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Summary. — Under the assumption that quarks are confined, in a first
approximation, by a relativistic linear potential V(r) =4 (1 4- 8)(Vo+ Ar),
several properties of low-lying baryons have been calculated. Correc-
tions to the mass spectrum have also been calculated, by taking the
one-gluon exchange into consideration.

1. — Introduction.

In the past few years, several articles have appeared in the literature con-
cerning quark confinement. There is hope that this confinement can be one
of the basic results of quantum chromodynamies. A more modest point of
view is to assume that guarks are confined @ priori. This is the point of view
taken in the bag models (1), where Lorentz invariance is assumed.

Recently, KoBUSHKIN (2) and one of the present authors (®) have studied
a model for baryons, in which, in a first approximation, each of the constituent
quarks obeys, in the baryon centre of mass, a Dirac equation with a potential
(1 + B)V(r). These authors have studied the model for different (2) con-

() See P. HasEnrraTz and J. Kuti: Phys. Rep. C, 40, 75 (1978) for a recent review.
(#2) A.P. KoBusHKIN: Academy of Sciences of the Ukrainian Institute for Theoretical
Physies, preprint I.T.P.-76-58E.

(3) P. LearL FERREIRA: Letf. Nuovo Cimento, 20, 157 (1977).
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fining potentials and, in ref. (4), one-gluon exchange corrections to the model
were implemented, in the case of a harmoniec-oscillator potential.

In this paper, we study the case in which V(r) =V, 4 Ar. We will
be particularly interested in calculating the properties of the baryons and
mesons belonging to the 56- and 35-dimensional representations of SUs. There-
fore, only the quarks u, d and s must be considered.

In sect. 2, we treat, in a first approximation, the quarks confined by a
central potential. In this level, they behave as independent particles and we
calculate several observables, like baryonic magnetic moments, mean square
charge radii, G, /G, ratios for some B-decays occurring in the }* octet, electro-
magnetic transitions and a mass speetrum. All degeneracies except p-w, are
raised when one-gluon exchange corrections are taken into account (sect. 3).
In sect. 4, the numerical results are described.

2, — The confining potential.

We will assume that, in first approximation, the quarks obey the Dirac
equation

(2.1) [a-p+ pm, + (1 + B) V(N ¥, (r) = B, P (r),

where Greek and Roman letters are used to label flavour and colour, respectively.
The solutions of (2.1) can be written as

(2.2) Y. (r)=N,! sp

where x,= Hx+ ms and D,(r) satisties the equation
(2.3) V2¢op(r) —I—' wa[E(x— m(x— V(T)] @a(r) — 0 .

In this paper, we will consider a confining potential which is linearly
rising, V(r) = V, 4+ Ar. This potential has been already considered, in this
level of approximation, in ref. (»?). The difference between our approach
and their is that we will take into account one-gluon exchange corrections.
The case of a confining potential of the form V(r) =V, + kr? has been already
considered in ref. (4).

In our approach, the baryons in the 56 representation of SU, and the mesons
in the 35 representation of the same group are built up of quarks u (« = 1),
d (@ =2) and 8 (¢ = 38), all in the J” == 1T ground state of eq. (2.1). This is

(*) P. LEAL FERREIRA and: N. ZAGURY: Lett. Nuovo Cimento, 20, 511 (1977).
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quite similar to the procedure that is used in bag model calculations (). Here

the confining potential is replacing the effects of the external pressure on the bag.

The normalized solutions of (2.3), corresponding to J* = 1*, are given by
K, 1

(2.4) D,(r) = TmATa,) 7 Ai(Hur + a,),

where K,==V/ l—w_a, Ai is the Airy function and a_ its n-th root. The eigenvalues
are

(2'5) Eom = Vo4 Ma——.

The ground state corresponds to the first root, a, = — 2.3381, of the Airy
function. The constant N, is chosen in order that ¥, (r) be normalized to
unity:

3(Eo + ma)

2. 2= .
(2.6) N 4B, + 2ms— V,

In this level of approximation, the quarks can be treated as « independent
particles » and several measurable quantities can be obtained simply by ad-
ding the contributions of each individual quark. For example, the mass spec-
trum can be obtained by adding the energies of the quark components. As-
suming that SU, is broken in the quark rest masses, ms, and that m, = m,#m,,
we will still have a highly degenerate spectrum. For example, the N> and N*
will have the same mass; the same occurs with A-X-3* and E-E*. These de-
generacies are raised when we add the one-gluon exchange diagrams. Thig
will be seen in the next section.

We have also calculated the baryonic magnetic moments, charge radii,
@,/G, ratios and the N* — Ny transition amplitudes.

Let us call J) the electric-charge density operator:

(2.7) J‘;)(w) = 3 Qu'Ga(®) Yugal®)

where x specifies the space-time co-ordinates, @, is the quark electric charge
and q«(x) is the quark operator for flavour «. The mean square charge radius
is given by

(2.8) oy = f dorrrJ® (@) .

(5) See, for example, T. DE GraxND, R. L. Jarrg, K. Jounson and J. Kiskis: Phys.
Rev. D, 12, 2060 (1975).

15 = Il Nuovo Cimento A.
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For the linear potential, one obtains

8a2 [\t 270 — 843
(2.9) =3 Qa[“(;)+~—ﬁﬁﬁi}

where the sum over « indicates that one should add the contribution of each
hadron eomponent.
The baryonic magnetic moment is given by

2

N
(210) G = B T0 fdar 0 (r Xa)gal B = (B 302 (0B,

where |B) is the regular SU; state corresponding to a baryon B. We notice
that in (2.10) it appears a factor N2/ z., instead of 1/2m, for the nonrelativ-
istic case.

The weak 3-decays can be interpreted as quark $-decays occurring inside
those particles:

(2.11a) d —-u+te 49,
and
(2.11b) 8 —>ufe 49, .

Taking the usual current-current interaction for the weak Hamiltonian, we have

(212) I = G@)gey + g2 7* 9008 0, q,(%) + sin b, q,(2)]-
&) pull + %) v(@) + hee.,
where g, and g, are the vector and axial vector coupling constants and 0, is

the Cabibbo angle. Assuming that g, = g, (°), we have obtained the value of
@, /4, for all baryonic B-decays:

¢ ¢
2.13 4 =(—"‘) 1—24,,);
(2.13) ¢, —\a, NR( )

here (G,/Gy)yy 18 the SUs nonrelativistic value () and ¢, is a relativistic cor-
rection in the axial coupling for the -decay of quark « (x = 2, 3) into quark u:

+ oo

(2.14) 6M=8—” ! f r2@y(r) Dy(r) dr,

3 r.xa
1}

where a prime means derivative with respect to r.

() P. N. BocoriuBov: Ann. Inst. Henri Poincaré, 8, 163 (1967).
(") J. J. J. KoxkEDEE: The Quark Model (New York, N. Y., 1969), p. 53.
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In the case of the decay (2.11a), we simply have
(2.15) 0,=3%(1— N},

since we are taking m, = m,. As we shall see in the next section, reasonable
choices of the parameters will give corrections of the order of 30 %, to the non-
relativistic SU, value.

We can also calculate the electromagnetic transition rates for the decay
N* — N+, from the baryon decuplet to the baryon octet. The transition
amplitude from a N* with helicity A, to a N° with helicity 4, and a photfon of
helicity 4+ 1 is given by

1 .
(2.16)  H(Ay; 4) = — Vor <N(lz)|fd3r exp [tk-r]J®-g(k, +1)|N*(L)) ,
where J is the electromagnetic-current operator defined in (2.7) and & (k, 4+ 1)

is the polarization vector for photons with momentum k and helicity 4 1.
After some algebra, (2.16) can be written as

(2.17) H( 39 2) V— —eflsrcbﬁ( r)exp [—ik-r] = \/3H(;, rl))

The relation H(— %, 3)=+v3H(},1) implies that only the magnetic-
dipole transition M,  will be present and that the electric-quadrupole con-
tribution B, is zero. This agrees with the experimental results for photo-
production of pions off nucleons, where the electric quadrupole E,, is less
than the 5% of M,,

3. — One-gluon exchange corrections.

At small distances, the quarks should be almost free and it is reasonable
to calculate, in first order in the quark-gluon coupling constant, «,, correc-
tions to the mass spectrum. The total Lagrangian can be written as

8 3
(3.1) F=—13F, F+ 3 Gulif — ma) g + sz‘

i=1 x=1
where 4, are the eight vector gluon fields, F,,, is given by

(32) Fz‘,w = ayAiv_ avAiu + gf AJ'MAkV

ik
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and J¥ is the quark colour current,

(3.3) Jiw Zqzx @) Aiy* qal@) ,

a=1

where the 1s are the eight SU, colour group generators.

In order to calculate the mass corrections to the hadrons, we will work in
first order in «, = g¢%/4m; the self-coupling terms of the gluon fields can be
neglected in this order in «,. The relevant diagrams are shown in fig. 1. Here
we will only calcnlate the contribution from the one-gluon exchange diagram
(fig. 1a)), since the self-energy diagram (fig. 1b)) contributes to the renormal-
ization of the quark masses, which have been taken as free parameters in our
model.

S

T

a) b)
Fig. 1. — Relevant diagrams contributing to the gluon exchange energy corrections.
The one-gluon exchange corrections to the masses can be written as the

sum of an «electric », A€, and a « magnetic », A.#, contribution, given by the
expressions

d ds
(3.4a) AE 5 S [ L@ gl () 0w B
47'5 a<d =1 |
and
d r,,d Ty
(3.4b) Al = D 2 {Bliaglta) Jiay (1) | B
475 a<lb i=1 l

where a and b label the particles and «, and o, indicate their flavours. o, (r)
and J,_ (r) are given by

N, ,
(3.5a) 0:(T) = ¢ pry [ Do(r) + D)
and
Nid ., ..
(3.5b) Jiu(r)=¢ 7 D,(r)7 Xal,.

One sees, immediately, that, since the « magnetic » terms is spin dependent,
its contribution will split the energy levels that have the same flavour content.
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As all hadrons are in a colour singlet state, the value of the operator

8
> A2 (@< b) can be easily calculated, and we get

i=1

8
. —= for baryons ,
(3.6) >R =
= 16
—3 for mesons .

After some algebra, the matrix elements appearing in (3.4) can be evaluated,
and we obtain

(3-7&) Aﬂ = ac(a'\m I\A‘lfl + a\l! I:ﬁ + aSSI:i
and
(3'7b) dé& = ac(bnllIl]IE\l + buSI\XE; —I— bSSI:ES) ?

where the a’s and b’s are numerical coefficients depending on each hadron
(they are listed in table I). The I™s and I™s are given by

4o
256n2 N2Nj
(3.8a) e 2B 2 B r) D(r) dr
9 xaxs
1}
TABLE 1. — CQoefficients appearing in the calculation of the « magnetic » and «electric »

energy corrections, due to one-gluon exchange.

Hadrons [/ Gy G by by by
N —3 0 0 3 0 0
A —3 0 0 1 2 0
= 1 —4 0 1 2 0
= 0 —4 1 0 2 1
N* 3 0 0 3 0 0
x* 1 2 0 1 2 0
B* 0 2 1 0 2 1
Q- 0 0 3 0 0 3
™ —6 0 0 2 0 0
K 0 —6 0 0 2 0
0 2 0 0 2 0 0
® 2 0 0 2 0 0
K* 0 2 0 0 2 0
U] 0 0 2 0 0 2
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and
NNE L
12872 1
3. I Zel B | F(r)Fslr)d
(3.80) == 2 [ L Renn
0
where

(3.9) Fylr) = wirz Du(r) D7) +f(2Ea~ Vo— A"y 2@y ) dr' .

We notice that

(3.10a) PYE o e PME
and
(310b) I‘lz,E — IdMs,E ,

since we are assuming m, = m, in our calculations.
From (3.7), (3.10) and table I, one can easily show that the following mass
formulae are valid:

(8.11) MA) = 32M(N) + M(Z) 4 2M(Z*) — 2M(N#)],
(8.12) M(E) = M(Z) + F[M(Q7) — M(N*)]

and

(3.13) M(5*) = M(Z*) + §[M(Q7) — M(N#)],

where M(B) is the mass of the baryon B specified between parenthesis.

4. — Results.

In the present model, we have assumed that the quarks, in a first approx-
imation, are confined by a phenomenological central potential, that would,
hopefully, substitute the long-range part of the interaction.

Quarks belonging to mesons and baryons should be acted by different
long-range potentials. In a lattice approximation, without including vacuum
polarization, the 3-body potential for baryons may be written approximately
a8 0.54 times the sum of the two-body qq potentials (}). We do not know what
happens in the continuum limit. However, it is reasonable to expect that

(®) H. G. Doscu and V. F. MU1LER: Nucl. Phys. B, 116, 470 (1976).
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our central potential for quarks in a baryon should be about the same as the
qq petential (°). Therefore, we have first applied our model to baryons and
evaluated the free parameters involved. As a check that the potential for quarks
belonging to baryons or mesons should be about the same, we have also cal-
culated the meson mass spectrum, taking the same potential that has been
used for baryons.

We have assumed that m, = m; = m_ and we have calculated mean square
charge radii, baryonic magnetic moments, &,/@, rates, helicity amplitudes for
N* — N4y and the mass spectrum for the low-lying baryons and mesons
as a function of m_, m,, V,, 4 and «,. The several observable quantities were
calculated numerically, with the help of a computer. In order to have a guide
for the choice of parameters, and as a check for our numerical calculations,
we also have used an approximate wave function

(4.1) Qs(x(r) ~ (%)‘* exp [—% fiy-zjl ,

where &, is an adjustable parameter, obtained by the usual variational pro-
cedure

4.2) R
4.2 =|-—=| Ka.
? 3Van *
With this approximate wave function, we get for the ground state

(4.3) = ms + Vo + 2.3448 (E)*,

Ta

which agrees very well with (2.5). Using (4.1), we can perform all integrals
I, and I]; analytically, as was done in ref. (*). We found that the results ob-
tained with the trial funetion (4.1) differ from the results using the correct
wave functions by no more than 6 %. As (4.1) is, in fact, an harmonic-oscillator
wave function, this shows that the numerical results do not change too much
from the linear to the harmonic potential.

It is possible to obtain reasonable values for the observables, if we take the
quark u rest mass, m_, equal to zero. However, there are indications (%) that,
if we try to separate quarks over a certain distance, they lose their identity
and pair creation should be energetically favoured. Therefore, our single-
particle potential picture should be valid only if Es << 3ms.

() One should note that, in approximating a sum of 2-body potentials by a central
potential, there are additional multiplicative factors appearing. For example, in the
harmonic-oscillator case, with equal masses, there is an additional multiplicative factor
equal to 3, in the nonrelativistic case.
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In tables II, ITI, IV and V, we list, respectively, the results obtained for
mean square charge radii and magnetic moments, &,/G, rates, helicity am-
plitudes of the decay N* — N-+y and the masses of the low-lying baryons
and mesons for two sets of values of the parameters, which we have named
solutions A and B.

For solution A, we took m, = 0.290M_, m, = 0.750M , V, = — 0.300M ,
A= 0.228M: and o, = 0.500; solution B is given by the values m, = 0.176 M ,
m, = 0.57TM_, Vo= — 0.248M , 1 = 0.100M and « = 0.255, M being the
mass of the proton. These choices are arbitrary and should be considered as
examples of fits with reasonable results. For solution B, we have chosen values

TasLE I1. — Mean square charge vadii and magnetic moments for the baryons of the 3+ oclet.
The basic results of our model are the values of <#*) and u for the proton and the
A-hyperon; the other values can be obtained from these, by using well-known SU,
results.

Baryons 2y (fm?2) # (n.m.)

Solu- Solu- Experi- Solu- Solu- Experi-

tion 4 tion B ment tion A tion B ment
P 0.36 0.87 0.77 1.43 2.30 2.79
N 0.00 0.00 —0.12 —0.95 —1.53 —1.91
A 0.04 0.12 — —0.31 —0.44 —0.67 4-0.06
z+ 0.40 0.99 — 1.38 2.19 2.62 +0.41
Xe 0.04 0.12 — 0.42 0.66 —
= —0.40 —0.75 — —0.53 —0.88 —1.48 4- 0.37
=0 0.08 0.24 — —0.73 —1.10 —
B —0.28 —0.63 — —0.26 —0.33 —1.93 +0.75

TaBLE III. — Values of G,/Gy for B-decays occwrring in the " octet.

Decays Solution 4 Solution B Experiment

N —>p +e +9, 1.22 1.18 1.250 4 0.009

T > S0 te-+7, 0.49 0.47 —

T A fe 7, G,=—061g, G, =—0.58¢, G, = (—0.62 4 0.03)g,
Gy = 0.00 Gy = 0.00 Gy = 0.00

B —> B0t e+, —0.25 —0.24 —

A —>p e+, 0.82 0.78 0.653 + 0.054

2> NHe 9, —0.27 —0.26 —0.435 4 0.035

B — A +e+7, 0.27 0.26 —

B30 e+, 1.37 1.30 —
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TasLE IV. — Helicity amplitudes (in (GeV)™t) contributing for the decay N*—N+7v.

Amplitudes Solution. 4 Solution B Experiment
H(—%, %) —0.088 —0.135 —0.259 + 0.005
H( %, %) —0.051 —0.078 —0.141 + 0.003

TaBLE V. — Masses (in MeV) oblained for the low-lying baryons and mesons.

Hadrons Solution A Solution B Experiment
N 949 956 936
A 1115 1155 1116
X0 1137 1167 1192
g 1335 1383 1315
N* 1153 1030 1232
¥ 1308 1223 1385
m* 1506 1439 1530
Q° 1746 1678 1672
i 493 588 135
»? 695 805 498
770 687 770
® 770 687 783
w* 924 880 892
0] 1164 1120 1020

of the parameters that give better values for the mean square charge radii
and magnetic moments, while for solution A the values of the parameters
have been chosen in a way to obtain a better baryon mass spectrum. A solution
that will give, at the same time, good values for charge radii, magnetic mo-
ments and baryon masses will violate strongly the condition E, < 3m,. For
the present solutions, this condition is indeed satisfied and we obtain E, =
= 0.830M_ and E, = 1.155M for solution A; for solution B, the ground-
state energies are E, = 0.502M and E, = 0.783M .

* %k

The authors would like to express their gratitude to Prof. J. A. Swikca, for
helpful discussions.
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® RIASSUNTO

Supponendo che i quark siano confinati, in una prima approssimazione, da un poten-
ziale relativistico lineare V(r)= §(1+ B)(V,+ Ar), sono state calcolate alcune pro-
prietd dei barioni piti leggeri. Sono anche state ottenute correzioni sullo spettro di
massa, tenendo conto dello scambio a un gluone.

Mopnenb THHEHHOr0 MOTEHOHANA AN YICPKAHHS KBAPKOB.

Pestome (*). — Ilpennonaras, 4To KBapKu YIAEPXKHBAIOTCS, B MepBOM NPUOIHKEHUH,
PETATHBUCTCKUM NOoTeHInanoM, V(r)=4(1+p)(V,—+4r), BEMMUCIAIOTCS HEKOTOPEIE CBOM-
CTBa HM3KOIeXammx GapuoHOB. Ompemensiorcs NOMPaBKH K MAcCOBOMY CHEKTpY,
CBA3aHHBIC C OIHO-TIFOOHHBIM OOMEHOM.

(") IHepesedeno pedaxyueii.



