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Summary. A prototype of Rastall’'s theory of gravity, in which
the divergence of the energy-momentum tensor is proportional to the
gradient of the scalar curvature, is shown to be derivable from a varia-
tional principle. Both the proportionality factor and the unrenormalized
gravitational constant are found to be covariantly constant, but not
necessarily constant. The prototype theory is, therefore, a gravitational
theory with variable gravitational constant.

PACS. 04.20. - General relativity.

A serious criticism of Rastall’s theory () of gravitation is that it is not a
Lagrangian-based theory (2%). LEE, LIGHTMAN and NI (®) have put forth
theorems in which they claim that the matter response equations, the zero
divergence of the energy-momentum tensor of any Lagrangian-based, generally
covariant metric theory of gravity, are a consequence of the gravitational-
ficld eqnation if, and only if, the theory containg no absolute variables. They
further conjecture that the conservation of energyv-momentum is equivalent to
the existence of a Lagrangian formulation. With regard to this latter con-
jecture, it has been shown that Rastall’s theory is a conservative theory, but no

(") P. RasraLr: Phys. Rer. D, 6, 3357 (1972).
(&) K.S. Tuorxe, D.L. Lee and A.P. Licursan: Phys, Rev. D. 7, 3563 (1973).
(3 D.IL. Lrg, A.P. Licutmax and W.-T. N1: Phys. Rev. D, 10, 1685 (1974).
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Lagrangian formulation i3 known. But, since Rastall’s theory contains no
absolute variables, the variational principle described below will, in practice,
allow one to see how to incorporate Rastall’s theory into & more general theorem
concerning gravitational theories which have conservative energy-momentum—
not just zero divergence of the energy-momentum tensor. In addition, the lack
of a Lagrangian base has posed for Rastall’s theory and especially for its gen-
eralizations certain problems in obtaining field equations consistent with the
Bianchi identities (*). In another example, CoLEY has shown that, in a dust
solution for a particular Rastall-like theory, the motion of the fluid flow is
irrotational (5). Restrictions such as these can occur even for perfect fluids
in general relativity. RAY has shown that this difficulty can easily be circum-
vented through use of a particle number constraint in the case of a perfect
fluid (%), the so-called Lin constraint used successfully for understanding the
physics of liquid helium (7). The correction can easily be applied to Rastall’s
theory provided one has a Lagrangian formulation available.

Rastall’'s modification of the Einstein field equations is motivated by the
observation that the zero divergence of the energy-momentum tensor is not
theoretically nccessary. As an example, the divergence of T'# is assumed
proportional to the gradient of the scalar curvature R:

(1) T = iR,
The consistent field equations are then
(2) Ruw — 3 (2in+ 1)gv R = — xTw,

where R# is the Ricei tensor, g# is the metric (with signature (—1,1,1,1)), 4
is the proportionality factor and x is the unrenormalized gravitational constant.
A complete post-Newtonian approximation yields the Einstein results provided
A~ O(r?), where ¢ is the veloeity (8).

Let, us now consider the Lagrangian density

(3) L =— \/—gRexp [24/—gl»'] L A/=gL,,

R

where I is the matter Lagrangian and A' and %' ure two constant parameters.
Note, however, that the Lagrangian given by eq. (3) is not the standard form

() L.IL. Smarrey: Phys. Rev. D, 12, 376 (1975).

(3) A.A. CoLEY: Nuovo Cimento B, 69, 89 (1982).

¢y J.R. Rax: J. Math. Phys. (N. Y.), 13, 1451 (1972).

() C.lan: Proe. 8.1.F., Course XXI, edited by G. Carerr (New York, N. Y., 1963).
¢) L.I. Smarrey: Found. Phys., 8, 59 (1978).
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one usually faces in field theory. First of all, .¥ is not now a secalar density
because of the exponential factor. In fact, if the exponential factor is expanded
(if such an expansion makes sense, and it may not), then one has a density
series of terms of increasing weight. If one insists that % be a scalar density,
then we can progress no further. Let us now ingtead look at evidence which
might be in favor of allowing the Lagrangian proposed by eq. (3).

In Rastall's theory, the energy-momentum tensor does not, in general,
have zero divergence except in asymptotically flat space (1). The zero divergence
i8 not a requirement (*), but it has nevertheless been generally accepted (1)
that the zero divergence implies that the theory would be a conservative theory,
and, therefore, considerable effort has been expended to show that this con-
sequence implies globally conserved energy-momentum and angular mo-
mentum (!!). Nevertheless, this requirement is too strong and is not even car-
ried over to a more general definition of a metric theory by THORNE, LEE,
and LIGITMAN (3).

Indeed we have proven, at least through level of the post-Newtonian ap-
proximation, that Rastall’s theory and similar theories are conservative
theories (%), The proof was somewhat surprising, but seems to provide a reason-
ably strong argument for allowing theories with nonzero divergence of Tw».
The proof has not been extended to post-post-Newtonian or higher approxi-
mation, and no exact calculation is known.

Next look at the problem from a mathematical point of view. According
to very general theorems, the nonzero divergence of T# implies specific prop-
erties for the Lagrangian. These arguments have been given by WEINBERG (13).
In summarizing these arguments, he states « Thus the energy-momentum
tensor... is conserved if and only if the matter action is a scalar». (Iere,
WEINBERG uses the word « conserved » to mean zero divergence. This use of
the word « conserved » should not be confused with its use for « conservative »
theories (*+12).) The «if and only if» means that one cannot have a scalar
density and obtain Rastall’s field equations which obviously imply nonzero
divergence of the energy-momentum tensor. If the theorem is true, then one
can never arrive at a Rastall-type theory, described by eqgs. (1) and (2), through
the use of a scalar Lagrangian. We suspect that the theorem is true and, there-
fore, motivate our generalization of the variational concept for physical systems

(®) K.8. Twuorng, C. M. WirLL and W.-T. Nr: in Proceedings of the Conference on Experi-
mental Tests of Gravitational Theories edited by R. W, Davies (NASA-JPT. Tech. Memo
33-449, unpublished), p. 10.

(%) K.S. Tuorye and C. M. WiLL: Astrophys. J., 163, 595 (1971).
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('*) 8. WRINBERG: Gravitation and Cosmology: Principles and Applications of the General
Theory of Relativity (New York, N. Y., 1972), p. 363.
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to include Lagrangians of the form given by eq. (3). We look now at the con-
sequences of that action.
The variation of ¥ with respect to the metric then becomes

V—gexp [24/=gAx']
2x

) sZ= { [Ruv — Ry Ty - 1)9“”13} L

1
'I'QX/_QT””} OGu o

where total divergences have been dropped as usual. The equations of motion
then become

(5) Rwr— 3 (20 %' vV/—g + 1) g R = — x' exp [— 22 »'V/—g] T
and the divergence of the energy-momentum tensor takes the form
(6) T#, =+/—g i exp [24' x'V—g] ¢*R,, .

The identification

("N % exp [— 24 %' V—g] - x,

(8) V—gA exp [2A %'V —g] >4

reproduces a Rastall-like theory given by eqs. (1) and (2) but with the param-
eters A and x now covariantly constant (14).

We must, however, be cautious about the resulting field equations, since
the theory is only manifestly covariant in the strict limit that both 2 and x are
constant. This is certainly possible, but this limit would restrict the useful-
ness of the theory, at present, to a calculational tool. In order to emphasize,
on the other hand, how close these theories really are for the covariantly con-
stant case, we have calculated the post-Newtonian approximation of eqs. (5)
and (6) directly. We obtain the same PPN parameters (!). We also find the
same conserved integral (global) momentum and angular momentum (%),
providing we always make the identification given by egs. (7) and (8) (to the
appropriate order) for the renormalized gravitational constant. Thus, since
the scale of the gravitational constant is unimportant, the Lagrangian-based
theory given by eq. (3) is identical in the post-Newtonian approximation to the
original Rastall theory. This is not just a coincidence, but is strongly related

(%) J. A. ScHOUTEN: Ricei Calculus, 2nd edition (Berlin, 1954), p. 125.
(*3) L.L. SMALLEY: in Scientific Applications of Lunar Laser Ranging (Dordrecht,
1977), p. 9l.
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to the very weak corrections due to the higher-order effects of the density,
v/—g, on x and A. Just as in the original Rastall theory, deviations would
necessarily be expected in higher orders, although the theory still retains viability
at present. We will, however, present a specific example of a deviation from
general relativity after the next paragraph.

We have now established that the Lagrangian given by eq. (3) leads to a
physically, i.e. experimentally acceptable theory. The generalization of the
variational principle to include Lagrangian densities of this form seems to
indicate that a wider set of physical systems may be possible than ever before
realized. On the other hand, constraining: % to be only a scalar density does
not alone ensure that the field equations will be physically acceptable. The
examples of nonphysical, Lagrangian-based theories litter the gravitational
landscape (1¢). The lesson is a simple one and has been routinely espoused at
the most rudimental level. For example, when GOLDSTEIN describes fields by
variational prineciples (17), he states « Indeed, we may use any expression
for ¥ which leads to the desired field equations ». One should realize that in
this quote (taken somewhat out of context) GOLDSTEIN is not referring to co-
variant Lagrangian formulations, and, in some sense, we are not either. Then
with the proper constraints on the variables (¥) the variational principle
ensures consistency and experiment decides the physical acceptability. In
our case, the utility of Rastall’s field equations has been discussed else-
where (31519),  Qur generalization here should further enhance our under-
standing of the structure of the gravitational field.

As an example of one immediate result we note that, if the identification
given by eq. (7) is substituted into the Lagrangian, eq. (3), we see now that the
origin of the prototype Rastall’s theory is a modification of general relativity
with a covariantly constant gravitational constant x. Thus we could, for ex-
ample, have a time-varying gravitational constant @. From eq. (3), we see
then that G~ x' exp[— 2v/—gi'«'], so that

¢

) o = — 22yg) i ~ — 22y 4) 67

But one finds from the post-Newtonian approximation that 80(\/—5) ~—20,U.
Since A'~ O(v?), U~ O(v?) and ¢, ~ O(v), then

(10) s—%f\a 0(*) @G .

T

(1) W.-T. N1: Phys. Rev. D, 7, 2880 (1973).
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(18 I W. Heur, E. A. Lorp and L. L. SMALLEY: Gen. Rel. Grav., 13, 1037 (1981).
(*) L.L. SMaLLEY: J. Phys. 4, 16, 2179 (1983).
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Thus Rastall’s theory along with solar-system experiments should put scvere
restrictions on the value of G/G.

In closing we mention one possible solution to the general covariance problem
for the Lagrangian density described by eq. (3). Elsewhere we have shown
that, for the covariant derivative of the energy-momentum tensor, we could
replace eq. {1) with other forms for the divergence which specifically reflect
that 2 ~ O(v?) (*°). One solution was of the form

(11) T, =dUR),,
where U is the gravitational potential and § is now a parameter of 0(1). We
were also able to show that this is a conservative theory (through the post-

Newtonian level) and that it leads to the constraint on the Nordtvedt param-
eter 7 given by (%)

(12) n=4f—y—3 +39,

where § and yp are the usual Robertson parameters.

CAMPBELL et al. have shown that the parameter I" from orbital precession
I'= (2 + 2y — £)/3 has the value I" = 0.987 4-0.006, which is about 2 standard
deviations from the prediction I' = 1 of general relativity (22). If, for the sake
of definiteness, we assume that 4 = 1 and that the Nordtvedt parameter 5 = 0,
this leads to the value § = — 0.054,

With this motivation, the solution that we propose involves replacing 2
in the exponential part of the Lagrangian by a field ¢(x). The field ¢ is then
closely related to the gravitational potential in the post-Newtonian limit.
Then, when % is subjected to a co-ordinate transformation, ¢ is now required
at the same time to undergo a gauge transformation that then ensures cova-
riance of the field equations. In order to complete this example, we must add
to & a Lagrangian for the ¢(x) field. We have not yet completed this task
and leave it for future work.
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® RIASSUNTO (%)

Si mostra che un prototipo della teoria di Rastall, nel quale la divergenza del ten-
sore energia-impulso & proportionale al gradiente della curvatura scalare, & derivabile
da un principio variazionale. Si trova che sia il fattore di proporzionalitd che la costanto
gravitazionale non rinormalizzata sono covariantemente costanti, ma non necessaria-
mente costanti. La teoria prototipo & percid una teoria gravitazionale con costante
gravitazionale variabile.

(*) Traduzione a cura della Redasione.

BapuaumonHpii NPHHIMI IS NPOTOTHNA TeopHH rpaBuTaumu Pactosa.

Pestome (*). — ITokaseiBaercs, Y¥TO OPOTOTHI TEOPHMHM rpaBHTauMM Pacrosnna, B KOTOpOi#
PacXxOaMMOCTb TEH30PA 3HEPT HH-HUMITYJIECAa NPONOPUMOHANIbHA IPAJHEHTY CKUIAPDHON KPH-
BH3HBI, MOXeT OBIThH NIOY4Y€H U3 BapPHAUMOHHOrO NpuHIANa. [Tony4aercs, YTO MHOXHTEb
NPONOPIUAOHANBHOCTH H HENMEpEeHOPMHMpPYyeMas PABHTALUMOHHAA INOCTOSHHAA SABJIAIOTCH
KOBAapHaHTHO HOCTOAHHBIMH. CliemoBaTe/bHO, OPOTOTHII TEOPHH NPEACTABIISET IpaBUTA-
HHOHHYIO TEOPHIO C MEPEMEHHOW I'paBHTALHOHHOK KOHCTAHTOM.

(*) Hepesedeno pedaxyuei.



