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Abstract It is proved that the general formulas, obtained recently for the lower bound of the first 
eigenvalue, can be further bounded by one or two constants depending on the coefficients of the corre- 
sponding operators only. Moreover, the ratio of the upper and lower bounds is no more than four. 
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Some general formulas of the first eigenvalue are presented in refs. [ 1-41 for elliptic oper- 
ators, Laplacian on Riemannian manifolds and Markov chains. The formulas are expressed in 
terms of some class of functions, that is making variation with respect to test functions. Several 
explicit bounds are further presented here, avoiding the use of test functions. It is surprising that 
the bounds not only control all the essential estimates produced by the formulas but also deduce a 
simple criterion for the positiveness of the eigenvalue in one-dimensional situation. Further im- 
provement of bounds will be presented in a subsequent paper. 

1 Special case: Illustration of the results and the proofs 

The main results and their proofs are illustrated in this section in a particular situation. 
Consider differential operator L = a ( x ) d2/dx2 + b ( x ) d/dx on ( 0 ,  D ) , where a ( x ) is 

positive everywhere, with Dirichlet and Neumann boundary at 0 and D (if D < a ) respectively. 
Assume that 

where C ( x ) = b / a . Consider the ( generalized ) eigenvalue of L : h 0 = inf 1 D ( f ) : f € C 
U 

C 1 ( O , ~ ) ,  f ( 0 )  = 0, 11 f 11 = 1 1 ,  where D(f )  = I a x 2 d ) ,  r ( d z )  = 
0 

( a ( x ) Z ) - ' ec(") dx , here and in what follows, Z denotes the normalizing constant, and 11 * 11 
denotes the  norm with respect to R . The following variational formula was presented by Theo- 
rem 2 . 2  in ref. [4] :  

- - ho 3 Co . - su inf I ( f ) ( x ) - I ,  JtP .re.(O.o) 
(1 .2 )  

where.F= (f€ c ' ( o , D ) :  f ( O ) = O ,  f I ( O , D ) > ~ l  and 

Moreover, it was proved in ref. [4] that the equality in ( 1 .2 )  holds under mild assumption. 
The test function f used in ( 1 .2 )  is a mimic of the eigenfunction of A o .  Note that there is 

no explicit solution of the eigenfunction. More seriously, the eigenvalues and eigenfunctions are 
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very sensitive. For instance, let D =  a ,  a ( x ) = l  and b ( x )  = - ( x  + c ) .  Then, forthespe- 

cific value of constant c : 0,  1 , $3 , 2/r& , both the eigenvalue l o  and the order of its eigen- 
function (polynomial) change from 1 to 4 successively. And for the other values of c between the 
above ones, the eigenfunctions are even not polynomial. Thus, it is hardly imaginable to get a 
good estimate without using test functions. However, we do have the following result. 

Theorem1.1. Let (1 .1 )  h o l d a n d ~ ( x )  = J;e-~( ' )dy I ~ a ( y ) - l e c ( y ) d y ,  where v ( ' )  

is a probability measure on ( 0 ,  x ) with density e - C ( y ) / ~ ( X )  (and 2'') is the normalizing con- 

stant), 6 = sup Q ( x ) ,  6' = 2 
Z E  ( 0 .  D )  

I 6'- '  3 A. 3 to 3 ( 4 6 ) -  , (1 .4)  
and moreover 6 < 6' s 2 6 .  In particular, when D = a , A. > 0 iff 6 < a . 

When D = , in order to justify A. > 0,  it suffices to consider the limiting behavior of 
Q ( x )  as x-+ a . For this, there are some simpler sufficient conditions. Let the corresponding 
process be non-explosive on [ 0 ,  a ) ( with reflecting boundary at 0 ) :  

- " ' " d s ~ ' a ( ~ ) - ' e ~ ( ~ ) d l r  = a .  By using the 19Hospital's rule, from ( 1 . 4 ) ,  it follows 
0 

that whenever the 1imitK : =  l i n ~ [ e ~ / & ] ( x ) ~ ' e - ~ ( ~  a )  exists, then Ao>O iff K <  a .  
I- m 0 

Especially, if a ( x ) E  c', l i m [ & e - C ] ( x )  = m and the limit K ' : =  l im[&/(a1/2-  b ) ]  
x- OD li- 

( x ) exists, then A 0 > 0 iff K' < a . Furthermore, recall the Mean Value Theorem : if f (0) = 
g ( 0 )  = O  or f ( D )  = g ( D )  = O  but g' l ( O , D ) # O ,  then sup f ( ~ ) / ~ ( x ) <  sup f ' ( x ) /  

x E ( 0 . D )  Z E  ( 0 ,  D )  

g ' ( x ) .  Thus, if a €  c',  then Ao>O once sug[&/(a1/2- b ) l ( x )  < 00 .  
X > 

We point out that the result is meaningful for the three situations mentioned at the beginning 
of this paper. This is due to the coupling method, which reduces the higher-dimensional case to 
dimension one. To avoid the use of too much notations at the same time, the results are not listed 
here but discussed case by case in the subsequent sections. 

When b ( x ) = 0 ,  the estimate 6 - ' ,lo ( 4 6 )  - ' was obtained in ref. [5]  and is also true 
for A (see ref. [ 1 ] ) . But the result is not true for A I in the case of b ( x ) + 0 ( see Example 
3 - 9 ) .  

Proof of Theorem 1 .  1 .  The original motivation comes from ref. [ 6 ]  , in which the 
weighted Hardy's inequality 

I m f ( x ) ' v ( d x )  o s ~ ~ ~ f x ~ ~ d x ,  o f E C" , f (0 )  = 0 

was studied, where the optimal constant A obeys the following estimates: 
B s A  < 4 B ,  (1.5)  

here Y and A are non-negative Bore1 measures on [0 ,  ) , B = su v [ x , a ) p~ ( u)-'du , 
% ,!? J,' 

and PA is the derivative of the absolutely continuous part of A with respect to the Lebesgue mea- 
sure. However, ( l .4) is more precise than ( l .5  ) and so a different proof is needed. The meth- 
ods of the proofs adopted here mainly come from refs. [I-41 . 

( a )  The second inequality in ( 1.4)  is just ( 1 .2 )  , proved in ref. [4]  . 
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( b )  To prove the last inequality in ( 1 . 4 ) ,  we need the following result which is an analog 
of Lemma 6 .1  (2)  in ref. [ l ] .  

Lemma 1.2. Let m , n be non-negative functions satisfying m ( x ) dx < and let J: 
D 

c : =  sup J X n ( y ) d y J  m ( y ) d y  < . Then for every Y E ( 0 ,  1 ) ,  we have 
x E ( 0 . D )  0 z 

D 

J~cp(y) 'm(y)dy  4 c ( l  - ~ ) - ~ c p ( r ) ' - l  for all x € ( O , D ) ,  where cp(x) = j x n ( y ) d y .  
0 

Proof- Let M ( x )  = r D m ( y ) d y a n d  y € ( O , l ) .  Then, by assumption, M ( x ) < c  

cp ( x ) - ' . By using the integration by parts formula, we get 

The first and the last inequalities cannot be replaced by equalities because one may ignore a nega- 
tive term in the case of D = 00 . QED 

Now, take m ( x )  = ec( ' ) /a(x)  and n ( x )  = em'("). Because of (1 .1)  and 6 <  w ,  the 

assumptionsofLemma1.2aresatisfied. Then [a- 'cpYec](u)du < c ( 1 -  ~ ) - ' c p ( x ) ' - ' .  SxD 
Next, take f ( x )  = Q(x) ' .  Then 

Optimizing the right-hand side with respect to Y , we obtain Y = 1/2 and then the required asser- 
tion follows. 

( c )  We now prove the first inequality in (1.4) . Fix x E ( 0 ,  D )  . Take f (  y )  = fx(  y )  = 

Furthermore, 1 1  f l l  = { x f ( y ) 2 r ( ~ y )  o + f (x) ' r r [x ,  D ) ,  ~ ( f )  = J x e - 2 c ( ~ ) e c ( ~ ) d y / ~  o = 

Q 
f ( x ) / Z ,  where x [ ~ , ~ ]  = 1 d r .  Hence 

P 

Making supremum with respect to x , it follows that A0 6'0 . 
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( d )  B~ ( 1 . 6 ) .  we have2 Qdv"' = ~ f ( x ) - ' j ~ f (  y) 'rr(dy) + Q ( x )  > Q ( x ) .  Hence 
0 

6' 3 6. On the other hand, from the definitions, it follows immediately that 6' < 2 6 .  Usually, 
we have 6 < 6' unless 6 = . QED 

2 Higher dimensional case: Euclidean space and compact manifolds 

This section applies Theorem 1 .1  to the higher-dimensional Euclidean space and compact 
d  d  

Riemannian manifolds . First, consider elliptic operator L = x a, ( x )a ia + x 6, ( x )ai , a 
i,j= I i = l  

d  
-1 

= J/Jxi  in B \  where a ( % ) : =  ( a , ( % ) )  is positive definite, auE C 2 ( B d ) ,  bi = L ( a , a j V  
j =  l 

+ aja,,.) , V E c 2 ( B d ) .  Assume additionally that the corresponding diffusion process is non-ex- 
. . 

plosive, having stationary distribution K ( dx  ) = Z - ' exp [ V ( x ) ] dx  , where Z 

: = J e x p [ v ( x ) ] d x  < 00, and its Dirichlet form ( D , B ( D ) )  is regular: ~ ( f )  = J(avf, 
V f ) d n  , Q( D ) 3 C r  ( Bd ) . Since L has trivial maximum eigenvalue 0 in the present situa- 
tim , we are interested only in the first non-trivial one ( i . e . , the spectral gap ) : h = 

infi ~ ( f ) :  f E H D ) ,  n ( f )  = 0 ,  ri(f2) = I } ,  where ~ ( f )  = J fdrr.  

The main steps of the study on h by couplings are as follows. Take and fix a distance 

d ( x , y ) in it belongs to C2,  out of the diagonal. Set D = sup d ( x , y ) . For each coupling 
Z . ?  

operator i and f E c2 [0 , D ) , there always exist two functions A and B in Bd x Bd such that 
L P ~ ( X , Y )  = ~ ( x , y > j " ( d ( x , y ) )  + B ( x , y ) f  ( d ( x ,  y ) ) ,  x #  y .  The key step ofthe 
method is finding a coupling operator and a function f E c2 [ 0 ,  D ) satisfying f ( 0 )  = 0 ,  
f 1 ( 0 , ~ )  > 0 and j" G O  so that for some constant 6 > 0, 

if o d ( x , y )  G -  6f o d ( x , y ) ,  x # Y .  (2 .1)  
Wenowchoose a , p E C ( O , D )  suchthat a ( r ) e  inf A ( x , y )  a n d P ( r ) >  su B ( x , y ) .  

d ( x . y ) = r  d(%.) -P.  r 

Then, ( 2 . 1 )  holds provided a ( r ) f ' ( r )  + ~ ( r ) f  ( r ) ~  - 6f ( r )  for r E  ( 0 ,  D ) .  Thus, the 
higher-dimensional case is reduced to dimension one. 

Replacing a ( x ) and b ( x ) used in the last section by a ( r ) and /3 ( r ) respectively, define 
the correspondent function C ( r ) , operator I ( f )  and the class .Fof  test functions. Then, the 
variational formula given by Theorem 4 .1  in ref. [ 1 ] is as follows: 

A ,  3 El : =  sup inf ~ ( f ) ( r ) - ' .  
fC.7 re (0 .0)  

(2 .2 )  

Now, define 6 and 6'  as in Theorem 1 . 1 , from which, one deduces immediately the following 
result. 

Theorem2.1. 6 ' - ' 3 ( , 3 ( 4 6 ) - ' .  
Comparing this theorem with Theorem 1 . l ,  the difference is that here we have upper bound 

only for el rather than A I . 
We now turn to manifolds. Let M be a compact, connected Riemannian manifold, without 

orwithconvexboundaryaM. Let L = A + V V ,  V E  c'(M). W h e n a M # $ ,  we adopt Neu- 
mann boundary condition. Next, let RicM 3 - K for some K B . Denote by d , D and p re- 
spectively the dimension, diameter and the Riemannian distance. Let K ( V) = inf / r : Hess v - 
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RicM < r 1 and denote by cut (x)  the cut locus of x .  Define 

a l ( r >  = s u p { ( V p ( x ,  * ) ( y ) ,  V V ( y ) )  + ( V , O ( - , ~ ) ( X ) , V V ( X ) ) :  

p ( x , y )  = r ,  y c u t ( x ) \ ,  r € ( 0 , D I .  
Byconvention, a l ( 0 )  = O .  Choose YE C [ O , D ]  so that ~ ( r ) ~ r n i n { K ( v ) r ,  a l ( r )  + 
2 J l ~ l ( d - l ) a ~ ( r ) t ,  where a 2 ( r )  = tanhIL J K / ( ~  - I ) ]  if K P O  and 0 2 ( r )  = 

2 
r 

- tan[- J -  K / ( d  - I ) ]  if K q O .  Redefine C ( r )  = L j r y ( s ) d s ,  r E [0, D] .  Then, the 
2 4 0 

variational formula obtained by ref. [2]  can be stated as follows. 

where F= { f € c [0 , D ] : f l (0, D )  > 0 1 . Note that C ( r ) was used in ref. [2]  instead of eC( ') 
used here. We now have the following result. 

Theorem 2.2. Define 6 and 6' as in Theorem 1 . 1 but set a ( x ) r 1 and b ( x ) = 
~ ( x ) / 4 .  Then 6 - ' ~ 6 ' - ' ~  e l a ( 4 6 ) - ' .  

Proof. The proof is similar to the one of Theorem 1 . l ,  but there are two places needed to 

bemodified. Thef i rs toneis theproof  ( b ) .  Le ty , ( r )  = e-c(")ds.  ByLemma1.2  (with C 
n ( s )  = e - C ( r )  , m ( s )  = eC(" and c = a ) ,  we have y,'eC < 6 ( 1  - ~ ) - ' ~ ( r ) ~ - ' ,  Y E  ( 0 ,  

1 ) . Hence 

In particular, setting Y = 1/2 and f ( r ) = y, ( r ) ', we obtain El 3 ( 4 6  ) - ' . To complete the 

proof, one needs to show that El is a lower bound of the eigenvalue of operator L = d2/dr2 + 
[ Y ( r ) /4 1 d/d r . Then the upper bound El  < 6' - ' follows from Theorem 1 -1.  The proof for the 

required assertion is similar to the one of (1 .2)  , but is left to a subsequent paper') . QED 
Example 2.3. Consider the case of zero curvature. Let V = 0. Then 6 = D2/4, 6' = 

3 D ~ A .  The precise solution is 4D2/7i2, which can be deduced by using the test function 
sin( nr/2D).  

Of course, the above idea is also meaningful for Dirichlet eigenvalue in higher-dimensional 
situation. 

3 The general relation between lo  and iZ1 and one-dimensional case 

The main purpose of this section is to deal with A 1 , by comparing it with A 0. We now study 
a general relation between A. and A 

Let ( D ,Bf D ) )  be a Dirichlet form on a general probabilistic space ( E ,  29, x )  , it deter- 
mines a Markov transition probability p ( t , x , d y )  . Assume that p ( t , x , E )  = 1 for all t 3 0  and 

x E E .  Def ;neAI=inf{D(f) : fEL2(D) ,  n ( f ) = O ,  n ( f 2 ) =  1 1  f 1 1 2 = 1 / .  Foreach A E g  
with x ( A ) E ( O , I ) ,  let A 0 ( A ) = i n f ( D ( f ) : f E 5 f ( D ) ,  f l A r = O ,  11 f 11 = I \ .  Then, we 
have the following result. 

1 ) Chen, M. Y .  , Variational formulas and approximation theorems for the first eigenvdue in dimension one, Science in China, 
%r. A ,  2000, in press. 
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Theorem 3.1 . inf A A G inf m i n { ~ ~ ( ~ ) / n ( ~ " ) ,  A ~ ( A ~ ) / ~ ( A )  } < 
n(A)E (O,I/ZI a (A)E (0 , I )  

2 inf Ao(A).  Inparticular, A l > O i f f  inf A o ( A ) > O .  
a(A)E(0,1/21 n(A)E (O.l/21 

The theorem also holds for general symmetric forms studied in ref. [7]  , and improves Theo- 
rem 1 .4 there . 

Proof of Theorem 3.1 . First, by spectral representation theorem, 

D(f )  = l i m L ~ r ( d x ) ~ p ( t , x , d y ) [ f ( y )  , t o  2 t  - f ( x ) 1 2 ,  f € ~ ~ ( r ) ,  

1 (cf.  ref. I ,  $ 6 . 7 ) .  Replacing J ( d x ,  d y )  b y ~ ( d x ) p ( t , ~ , d y ) ,  i n p r ~ f ( b )  off ie-  

orem 1 .2 in ref. [7]  , or in the last paragraph of part 3 in ref. [9]  , then setting t J. 0, it follows 
t h a t A l a  inf Ao(A). 

z( A )  E (O,l/ZI 

Next, by Theorem 3 . 1  in ref.[7],  we know that A I < A o ( A ) / r ( A C )  for all A : r ( A ) E  

( 0 , l ) .  Hence A l <  inf m i n { A o ( A ) / r ( A c ) ,  A o ( A C ) / r ( A ) ~  = inf min{Ao(A) /  
Z ( A ) E ( O , I )  Z ( A ) E  (0.1n1 

r ( A C ) ,  A o ( A C ) / a ( ~ )  1 < inf A o ( A ) / r ( A c )  ~2 inf Ao(A). 
r(A)E ( 0 , l n l  n( A)€ (O,l/Z] 

QED 
The simplest case is that A consists of a single point, say A = { 0 1 c E for instance. Then 

the proof becomes rather easy. For simplicity, let A = A ( ( 0 1 ) ( but not { 0 1 ) . Then, we have 
the following result. 

Proposition3.2. A 1 > A o .  
Proof. SimplynotingthatVar(f)= 1 1  f - r ( f )  1 I2= in f  1 1  f - c  1 1 2 ,  we have A I =  

rE'?". 

inf ~ ( f ) / V a r ( f ) a  inf D(f ) /  I I  f -  f(O> I 1  2 = A o .  
/+ eunal. /+LW".l. 

QED 
In one-dimensional situation, because of the linear order, Theorem 3 . 1  takes a much sim- 

pler form. For instance, the proof of Theorem 3 . 1  and the property of linear order give us imme- 

diately that A I <  inf { [ ~ ~ ( ~ , c ) n ( c , ~ ) - ~ ]  A [ h o ( ~ , q ) n ( P , c ) - l ] \ .  However, we have 
1 . E ( p . q )  

a much stronger result as follows. - 

Theorem 3.3 .  Let L = a ( x ) d2/dx2 + b ( x ) d/dx be an elliptic operator on the interval 
( p , g ) , where a ( x ) is positive everywhere . When p ( resp . , q ) is finite, we adopt Neumann 
boundary condition. Assume that the process in non-explosive and ( 1 . l )  holds. Then, 

sup { A o ( P , c )  A A o ( c , q ) l <  A 1  < inf ( ~ ~ ( p , c )  V ~ ~ ( c , q ) l .  
c E ( y , q )  < , E ( r , q )  

Note that when c .f , we have A o ( p , c )  4 and A o ( c , q )  f . Thus, once the two curves 
A o ( p , ' ) and A 0 ( , q ) intersect, the two inequalities become equalities . The conclusion holds 
once both a ( x ) and b ( x )  are continuous. Actually, denoting by xo the unique point at which 
the eigenfunction of A 1 vanishes, we have A I = Ao(p,  xo)  = Ao( xo, q )  (the proof needs Theo- 

rem 1 . I  in the subsequent paper1) ) . 
Theorem 3.4.  Consider birth-death processes. Let bi > O( i 3 0 )  , and ai > O( i 1) be 

the birth and death rates respectively. Define ni = pi/p , po = 1 , pi = bo-" b i - l /a l - . -  a i ,  p 

= X ~ i a n d ~ ( f )  = x r i b i [ f i + l  - f i 12 ,  M D )  = i f  E L ~ ( x ) :  D(f )  < 00 1 .  Assume that 
m k 

7 
[L < and the process is non-explosive ( equivalently, ( bet) -' pi = ) . Reset 

ksO i r O  

I )See footnote 1 ) on page 1055. 
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Ao([o,kI)  = Ab(k) ,  / \O([k ,  a , ) )  = A1b(k) and adopt the convention Ah(  - 1 )  = 0 0 ,  here 
A o ( A ) and A I are defined at the beginning of this section. Then 

Proof. Here, we prove Theorem 3 .4 only, the proof of Theorem 3 . 3  is similar and even 

simpler. Given f € % D )  and k a O ,  let f = f -fk. Then 

D ( f )  = ~ ( f )  = nibi[fi+, - j i I 2  + x R i b i [ j i + l  - 3 1 2  
i c k - l  ia k 

a [ A b ( k  - 1 )  A Arb(k + 1 ) 1 ~ a r ( f )  = [Ab(k - 1 )  A A1b(k + l ) I ~ a r ( f ) .  
Making supremum with respect to k and infimum with respect to f ,  the required lower bound fol- 
lows. 

We now prove the upper estimate. Given E > 0 ,  take f i  , fi 2 0 such that f l  I [ k ,  ) = 0 ,  
f 2 1 [ 0 , j ] = O ,  11 f~ 11 = 11 f2 11  = 1  and D ( f 1 ) s A b ( k - 1 )  + E ,  D ( f 2 ) s h $ ( k +  1 )  + E .  Set 

f = - f l  + af2, where a is the constant so that ~ ( f )  = 0. Then D(f)  = C nibi[fi+l - fi12 = 
i s 0  

~ ( f i )  + a2D(f i>  6 Ab(k - 1 )  + E + (Arb(k + 1 )  + € ) a 2  < (Ab(k - 1)  V A$(k + 1)  + 
E ) I /  f 1 1  Letting E+O and then making infimum with respect to k a 1 , we obtain the required 
assertion. QED 

For birth-death processes, the following variational formulas were presented in refs. [3 ,  
41. 

A. = su infz j (w)- ' ,  A ,  = su in f l i (w) - I ,  
w t  $. rpO &!i, i a o  

where i i ( w )  = [,uibi(wi+I - W ~ ) ] - ~ ~ ~ , W , ,  % =  { w:wo = 0 ,  wiis  increasing in i / ,  %&" 
j a i + l  

= { w : wi is strictly increasing in i and x ( w ) 3 0 1 . Our new result is as follows. 

Theorem 3.5. Let p < m , Qi = C (pjbj)-' C,ui and Q: = [ C (pjbj)-' 
jei-l js i je i - I  

+ (2pibi)-I] 2: ,uj, where v ( "  is a probability measure on / 0 , 1 ,  ... , k - 1 / with density v j k '  
I >  " 1  

= (pjbj)  where z ( ~ )  is the normalizing constant). Next, let 6 = su Q, and let 6' = . >! 
n - l  

2 sug Q; v )  "' . Then 6' - ' A. 2 ( 4 6  ) - . Assume additionally that the process is non- 
"' 1'0 

explosive, then A O / n O a A 1 a A  \ - 0 .  In particular, Ao(resp., AI)  > O  iff 6 <  a). 
Proof. The lower bound of A comes from Proposition 3 . 2  (or Theorem 3 .4  with k = 0)  . 

The proof of Theorem3.1 shows that A1sinfk,o{[Ab(k- l ) x [ k ,  = ) - ' I  A [A;(k + 1 ) x [ 0 ,  
k 1 - 1 1 . Then the upper bound follows by setting k = 0 .  The proof for A. is similar to the one of 
Theorem 1 .1 . First, prove the following result, which is the discrete version of Lemma 1 . 2  and 
improves Lemma 2 .2  (2) in ref. [3]  . 

m 

1 Lemma 3.6. Let ( mi ) and ( ni ) be non-negative sequences satisfying Z mi < , 
i = o  

.-I = 

s u p n , o C q x r n i  = :  e < m .  Then for every Y E  ( O , l ) ,  we have Cv/rn, 4 e ( 1  - 
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Y ) - ' ~ ; - ' ,  where yon = ni .  
i .0  

Pmof. Let M, = C mj . Fix N > i . Then by summation by parts formula and Mn q 
ja 

ccp;', we get 

By using the elementary inequality ~ ( 1  - Y ) - ' ( x Y - '  - 1 )  + x Y 3 1 ( x  > 0 ) ,  it is easy to 

check that cpj; - cpT/cpj + < Y ( 1 - Y ) - ' [ cpj - ' - cpj; ] . Combining this with the last esti- 
mate gives us the required assertion. QE D 

Wenow take ~ = 1 / 2 ,  m i = p i ,  n i =  ( p i b i ) - '  and c = 6 .  Then 

Therefore A 0  ( 4 6 )  - I .  
( i - l ) A ( k - 1 )  

I t r e m a i n s t o ~ h o w t h a t i ~ ~ 6 ' ~ ' .  F i x k > l a n d t a k e f i  = f i k )  = (xjbj)- ' .Then 
j = O  

i r k - l  i s  k i z s k - l  i q k - l  

the summation by parts formula again, we get 

Making supremum with respect to k 3 1 gives the required assertion. QED 
Because A coincides with exponential convergence rate ( cf . Theorem 9 . 2 1  in ref. [ 8 ]  ) , 

Theorem 3 . 5  gives us at the same time (and is indeed for the first time) an explicit criterion for 
exponential ergodicit~ . By using comparison method ( cf. Theorem 4.58 in ref. [8]  ) , this result 
can be further applied to a class of multidimensional Markov chains. Finally, we return to the 
case of half-line discussed at the beginning of the paper. 

Theorem 3.7. Consider the operator L = a ( x ) d2/dx2 + b ( x ) d/dx on [O , a ) , where 
a ( x ) is positive everywhere. Let the process be non-explosive ( equivalently, 

~ m e - c ' s ' d r ~ s a ( u ) - ' e c ~ u ) d u  = m )  and let ( 1 .  1 )  hold. Then ( 4 6 '  ( c o ) ) - '  4 A 1  6 
0 0 

( s f ( c o ) ) - I ,  where 

6 ' ( c )  = Z E ( O . C )  sup J z e - c r e c / a ,  % Y ( c )  = Z C ( C , - )  sup J:e-'JWec/a, x 

and co is the unique solution to the equation 6' ( c )  = 6" ( c )  . In particular, A 1 > 0 iff 6 < . 
Proof. First, when c f , we have 6' ( c ) f and 8" ( c ) J. . Obviously, lim6' ( c ) = 0, 

ef 0 

l i m p  ( c ) = 6 and moreover lim8' ( c ) g 6 . On the other hand, since the process is non-explo- 
r -0 c- - 

as c+ . Next, when c < c2 ,  we have 



No. 10 EXPLICIT BOUNDS OF THE FIRST EIGENVALUE 1059 

Hence both 6' ( c ) and 6" ( c ) are continuous in c . Therefore, the equation 6' ( c ) = 6" ( c ) has 
a unique solution. Then the first assertion follows from Theorem 3 .3. Clearly 6 < 00 if and only 
if 6" ( c )  < 00 . Hence we obtain the last assertion. QED 

In a similar way, one can deduce a criterion for the existence of spectral gap of diffusion on 
the full-line (cf.  sec . 3 in ref. [ 1 ] ) . One may also study the bounds for the processes on finite 
intervals. 

Example 3 .8 .  Take b ( x ) = 0 .  Define 6 as in Theorem 1 . l .  Then, by Theorem 1 . 1  
and Corollary2.5 (5 )  in ref. [ 1 ] ,  we know that 6 - ' > A 1 > A 0 > ( 4 6 ) - ' .  In particular, when 

a ( x )  = ( 1  + x ) ~ ,  we have 6 =  1 (but 6' = 2 )  and A I  = A o =  1/4. Hence, our lower bound is 
exact. 

Example3.9. T a k e a ( x ) = l a n d b ( x ) =  - x .  ThenExample2.10inref .  [ l l g i v e s  
us A 1 = 2 .  It is easy to check that A 0 = 1 ( having eigenfunction g ( x ) = x ) and 6 == 0.4788 

(but 6 '=0 .9285) .  Hence 6 - '  > A 1  > Ao> ( 4 6 ) - I .  
Example 3.10. An extreme example is the space with two points {0 ,11  only. Then A = 

AO/xO. Therefore the upper bound of A I in Theorem 3.5 is exact but 8 - ' = A. < A 1 . Thus, 6 - ' 
is not an upper bound of A 1 in general. 

Added in proof. In the recent paper"01 , the estimate 6 - ' 2 A 0  3 (46) - ' for birth-death 
processes is also obtained by using the discrete Hardy ' s inequality. Refer also to refs. [ 11-13] 
for related study and further references. 
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