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Summary. — High- and low-frequency wave procesees are analysed in order
to obtain the evolution equations for a rather general nonlinear rate-type
(viscoelastic) medium. Moreover, a comparison with the results obtained by
Engelbrecht for the standard viscoelastic solid is given. Finally an example
of a high-frequency process in a particular nonlinear-linear medium is
considered. Such an analysis may be used as a mathematical approach
to point out the main features of wave propagation either in certain soft
tissues or in certain polymers.

PACS. 46.30. — Mochanics of solids and rheology.

1. — Introduction.

Several asymptotic approaches have been used to analyse the main features
of wave propagation in rate-dependent nonlincar media provided that, for the
mathematical model describing the material, there exists an associated hyper-
bolic system governing the wave proeess in the first approximation. Thus
the corresponding evolution equations can be constructed along the charac-
teristies either of the nonlinear (1:2) or of the linear associated system (>4). The
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solution may then be obtained by either implicit or explicit expressions, respec-
tively. In the last case the evolution equation, however, is an integro-differential
equation in which the kernel function describes the rate dependence in the most
general form (see (°)). Moreover, we remark that an averaging method is
used in (¢) to investigate the development of plane shock waves in materials
which display (linear) viscoelastic and nonlinear elastic constitutive behaviour.
As well a constitutive equation similar to the one used in (%) is considered to
investigate the standard viscoelastie solid in (?), where also the low- and high-
frequency processes have been deseribed.

Recently, within the framework of the wave theory developed in (&%) (see
also references quoted there), a rather general asymptotic approach has been
proposed in (1°) to obtain the evolution equations for a nonhomogeneous (i.e.
involving a source term) quasi-linear first-order hyperbolic system. In this
case, by using special stretching of variables, the evolution equations for low-
and high-frequeney multidimensional processes have been constructed. It is
important to remark that the mathematical model considered in (3°) describes
several nonlinear media characterized by nonconservative field balance equa-
tions. Among others this is the case of a large class of inelastic materials with
very general differential constitutive laws. Hence it is of interest to apply the
approach given in (°) to obtain the evolution equations in a general rate-
dependent (quasi-linear) medium in order to compare the results so obtained
with the ones deduced by different methods of approach, especially with those
got in (?) for one-dimensional wave motions.

We consider a one-dimensional wave process in a rate-dependent visco-
elastic medium described by the following system of equations (1!):

cv 1¢co
1.1 e =
(1.1a) ¢t oor !
e v
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co oe
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THE ASYMPTOTIC ANALYSES OF NONLINEAR WAVES IN RATE-DEPENDENT MEDIA 51

where x identifies the reference position of the particle at reference time t = 0,
a is the stress, ¢ the strain, » the particle velocity and g the reference mass
density. Moreover, @(o, £) and ¥(o, ¢) are smooth response functions. Inelastic
media described by a constitutive Jaw like (1.1c) are called « Maxwellian ma-
terials ».

The system of equations 1.1} may be written also in the following mairix form:

cV LoV

(1.2qa) o -+ A( )5; =B,
] i
‘v’ | 0 0—1] ll

| :

(1.2h) V="lel|l, A(V) :‘ -1 0 o, BV)=]||0 i
ii i 1 1
ol -0 0 ol I'2

In this paper we shall look for an asymptotic solution of system (1.2)
and we shall show that the constitutive equation (1.l¢), in a rather general
form, leads to evolution equations in the high- and low-frequency domains.
For the evolution equation characterizing the wave process in the high-fre-
quency domain, we point out the possibility of the wave breaking at a finite
time (critical time), as usual in nonlinear hyperbolic-wave processes. Thus,
because of the «attenuation effeets » (see (1)), present in the basic mathemat-
ical model, an analysis similar to the one related to the critical strain gradient
for shock waves (sce (12)) oceurs. In our paper such an analysis is suitably
extended to a high-frequency process in a particular nonlinear-linear medium
which may be a mathematical model either of certain soft tissues or of certain
polymers. Thus our method of approach cun be used to investigate the main
features of wave propagation in such a class of materials.

In sect. 2, following the method of approach proposed in (°), we shall obiain
the evolution equations by a convenient stretching of independent variables.
We shal} explain also the physieal background of the process.

In sect. 3, the comparison of the results obtained in sect. 2 with the analysis
of a particular case of standard viscoelastic solid (") is presented.

Section 4 deals with an example of a high-frequency process in a particular
nonlinear-linear medium of physical interest. Mainly we point out the role
played in the wave breaking process by the threshold between the nonlinear
behaviour and the linear one in the material.

2. — General asymptotic analysis.

2°1. High-frequency process. — Liet us look for asymptotic solutions of eq. (1.2)
exibiting the feature of progressive waves (#°), i.e. let us assume the following

(*3) P. J. CuEN and M. E. Gurtin: .drch. Ration. Mech. Anal., 36, 33 (1970).
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asymptotic expansion:

(2.1) V~V,+6Vix,t, &) + 2Vy(x, 8, &)+ ...,

where V, is a known constant solution of (1.2) such that the condition

(2.2) B(V,) = 0:=¥(o,, &)

is satisfied; & is a «fast» variable defined as & = d-'f(x, t), f(x,t) is a phase
variable to be determined further and § is a real small parameter defined by

(2.3) o=Tr'<1,

where T represents a characteristic time scale of the input and 7, is the at-
tenuation time (sce further). Hence, according to the theory of rate-dependent
media (2), the parameter ¢, defined by expression (2.3), characterizes a
« high-frequency » process.

By considering the Taylor expansion of the matrix coefficients A and B
in the neighbourhood of V¥V, and taking into account expressions (2.1)
and (2.2), we get

(2.4a) A(V) = A(Vy) + (VA), V, 4- 0(8?),
(2.4) B(V) = (VB), VI 0(6%),
where V ==¢/cV = (¢/cv, ¢/Ce, ¢/Co) and the subseript , means that a cer-

tain field-dependent quantity is evaluated at V = V.
Substituting (2.1) and (2.4) into (1.2), we get

(2.5a) (A,— AI) 88%1 =0,

(2.5b) (Ao— 2T) %2 4 f2He. Vi+ Age. Vi) 4 {(VA) Vi) %‘ = ;Y VB) V1,
where 2 = —f,/f,. Here the following notations are taken into account:
(2.6a) ¢/Ca* = Cpe + 07'f C[CE, 0,0 =C[C2%,, a=20,1,
(2.6b) 2°=t, x'=2x, [.=7fcx*.

From (2.5a) the charaeteristic polynomial follows:

(2.7) Mir—dp)=0.



THE ASYMPTOTIC ANALYSES OF NONLINEAR WAVES IN RATE-DEPENDENT MEDIA 53

Considering the velocity A = At = (Pp~)} with & > 0 (1) and deter-
mining the left and right eigenvectors of 4 by

(2.8) L oJeho 1), m=[2 —1 —o,
where superscript T means transposition, we obtain
(2.9) Vi, t, &) = u(x,t, &) r, + bz, t)

as a solution of eq. (2.5a). Here v = — ¢, is the amplitude factor to be deter-
mined and h(z,?) is an integration constant which, according to the initial
conditions, can be chosen to be zero (e.g., see (3)). The phase f(z,1) is deter-
mined by

(2.10) f,+ Aol =10
and, if f(x, 0) = x, then f(x,t) = x — A,t.

Multiplying now (2.5b) by [, we obtain along the characteristics curves
associated to (2.10) the following evolution equation for u:

A ~
(2.11) 2+ agu e = byu,
cT c&

where ¢/¢t = 0, + 2,0, and

1 oD Gl
(2.12a) a = {I((VA)r)r}(l:r)' = Vir=— 5 (o®D)-1 (g + (DE)’
(2.126) b= {I(VB)r}(l-r)' = 3 g1 (-ail+ @ 85”).

ce do

Now we define the following physical parameters (?):

i) static Young modulus

() )
- 2e Jo\a ), de

ii) stress relaxation time
W\
n=—\|=
1 80' 0 ’
iit) strain relaxation time

ap\
T — djo ('—a?)o .

]
Y=0
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By using the above quantities, expression (2.12b) yields
(2.13) b, = 3 (1, — 1)(7, ) = zlf‘rx_l(eqjo—l —1)

and ed' < 1, i.e. 7, < 7,, implies b, < 0 (*}). This means also that the com-
ments made in () hold. Among others we remark that the dissipative mech-
anisms connected with the right-hand side of (1.1¢) (source term) produce
a delay in the wave breaking with respect to the corresponding case related
to the absence of meniory effects (purely elastic case, ¥ = 0). Now the evolution
equation (2.11) may be rewritten in the form

cu cu
(214) a—{.—aou,a—&—{—;;:(),
where
(2.15) 7, = —b;!

.is the attenuation time characterizing the medium (%1°), This completes also
expression (2.3) used earlier to determine the character of the process.
As i3 well known (319), if

“[x:ozF(a"o’ o) ‘vo=xl: 09 §o= 07 fl—gs

then a finite time (critical time), at which an irregularity in the solution of (2.14)
may occur, will exist if the following conditions hold (sec also (}*1)):

Foa,<0, —Fya>1', F,=0oF[dt,.

At the critical time a shock wave formation may oceur.

Let us remark that in (?), for the standard viscoelastic solid, a comparison
has been stated between the possibility of the formation of discontinuous so-
lutions of eq. (2.14) and the analysis related to the so-called « critical strain
gradient » for shock waves (12).

However, if the response function ®(o, £) satisfies the following relation (%):

cP cP

(2.16) —+P—=0=P = Plo— Pe),
ce ca

(1) J. D. MurraY: SIAM J. Appl. Math., 19, 273 (1970).

(**) A. Dovato and D, Fusco: Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis. Mat.
Nat., 59, 149 (1981).

(**} D. Fusco: Int. J. Non-Linear Mech., 16, 459 (1981).
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where P is an arbitrary function, then the «exceptionality condition » (%)
holds

(2.17) Vir=0=a

and the wave never evolves into a nonlinear shock after a finite time has
elapsed.

2'2. Low-frequency process. Let us consider the following stretching:
{2.18) = brx, t'=é%t,

where << 1 is a small parameter. Omitting ' in the new independent va-
riables, system (1.2) holds with the exception that

(2.19) BT=1]0 0 §2¥|.

Let T be a characteristic time scale of the input and r_ be the attenuation time,
considered above. According to (2) we define the characteristic length L —=
= (Po/o)¥ T and the attenuation length L, = (Dy/o)t7,. If the condition

(2.20) =1, T1'=L LK1

is satisfied, then, in terms of (?), we are considering a low-frequency process,
t.e. times and distances considered are large in comparison to the attenuation
time and the attenuation length. System (1.2) in variables (2.18) and
with (2.19) represents a small perturbation of an equilibrium (fully relaxed)
state characterized by eqs. (1.1a), (1.15) and

(2.21) Y(g,e) =0

This system is actually the reduced system of the theory developed in (1),
The asymptotic solution is now sought in the form

(2.22) Ve~Vod Vi, t,0) + 62V, t,8) + ...\

where V, is the same constant vector considered in subsect. 2°1, i.e. such that
Y(o,, &) = 0 (and certainly a solution of the reduced system), { = S‘If(x, 1)
and f'(:v, t) is the phase function to be determined further. It is worth noticing
that V(z,t,¢) — {V, 4 8V,} = 0(8?), i.e. of the same order as the right-hand
side of system (1.2) with (2.18) and (2.19). However, even if the same
symbols are used, only the first term ¥V, is the same in expansions (2.1)
and (2.22).

(*¢) Y. D. Lax: Commun. Pure Appl. Math., 10, 537 (1957).
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Substituting (2.22) into the basic system with variables (2.18), developing
the matrix coefficients in the usual manner and solving the corresponding set
of equations according to the approach stated in (%), we obtain

'\lI/ '\yj -1 . . . .
(2.23) o=—28 (o ) (o ) =ee,, U,=—lo&, Az=e0 !, A= I4s,
0

CE oo /o

with f(x, ) = & — (ep~) ¥t and the wave amplitude & = —¢,(, t, {) satisfies the
following transport (evolution) equation:

(2.24) X aati-all,
where ¢/6s = 9, + 4,0, and
1 ce ce
(2.25) do= — 5 (e0)™? (a—e + e 8_0)0’
(2.26) dy= -21- 7,07 (Dy— €) = 1 Dypt.) " -

The low-frequency process in the rate-dependent medium with the consti-
tutive equation (1.1¢) is governed by eq. (2.24), 7.e. by Burgers’ equation.

3. — The standard viscoelastic medium.

Here we follow the approach described in (3) and used for viscoelastic media
in (»v"). The constitutive equation (1.1¢) holds with (3)

(3.1a) D=Pe) =1+ '}’1){z + 24 4 6(vy + ¥, +3) 8} y
(3.1b) (o, &) = 77{(1 + 2a) e + 3(», + v, +»,) e* — g},

where 1 and g are Lamé constants, »,, i = 1, 2, 3, the third-order elastic moduli
and 7,, y, are the parameters of viscosity: 7,, as in sect. 2, is the stress relax-
ation time and y, is the dimensionless parameter determining the difference
between the equilibrium velocity 4 and the instantaneous velocity A: A2 =
=ept = (A4 2@)p™Y, A*= Pyo~' = (1 + 9,)(1 + 24)0~". The condition y, > 0
is satisfied always due to thermodynamies, hence 2> 1. As shown in (),

(*") A. JEFFREY and J. ENGELBRECHT: Waves in non-linear relazing media, in Wave
Propagation in Viscoelastic Media, edited by F. MAINARDI, Research Noles in Mathe-
matics, No, 52 (London, 1982).
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there is no principal difference in choosing one or another velocity as a basis
for the phase.
Relation (1.1¢) with (3.1) may be given also in an integral form

t
T - t— 88
(3.2) o= (14 20)e+ 30n+ n+ r)et+ i + 2mfexp [— . ’7] &
1
that was the starting expression for the analysis in (). The corresponding
evolution equation has the form

Ee

ou, cu, ¥ 0 Le— Y]
. | - 22, dy = 0.
(3.3) oy T Mt oE, 2y 85 exp i, | ey y=

Here y is a small parameter usually given in connection of the Mach
number (3) and

(3.4a) =3 (1 + me)(pd)
{3.4b) me = 2(v, + v, +- "’3)(1 + 2a)!

The reader is referred to (?) for details. However, it must be pointed out
that

(3.5) u, = U, /ot = — AdU,/ex,
(3.6) §,=M—z, T=1yp2.

Here U, denotes the displacement.
The dimensionless parameter (in our notation)

(3.7) Z =1, AL

introduced in () permits us to estimate the character of the process. If Z>>1
is satisfied, then with fixed 7, and 2 it corresponds to a high-frequency process.
If Z «1 is satisfied, then with the same fixed 7, and 2 it corresponds to a low-
frequency process. Conditions (2.3) and (2.20) have the same meaning,
respectively.

3'1. High-frequency process. — 1f Z >1 is satisfied (cf. condition (2.3)),
then the exponential function in the integral of eq. (3.3) changes slowly
and its exact expansion into a series may be used instead of the complete
function. The corresponding evolution equation in two terms of the series
has the form

ou, ou;  y, Cuy Vi

(3-8) —‘+ a, 1«5 58—5,_*_2}/11’1 _0-
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By making use of the transformation

(3.9) E=& 4 (y,/29) 7,
eq. (3.8) yields

Uy N o=,

ou,
(3.10) -67 + a4y Uy —a_,f 2),211

Equation (3.10) has the same structure as eq. (2.11), while in our case
e= A+ 2, ® = (1+ p)(1+ 2i) and thus from (2.13) we obtain

S 4 S
20+ y)7”

(3.11) by =

Note also that (3.5) and (3.6) hold and transformation (3.9) gives the
change in the velocity. Such a result was derived first in (*) by a straight-
forward analysis and used later for standing waves in bounded media (28).

3°2. Low-frequency process. ~ 1f Z <1 is satisfied (cf. condition (2.20)),
then the exponential function in the integrand of eq. (3.3) changes faster
than the derivative of u, with respect to y and, therefore, the last may be ex-
panded into a series. Keeping only the first term in the series, we come ac-
tually to Voigt material. At some distance from the front & = 0 (for details
see (V7)}, it is possible to get once again the celebrated Burgers’ equation

ou, Uy n Aty 3%u,
(3.12) or + a,u, 85_, = —2; e

Once more, from (2.26) we obtain
(3.13) dy=4T 22

and, bearing also in mind expressions (3.5) and (3.6), one can easily conclude
that (2.24) and (3.12) coincide. Such an evolution equation is obtained also
in (**) for Voight material only and a similar result may be obtained for
thermoelastic damping (3).

4. — The nonlinear-linear medium.

Several media behave themselves in the following way: for small strains
the stress-strain relation is strongly nonlinear, but, if the strain is bigger than a

(**) M. P. MortELL: Z. Angew. Math. Phys., 28, 33 (1977).



THE ASYMPTOTIC ANALYSES OF NONLINEAR WAVES IN RATE-DEPENDENT MEDIA 59

cerfain threshold ¢*, the stress-strain relation is linear. One of the best ex-
amples of this kind are soft tissues (1°), where the small stress causes the sliding
of long molecules and, therefore, the average stress-strain relation is strongly
nonlinear. If viscous effects are not considered, then

(4.1a) D= Ple) =7+ 2 + 6(v; + v, + )¢, 0 <e<e*,
(4.1b) =i + 24, e* <e,
and

(4.2) At20 =2+ 20+ 6(n + v+ v,) e*.

If viscous effects are added, then, according to model (3.2), expression (4.1a)
must be changed to (3.la), expression (4.1b) to

(4.3) S=(1-+ 71)(21 +24,), e*<e,

and ¥(o, ) must be calculated (3.15) by taking into account the linearized
version for ¢ > ¢*. It is obvious that the threshold &* plays an important role
in wave propagation, especially in shock wave propagation. For the high-
frequency process, as shown above, either (2.14) or (3.10) holds. This is the
evolution equation with critical strain gradient (). For model (3.1) (or (3.2)),
it is determined by the expression

k. N
(4'4) A* = Q;ZT[; .

For the usual nonlinear viscoelastic medium the situation is known: if the
real strain gradient is smaller than the critical strain gradient, then the dis-
sipative effects are strong enough to avoid the shock wave formation and, if the
real strain gradient is bigger than the critical one, then the nonlinear effects
take over and the shock wave may form (?). Here the situation is more com-
plicated because, beside the critical strain gradient A*, the threshold strain
&* governs the shock wave formation. There is no explicit possibility to com-
pare A* and £* between themselves, but it is clear that, generally speaking,
for £ > ¢* the condition 4, > A* may be fulfilled, but no shock will form (here
A, = ce/c& is the real gradient). The only possibility is to find the regions on
the physical plane &, 7 for fixed v (e.g. for v = 0), where both estimates
may be compared. The possible situations are shown in fig. 1. Case a) does
not permit any shock formation, while A*> 1, always, and ¢* may be arbitrary.
Case b) permits shock formation because there are regions along the £-axis where

(%) Y. C. FunG: Biomechanics. Mechanical Properties of Living Tissues (Berlin, 1980).
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Fig. 1. -~ ¢ and ©6¢/0¢ diagrams (solid and broken lines, respectively).

2, > 2* and e < ¢* are satisfied simultaneously. Case ¢) does not permit shock
formation in the regions where A > 1* is satisfied, but another con-
dition &£ > ¢* indicates the linear model already. Case d) permits shock for-
mation as in a usual nonlinear material because the condition & < ¢* is sa-
tisfied everywhere.

5. — Conclusions.

In sect. 2 a strict approach is given in order to obtain the evolution equa-
tions for high- and low-frequency processes in a rather general nonlinear
rate-type (viscoelastic) medium modelled by a quasi-linear first-order hyper-
bolic system of partial differential equations. The results, the simple wave
equation with a source term for the high-frequency process and Burgers’ equa-
tion for the low-frequency proeess, hold for the general constitutive law (1.1¢).
In (%) the high-frequency process was analysed for the same constitutive equa-
tion and the corresponding evolution equation was obtained by the method
of multiple scales for the case of a viscoelastic slab. Our result seems to be
more general. The comparison with the special case of the standard viscoelastic



THE ASYMPTOTIC ANALYSES OF NONLINEAR WAVES IN RATE-DEPENDENT MEDIA 61

medium (?) is given in which the same result is obtained by deriving, firstly the
general integro-differential evolution equation and, secondly, the high- and
low-frequeney limits of it. The results may be used in a large range of visco-
elastic media. As an example, a special nonlinear-linear medium is considered
and the conditions giving the possibility of shock wave formation analysed.
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® RIASSUNTO

In questo lavoro sono caratterizzatii processi ondosi ad alta ¢ bassa frequenza per una
vasta classe di materiali non lineari, in cul siano presenti effetti di memoria, deseritti
da un’equazione costitutiva di tipo differenziale. Nei due casi sono dedotte le equazioni
di evoluzione ed i risultati ottenuti sono confrontati con quelli dedotti da Engelbrecht
per un particolare mezzo viscoelastico. Nella parte finale del lavoro si considera un
processo ondoso ad alta frequenza in un particolare mezzo non lineare-lineare, che puo
essere assunto come modello matematico per deserivere certi tipi di tessuti biologiei
o certe classi di polimeri.

Pe3roMe He mosyueHo.



