume that these surface tractions

will make the grain yield and give rise to a plastic
strain €. (All the o’s and €’s are tensors.) If one
now wants to insert the grain back into the matrix,

it will not fit: the ‘‘compatibility conditions’’ have
been violated. From this point on, both grain and ma-
trix are treated as elastic,* and a distribution of in-

*This mconsistency has also been pointed out by Hill3! who gave a more gen-
eral solution.

ternal stresses and elastic strains is found that will
make the grain fit back into the hole. As Eshelby®®
has shown, the internal stress is uniform inside any
grain of ellipsoidal shape, and it is directed pre-
cisely opposite to the difference between the plastic
strains of grain and hole. In other words, some of the
plastic strain is undone elastically. Let o be the
total stress inside the grain. Then, according to
Kréner,”’

©-0)=—aGle-¢ [19]
where G is the appropriate elastic modulus and ¢ is
a scalar constant of order 3.

Regardless of any quantitative details, we may con-
clude from Eq. [19] that the differences in strain
{both magnitude and direction) between neighboring
grains cannot be very large: a difference of a few
percent would cause fracture, and many yield mech-
anisms may intervene before that.

There are two basically distinct modes of yield that
may occur in response to the attempt by any grain to
deform by an especially large amount. One is by a
chain reaction in which neighboring grains yield
under the forward stress concentration caused by the
yield of the previous grain. If this mechanism pro-
ceeds through an entire cross section, it leads to the
formation of a Liiders band. Since the stress concen-
tration from the first grain falls off with a character-
istic distance of the order of the average grain diam-
eter, the second grain would deform to a significant
extent only if yield is controlled by the generation of
dislocations rather than by their propagation through
the entire grain.

The other mode of yield, with which we shall deal
exclusively from here on, consists of the activation
of additional slip systems in the first grain, through
the action of the internal stress, Eq. [19].

—Ql

B

Fig. 11-The Kroner model of polycrystal
deformation.?’
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The mechanism by which the transition from single
slip to multiple slip occurs, may be shown in a sketch
of a typical yield surface, Fig. 12. For simplicity, let
us first neglect work hardening and treat the case
where the plastic strain in the matrix € = 0, in the
right hand part of the figure. When the applied stress
o first reaches the yield surface, the strain € would
be described by an arrow pointing vertically upward.
The internal stress (o — ¢) inside the grain would then
be represented by an arrow pointing vertically down.
If the grain is to continue to deform, the total stress
o in the grain must be located on the yield surface;
thus 0 has to be raised to the first level shown by an
arrow.

It is seen that the stress state in this grain moves
away from the normal to the facet of the yield surface
that corresponds to the first active slip system. After
a little further strain and stress increase, it has
reached an edge of the yield surface and the second
slip system is activated. If the stress state is still not
contained in the fan of normals of this edge, it will
move along the edge, in the direction away from the
origin, and will soon arrive at another ‘‘edge’” where
three systems meet. By this procedure, the stress

O—/I™~
-aGe

Fig. 12—Series of applied and internal stress states during
the elasto-plastic transition region, shown on a typical
yield locus section.
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state eventually has to end up in the “‘corner’’ of the
yield surface whose cone of normals does contain the
stress vector.

Fig. 13 shows two such paths for two different ini-
tial stress states in a view of the fcc yield surface that
could, for example, be in the Z direction of Fig. 3
({(111) tension). In this particular case, the number of
activated slip systems jumps from two to six. Fig. 13
also shows the equivalent situation, for the same two
initial stress states, in bee pencil glide (e.g., the view
in the Z direction of Fig. 8, again (111) tension).
Since the direction of the fan of normals continuously
changes along the curved edges of this yield surface,
the stress state may be contained in a 2-dimensional
fan of normals before it reaches the 3-dimensional fan
that looks like a corner in Fig. 13. In the case shown
in the figure, only those stress states that are contained
within the dashed triangle will eventually activate
three slip directions.

On the left-hand side of Fig. 12, the effect of a
finite matrix strain € is incorporated with the as-
sumption that it is parallel to 0. In this case, the ap-
proach to the first edge is even more rapid. In either
case, the amount of plastic strain occurring before
the stress state reaches the proper corner of the yield
surface is of the order of magnitude of the elastic
strain at yield. Only when ¢ is very close to the pure
shear stress necessary to activate one slip system
may the strain be much larger. Both Payne*® et al.
and Budiansky and Wu*® have come to this conclusion
from different but equivalent® studies on fce grains of
many orientations. They have found that, even in the
average, the strain at which the final corner has been
reached is no more than a few times the elastic strain
at yield. At about 1 pct strain, the distribution of
strains should thus be quite uniform.

If the yield surface expands through work hardening
during these loading experiments, the approach of the
stress state to a corner of the yield surface will be
slower .*** However, even heavily work hardened ma-

*The stress state would stop changing “direction” when the tangent to the work
hardening curve goes through the origin—an unrealistic case.

terials rarely take elastic strains of the order of 1 pct,
an amount still negligible with respect to the plastic
strains.

According to these results, a grain imbedded in a
polycrystal thus behaves as if the strain it has to pro-
duce were prescribed by its surroundings and were

Fig. 13—Stress paths under prescribed
strain. In the example, view in the Z-
direction of the yield surfaces shown in
Figs. 3 and 8, respectively. X marks
points at which normals to the yield sur-
face from the origin emerge.
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indeed very similar to the macroscopic average strain
(Eq. [19]). This is the basic hypothesis for polycrystal
deformation advanced by Taylor™ in 1938.

For the case of the elastic deformation of polycrys-
tals, the assumption of uniform strain had been used
previously by Voigt.*® Reuss, on the other hand, as-
sumed uniform stresses, and he averaged over the
strains.

Hill*’ has shown that any method in which the com-
patibility conditions are fulfilled although the equi-
librium conditions may be violated gives an upper
bound for the elastic moduli of the polycrystal, whereas
any method in which the equilibrium conditions are
fulfilled (although the compatibility conditions may be
violated) gives a lower bound. For realistic degrees
of anisotropy, the arithmetic average between these
two bounds is often a sufficiently accurate solution to
the problem of an elastic polycrystal.

Similarly, the assumption of uniform strain in a
plastic polycrystal strictly gives an upper bound for
the yield stress,*®® and an assumption of uniform
stress would give a lower bound. In this sense, Tay-
lor’s model of polycrystal deformation presupposes
that, in the case of plasticity, the upper bound is much
closer to the true solution than the lower bound. With
the help of the elasto-plastic solutions discussed above
(Eq. [19]), one can easily see why this should be so.

When the strains are large, compatibility is especi-
ally important. Satisfying compatibility trivially by
assuming the strains to be uniform generally violates
equilibrium conditions across the grain boundaries.
This is particularly obvious in our case of single crys-
tals with faceted yield surfaces: any arbitrary strain
generally demands one of a small number of discrete
stress states that are very unlikely to be in equilibrium
across any grain boundary. However, this situation
may be amended by superimposing an internal stress
field designed to satisfy equilibrium conditions every-
where. The elastic strains associated with this internal
stress field may now, in general, destroy the previ-
ously satisfied compatibility conditions. The crux of
the argument is that such elastic strains are always
small compared with any plastic strains of interest
and should thus not influence the compatibility condi-

Fig. 14—Two methods of finding the
proper slip system combination for a
given strain de: (a) the combination with
the larger sum of shears violates the
yield condition; (b) the wrong corner of
the yield surface does not contain de in
its cone of normals. (ga) is a minimum
work criterion, (b) 2 maximum work cri-
terion.

(a) TAYLOR
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tions appreciably. Budiansky and Wu*’ have shown that
‘‘large plastic strains’' in this connection are plastic
strains larger than about five times the elastic strain,
or about 0.1 pct.

The Taylor Model

In the original Taylor” proposal, elastic strains
were neglected and the strain in each grain was set
exactly equal to the macroscopic average strain:

de = de [20]

Inasmuch as volume strains cannot be imposed onto
such a plastic-rigid material, five independent slip
systems are necessary to satisfy any arbitrary pre-
scribed strain.*® All possible combinations of five slip
systems in fcc crystals (with the exception of some
left out by mistake, as has been frequently pointed
out*') were then considered by Taylor; among them he
selected any one of the combinations giving the lowest
algebraic sum of shears, using a hypothesis based on
an analogy with sliding rigid bodies.

The necessity of fulfilling the yield criterion was
not recognized: a stress state has to exist which ac-
tivates all the slip systems selected in the proper
direction and which does not exceed the flow stress on
any other (positive or negative) slip system. We shall
now show that Taylor’s minimum shear sum criterion
is in fact equivalent to fulfilling the yield condition.*

*Note added in proof: This equivalence has now also been shown, m a different
way, by Chin and Mammel #2

Let a given prescribed strain increment de be re-
solved, Fig. 14(qa), into two different sets of five inde-
pendent slip systems, a ‘‘wrong” one (s)and a ‘‘right”’
one (s), resulting in the shears dy® and dy®, respec-
tively:

de, =m5dy® = m$dyS [21]
Now consider the stress ¢ that would activate every

one of the systems § in the correct direction de-
manded by Eq. [21], so that (Eq. [1a])
[22a]

w=1, ... 6)

(b) BISHOP & HILL
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This same stress ¢ may exceed the yield stress in
some systems not in the set (s). Let us specifically
assume that 0 exceeds the yield stress in at least
one of the systems s belonging to the ‘‘right’’ set,
so that

o,m$ > 78 (22p)
Scalar multiplication of @ into Eq. [21] shows that

5, de, =0, mS d7° =5, m$ dy® [23a]
and, with Eqs. [22a] and [22b],

75 &35 > 15 dyS [230]

Assuming an isotropic flow stress (Eq. [11]), we get
DI [23c]
s s

As we set out to demonstrate, the algebraic sum of
shears is larger for the combination of slip systems
that violates the yield condition. If two combinations
can be found both of which can provide the macro-
scopic strain without violating the yield condition, the
algebraic sum of shears is equal in the two combina-
tions, as one could already have deduced from Eq. [15)].

Eq. [23b] says that the correct combination of slip
systems requires the least work. It is important to
note, however, that this “‘minimum work’’ criterion is
a strictly geometric one and bears no relation what-
ever to any thermodynamic principle. This point be-
comes even more evident when one considers an al-
ternative method to select the proper corner of the
yield surface, derived by Bishop and Hill,** which
leads to a ‘‘maximum work principle’’.

Since an arbitrary prescribed strain state requires
a corner stress state, one could try out each corner
of a given yield surface (56 in the case of fcc crystals)
instead of the many more combinations of five slip
systems out of twelve even after dependencies have
been eliminated. However, a criterion would be
needed to specify which corner is the proper one.
Such a criterion was derived by Bishop and Hill** and
is illustrated in Fig. 14(b). The stress into the ‘‘right”’
corner is called o, the stress into a ‘‘wrong’’ corner
is called o*. The ¢‘right’’ corner may be character-
ized as being the one which would be first touched by
a plane perpendicular to de that is brought in from
infinity. In algebraic form,

wv=1, ..., 6)
In other words, the ‘‘right”’ stress state does the

larger work. It all depends on what is varied.

By either method, one may thus derive the proper
Taylor factors M for each orientation. Taylor™ aver-
aged* these M factors over all orientations and re-

o% de, <0, de, [24]

*For a general discussion of the subtleties involved in averaging tensor quanti-
ties, see Hnll.**

lated the yield stress o, of polycrystals in tension to
the glide yield stress 7, by

O0p = 11_4 To [25]
For fcc crystals, he found
M =3.06 [25a]

Eq. [25] follows from Eq. [17] if one assumes that
T, is the same in all grains of an annealed polycrys-
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tal, which implies that the work hardening experienced
by those grains which were first to yield is negligible.

Work Hardening

Taylor'® assumed the flow stress to be isotropic not
only in annealed crystals, but also after work harden-
ing has taken place. In polyslip, this is not an unrea-
sonable assumption as was discussed in the preceding
section. A logical extension, also proposed by Taylor ,13
is to make this flow stress depend only on the alge-
braic sum of shears:

T =71()

Although 7(T") is certainly not the same for free
single crystals of all orientations, Eq. [26] may be
correct under true polyslip conditions.* To convert

[26]

*In dislocation language, this can be expressed as follows: Isotropic flow stress
means that the flow stress depends on the average dislocation density o only. Iso-
tropic work hardening means that the dislocation mean free path LSindp=
dy$/bLS 1s the same for each slip system (s). Thus dr? & dp « [1/bL(r)] - dT

the single-crystal 7(T') curve into the polycrystal ten-
sile stress strain curve, Taylar then set

g =M7(T) [27a]
and
T=Me [27p]

Eq. [27b] is exactly correct from Eq. [15] in Tay-
lor’s model of uniform strain (Eq. [20]). The finite
opening angle of the cones of normals of the yield
locus corners shows, however, that such a stringent
condition was not necessary. If one allowed the strain
to vary a bit from grain to grain, to the extent allowed
by Eq. [19], one would generally still activate the same
corner and thus get the same M. Only the demarca-
tion lines between different corner states (Fig. 5)
would be somewhat washed out. There should still
be little if any correlation between M and de since
de, in this model, is prescribed by the surroundings
of each grain, whereas M is a function only of the
orientation of the grain itself. In the absence of such
correlations, Eq. [27b] is correct.

Eq. [27a], on the other hand, presupposes that there
is no correlation between the orientation of a grain
and its flow stress. This is in direct contradiction to
the assumption of an essentially uniform strain e,
which implies different shear sums for different ori-
entations and therefore different flow stresses
(Eq. [26]).

In general, one should express the work-hardening
law in differential form, with a stress-dependent work-
hardening rate @:

dr =6dr {28a]
Then it is generally true that
do =Mdr =M6dl =M?0de [28b)

where the bar denotes the average over all orienta-
tions. If one assumes essentially uniform strain,
linear wovk hardening © = const.) and negligible yield
stress, one finds

do/de = M?0 [29a]
On the other hand, Taylor’s Egs. [27] would have given,
under the same conditions,
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do/de =M 6 < M%0 [29b]

In reality, Taylor’s formula is probably not bad,
The work-hardening rate 6 generally decreases with
increasing I'; since grains with a high M have a high
T, under essentially uniform strain conditions, there
should be an inverse correlation between 9 and M.
Furthermore, any correlation that might exist between
the strain increment de of a particular grain and its
orientation should make € smaller for harder grains,
i.e., for high M. Both considerations would tend to
lower do/d€ from the value given in Eq. [29a], possibly
approaching that given in Eq. [29b].

In any case, Eqs. [25] and [29a] provide an upper
bound for the flow stress of polycrystals according to
the Taylor model —which, as we have seen, is itself
an upper bound to the correct solution of the poly-
crystal problem in general.

Any deviation from the assumptions leading to Eq.
[29a], namely linear work hardening and negligible
yield stress, has one further consequence: any curva-
ture in the 7(I') diagram will reappear less strongly
curved in the o(€) diagram. This is due to the fact
that, at any given strain €, there will be a spread of
T’s in the grains by roughly a factor 2. Thus, the
polycrystal takes a moving average over a certain
range of the single crystal curve. In the elasto-plastic
transition region of a material with a finite yield
stress and linear work hardening, this effect has been
treated quantitatively by Hutchinson.**

The Yield Locus of Polycrystals

The presumed isotropy of a ‘‘polycrystal’’ limits
the range of possible yield criteria, but it does not
uniquely determine any particular one. Two hypothe-
ses are in common use for phenomenological pur-
poses: the Tresca*’ criterion according to which the
maximum shear stress in the body has to reach a
critical value for yield; and the von Mises*® criterion
according to which the second invariant of the stresses
has to reach a critical value. Application of the ‘‘as-
sociated flow rule’’ (Eq. [6]) to the Tresca criterion
predicts a pure shear strain at yield, irrespective of
the nature of the applied stress; combination of the
<sagsociated flow rule’’ with the von Mises yield cri-
terion makes the strain increments parallel to the
(deviatoric) applied stress.*

*This proportionality between each component of the strain rate and the re-
spective nonhydrostatic stress component does not follow from isotropy, and 1t
does not follow from (reversible or irreversible) thermodynamics. Claims to the
contrary?”*® disregard the essential nature of threshold phenomena, as opposed
to small deviations from equilibrium (or a kinetic balance) in a parabolic potential.

From a physical point of view, the Tresca criterion
should apply in the following two cases:** yield of the
first grain in a polycrystal, if this were ever observ-
able; and macroscopic yield in the Liiders mode, when
stress concentrations due to the first operative grain
trigger the spreading of slip. Indeed, the Tresca yield
criterion has consistently been observed to hold fairly
well in materials that show a yield drop.*

A minimal condition for the von Mises yield cri-
terion to apply is that slip should occur in all direc-
tions in which there is any shear stress, i.e., in all
directions. Even in polyslip, however, the five or even
eight operative slip systems will cluster around the di-
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rection of maximum shear stress and will be absent in
planes and directions nearly parallel to the principal
axes of stress. One should thus expect a deviation of
the observed yield surface from the von Mises hypothe-
sis toward the Tresca hypothesis. Observations on
materials that yield by homogeneous plastic flow are
indeed generally observed to obey the von Mises cri-
terion or to deviate slightly from it in the predicted
direction,*® %%

Bishop and Hill,** who derived the Taylor factor for
polycrystal tension with the same result as Taylor”’,
have also applied the polyslip model to other stress
states. For pure shear, for example, they find M
=1.65, as compared to M = 3.06 in tension. For the
same value in tension, the von Mises criterion would
have made the shear constant 1.77 (= 3.06/@, see e.g.
Hill*), the Tresca criterion would have made it 1.53
(=3.06/2).

It should be remembered that the polyslip model ap-
plies to the fully plastic state. The yield stress should
thus be defined by the back extrapolation of the stress
strain curve to zero plastic strain, not by any pre-
scribed deviation from straight-line elastic behavior.

Upon reloading a prestrained polycrystal in the re-
verse direction, one frequently observes a Bauschinger
effect that is distinct from that observed in single
crystals. Hutchinson® has explicitly obtained the theo-
retical result, based on the Kroner®’ model, that the
proportional limit in reverse straining should be se-
verely reduced (or even become negative), although
the yield stress defined by back extrapolation is the
flow stress last observed during forward straining.

Application to bcec Crystals

We have seen that bee crystals which slip on {110}
planes have a yield surface identical to that of fcc
crystals. Thus, the average Taylor factor must be
the same: M = 3.086.

For pencil glide, Taylor® had outlined a program
that could not be executed before the advent of com-
puters, but has since been done in approximate fashion
by Hutchinson® and by Chin and Mammel.*® They found

M=~2.75 [30]

A lower limit for this M in pencil glide is, how-
ever, very easily derived by the use of the yield
surface and the Bishop and Hill variation method. In
the foregoing, we have seen that the bce pencil glide
yield surface can be derived from the fcc yield sur-
face by replacing various hexagonal cylinders with
circular cylinders. Some of the edges vanish in this
procedure, and the corners in the fcc yield surface
become ‘‘edges’’ where three or four slip directions
are simultaneously activated. The ‘‘maximum work
principle’’ (Eq. [24]) introduced by Bishop and Hill*®
and illustrated for this case in Fig. 15, enables one to
get the lower limit for M in each grain by falsely
assuming that all grains in bce polycrystals deform
with the stress states corresponding to the corners
in the fcc yield surface, The distance of all these
corner stress states from the origin is now equal to
473 times the respective distance in the fcc yield
surface, Thus,”

M>+V3.3.06 ~2.65 [31]
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Fig. 15—Applica-
tion of Bishop and
Hill’s®2 maximum
work principle to
pencil glide.

(o-0o%*)de 20

For all physical situations of approximate pencil
glide where the {110} plane may be somewhat pre-
ferred, the average Taylor factor has to lie between
2.65 and 3.06. If, for pencil glide, one uses the value
2.75 derived numerically by Hutchinson® and by Chin
and Mammel,* one may write

M =2.9+5pct

irvespective of slip mode.”

An interesting prediction concerning slip line ob-
servations may also be derived from the pencil glide
yield surface. We have seen in Fig. 14 that most grains
will never reach a state in which three or four slip di-
rections are activated simultaneously —yet more grains
reach these stress states than any other specific stress
state. These symmetric stress states have one char-
acteristic in common, namely that the slip plane of
maximum resolved stress is always the crystallo-
graphic {211} plane.* Thus one should expect to ob-

[31a]

*This 1s the equivalent of the observation that, in fcc corner stress states, rtwo
{110y slip directions are activated in every {111} slip plane

serve a marked tendency for {211} slip lines on poly-
crystals of materials which, as single crystals, show
essentially pencil glide.”

The Development of Deformation Textures

We have seen that all corners in the yield surface
for crystallographic slip allow additional arbitrary ro-
tations. These rotations are restricted to a single axis
in those cases where six slip systems are activated. In
the particular case of tension in fcc materials, the al-
lowed arbitrary rotation is a twist around the tension
axis and thus does not lead to any change in a fibre
texture. Furthermore, it is due to strong differences
in the amounts of slip obtained in two different direc-
tions on the same slip plane; latent hardening experi-
ments of single crystals suggest that this is not likely
to occur. In tension or compression, those fcc grains
with orientations in the upper part of the stereographic
triangle shown in Fig. 5 should thus rotate in a well
prescribed direction.

In those polyslip states where eight slip systems
are activated (the three regions touching the (100)-
{110) line in Fig. 5), additional rotations are entirely
arbitrary. The direction in which these grains rotate
is thus determined by which particular combination of
five or more slip systems is in fact operative, al-
though they all give the same algebraic sum of shears.

Taylor ** assumed that exactly five systems would
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operate and thus made an inherent assumption on
latent hardening. Furthermore, he was arbitrary in
the selection of the particular combination of five
systems presumed operative. Finally it is possible
that those states which Taylor failed to consider,* al-
though they did not influence the result on M, would
have affected the deformation textures he predicted in
a more sensitive way. It is thus not surprising that
the deformation texture derived by Taylor was not
particularly successful.

To derive a better deformation texture, which allows
for variations from one material to another under the
same configuration of potential slip systems, one will
have to incorporate a realistic hypothesis about latent
hardening into the theory. In general, isotropic hard-
ening will tend to give a uniform distribution of slips
over all activated slip systems, whereas high latent
hardening will tend to give slip on as few systems as
possible. An assumption in this general direction was
made in a qualitative paper by Bishop.’® Lin and Lieb®
used a hypothesis that has since gained substantial ex-
perimental Support,g’23 Fig. 9, namely that intersect-
ing slip planes harden more, whereas systems in
parallel planes harden at the same rate,

Experimentally observed deformation textures in fcc
materials fall into two classes which have been corre-
lated with the stacking fault energy of the material.®*®
It is indeed conceivable that the stacking fault energy
influences latent hardening directly. Alternatively,
high stacking fault energy could lead, at high strains,
to deformation by essentially pencil glide, thus alter-
ing the yield surface. Finally, latent hardening may
depend on whether the deformation occurs in stage II
or stage IIl of work hardening and this depends, at a
given strain, on the stacking fault energy. Detailed ex-
periments are necessary to ascertain which of the
physical mechanisms is at the root of the observed
spread in deformation textures.

The application of the model to the deformation of
bee materials allows one to make one statement con-
cerning deformation textures the truth of which is
self-evident and even confirmed by experiment: when
slip plane and slip direction are interchanged, the
macroscopic strain stays the same but the rotation
changes sign;™ thus the compression texture of bee
should be equal to the tension texture of fcc and vice
versa,

If bee crystals deform by pencil glide, there are
no corners left in the yield surface in which there is
any ambiguity in the decomposition of the applied
strain into the various slip systems.'® Thus the de-
formation texture should be unique for bcc materials.
This is again in good agreement with fact.

The Sachs Model

The oldest model of polycrystal deformation is that
proposed by Sachs® in 1928 and again, in slightly al-
tered forms, by Cox and Sopwith,* Kochendgrfer?*'s%
and, most recently, by Schwink and coworkers.®*®®
In the form given by Kochendérfer, it predicts, instead
of Eqs. [27], for a uniaxial test in the z-direction:

Ozz =00+ 1/m “Tlrp) [32a]
vp=1/m-¢,, [32b]
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where -r(yp) is a stress strain curve typical of single
slip on the primary or most favored system in free
single crystals, and m is the Schmid factor defined
in Eq. [2a], the average for fcc crystals being®®®

1/m =2.238

This result would be obtained® if one assumed a
series of parallel but free single crystals: the tensile
strain in the z-direction would be the same for every
grain, although all other components of strain would
be different from grain to grain. The tensile stress
would be different from grain to grain, but all other
stress components would be zero in each grain. Such
an arrangement would fulfill equilibrium and yield
conditions but would violate compatibility conditions.
By the arguments given earlier, the model should
thus provide a lower bound for the polycrystal stress
strain curve, and should become a progressively worse
approximation the larger the plastic strain.

The additional constant contribution o, to the flow
stress (Eq. [32a]) was introduced by Kochenddrfer*'
to account for internal stresses set up by the incom-
patibilities. We have seen in Eq. [19] that such in-
ternal stresses would become much too large to be
presumed to be of no consequence to the basic defor-
mation mechanism. Furthermore, as Masing68 has
pointed out, the model would demand that all work done
against g, be stored—which is far beyond the range
of possibilities allowed by the experiments.

The chief argument used in favor of the Sachs
model is based on metallographic observations of es-
sentially single slip in any particular region on the
surface of a deformed polycrystal, so long as it is not
in the immediate vicinity of a grain boundary.%:%%:%°
There are a number of experimental flaws in such ob-
servations. Firstly, the surface grains are not under
the full constraint of the compatibility conditions
caused by the interaction of grains across grain bound-
aries. Secondly, one observed slip line may, and often
does,”®"" correspond to fwo independent slip systems.
Thirdly, even under the conditions of polyslip, one
would rarely expect roughly equal amounts of glide on
all active slip systems; the plane that predominates
may well show up even more exclusively in light mi-
croscope pictures.

These difficulties may be minimized by the careful
use of electron microscope replica and transmission
techniques.”™ In many cases, the most realistic char-
acterization of the slip distribution in polycrystals
may in fact be a segmentation of grains into domains
in which a single slip system or a single slip plane
predominates, but different systems in different do-
mains of the same grain. Even in such a case, though,
Eqs. [32] would not describe the polycrystal stress
strain curve,

The conditions of compatibility have to be satisfied
for any volume element in the body, for domains as
well as for grains. Single slip in domains leading to
the formation of stress-free small-angle boundaries

is thus not possible.
Furthermore, the averaging procedure prescribed

in Egs. [32] presumes that in each grain only one slip
system operates: the one with the highest resolved

shear stress. The fundamental reason why M in Egs.
{27] is higher than 1/m in Egs. [32] is that some less
favored slip systems have to operate, too. Even when

(33]
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the less favored systems operate in concentrated form
in smaller regions, they still have to have a high
enough resolved stress.

We are thus forced to conclude®’ that the basis for
the Sachs model is theoretically unsound. There is no
reason why one should ever use” an ‘‘average orienta-
tion factor’’ that is the mean of the Sachs and Taylor
values.

By contrast, we may summarize that the various ob-
jections raised against the Taylor model proved to be
directed against specifics of the original proposal and
not against the substance of the model itself. The
strain is indeed not uniform from grain to grain; yet
the sharp corners in the single crystal yield surface
allow substantial deviations without affecting the re-
sults. The yield condition had not even been considered;
yet it was fulfilled by an ad hoc hypothesis. Neither
the flow stress nor the work hardening rate are the
same in all active slip systems; yet they are in fact
much more closely the same than had long been
thought, The predicted deformation texture did not fit
the experiments well; yet the specific arbitrary as-
sumptions made by Taylor to derive this result may
be replaced by more realistic ones without affecting
the rest of the theory.

One cannot help but marvel at the foresight con-
tained in Taylor’s work of the 1930’s, and one may
wonder how the field would have progressed had his
rather crude determinations of stress strain curves
not happened to ‘‘substantiate’’ the theory.

EXPERIMENTS
Stress Strain Curves

Figs. 16 and 17 show shear stress vs shear curves
for typical single crystals of iron and aluminum, re-
spectively. Most single crystals of random orienta-
tions would show curves roughly similar to the ‘‘single
slip’’ curves in Figs. 16 and 17, for which the Schmid

20 T T T T T

Aluminum, tension
Room Temperature —

NOMINAL SHEAR STRESS [kg/mm?2]
)
T

1%/ min
——~100%/min
o] 1 L 1 1 1
5 10 15 20 25

NOMINAL SHEAR [%)

Fig. 16—Nominal stress strain curves (without correction
for area changes and orientation changes) for 99.99 pct pure
Al, at two tensile strain rates: three single crystals of dif-
ferent orientations and one polycrystal of a grain size of
0.2 mm (15 pct surface grains), After Kocks ef al.?
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factor m = 0.5. The two corner orientations (100) and
{111) are included in the figures because of their par-
ticular relevance to polycrystal deformation. Poly-
crystal curves for these two materials are also shown
on the figures, converted to shear stress and shear
sum by Taylor’s Eqgs. [27] with M values according to
Eq. [25a] for crystallographic slip in aluminum, and
according to Eq. [30] for pencil glide in iron.

Figs. 16 and 17 demonstrate that the difference in
work-hardening behavior between different single
crystal orientations far outweighs in importance the
subtleties of averaging discussed in the last section.
The most striking feature of single crystal work
hardening is that intersecting slip systems interact
strongly, so that polyslip is harder than single slip.

It makes no sense, therefore, to compare the poly-
crystal with the average single crystal in free tension;
instead one should'® compare the polycrystal with
single crystals deforming in polyslip.*

*The orientation dependence of less pure single crystals, such as the alummum
used by Taylor,'® is much weaker; the problem did thus not exist then.

Indeed, the polycrystal curve falls between the (100)
and (111) curves in both materials. Specifically, easy
glide is absent in all, the yield strength is similar,
and so is the rapid hardening in stage II. Dynamic re-
covery in stage III is quite different for single crys-
tals of different polyslip orientations,'” for reasons
that are not well understood. In some cases, such as
in single crystals of (100) orientation in aluminum,
symmetric stress states do not in fact produce poly-
slip in free single crystals, and the rapid saturation
of the (100) stress strain curve may be connected
with this effect.'” It is then not surprising that the
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Fig. 17—Shear stress vs shear curves for 99.95 pct Fe (Fer-
rovac E): three single crystals of controlled orientations
and one polycrystal of a grain size of 0.1 mm (15 pct sur-
face grains). After Keh.?
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Fig. 18—Tensile stress-strain curve for a polycrystal of
99.98 pet Cu, grain size 0.15 mm (10 pct surface grains), at
room temperature. Dashed lines represent theoretical poly-
crystal curves, derived on the basis of the Sachs model from
an average single-crystal curve and on the basis of the
Taylor model from a single erystal of an orientation near
{111). After Kochenddrfer and Swanson.54

aluminum polycrystal curve more closely resembles
in character that of the (111) single crystal in which
6 systems are in fact observed to operate. Some ex-
periments'® have, in fact, shown exact agreement be-
tween polycrystal and (111) single crystal in alumi-
num,* but more commonly the polycrystal curve is

*[t is possible that some <111> texture remained in the drawn polycrystal
wires after annealing although it was not visible in Laue back-reflection photo-

graphs.

observed to be somewhat lower in level. An explana-
tion of this effect will have to await a more quantita-
tive understanding of stage III in general.”™

The fact that the polycrystal curve falls within the
range of those of single crystals is in itself noteworthy.
As a counter example, the tensile stress strain curve
for polycrystals of magnesium, which does not have
enough independent slip modes to make the Taylor
theory applicable, lies far above all free single-
crystal tensile curves.™

There is certainly room for some modifications of
the theory (Egs. [27]), for example along the lines sug-
gested in Eqgs. [28] and [29], without leading to any
serious disagreement with the experiments on fcc and
bce materials. However, a major change in the model,
for example to the one based on single slip on the most
favored system (Egs. [32]), in addition to being theo-
retically unsatisfactory, is precluded by the experi-
ments.

This is illustrated in Fig. 18 where the tensile
stress strain curve for a copper polycrystal is com-
pared® to the tensile curves predicted from the single
crystal shear curves* according to the rival models.

*Taken from Diehl’s™ work on the identical material.

For the Taylor model, the (111) curve was used as a
basis for the prediction, for the Sachs model an ‘‘aver-
age’’ single crystal curve was used,®® which is charac-
teristic of single slip and consistent with the basis of
the model.

At first sight, neither one of the predictions appears
very satisfactory. However, the ‘¢{(111) curve’’ used
for the Taylor model was in fact taken from an orien-
tation about 10 deg away from the (111) orientation.
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The single crystal curves are very sensitive to orien-
tation in this range; specifically,'’ there would be no
trace of easy glide in a true (111) curve, and the yield
stress would be about equal to the stress at the begin-
ning of stage II in single slip curves. Thus, the plotted
‘“Taylor’’ curve should be shifted to the left by a few
percent.'® The agreement with the polycrystal curve
would then be satisfactory near the yield stress and

in the rapid hardening region, whereas it would be
mediocre in stage III —much like in the cases of alumi-
num and iron. The discrepancy could be avoided by
taking a proper average between the curves of the dif-
ferent polyslip types.'

The prediction according to Sachs could be modi-
fied, according to Kochendérfer,*' by the addition of an
adjustable but constant stress (Eq. [32a]). Fig. 18
shows that this procedure could lead to agreement in
stage III, but would then imply very poor agreement at
the yield stress and in stage II. This is a disagree-
ment in kind, not just in degree, and could not have
been avoided by using any other ‘‘average single slip
curve’’,

Temperature and Strain Rate Dependence

More important than any quantitative agreement be-
tween a set of stress strain curves under special con-
ditions, from the point of view of showing a close rela-
tion between single-crystal and polycrystal plasticity,
would be a similar variation of these curves with other
deformation parameters. Fig. 16 already showed
single-crystal and polycrystal curves at two strain
rates differing by a factor 100; the behavior is obvi-
ously similar.

Fig. 19 shows polycrystal curves at the same two
strain rates but at a wide range of temperatures.” One
recognizes the typical behavior known from single-
crystal deformation: the curve may be decomposed
into an initial steep portion that is temperature and
rate insensitive (‘“‘stage I1’’}), and a progressively
flatter portion that is more strain rate sensitive and

very temperature sensitive (‘‘stage III’’). The fact
that ‘‘stage II’’ in polycrystals is not generally exactly
linear does not invalidate this comparison; one rea-
son for a general rounding off may be found in the
spread of shear strains in the various grains as dis-
cussed in the last section.

Knéll and Macherauch” published a similar set of
curves for copper polycrystals between 90° and 295°K.
In this temperature range, stage III in copper is rela-
tively steep but not very temperature sensitive. This
fact, together with the somewhat rounded appearance
of stage II, make a determination of the average stage
II slope and of the stress at the beginning of stage III
difficult. The values given by Knéll and Macherauch
show a larger temperature dependence of the stage II
slope and a smaller temperature dependence of the
stress at the onset of stage III than the corresponding
values quoted for single crystals; both deviations are
in the right direction to be explained away by the
above argument,

In single crystals, one carefully distinguishes be-
tween the rate and temperature sensitivity of the con-
tinuous stress strain curves, as in Figs. 16 and 19,
and that of the flow stress at a given history (‘‘strain
rate cycling’’, ‘‘temperature cycling’’). Fig. 20 shows
the rate sensitivity of the flow stress as a function of
the flow stress obtained in previous deformation, for
single crystals of various orientations and for poly-
crystals of aluminum.™ The polyerystal behavior is
again similar to that of single crystals and especially
close to that of the (111) orientation.

In fact, the strain rate sensitivity of single crys-
tals is much less orientation dependent than the stress
strain curves themselves, but it clearly differentiates
between stage II and stage I11.”? The agreement shown
between the polycrystal and the single crystals through-
out stages II and III is thus a significant indication of
the comparability of the deformation mechanisms in
both and makes the lack of a quantitative agreement
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Fig. 19—Tensile stress-strain curves, at
two tensile strain rates and at various
temperatures, of 99.99 pct Al polycrys-
tals of a grain size of 0.2 mm (15 pct of
the grains being on the surface). After
Kocks et al.”™
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on the stage III stress strain curves themselves
seem even less important.

At high temperatures, the discrepancy between the
results from strain rate cycling and from the continu-

ous stress strain curves becomes more striking.72

Fig. 21 shows the rate sensitivity of aluminum poly-
crystals and (111) single crystals at 600°K: they are

very similar, Fig. 22, on the other hand, shows tha

the stress strain curves, again converted to shear by
the Taylor formula, are quite different: the polycrys-
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Fig. 20—Rate sensitivity of the back-extrapolated flow stress

of aluminum single and polycrystals at room temperature,
as a function of the flow stress reached in pre-straining.
After Kocks et al.™
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tal curve appears displaced upward in the manner
proposed by Kochendérfer®' (Eq. [32a]). Howe and
Elbaum™ suggest that this might be due to an addi-
tional contribution from dislocation pile-ups at grain
boundaries, since the dislocation mean free path has,
at these temperatures, become larger than the grain
diameter. Nevertheless, stage III behavior seems to
govern the strain dependence and the strain rate de-
pendence of the flow stress.

Temperature cycling experiments were undertaken
on copper polycrystals™ and single crystals’® by
Bullen and coworkers. Their results show only minor
differences between the two.

In summary, the Taylor theory of polycrystal de-
formation gives quantitative agreement, to within the
accuracy of the experiments, with many observations
in fcc and bece materials. Where quantitative agree-
ment is lacking, namely with respect to the flow stress
at high strains, it is lacking because of an inadequate
under standing of stage III in single crystals, and agree-
ment is by no means excluded by present experiments.

The stages II and III of work hardening in single
crystals are found in their major characteristics also
in polycrystals.” Easy glide is absent in polycrystals.
The elasto-plastic transition region, which has some-
times been referred to as ‘‘stage 0’’ in single crys-
tals, has unfortunately been labeled ‘‘stage 1’’ in poly-
crystals by Schwink;65 not surprisingly, it was found to
have no relation to easy glide, the stage I of single-
crystal work hardening.®®

GRAIN BOUNDARY EFFECTS

All the effects of interactions between grains dis-
cussed up to now would be present also if the deforma-
tion within each grain were homogeneous and uniform.
The fact that, for various reasons, it is not, may bring
in effects depending on the grain size.

Some nonuniformities in the deformation are due to
the boundary conditions in each grain. Firstly, as we
have seen in the foregoing, the necessity to maintain
equilibrium across grain boundaries, when the stress
state in each grain is discrete, requires an internal
stress field with a characteristic wavelength of the
grain diameter. Although the response to this stress
field was assumed to be elastic in the Eshelby-Kroner
model, there may well be some plastic relaxation near
the grain boundaries.

Secondly, the individual grains adjacent to any par-
ticular grain do have characteristics of their own,
which make the boundary conditions vary along the
periphery of the particular grain considered. This
influence may fragment the grain into domains of
more nearly uniform deformation. Note, however, that
the Taylor theory is applicable to volume elements of
any size, not only to entire grains: the compatibility
conditions have to be obeyed everywhere.*

*M. F. Ashby (private communication) has recently considered the possibility
that the dislocations stored to accommodate these incompatibilities due to non-
uniformity contribute directly to the yield strength He finds that this would lead
to a proportionality between the yield strength and the square root of a quantity
that consists of a sum of a constant and the inverse grain size.

Finally, nonuniformities in deformation are due to
the inherent heterogeneity of slip and dislocation
movement.
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Discrete Slip Planes. Bicrystals

The fact that slip is restricted to planes about 1 um
apart, which develop substantial slip steps on free
surfaces, but cannot do so on grain boundaries, may
in principle cause additional strengthening in a poly-
crystal. These effects have been named ‘‘microscopic
compatibility conditions’’ by the Chalmers group who
did critical experiments to investigate their im-
portance,®% 8,°

In bicrystals under any general state of stress, the
macroscopic compatibility conditions® demand the
operation of a total of four slip systems in both crys-
tals,®”®’'® whereas the individual crystals would slip
on only one system each, if they were free, The forced
operation of an additional slip system, generally on an
intersecting plane, should force an increase in work
hardening as was indeed observed. Fig. 23 gives some
examples.

The prime effect of the interaction between grains
is a tendency to eliminate easy glide. In the case of
the (210) bicrystal, the effect persists to larger
strains. (210) single crystals always deform on a
single slip system, although this system may be one
or the other of the two equally stressed systems in
different regions of the specimen, Fig. 24.° In the bi-
crystal, the two systems are forced to interpenetrate,
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Fig. 23—Single crystals of various orientations and bicrys-
tals which were obtained by rotating one component crystal
with respect to the other by 45 deg around the tensile axis.
Cross section of each component crystal: 4 by + in.

From Kocks.®
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causing considerably higher work hardening.*

*For the same reason, the <100> single crystal 1s not characterstic of polyship
since, of 1ts eight equally stressed ship systems, two to at most four are observed
to operate in any large region i free single crystals.®

By contrast, single crystals of (211) orientation
slip on both the primary and the conjugate slip system
everywhere. Since the amounts of slip in the two sys-
tems provide two independent parameters, (211) bi-
crystals show the same stress strain curve as single
crystals. So do all bicrystals of symmetric orienta-
tions in which at least two slip systems are in fact
observed to operate in the single crystals.?® The pre-
dominant influence of the macroscopic compatibility
conditions is thereby again evident.

There is one other kind of special bicrystal which
behaves exactly like single crystals; namely a bicrys-
tal in which the orientation relationship between the
two grains is selected such that single slip in each
grain would fulfill the macroscopic compatibility con-
ditions at the boundary. No significant effects of any
microscopic compatibility conditions were observed.®

The stress concentrations ahead of a slip band
which meets a grain boundary can be partially relieved
by slip on some system in the other grain.®’**° The
remaining microscopic incompatibilities would be ex-
pected to affect a volume that extends on either side
of the grain boundary to a distance comparable to the
slip plane spacing. One might thus expect any such
effects to be negligible in bicrystals big enough to be
tested. In fact, differences observed upon a variation
of the specimen size® were at the limits of detecta~
bility.

In fine-grained polycrystals, on the other hand, one
may expect that the volume in which internal stresses
cannot be relieved by polyslip may be an appreciable
fraction of the specimen. To estimate the order of

magnitude of such effects, let us assume that a poly-
crystal with average grain size parameter* D may

*We do not distinguish between the various parameters such as grain diameter,
grain boundary area per umt volume, and so forth. If the truly relevant parameter
for a particular case is expressed n terms of a length, the relations derived here
hold to within a constant factor.%

be regarded as a composite of the material inside the
grains, having a flow stress ¢ according to the Taylor
model, and a ‘‘sponge’’ of which each ‘“web’’ is made
up of the material near grain boundaries, having a
strength og and extending a distance 4 (of the order
of the slip plane spacing) on either side of the grain
boundary. Averaging these two strength contributions
over the cross section would give for the composite
strength

~5 djog _
0—0{1+4Dl:6 1]}

(34]

VI — —

it i — e — S =

"lIT' | 3 T
___.-MW T

Fig. 24—A single crystal and a bicrystal of aluminum, de-
formed by tension in a {210) direction. The interpenetration
of the primary and the critical slip system is more severe
in the bicrystal. From Kocks.®
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In an extreme case, for d ¥ 1 ym, D ~ 10 um, a 50
pct higher grain boundary strength would give a 20
pct rise in flow stress. Such an effect may well show
up in fine-grained material. It depends on 1/D and
should raise the stress proportionately at all strains.

‘‘Notch sensitive’ materials, in which a local
stress concentration can cause the generation of dis-
locations or of cracks that spread at lower stresses,
are in a different class altogether. Here, microscopic
compatibility conditions are of prime importance. Any
effect on the flow stress enters as 1/\/5, either be-
cause of the stress concentration due to a pileup,® or
because of the process of emission of dislocations
from a ledge in a grain boundary.®”” However, as we
have seen, the mode of yield is not quasihomogeneous
by the polyslip mechanism, but heterogeneous by the
propagation of a Liiders band. We have excluded such
cases from consideration in this paper; they have been
extensively reviewed by Macherauch.®

Armstrong et al.” gave a quantitative treatment of
an intermediate case. They conclude that the grain
size dependence according to this mechanism should
be weaker the smaller the excess of the dislocation
generation stress over the propagation stress.

Finite Slip Distance. Experiments

We have now considered the effect of slip restricted
to discrete planes. Additional effects may be expected
because slip in single crystals does not usually
progress through even an entire plane; beyond easy
glide, dislocations have a mean free path of typically
about 100 to 10 um, inversely proportional to the
stress.®®%:% One may postulate that the basic mech-
anism of deformation is undisturbed when the grain
diameter is larger than the intrinsic slip distance, but
that grain boundaries do limit the dislocation mean
free path if they are closer to each other than the slip
distance would be in a single crystal under the same
conditions. When the grain size is small, one would
then expect to start the single-crystal stress strain
curve at the stress level corresponding to a slip dis-
tance equal to this grain size. From here on the dis-
location density should increase as in single crystals
and should limit the slip distance in the work-hardened
state. The theoretical stress strain curve for poly-
crystals derived by the Taylor method from single-
crystal data should thus be shifted to the left to ob-
tain the polycrystal stress strain curve for smaller
grain sizes.

The most extensive investigations of fcc polycrys-
tals after various annealing treatments (and thus vari-
ous grain sizes) and, in addition, at various strain
rates and temperatures were undertaken by Carreker
and Hibbard.®*~® Only in copper® did they find a
meaningful grain size effect; in aluminum,* they de-
tected no effects beyond the scatter of the experiments;
silver®? was, at best, a borderline case in which, un-
fortunately, the number of grains in the cross section
was also too small. In Fig. 19, we have cross-plotted
their results for copper at a test temperature of 77°K.
The grain size varies by a factor of 8 (and so does,
unfortunately, the fraction of surface grains: from 5
to 40 pct). The curves for the smaller grain sizes
were shifted to the right until the initial parts of their
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stress strain curves coincided. The agreement at high
strains is still reasonable,

Conrad and Feuerstein® also derived a grain size
dependence on the basis of a limited slip distance—but
they assumed that grain boundaries form the only ob-
stacles to slip. In such a case, one obtains a flow
stress that is proportional to 1/¥D—but it is also®
bound to be proportional to the square root of the
strain.* This mechanism may apply to the transition

*As discussed, the work hardening 1n stages H and I1I together may be mistaken
for a square-root relation unless the temperature 1s very low or the range of strains
investigated very large.

from the single-crystal yield strength to the raised
flow stress corresponding to a mean slip distance
equal to the grain diameter, Fig. 25.

From a phenomenological point of view, it may be
hard to separate a 1/VD dependence from a 1/D de-
pendence, especially if the latter has an upper cut-off
size. This is schematically illustrated in Fig. 26.
Published plots of experimental points ina ¢ vs 1/VD
diagram in fact often show a marked curvature™ such
as it would be expected if the real relation were
g « 1/D. Additional problems arise from the tendency
of many workers to extrapolate their grain size plots
to the yield stress of free single crystals.”® As we
have seen, this yield stress is often a property of
easy glide, whereas the yield stress of polycrystals
ought to relate to the onset of stage II work hardening
in single crystals.

Grain Boundary Sliding and Grain Boundary
Migration

It is often wrongly stated that the Taylor analysis
of polycrystal deformation is based on an assumption
that grain boundaries do not slide.

The compatibility conditions were stated in the fore-
going in terms of the fit between a deformed grain
and the deformed ‘‘hole’’ made by its surroundings. It
is easy to see that, in the example of an ellipsoidal
‘‘nole’’, rotation of the grain (involving grain boundary
sliding) around the rotation axis of the ellipsoid would
not change any of the ‘“fit’’ conditions.

At a small plane element of a grain boundary (as-
sumed perpendicular to the y-direction), the compati-

bility conditions require that e,., €,,,and €,, be
the same on either side.*® Grain boundary sliding,
on the other hand, would contribute a local strain in
the €y, or €yz component; it can thus not relieve any
of the compatibility conditions.

Grain boundary sliding may nevertheless occur as a
process incidental to slip, as it has in fact been ob-
served.”® It can provide an independent component of
the macroscopic strain only if whole sheets of grains
extending over the entire cross section slide over each
other. Mixed grain boundary sliding and concentrated
slip or kinking are a variation of this local mode of
yield.**

*Grain boundary shiding may affect slip indirectly by providing dislocation
sources at ledges 1n the boundary. This process may be rate controlling at gramn

sizes so small that dislocation sources are scarce. This process can lead to “super-
plasticity” (T H Alden, priv comm.).

A situation similar to that of grain boundary sliding
exists with respect to grain boundary migration. Small
angle grain boundaries have been observed to migrate
(i.e., move in the direction of their normal) under
stress;” whether large angle boundaries do is an open
question. In any case, the strain contributed locally
by grain boundary migration would occur in precisely
the same components as grain boundary sliding, i.e.,
€yx Or €y,; it cannot relieve any of the strains re-
quired by the compatibility conditions.

The possibility of mass transport through diffusive
processes (‘‘Nabarro-Herring creep’’) may of course
relieve the compatibility conditions. The sinks and
sources for the moving atoms would have to be at
grain boundaries. Inasmuch as it would not matter
which side of a particular grain boundary element an
arriving atom attached itself to, grain boundary mi-
gration may be an effect incidental to this process.

SUMMARY

The following results, reported by the author at
various times, are published here for the first time.

Yield Surfaces

1) Description of all strains and rotations due to
all slip systems in fcec crystals in terms of crystallo-
graphic cubic axes.

60 T T
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Fig. 25—Tensile stress-strain curves for
99.999 pct Cu polycrystals of various
grain sizes.’! The original curves have
been shifted along the horizontal axis to
bring their initial portions into coinci-
dence: in the smaller grains, the dislo-
— cation mean free path is limited from the
start to a value characteristic of some
degree of work hardening.

20—
10— 12p -
30u ¢ GRAIN DIAMETER
90u
o | |
0 10 20

TRUE STRAIN, %

METALLURGICAL TRANSACTIONS

40

VOLUME 1,MAY 1970-1141



MEAN SLIP LENGTH

GRAIN SIZE, D

Fig. 26—Comparison of an inverse square root grain size de-
pendence to a dependence on the inverse first power below a
certain critical size.

2) Sections through the fcc yield surface (rather
than projections as Bishop’) and enumeration of the
slip system combinations in all corner states.

3) Derivation of the possible axes of arbitrary ro-
tations in polyslip for fcc crystals.

4) Derivation of the identity of the yield surfaces
for {111}(110) slip in fcc crystals and {110}(111)
slip in bce crystals.

5) Explanation of the similarity of the deforma-
tion textures in bce materials in tension and fcc ma-
terials in compression, and vice versa.

6) Prescription for obtaining card glide and pen-
cil glide yield surfaces from the respective yield
locus for crystallographic slip.

7) Derivation of lower and upper limits for the
average Taylor factor in bee crystals, independent of
slip mode: 2.65 and 3.06.

8) Statement of the most general condition under
which pencil glide provides five independent slip modes:
the existence of three noncoplanar, nonorthogonal slip
directions.

Polycrystals

9) Description of the stress path on the single-crys-
tal yield surface of a grain in an elasto-plastic poly-
crystal.

10) Prediction of a preponderance of {211} slip in
polycrystals of beec metals in which there is no crys-
tallographic preference for a slip plane in the single
crystals.

11) Derivation of the equivalence of Taylor’s mini-
mum shear sum hypothesis and the yield condition.

12) Discussion of the assumptions inherent in con-
verting polycrystal stress strain curves into shear
stress shear sum curves by the Taylor method.

13) Report of some bicrystal experiments showing
the importance of latent hardening.
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14) Report of some observations of latent hardening
in polyslip.

15) Discussion of effects depending on the inverse
of the grain size and on the mean slip distance in single
crystals; reevaluation of some relevant experiments in
the literature.

16} Derivation of the irrelevance of grain boundary
sliding and grain boundary migration.

Reviewing the field of homogeneous plasticity (as
opposed to deformation by the spreading of a Liiders
band) in polycrystals at sub-diffusive temperatures,
we come to the following conclusions.

The relation between polycrystal and single-crys-
tal flow stress and work hardening, including their
dependence on temperature and strain rate, is well
established for fcc and bce materials. The conversion
of polycrystal stress strain curves into shear stress
shear sum curves by the Taylor method, and its com-
parison to single-crystal data in polyslip, is quanti-
tatively correct to the degree of accuracy to be ex-
pected. In stage III, a better understanding of single
crystal behavior is necessary.

The derivation of the deformation textures in bcc
materials should now be straight-forward; in fcc ma-
terials it has yet to be determined which of various ef-
fects determines the otherwise arbitrary components
of rotation in many grains.

Genuine grain size effects, in the absence of a yield
drop and of diffusive mechanisms, are negligible ex-
cept at very small grain sizes where they should be
proportional to 1/D rather than 1/\/3, in many cases.
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