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S u m m a r y .  - -  High- and low-f requency  wave  processes  are  ana lysed  in o rde r  
to ob ta in  the  evolut ion  equa t ions  for a r a the r  genera l  nonl inear  r a t e - type  
(viscoelastic)  medium.  Moreover ,  a comparison wi th  the  resul ts  obta ined by 
Enge lb rcch t  for the  s t andard  viscoelas t ic  solid is g iven.  F ina l ly  an example  
of a h igh- f requency  process in a pa r t i cu la r  nonl inear- l inear  medium is 
considered.  Such an analysis  may  be used as a m a t h e m a t i c a l  approach 
to po in t  out  the  main fea tures  of wave  propaga t ion  e i the r  in cer ta in  soft  
t i ssues  or  in cer ta in  polymers .  

PACS. 46.30. - Mechanics  of solids and rheology.  

1 .  - I n t r o d u c t i o n .  

Several asymptot ic  approaches have been used to analyse the main features 
of wave propagat ion in rate-d(~pendent nonlinear media provided tha t ,  for the 
mathemat ical  model describing the  material ,  there  exists an associated hyper-  
bolic system governing the wave process i n  the first approximat ion.  Thus 
the corresponding evolution equations can be constructed along the charac- 
teristics e i ther  of the nonlinear (~,2) or of the linear associated system (3,4). The 

(t) M. I ). MORTELL and B. R. S~'MOUR: S I A M  J. Appl. Matin., 22, 209 (1972). 
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solution m a y  then  be ob ta ined  by e i ther  implici t  or explici t  expressions,  respec- 
t ively.  In  the last  case the  evolut ion equat ion,  however ,  is an integro-diffcrential  
equa t ion  in which the kernel  funct ion describes the  r a t e  dependence in the  mos t  
general  form (see (5)). Moreover,  we r e m a r k  t h a t  an averaging method  is 
used in (e) to inves t igate  the  deve lopment  of p lane  shock waves in mate r ia l s  
which display (linear) viscoelast ic and nonlinear  elast ic constituti~'e behaviour .  
As well a const i tut ive equa t ion  s imilar  to the  one used in (e) is considered to  
inves t iga te  the s tandard  viscoelast ic  solid in (7), where  also the  low- and  high- 
f requency  processes have  been described. 

Recent ly ,  within the f r amework  of the  wave theory  developed in (s,9) (see 
also references quoted there) ,  a r a the r  general  a s y m p t o t i c  approach  has  been 
proposed in (~o) to obta in  the  evolut ion equat ions  for  a nonhomogeneous  (i.e. 

involv ing  a source te rm)  quasi- l inear t i rs t-order  hyperbol ic  sys tem.  I n  th is  
case, by  using special s t re tch ing  of variables ,  the  evolut ion equat ions for low- 
and  high-frequency mul t id imens ional  processes have  been constructed.  I t  is 
i m p o r t a n t  to r e m a r k  t h a t  the  m a t h e m a t i c a l  model  considered in (~o) describes 
several  nonlinear media  character ized by nonconscrva t ive  field balance  equa-  
t ions. Among  others  this is the  case of a large class of inelastic mater ia l s  wi th  
very  general  differential cons t i tu t ive  laws. Hence  it  is of in teres t  to  app ly  the  
approach  given in (~o) to obta in  the  evolut ion equat ions  in a general  ra te-  
dependen t  (quasi-linear) m ed i um  in order  to compare  the  results  so ob ta ined  
wi th  the  ones deduced by  different  methods  of approach ,  especially wi th  those  
got in (7) for one-dimensional  wave  motions.  

We consider a one-dimensional  wave process in a ra te -dependen t  visco- 
elastic med ium described by  the  following sys t em of equat ions (~): 

~v 1 ~a 
(1.1a) ~t o ~x 0 

~ 8  C~ 
I l  l h i  0 
~ ' ~ ' J  ~t ~x ' 

(1.lc) ~a ._  r e) c3-~e ---- T(a ,  e) 
~t ~t ' 

(in Russian). 
(4) A. A. Logsnxs and J. V. SuvoRovx: Mathematical Tlveory o/ Wave Propagation 
in  Media with Memory, Moscow State Uniw~'rsity (Moscow, 1982) (in Russian). 
(5) G. B. WIIITIIAM: Limear and Nonlinear Waves (New York, N.Y.,  1974). 
(6) R . W .  LAR~).~ER: Proc. R. Soc. London, Ser. A ,  347, 329 (1976). 
(7) J. ]~NGELBRECHT: Wave Motion, l ,  65 (1979}. 
(s) ] ). GFRMAIN: Progressive" Waves (Jbcr DGLR, 1971), p. 11 (K61n, 1972). 
(9) G. BOILLAT: Ann. Mat. Pura Appl.,  4, 31 (1976). 
(lo) D. Fusco: Meccaniea, 17, 128 (1982). 
(it) N. CRISTESCU: Dy~mmic _Plasticity (Amsterdam, 1967). 



THE ASYMPTOTIC ANALYSES OF NONLINEAR SVAVES IN R A T E - D E P E N D E N T  3IEDIA 5 1  

where x identifies the reference posi t ion of the part icle  at  reference t ime  t - -  0, 
a is the stress,  e the s train,  v the  par t ic le  veloci ty  and Q the reference mass  
densi ty.  Moreover,  qi(a, t) and 7J(a, e) are smooth  re.spouse funct.ions. Inelast ic  
media  described by a const i tu t ive  law like ( l . lc)  are called <, Ma~wellian ma-  

ter ials  ,. 
The sy,~tem of equat ions  (1.1) may  be wri t ten  also in the followi:',g ma t r ix  form : 

~V 3V 
(1.2a) c~ ~ -  -~- A(V) ~ x  : B ,  

(1.2b) V :  e , A(V)----  ~- -1  

0 1 

0 0 

0 0 

, B ( v ) =  

. T  

In  th is  p a p e r  we shall look for an a s y m p t o t i c  solution of sys tem (1.2) 
and we shall  show tha t  tile cons t i tu t ive  equat ion (1.1c), in a r a the r  general  
form, leads to evolut ion equat ions  in the  high- and  low-frequency domains.  
For  the evolut ion equat ion charac ter iz ing  the  wave process in the  high-fre- 
quency domain ,  we point  out  the  possibil i ty of the  wave  break ing  a t  a finite 
t ime  (critical t ime) ,  as usual  in nonlinear  hyperbol ic-wave processes. Thus,  
because of the  ~ a t t enua t ion  effects ,~ (see (:o)), p resen t  in the  basic m a t h e m a t -  
ical model,  an  analysis  s imilar  to the  one re la ted to the cri t ical  s train .~'adient 
for shock waves (see (7,~2)) occurs. In  our pape r  such an analysis  is sui tably  
ex tended  to ~ high-frequency process in ~ par t icu lz r  nonlinear-l inear med ium 
which m a y  be ~ ma thcmat icM model  e i ther  of cer ta in  soft tissues or of cer ta in  
polymers .  Thus  our  method of approach  c~n be used to inves t iga te  the  ma in  

features  of w~ve prop~g~tiol~ i~l such a class of mater ia ls .  
]n sect. 2, following the  method  of approach proposed in (~o), we shall  obta in  

the evolut ion equat ions by a convenient  s t re tching of independent  variables.  
We shall expla in  also the physica l  background of the  process. 

In  sect. 3, the  comparison of the  resul ts  obta ined in sect. 2 with the  analysis 
of a pa r t i cu la r  case of s t andard  viscoelastic solid (') is presented.  

Section 4 deals with an example  of a high-frequency process in a pa r t i cu la r  
nonl inear- l inear  medium of phys ica l  interest .  Mainly we point  out  the role 
played in l,he wave breaking  process by the  threshold between the  nonl inear  

behaviour  and  the  l inear  one in the  mater ia l .  

2. - General  a sympto t i c  analys is .  

2"1. High-]requency process. - Let  us look for a s y m p t o t i c  solutions of eq. (1.2) 
exibi t ing the  fea ture  of progressive waves (8,~), i.e. let us assume the  following 

(t2) t'. J. CHES and M. E. GUI~.TIN: Arch. Ration. Mech. Anal., 36, 33 (1970). 
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asympto t i c  expansion:  

(2.1) V ~ Vo -F 6V~(x, t, ~) + (g V2(x, t, ~) + ...,  

where Vo is a known constant  solution of (1.2) such tha t  the condition 

(2.2) B(Vo) = 0 := T(ao, Co) 

is satisfied; ~ is a (, fast ~) variable defined as ~ = 6-1l(x~ t), ](x, t) is a phase 
variable to be determined fur ther  and 6 is a real small parameter  defined by 

(2.3) 6 = T z :  1 << 1 , 

where T represents a characterist ic  t ime scale of the input  and r is the at- 
tenuat ion  t ime (see further).  Hence, according to the theory of ra te-dependent  

media(U,  the parameter  6, defined by expression (2.3), characterizes a 
(( high-frequency ~) process. 

By considering the Taylor  expansion of the matr ix  coefficients A and B 
in the neighbourhood of to  and taking into account  expressions (2.1) 

and (2.2), we get 

(2.4a) A ( V )  = A(Vo) + (VA)oVI -t- 0(6~), 

(2.4b) B(V) = (VB)oVI }- 0(60-), 

where V " K ' "  ~i~ "i~ " --  c~cv = (%cv, c,c:e, c/ca) and the subscript  o means tha t  a cer- 
tain field-dependent quan t i ty  is evaluated at V ---- Vo. 

Subs t i tu t ing  (2.1) and (2.4) into (1.2), we get 

~V~ 
(2.5a) (Ao-- 2 I ) - ~ -  = 0 ,  

(2.5b) (Ao-- ) . I )  8 V___2 , - -  . . . . .  /~'(VB)o V~ 
~ 

Here the following notations are taken into account :  where 2 = - - J , / ]  z. 

(2.6a) 

(2.6b) 

~/~x~ = c~.x~ + 6 - ' / . , ~ / ~ ,  ~.. = ~/~x~l~, 

x ~  x ' = x ,  /.,=O//P~x~. 

From (2.5a) tile characterist ic  polynomial  follows: 

(2.7) 2(2 2 _ q)~)-1) = 0 .  

~ = 0 ~  1~ 
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Considering the velocity 2 = 2 + :  (~e-~) i with ~ >  0 (1~) and deter-  
mining the  left  and right eigenveetors of A by  

(2.8) l [lea 0 111, r ' =  [:i a - - 1  - -  q5;I , 

where superscr ipt  T means transposit ion,  we obtain 

(2.9) V~(x, t, ~) = u(x ,  t, ~)ro q- h(x,  t) 

as a solution of eq. (2.5a). Her(; u ----- --e~ is the  ampl i tude  factor to be deter- 
mined and h(x,  t) is an integrat ion constant  which, according to the  initial 
conditions, can be chosen to be zero (e.g., see (s)). The phase ](x, t) is deter- 
mined by 

(2.30) it -q- ~o]= ---- 0 

and, if ](x, O) = x,  then ](x, t) = x - -  ;tot. 
Mult iplying now (2.5b) by  l, we obtain along the  characterist ics curves 

associated to (2.10) the following evolut ion equat ion  for u:  

8u 8u 
(2.11) ~-~ + aou-~.  = boa ,  r162 

where ~/~r = 0, q- 20 O= and 

(2.12a) 

(2.12b) 

a - -  { Z ( ( V A ) r ) r } ( t . r ) - '  = W . r  = - -  ~ (~r ~ + r o W '  

b = {t(VtOr}(Z.r)- '= ~ \ ~  + r  . 

.N-ow wc define the  following physical  parameters  (2): 

i) s tat ic  Young modulus 

I 
l e =  ~ / o ~ / o  ~ ~-o 

ii) stress relaxation t ime 

3 , =  - \~-~ 1o ' 

iii) s t ra in  re laxat ion t ime 

Fv -' 
~ = ~o \ ~ ]o " 
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By using the above quant i t ies ,  expression (2.12b) yields 

.>- r~ (e(/)0 - -  1) (2.13) b 0 : .~ (r~ - -  r2)(r ~ rz) -~ =: 1 -~ - t  

and e r  o '  < 1, i.e. r~ < r2, implies bo < 0 ( ') .  This means  also tha t  the  com- 
men t s  made  in (,0) hold. Among  others we r e m a r k  t h a t  the  dissipative mech- 
anisms connected with the  r igh t -hand  side of (1.1c) (source term) produce  

delay in the  wave break ing  with respect  to the  corresponding case re la ted  
to the  absence of menm ry  effects (purely  elastic case, ~ ~ 0). Now the evolut ion 
equa t ion  (2.11) may  be r ewr i t t en  in the  form 

(2.14) 

where 

(2.15) 

~ u _ L  a o u  + - -  : O ,  

T a = _ b~ 1 

�9 is the  a t t enua t ion  t ime character iz ing the  m e d ium (2,no). This completes  also 

express ion (2.3) used ear l ier  to de te rmine  the  charac te r  of the  process. 
As is well known (s-~o), if 

u [ , = o  = Xo = x l ,  :0,  = 

then  a finite t ime (critical t ime) ,  a t  which an i r regular i ty  in the  solution of (2.14:) 

m a y  occur, will exis t  if the  following condit ions hold (see also (~3.~)) : 

r ~t _ ! 

F o a o < O ,  _ ~ o a o >  ~. 1, Fo = ~ F / ~ o  " 

At the  cri t ical  t ime  a shock wave format ion  may  occur. 
Le t  us r e m a r k  t h a t  in C), for the  s tandard  viscoelast ic solid, a compar ison 

has been s ta ted  between the  possibi l i ty of the  fo rmat ion  of discontinuous so- 
lutions of eq. (2.14) and the  analysis  re la ted to  the  so-called (, critical s t ra in 
g rad ien t  ~) for shock waves  (~). 

However ,  if the  response funct ion r  ~) satisfies the  following relat ion (as) : 

(2.16) ~-e ~- ~ a  : 0 ==~ qb == p ( ~ -  Ce) ,  

(13) j .  D. MUHaAV: S I A M  J.  Appl. Math., 19, 273 (1970). 
(~4) A. DO.~ATO and D. Fusco: Atti  Accad. Peloritana Pericolanti, Cl. Sci. Fis. Mat. 
Nat., 59, 149 (1981). 
(~5) D. Fusco: lnt .  J.  Non-Linear 3lech., 16, 459 (1981). 



TIIE  ASYMPTOTIC ANALYSES OF N O N L I N E A R  WAVES IN R A T E - D E P E N D E N T  MEDIA 5 5  

where P is an a rb i t ra ry  function,  then  the (~cxceptionality condition ~)(t*) 
holds 

(2.17) V ) , . r  = 0 = a 

and the wave never  evolves into a nonlinear shock af ter  a finite t ime has 
elapsed. 

2"2. Low-]requency  process. Let  us consider the  following stretching:  

(2.18) x'= ~x ,  t'= ~ t ,  

where ~ < :1  is a small parameter .  Omit t ing ' in the  new independent  va- 
riables, sys tem (1.2) holds with the  except ion tha t  

(2.19) B r-~ I!0 0 ~-'~11. 

Let  T be a character is t ic  t ime scale of the input  and r be the a t tenua t ion  time, 
considered above. According to (~) we define the character is t ic  length L ~ -  
= (Co/Q) t T and the a t tenua t ion  length L = (q~o/Q)tr,. I f  the condition 

(2.20) ~2 = v ,  T -1 =-  L L - : < <  1 

is satisfied, then,  in te rms of (2), wc are considering a low-frequency process, 
i .e.  t imes and distances considered are large in comparison to  the a t tenua t ion  
t ime and the a t tenua t ion  length.  System (1.2) in variables (2.18) and 
with (2.19) represents a small pe r tu rba t ion  of an equi l ibr ium (fully relaxed) 
s ta te  character ized by  eqs. (1.1a), (1.1b) and 

(2.21) ~(q,  e) = 0 

This sys tem is actual ly the reduced system of the  theory  developed in (1o). 
The asympto t ic  solution is now sought in the form 

(2.22) ..~ Vo + ~ V,(x, t, ~) § ~ V,(x, t, ~) + . . . ,  

where Vo is the  same consta:t t  vector  considered in subsect. 2"1, i.e. such t h a t  
~J(ao, ~o)----0 (and cer ta inly a solution of the reduced system), ~ = 5-1f (x ,  t) 

a n d / ( x ,  t) is the phase funct ion to be de termined  fur ther .  I t  is worth noticing 
t ha t  V(x ,  t, ~) - -  {Vo + (~V1} ~ O(g2), i.e. of the same order  as the r ight-hand 
side of sys tem (1.2) with (2.18) and (2.19). However ,  even if the same 
symbols are used, only the first t e rm Vo is the same in expansions (2.1) 

and (2.22). 

(t6) 1'. D. LAX: Commuu. Pure Appl .  Math., 10, 537 (1957). 
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Subst i tu t ing  (2.22) into the  basic system with variablcs (2.18), developing 
the  ma t r ix  coefficients in the  usual manner  and solving the corresponding set 
of equat ions  according to the  approach s ta ted in (~o), we obtain 

(2.23) a , =  - -  ei ~ ~e /o ~ a  ]o = ee, , v , =  - -  )r  , ~ =  eo -~ , ) ~ =  ]+o , 

with f ( x ,  t) = x - -  (e~ -~) it and the wave ampl i tude  fi ~-- --el(x,  t, ~') satisfies the 
following t ranspor t  (evolution) equat ion:  

(2.24) 

where ~c/~s = Ot -]- ]o ~ and 

(2.25) 

~-~ + ~0 a ~ = ~ ~ ,  

(2.26) 1 
~, = ~ ~, e - ' ( r  e) = ~ r  �9 

The low-frequency process in the ra te -dependent  medium with the  consti- 
tu t ive  equat ion (1.]c) is governed by eq. (2.24), i.e. by Burgers '  equat ion.  

3. - T h e  s t a n d a r d  v i s c o e l a s t i c  m e d i u m .  

Here  we follow the approach described in (3) and used for viscoelastic media  
in (roT). The const i tut ive equat ion (1.1c) holds with (3) 

(3.1 a) 

(3.]b) 

r = r = (1 ~- y,){~ ~- 2fi + 6(~, -f- v2 + ~3) e}, 

where 7. and fi are Lam6 constants ,  r, ,  i = 1, 2, 3, the  th i rd-order  elastic moduli  
and vl, yl are the parameters  of viscosity:  v~, as in sect. 2, is the  stress relax- 
at ion t ime  and yl is the dimensionless pa ramete r  determining the difference 
between the equil ibrium veloci ty  ~ and the instantaneous veloci ty ;t: )l~---- 

= e~ -~ = (~ ~- 2fi)Q -~, 2 2 = q~o~ -~ = (1 ~- yl)(~ + 2fi)Q -~. The condit ion y~ > 0 
is satisfied always due to thermodynamics ,  hence ~ > ]. As shown in (7), 

(17) A. JEFFREY and J. ENGELBRECHT: Waves i~ nou-linear relaxin9 media, in Wave 
l~ropagatio~t in Viscoelastic Media,  edited by F. MAII~'ARDI, Research ~otes in Mathe- 
matics, No. 52 (London, 1982). 
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there  is no pr incipal  difference in choosing one or ano ther  veloci ty  as a basis 
for  the  phase.  

Relat ion (1.1c) with (3.1) m a y  be given also in an integral  form 

t 

(3.2) a = ( I + 2 f i ) e + 3 ( ~ - ~ - ~ , , + ~ , 3 ) ~ 2 - ~ - y ~ ( ~ + 2 f i )  exp - -  j~ ]d~]  
- - c o  

t h a t  was the  s ta r t ing  expression for the  analysis  in (7). The  corresponding 
evolut ion equa t ion  has the  fo rm 

(3.3) ~u~ eu, r , e  fexp[ ~o-y]eu, 
0 

Here  ~, is a small  p a r a m e t e r  usual ly  given in connection of the  Mach 

n u m b e r  (~) and  

(3.4a) a, = -~ (1 + mo)(r~.) -~ , 

(3.4b) m o =  2(% + % -~- v~)(). + 2f i ) - ' .  

The reader  is referred to (7) for details. Howevcr ,  it m u s t  be pointed out  

t h a t  

(3.5) u, = ~ U~/~t = - -  ~c U, /~x ,  

(3.6) ~:, = ).t - -  x ,  z : 7x.  

Here  UI denotes  the  displacement .  
The dimensionless p a r a m e t e r  (in our notat ion) 

(3.7) Z ~ %).L -1 

in t roduccd in (7) pe rmi t s  us to e s t ima te  the charac te r  of the process. I f  Z >> 1 
is satisfied, then  with fixed ~ and  ). i t  corresponds to a high-frequency process. 
I f  Z << 1 is satisfied, t hen  with  the  same fixed v~ and ). it corresponds to a low- 
f requency  process.  Conditions (2.3) and (2.20) have  the  same meaning,  
respect ively.  

3"1. High-]requency process. - I f  Z > > I  is satisfied (cf. condit ion (2.3)), 
t hen  the  exponent ia l  funct ion in the  integral  of cq. (3.3) changes slowly 
and its exac t  expans ion  into ~ series m a y  be used instead of the  complete  
function.  The  corresponding evolut ion equat ion in two t e r m s  of the  series 
has the  fo rm 

(3.8) ~ux ~ul ~'1 ~u~ ~,i 
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By making use of the t ransformat ion  

(3.9) 

eq. (3.8) yields 

= ~. + ( r , /2 r )  r ,  

(3.10) bul 8u, + a l  u ,  + ,t, = o 
272rl 

Equa t ion  (3.10) has the same s t ruc ture  as eq. (2.11), while in our  case 
e = ~ q- 2fi, q)o ---- (1 ~- y~)(~ -{- 2fi) and thus from (2.13) we obtain 

(3.11) bo -- 71 
2(1 q- 71)rl 

:Note also tha t  (3.5) and (3.6) hold and t rans format ion  (3.9) gives the 
change in the velocity.  Such a result  was der ived first in (') by a straight- 
forward analysis and used later  for s tanding waves in hounded media (~s). 

3"2. Low-lrequency  process. - I f  Z < ~ I  is satisfied (ef. condit ion (2.20)), 
t hen  the  exponent ia l  funct ion in the integrand of eq. (3.3) changes faster  
than  the  der ivat ive of ul with respect  to y and, therefore ,  the last may  be ex- 
panded  into a series. Keeping only the first t e rm  in the  ~eries, we come ac- 
tual ly  to Voigt material .  At  some distance from the  f ront  ~, = 0 (for details 
see (17)), it is possible to get  once again the celebrated Burgers '  equat ion 

(3.12) 
~ul 8u, f l i t 1  ~*u, 

Once more,  from (2.26) we obtain 

(3.13) tl, = �89 r ,7 ,  i 2 

and, bear ing also lit mind expressions (3.5) and (3.6), one can easily conclude 
tha t  (2.24) and (3.12) coincide. Such an evolut ion equat ion is obtained also 
in (is) for Voight mater ia l  only and a similar resul t  may  be obtained for 
thermoelas t ic  damping (3). 

4. - The nonlinear-linear medium. 

Several  media behave themselves in the following way: for small strains 
the  stress-strain relation is s trongly nonlinear,  but ,  if the strain is bigger than  a 

Qs) M. 1'. MORTELL: Z. Anffew. Math. Phys.,  28, 33 (1977). 
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cer ta in  threshold  e*, the  s t ress-s t ra iu  relat ion is linear. One of the best  ex- 
amples  of this k ind  are soft t issues (~'), where the small  stress causes the  sliding 
of long molecules and,  therefore,  the  average  s t ress-s t rain relat ion is s t rongly 
nonlinear.  I f  viscous effects are  not considered, then  

(4.1a) 

(4.1b) 

and  

(4.2) 

:= q)(e) ---- 2 .4- 2fi + 6(vl + r2 + %) e,  

I f  viscous effects are added,  then ,  according to model  (3.2), expression (4.1a) 
mus t  be changed to (3.1a), express ion (4.1b) to 

(4.3) if) : (1 + ~,~)(2,-~- 2fi~), e*<~e, 

and T(a, e) must  bc calculated (3.]b) by  tak ing  into account  the l inearized 
vers ion for e > ~*. I t  is obvious t h a t  the  threshold e* plays an impor t an t  role 
in wave  propagat ion ,  especial ly in shock wave propagat ion .  For  t he  high- 
f requency process,  as shown above,  e i ther  (2.14) or (3.10) holds. This  is the  
evolut ion equa t ion  with cri t ical  s t ra in  gradient  (7). For  model  (3.1} (or (J.2)), 
it is de te rmined  b y  the  expression 

( 4 . 4 )  2 , ~  y__l _ 
272r~ " 

For  the usual  nonlinear  viscoelast ic m ed i um the s i tuat ion is known:  if the  
real s t ra in  gradient  is smaller  t h a n  the  crit ical s t ra in  gradient ,  then  the  dis- 
s ipat ive  effects are s t rong enough to avoid the shock wave fo rmat ion  and,  if the  
real s t ra in  grad ien t  is bigger t han  the  critical one, t h e n  the  nonlinear  effects 
t ake  over  and  the  shock wave m a y  form (7). Here  the  s i tua t ion  is more  com- 
pl ica ted  because,  beside tile cri t ical  s t ra in  gradient  2*, the  threshold strain 
~* governs the  shock wave format ion .  There  is no explici t  possibil i ty to  com- 
pare  2* and ~:* between themselves ,  bu t  it is clear tha t ,  general ly  speaking,  
for e > ~* the  condit ion 2, > 2* m a y  be fulfilled, bu t  no shock will f o rm (here 
)t r = ~ e / ~  is the  real gradient) .  The  only possibil i ty is to find the  regions on 
the  physical  p lane  $, v for fixed r (e.g. for z--~ 0), where  both  es t imaies  
m a y  be compared .  The possible s i tuat ions are shown in fig. 1. Case a) does 
not  pe rmi t  any  shock format ion,  while )~*> :t  always,  and ~* m a y  be a rb i t ra ry .  
Case b) pe rmi t s  shock format ion  because there  are regions along the  ~-axis where 

(19) Y.C. FONG: Biomeehanies. Mechanical Properties o/ Living Tissues (Berlin, 1980). 
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Fig. 1. - e and ~e/~ diagrams (solid and brokcn lines, respectively). 

2, > 2* and e < e* are satisfied s imultaneously.  Case c) does not  pe rmi t  shock 
fo rmat ion  in the regions where  ~ > ;t* is satisfied, bu t  ano ther  con- 
di t ion ~ > e* indicates the  l inear  model a l ready.  Case d) pe rmi t s  shock for- 
ma t ion  as in a usual nonl inear  mate r ia l  because the  condition e < e* is sa- 
tisfied everywhere .  

5 .  - C o n c l u s i o n s .  

I n  sect. 2 a s t r ic t  approach  is given in order  to  obta in  the  evolut ion equa- 
t ions for high- and low-frequency processes in a r a the r  general  nonlinear  
r a t e - t y p e  (viscoelastic) m e d i u m  modelled by  a quasi- l inear first-order hyper-  
bolic sys tem of par t ia l  differential  equations.  The results ,  the  s imple wave  
equa t ion  with a source t e r m  for the  high-frequency process and Burgers '  equa- 
t ion for the  low-frequency process,  hold for the  general  const i tu t ive  law (1.1o). 
I n  (2) the  high-frequency process was analysed for the  same cons t i tu t ive  equa- 
t ion and the  corresponding evolut ion equat ion  was obta ined  by  the  me thod  
of mul t ip le  scales for the  case of a viscoelastic slab. Our resul t  seems to be 
more  general .  The compar ison with the special case of the  s tandard  viscoelastic 
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m e d i u m  (7) is g i v e n  in which  the  s a m e  r e s u l t  is o b t a i n e d  by  d e r i v i n g ,  f i r s t ly  t he  

g e n e r a l  i n t c g r o - d i f f e r c n t i a l  e v o l u t i o n  e q u a t i o n  :~nd, s econd ly ,  t h e  h igh-  a n d  

l o w - f r e q u e n c y  l i m i t s  of i t .  The  r e s u l t s  m a y  be  used  in a l~rge  r a n g e  of v isco-  

e l a s t i c  m e d i a .  As an  e x a m p l e ,  a spec i a l  n o n l i n c a r - l i | l e a r  m e d i u m  is c o n s i d e r e d  

a n d  t h e  c o n d i t i o n s  g iv ing  the  p o s s i b i l i t y  of shock w a v e  f o r m a t i o n  ~na ly sed .  

One of t h e  A u t h o r s  (l) .  F . )  was s u p p o r t e d  by  C .N.R.  t h r o u g h  ~, G r u p p o  

N a z i o n a l c  p e r  la  F i s i c a  M a t e m a t i c a  ,~. 

�9 R I A S S U N T O  

In questo lavoro sono cara t ter izzal i  i proeessi ondosi ad al ta  e bassa frequenza per una 
vas ta  classc di mater ia l i  non lineari,  in eui siano i)rcsenti effctti di memoria, deseri t t i  
da un'cquazione cost i tut iva di t ipo differenziale. Nci due casi sono dedottc lc cquazioni 
di evoluzione ed i r isul ta t i  ot tenut i  sono confrontati  con quelli dedot t i  dt~ Engelbreeht  
per  un par t icolare  mezzo viseoelasiico. Nella par te  finale del lavoro si considera un 
processo ondoso ad al ta  frequcnza in un part icolarc  rnczzo non lincare-lineare, che pub 
essere assunto come rnodello matematico per descrivere certi  t ipi  di tessuti biologiei 
o ecrte elassi di polimeri.  
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