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ABSTRACT 
We study the set Px of scalars p such that L p is [attice-isomorphically em- 
bedded into a given rearrangement invariant (r.i.) function space X[0, 1]. 
Given 0 < c~ < /3 < ~ ,  we construct a family of Orlicz function spaces 
X = LF[o, 1], with Boyd indices (~ and/3, whose associated sets Px are 
the closed intervals [%/3], for every "~ with c~ _< -y < /3. In particular 
for c~ > 2, this proves the existence of separable 2-convex r.i. function 
spaces on [0,1] containing isomorphically scales of LP-spaces for different 
values of p. We also show that, in general, the associated set Px is not 
closed. Similar questions in the setting of Banach spaces with uncountable 
symmetric basis are also considered. Thus, we construct a family of Orlicz 
spaces ~F(/), with symmetric basis and indices fixed in advance, containing 
/P(F)-subspaces for different p's and uncountable F C I. In contrast with 
the behavior in the countable case (Lindenstrauss and Tzafriri [L-Ta]), we 
show that the set of scalars p for which gP(F) is isomorphic to a subspace 
of a given Orlicz space ~F(I) is not in general closed. 

I. I n t r o d u c t i o n  

T h e  s t r u c t u r e  of  r e a r r a n g e m e n t  i nva r i an t  (r.i.) B a n a c h  f u n c t i o n  spaces  has  b e e n  

s t u d i e d  in t h e  M e m o i r s  of  J o h n s o n ,  Maurey ,  S c h e c h t m a n  a n d  T z a f r i r i  [ J -M-S-T]  

a n d  K a l t o n  [K4] (see also L i n d e n s t r a u s s  and  Tza f r i r i  [L-T3]). T h e  p r o b l e m  of  

c lass i fy ing  s u b s p a c e s  of  c e r t a i n  spec ia l  classes of  r.i. f u n c t i o n  spaces  has  b e e n  

c o n s i d e r e d  by  severa l  au tho r s :  for ins tance ,  for L o r e n t z  spaces  in [C1],[C2], [C-D] 

a n d  [D-K] a n d  for Or l i cz  spaces  in [B-D], [L-T1], [H-R1], [H-Ru],  [Ha] a n d  [S]. 
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N. Kalton in [K2] proved that if a separal~le r.i. Banach function space X on 

[0,1], having no isomorphic copy of co, has a sublattice isomorphic to LI[0, 1] 

then X[0, 1] is precisely LI[0, 1]. This result is even valid replacing sublattice 

by subspace ([K2]) and holds in general for the class of all separable Banach r.i. 

spaces as it can be deduced from results in [K4] (see also [H-K]). 

The impossibility of extending the result of Kalton mentioned above to LP[O, 1] 
= L v spaces (instead of LI[0, 1]) has been shown in [H-R2]: given 1 < p < cx~, 

there exist separable Banach r.i. function spaces on [0, 1], with Boyd indices 

fixed in advance, containing a sublattice isomorphic to L p. In particular, in 

the case p > 2 this also proves the existence of (non-trivial) separable Banach 

r.i. function spaces on [0,1] containing a subspace isomorphic to L ~. Notice that  

in many cases, under additional hypothesis, the existence of an embedding of 

L p into an r.i. function space as subspace implies, in fact, the existence of an 

LP-sublattice (see [K3] Thm. 10.9, [K4] Thm. 8.7 and [H-K] Coroll. 7.4). 

One of the purposes of this paper is to study, for separable r.i. function spaces 

X on [0,1], the associated set Px of scalars p such that L p is lattice isomorphically 

embedded into X[0, 1]. It is known that this set Px is empty for some special 

classes of r.i. function spaces. For example: if X is a (non-trivial) Lorentz space 

Lv,q[0, 1] or Lw,p[O, 1] defined by a submultiplicative weight (Carothers [C1], [C2]), 

or if X is an Orlicz space LF[0, 1] generated by a submultiplicative function 

[J-M-S-T]. On the other hand, [H-R2] gives several classes of Orlicz spaces X = 

LF[0, 1] whose associated sets Px are precisely singletons. To prove the existence 

of separable r.i. function spaces X on [0,1] containing LP-spaces as sublattices for 

different p's (and also as subspaces for the case p > 2) has remained open. 

We answer in the positive the above question: we obtain a class of Banach 

(and quasi-Banach) Orlicz function spaces X = LF[o, 1] whose associated sets 

Px are closed intervals of positive numbers. It is also proved that,  in general, 

the set Px is not necessarily closed. 

For the statements of the main results, we need to recall some definitions. 

Given an Orlicz space LF[o, 1] the inclusion index 7 ~  ([H-R2]), 

7 ~  = lim sup log F(x_____~) 
z-*~ log x 

satisfies a ~  < 7 ~  < 3 ~ ,  where a ~  and fl~ denote the usual Boyd indices of 

the space (cf. [L-T3]). If L p is lattice isomorphic to a sublattice of LF[o, 1] then 

7 ~  < P < f l~.  This follows from the fact that LP[O, 1] is included in nF[0, 1] (by 

[J-M-S-T] Thm. 7.1). As a converse, we will prove the following: 
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THEOREM 1: Let  0 < ~ ~ ~ ~ /3 < oo. There exists an Odicz  function space 

LF[o, 1] with indices a ~  = a , 7 ~  = ~ a n d / 3 ~  = /3 such that L v is lattice- 

isomorphic to a sublatt ice o f  LF[o, 1] for every p E [7~,/3~]. 

And we also show that the associated set P x  of scalars is not necessarily closed: 

THEOREM 2: Given 0 < a ~ 7 < /3 < oo, there exists a ~3-concave Orlicz 

function space LF[o, 1] with indices a ~  = a , 7 ~  = 7 a n d / 3 ~  = /3, such that  

L F [0, 1] contains a lattice-isomorphic copy of  L p i f  and only i f p  E [7~,/3~).  

In order to prove these function space results we need to deal with similar 

questions in the uncountable discrete setting. For this, we will consider the ques- 

tion of finding Banach spaces with symmetric basis containing ~P(F)-subspaces 

for different p's and F uncountable. 

S. Troyanski in IT] proved the impossibility of embedding £I(F) spaces for 

uncountable F into Banach spaces with symmetric basis different of 61(I). In the 

case of p > 1, the existence of non-reflexive Orlicz spaces ~F(/) with symmetric 

basis containing an isomorphic copy of £P(F) for uncountable F was proved in 

[H-T], while the reflexive case has recently been obtained in [H-R2]. So far, it 

has been unknown whether or not there exists a Banach space with symmetric 

basis containing £P(F)-subspaces for different p's. Here we will fill this gap by 

constructing suitable Banach (and quasi-Banach) Orlicz spaces ~F(I) with this 

property. 

We will consider the inclusion index ~/F at 0 ([H-R2]), 

~F = lim inf log F ( x )  
x--,o log x ' 

that  satisfies C~F _~ 7F --~ /3F, where aF and /3F are the usual indices of the 

function F at 0 ([L - T2]). It follows from ([R] Thm. B or [H-T] Prop. 5) that  

if ~P(F) is isomorphically embedded into an space ~F(I) for uncountable F C I,  

then ~F -< P -< 7F. Here, as a converse, we will show the following: 

THEOREM 3: Let  0 < a ~_ ~/ ~ /3 < oo. There exists an Orlicz space £F(I)  with 

indices aF  = ~, 7F = "~ and/3F = /3 such that £F(I)  contains an isomorphic copy 

of  eP(F) for any p C [ aF ,~F] .  

In contrast with well-known results in the countable case ([L-T1], [L-T2], in 

the non-convex case [K1]), it turns out that the set of scalars p such that  £V(F) 

is isomorphically embedded into an Orlicz space £F(I)  is not necessarily closed: 
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THEOREM 4: Let 0 < c~ < ~/ < j3 < oo. There exists an a-convex Orlicz space 

~F(I) with indices Ol F ~- 0~, ~[F = ~[ and ]~F z j~ SUCh that £F([) contains a n  

isomorphic copy of£P(F), for uncountable F C I,  i f  and only if  p E (C~F,TF]. 

The constructed Orlicz functions are of type 

/o F ( x )  = (x  - t ) t q f ( t ) d t  (0 < x < 1) 

where the function f is defined by 

f = ~ enX(2-~-l,2-~] 
n-~0 

for a suitable coefficient sequence (en). The construction of this coefficient se- 

quence (en), depending on a,  j3 and 7, requires several technical Lemmas,  which 

are sharp extensions of previous ones given in [H-T] and [H-R2]. In particular, 

Lemma 1 extends a crucial result for these methods given in ([H-T] Lemma 8) 

and Lemma 7 improves Lemma 1.2 of [H-R2]. We also make use of the criteria 

for the isomorphic embedding into spaces £g(I) given in ([R], [H-T]): An Orlicz 

space ~E(I) contains an isomorphic copy of ~a(F) for some uncountable set F 

contained in I if and only if G C EF3, where EF,1 is the set of Orlicz functions 

equivalent at 0 to a function 

~ 0 1 ~  H(x)  = d#(s) (0 < x < 1), 

where # is a probability measure on (0,1]. 

The paper is organized as follows. Firstly, we consider the uncountable discrete 

case. In Section 2 we give some basic Lemmas in order to prove in Section 3 

partial  s tatements of Theorem 3. Section 4 collects several Lemmas which are 

the key to obtain Orlicz spaces £F([) containing gP(F)-subspaces for different p's. 

Section 5 contains the proofs of the main results in the discrete case. 

Section 6 is devoted to showing the function space results of the p a p e r .  They 

are deduced quite easily from the previous ones in the uncountable discrete case, 

by using a simple transference argument and the criteria for lattice isomorphic 

embedding Orlicz spaces into an Orlicz function space given in ([J-M-S-T]): An 

Orlicz space LF[o, 1] contains a lattice isomorphic copy of LC[0, 1] provided that  

G E E ~ where E ~ is the set of Orlicz functions equivalent at oo to a function F,1 ~ F,1 

f0 ~ F(xs) H(x)  = F(s) d#(s) for x > 1, 
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where # is a p robabi l i ty  measure  on (0, co) satisfying 

f0 ° d#(s)  < 1. 
F ( s )  - 

Our  no ta t ion  is s t andard  and we refer to the monographs  [L-T3], [Gu] and [M] 

for unexpla ined definitions. 

(1) 

(2) 

(a) 

where f is the funct ion 

I I .  P r e l i m i n a r y  l e m m a s  

In this Section we give some technical Lemmas.  We begin wi th  a crucial L e m m a  

which extends  L e m m a  8 in [H-T]: 

LEMMA Jr: Given a sequence (hi)i~o o f p o s i t W e  integers (ho = 1), there exist 

two integer sequences (ki)i~o and (mi)i~__o, s tr ict ly  increasing, wi th  mi  > ki : 
i - - 1  }--~j=o m j  for i = 1, 2 , . . .  such tha t  

lim (mi+ 1 - mi)  = co, 
i - - + ~  

~ - ~ f ( n + k i ) = h n  (n = 0 , 1 , 2 , . . . ) ,  
i = 0  

o o  

f (k~  - ~)  < (n + 2) 2 (n  : 1, ~,...), 
i = O  

o o  

f ( x )  = ~-~X[m.m~+l)(x) .  

Proof." We will proceed by induction. Assume tha t  we have built  

1 = k0 < k l  < . . .  < k3, 

1 = m o  < m l  < " "  < m j ,  

where ki+l = mi  + ki; mi+ l  : ki+l + ~i+1 for i = 0 , . . .  , j  - 1. 

We will say t h a t  the integer n > 1 is "covered" in the  s tep j if there  exist 

exact ly  h,~ couples ( H e , m y )  such tha t  n = mj,  - ki, with i ' , j '  < j .  

Let  gj+l be  the  smallest  integer which is not  covered in this s tep j .  Let  us 

consider kj+l  = m j  n c kj; m j + l  : k j+l  --k t j+ l .  I t  is clear tha t  

m j + l  -- k j+l  : ~j-t-1, 

m j + l  -- ki ~ m j+ l  - kj  =- m j  -t- ~j+l > m j  
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for i = 0, 1 , . . . , j ,  and 

mj,  - ki, < mj,  <_ mj  

for i ' , f  < j .  Hence the new differences introduced in the last step (j + 1) are 

either equal to gj+l (so uncovered) or they appear for the first time. Then, it 

follows that  the sequences (ki) and (mi) satisfy the conditions (1) and (2). 

Let us now prove (3). By the definition of the function f ,  

oo o~ oo 

j = 0  j = 0  i = 0  

If kj - mi  > n > 1 we have kj > mi, and hence, j > i. And if kj - (mi + 1) < n, 

we have 
j - 1  

n > k s -- ( m i +  1) = } 2 m e  -- 1 _ _ j - - 2 .  

Hence, we deduce i < j < n + 2, and 

n + l  

Z f ( k  ~ - n) = E E ~[rai'rrt~+l) (]gj -- ?7,) 
j = 0  / = 0  i < j  

n + l  

< E ( n + 2 ) <  ( n + 2 )  2 
j=o 

holds, which concludes the proof. | 

oo £ (2<) Given 5 _> O, there exist two positive sequences (an),~=o and (~n)n=O LEMMA 2: 

such that 

• (~n2 -~rt = cx~, 
n ~ O  

< E C~nSn+k2-(n+k)~ < 1, 

and 
oo 

~ _ k 2 - ( n - k ) ~  <__ (k + 2)22 ~k 

n-=k 

for every kE N. 

Proof." We will consider the sequences (ki) and (mi) constructed in Lemma 1 

for the case of the sequence (h,~) equal to ([2n~]) ([]  denotes here the integral 



Vol. 104, 1998 LATTICE-EMBEDDING SCALES 197 

part).  And we define the sequences (an) and (Sn) by ak~ = 2k~;Sm~ = 1 for 

i = 0, 1 , . . . ,  and a j  = 5j, = 0 in the other remaining cases. Then,  using Lemma 

1, we have 

V ~  a 2 - S n  

a m 0  

¢:x) (:~ 

Z an(~n+k2-(n+k)5 E okiS~ o-(k +k)5 1 
n=0 i=0 

for k = 0, 1 , . . . .  Further  

OO 0 0  

n=k  i=0 

which concludes the proof of the Lemma. | 

LEMMA 3: Given e > 5 > 0, there exist a constant B and two sequences (an)n~=o 

and (e~)n~__o of  posi t ive  numbers  such that  

o o  

E an2--6n = O0, l imsup ~ = 2 -5, and en <_ cen+l 
n 

n = O  

for n E N, and c = 2 ~ > 1, verifying 

for every  lc E N. 

A = -~ < Z ane,~+k <_ B 
n = O  

Proof: We apply Lemmas  1 and 2 in taking (an) and (mi) as given there. Let 

M = {mi  : i = 0 , 1 , . . . } ,  

and 

i--1 

Mi = ( M  + i ) \  U ( M  + j )  
j = 0  

o o  

ak = E anSn-k2- (n -k )~  ~- (k + 2)22 ~k 

n=k 

for k = 1, 2 , . . . .  Let us define the sequence (en) by eo = 0 and 

2 -n~ i f n  C M = Mo, 
en = e - k 2  - (n-k)~ = C-k2-(n-k)~Sn_ k if n E Mk, 
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where (5,,) is defined as in Lemma 2. It is clear that ~ - - 0  a n 2 - ~  = oe, 

limsup~ ~/e~ = 2 -~, and e~ < ce~+l(n E N); in addition, by Lemma 2, we 

h ave 
o o  

E OZn~n-t-k 
n:O 

for every k E N. 

On the other hand, 

E a~2-( '~+k)~ = ~ anSn+k2-(n+k)5 > 1 
- 2  nTkEM n=0 

n----0 i=0 n+kEMi 

Now,  as 
o o  

E E  
i=0 n+kEMi 

and 

~-~. ~-~ °<nSn+k-i 2-(n+k-i)5 
O~n£n+k ~ 2ie 

i=0 n=0 

1 
<-- 2 ie - -  1 - -  2 - e  ' 

i=0 

i=k+l n+kEMi 

ai-k 
<- 21% <-- 

i=k+l  

oo a,~Sn+k_i2_(n+k_i) ~ 

i=k+l  n 

(i -- k + 2)22(i_k) 5 
2ie 

i=k+l  

(i + 2) 
< E - -  "( 0¢:)~ 
- -  2i(e_~) 

i=1 

we deduce  
1 o~ (i + 2)2 

~ e ~ + k  < 1 - 2 - - - - - - ~  + E 2i(~-~) - B < e~, 
n=0 i=1 

which concludes the proof. I 

LEMMA 4: Let  e > 0 and ck = (k + 1) 4 for k E N. There exist a constant B and 

two sequences (an),~=o and (e~)n~=o of positive numbers such that 

o o  

E an2-'~¢ = 0% limsup ~ = 2 -e, and e,~ <_ 2kecken+k 
n ~ 0  

for n, k E N, verifying 
1 o o  
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for every k E N. 

Proof." We proceed as in L e m m a  3, using now L e m m a  2 for 5 -- e. We define 

the sequence (c,)n~=0 by 

2 - ~  if n E M = M0, 
e~ = 2 - ~ c ~  -z = 2-n~c~-lS~_k if n E Mk. 

It is clear that  V ' ~  - 2 -"~ = c ~ , l i m s u P n  ~ = 2 -~,  and e ,  < 2keCken+k for A..~ n = 0  (~n 

n, k E N. From L e m m a  2 we have 

OLnCn+k ~--- E OLnSnTk2-(n+k)e k 
n-~0 n = 0  

for every k E N. On the other hand, 

k 

E E  
i=O n+kEMi 

k 

Oln£n4-k ~-- E E Ozn~n4-k-i2-(n+k)e 
i = 0  n = 0  

k c~ C~n~n+k_i2_(n+k_i) e 

i = 0  n = 0  

k 
1 1 

_ < E ~ <  1_2_------- ~ 
i = 0  

and 

Hence 

i=k+l n-t-kEM~ 

< 

E c~nen+k ~_ - -  
n~-O 

OZnSn+k_i2-(n+k-i)e Z Z 
i=k+l n 

OC) ( X )  

E a i - k  < E ( i - k + 2 ) 2 2  (i-k)~ 
2ie c i  - -  2ie c i  

i-~k + l i=k+ l 

(i + 2) ~ 
-<E 

i = 1  Ci 

- - ~ O O .  

1 ~ (i+2)2 =B<cx~, 
1-2-~  + Z (i + 1)-----~ 

i----1 

which concludes  the proof. I 
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III .  A bas i c  r e s u l t  

An impor tan t  step in order to get the main results for discrete spaces is the fol- 

lowing result (which extends Theorems B and B'  of [H-R2] given in the part icular  

case of p equal to the inclusion index 3`F): 

PROPOSITION 5: Let 0 < a < p <_ 7 <- 13 < oo. Then there exists an Orlicz 

space fF ( I )  with indices oL F = OL, 13F = 13 and 3`F = 7 such that  gF(I)  contains 

an isomorphic copy of  gP(F) for any set F C I.  

Proof: Since the case p = 7 has been solved in [H-R2], we have to consider the 

cases (A) c~ < p < 3' <- ]3 and (B) c~ = p < 3" <_ 13. Now in the case (A), by using 

convexification and basic properties of the sets EF,1 (see [H-R2]), we can reduce 

to distinguish only two subcases: 

(A. I )  THE CASE o~ = 1 < p < 7 < /3: We will built a convex Orlicz function F 

with indices C~F = 1,13F = 13 = p + e and 3"F = 7 = P + 5 with 0 < 5 < e. 

Let (en) be the sequence defined in Lemma 3. Let f be the function defined 

by 
oo  

f ( x )  = ~ enX(2-,n+,,,2-,](X), 
r e = 0  

and F be the convex function given by 

/: F(x )  = (x - t ) tv-2 f ( t )d t  

for 0 < x < 1. Using Lemma 3 we have 

o o  

n = 0  

for 0 < x < 1. This implies by integration and the Beppo-Levi  Theorem tha t  

o o  

< _ _  ( * )  p ( p -  1) <<- x B x  p 
,~=o - p ( p  - 1) 

f o r 0 < x <  1. 

It  follows now tha t  the space ~F(I) contains a subspace isomorphic to gP(r) 

for F-uncountable.  Indeed, if It denotes the discrete measure on [0,1] defined by 

it(2 - n )  = ~,~2pnF(2-'~), we consider the function 

~o 1 F (x t )  . . . .  G(x)  = --~-~-a#{~j (0 < x < 1). 
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Then,  by (*), the function G is equivalent to x p at 0, so, by [R] Theorem B or 

[H-T] Proposi t ion 5, we deduce that  gF(I) contains a subspace isomorphic to 

gP(F) (we prove below that  the function F satisfies the A°-condit ion).  

Let us compute  the associated indices. Since 

k=?'t - k - 1  

= ~ %2-(p-1)k(a2 -n _ b2 -k) 
k=n 

with 

we deduce 

(**) 

1 - 2  - ( p - l )  1 - 2 -p  
a - -  and b -  - - ,  

p -  1 p 

oo 

2P~F(2 -n )  = E ( a  - b2-k)2-(P-1)k Cn+k. 
k=O 

Let us show tha t  C~F = 1. It is enough to check that  

2q,~F(2 . . . .  ) 
s u p  . , . , _ . ~ ,  - 

m~n 

for every q > 1. Indeed, for m = mi - n > mi-1 ,  using (**) we have 

2P(m+'0F(2 - '~- '~)  > (a - b)em+n = (a - b)e,n~ 

and 

Cm 
2PmF(2 -m) <__ a 1 -  2-(p-1) -}- E Emi+k2-(P-1)(n+k) 

k = 0  

2q'~F(2-m-'~) 
SUPm,n F(2  -m  ) 

and 

-- 2 ~ 2  -( '~-m~-D(~-~)  > 0 

2-(P-1))2(q-1)n 

- - O O .  

with 
Em 2 -(m-m~-l)e 
~ml  2 - - ( r n ~ - r n i - 0 5  

for i -+ oo and n fixed. Then  

2qnF(2 -m-'~) a - 
sup > b(1 
m F(2  -m)  - a 

a ( ) -< 1 - 2 ~(p-1) em + 2-(P-1)'~em~ 
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Let us now see t ha t  flF = (P + c). I t  follows from (**) tha t  

2-PnF(2-m) < a ~-,oo ?__,k=0 2_(p_ 1)k e,~+k < a 

F ( 2  - m - ~ )  - a -  b ~k~=0 2- (P-1)kem+,+k -- a - -  b 2 ~ '  

so we deduce  t ha t  flF ~ P -Jr- e. In order  to show the  converse inequali ty,  let us 

consider  m = mi < mi+ l  - n. Then  

2pmF(2 -m) ~ ( a -  b ) e ~ = ( a  - b)e~, 

and  

Hence, as 

2p(.~+,~)F(2_.~_n) < a - 1 - 2 - ( p - l )  ( em+n + ~?~-tiq_ 1 ) 
a 

< (2-enem, + ) 
- -  1 - -  2 - ( p - 1 )  6 m i + l  • 

for i ) 0% we have 

era,+1 _ 2 - 5 ( m ~ + l - m ~ )  

6-m i 

) 0  

2-pnF(2 -m) a - b(1 
supra F ( 2  . . . .  ) ~ a -- 2 - ( P - 1 ) ) 2 ~ '  

which implies  t ha t  ~3F > (p -1- £). Then  ~F = P + e. 

Final ly ,  let us show tha t  ~ F = ~  '. Since 

2Pm~F(2 -m~) ~ ( a -  b)em~ = ( a -  b)2 -m~5 

we have 

l i m s u p  ~ / F ( 2  - ~ )  < 2 -(p+a). 
n 

On the  o ther  hand,  it  follows from (**) tha t  

o o  

2PnF(2 -n) < a E 2-(P-1)ken+k 

k=O 

< aE2_(p_l)k2_(n+k)5 < a 2_n5 
- -  - -  1 - 2 - ( P  - 1 )  

k=O 

and,  hence, 

l im sup ~ 7 2 - n )  ___ 2 -(p+5). 
n 

Thus  "YF = P + 5 = % which ends the  proof  in this  case (A.I).  
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( A . I I )  THE CASE a = 1 < p < 7 = /3 < oa: Given e > 0 wi th  /3 -- p + e, 

we proceed  as in the  above  case bu t  now using the sequence (en) of L e m m a  4 in 

order  to  define the  funct ions  f and  F .  

Let  us show t h a t  a F  ---- 1. Like above we consider  m = mi - n > mi -1 .  Then  

2p(m+n) F(2  . . . .  ) > (a - b)em, 

and  

wi th  

for i 

f o r q >  1, and  

2pmF(2 - m )  < 
a 

1 - 2-(P -1) (em + 2--(P--1)nernl) 

em 2-emc-1  2en 

em~ 2 -em~ C m - -  m i _  l 
) 0  

oc and  fixed n. Now 

2qnF(2 . . . .  ) > a - b 

SUPm F ( 2  - m  ) - 
( l _ 2 - ( P - 1 ) ) 2 ( q - 1 )  n 

2 q - F ( 2  - m - n )  
SUPm,n F ( 2  - m )  = oo. 

Hence aF == 1. 

Let  us now prove t ha t  3F  = (P + e). I t  follows from (**) t ha t  

2 - p n F ( 2  - m )  < a ~-~k-o 2-(P-1)k£m+ k 

F ( 2  - m - ~ )  - a - b ~--~:o 2-(P-i)kC'm+n+ k 
a 

<- a -  b 2n~cn' 

which impl ies  t h a t  /3F _< p + e. In order  to prove the  converse inequal i ty  let  us 

consider  m = rni < mi+ l  - n. Now, as above, 

2P'~F(2 - m )  > ( a -  b)em, 

and  

Hence,  as 

2p(m+'~) F ( 2 - m - n )  <_ 

for i ~ 0% we have 

a (2-nee  -1(~ + Em~+t). 
1 - 2 - ( p - l )  t n m~ 

~mi+l __ 2-e(m~+l-md ) 0  

2-PnF(2  - m )  a - b(l 
SUPm F ( 2  - m - ~ )  >- a - 2-(P-1))2~ncn' 
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which implies flF --> P + e. Thus  ~F = P + e = ~. 

Finally, let us also show that  7F = P + e. Indeed, as 

2 P ~ ' F ( 2  -m~) > (a - b)2 -~ '~ ,  

we have 

l imsup ~ ( 2  -~)  > 2 -(p+~). 
n 

On the other  hand, it follows from (**) tha t  

o ~  o(3 

2 P n F ( 2  - ~ )  < a E 2-(P-1)k~n+ k < a E 2-(P-1)k2-(n+k)e 
k=0 k=0 

a 
< 
- 1 - 2 - ( p - 1 )  2-ne 

and, hence, 
l imsup ~/F(2  -n )  < 2 - (p+e) .  

n 

Thus ~'F ~- (P -t- (~) =- ~ .  This ends the proof in the cases of type  (A). (Notice 

tha t  the constructed Orlicz function F is always a-convex.) 

We pass now to the case (B). As above, by s tandard  tricks, we only need to 

consider two subcases: 

(B.I )  THE CASE 1 < a = p < 0' < ~ < OO: Let (an) and (en) be sequences as 

in Lemma 3 for e = ( ~ -  p) > 5 = ( 7 - P )  > 0. Let us consider 

t ~ (n+k 
C n = 

k=O Ck 

, < k , = 2eke ' and there exist positive where ck = (k + 1) 4. Then  er~ C 6.n+ k n+k 

constants  A t and B '  such tha t  

' < B '  A'  <_ anen+ k _ 
n=O 

f o r k E N .  Let 

f o r 0 < x < l ,  and 

oo 

f ( x )  : ~ - ~ X ( 2  . . . .  ,2-~](x) 
n = 0  

f o  x F ( x )  = (x  - t ) t v - 2 f ( t ) d t .  



Vol. 104, 1998 LATTICE-EMBEDDING SCALES 205 

F o r 0 < x <  1, 

A , X  p ~ ( )  - -  < E °~n2PnF x Bt x p 
p ( p -  1) - ~ < - -  ,~=0 - p ( p -  1) 

holds,  which implies,  by using [R] T h m  B or [H-T] Prop.  5, t ha t  the  s p a c e  ~,F(I) 

conta ins  an i somorphic  copy of ~P(F) for F C I .  

Let  us show tha t  a F  = p. We have 

o o  

2PnF(2  - n )  = Z ( a  - b 2 - k ) 2 - ( P - 1 ) k  eln+k, 

k=0 

and  
2pnF(2  - m - n )  < a E ~ = o 2 - ( v - ' ) k d m + n + k  

F ( 2  - m )  - a - b E ~ _ o  2 - ( P - ' ) k e ~ + k  
a a 

< 
- a - b e'~ a - b ( n  + 1)4' 

since 
t £m+n+k Em+n+k %~>_ >_ 

k=0 Cn+k = Ck 

Hence a F  = p. 

Let us show now t h a t / 3 F  = p + e. Since 

1 / 

_ _  -- Era+ n. 
Cn 

2 - p n F ( 2  - m )  < a 2~ n 
F ( 2  - m - n )  - a - b 

we have t h a t  F is (p + e)-concave, so /3F < p + e. In  order  to show the  converse 

inequali ty,  we consider  m = m i  < m i + t  - n,  so 

2pmF(2  - m )  >_ (a - b)c~m > (a - b)cm, 

and  

and,  hence,  

o o  

2P(m+n)F(2-m-n)  <_ a E 2-(P-1)k£/m+n+k 

k=0 
o o  

t E Ck2-(p-llk = a'e' <-- a~mq-n m+n 
k=O 

sup 
2 - P = F ( 2  - ~ )  > a - b  em, 

F ( 2  - m - n )  - a '  sup , i ~mi+n 

> a - b2~ n 
- -  a / t  
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for some posit ive constants  a"  > a ~, since 

~mi+n 1 £m+n+k 

Em~ £mi k=0 Ck 

mi+ 1 - m - n - 1  

<_ 2 -~n 

k=0 

1 > 2 -en 
z._.Ck=0 ck 

OO 

1 + emi+~ E 1 

Ck ~mi k=rni+ l --m--n Ck 

f o r i ~ e c .  H e n c e f l F >  ( P + e ) , s o j 3 F = P + e = ] 3 "  

Finally, let us show tha t  3`F = P + 6 = 3'. Since 

2Pro'F(2 -m~) >_ (a - b)em, = (a - b)2 - m ~ ,  

we have 

On the  other  hand,  

l imsup  ~F--(2 -n )  k 2-(P+~)- 
n 

OO OO 

k=0 k=0 
a t 

< 2 -k~t ' 
- 1 - 2 - ( p - l )  

hence 

l imsup  ~ / - ~ 2  -~)  <__ 2 -(~+~). 

Thus  7F ---- P + 5 = 3', which ends the proof  of this case (B.I). 

( B . I I )  THE CASE 1 < a = p < 7 - - /3  < c~: We will proceed as in the  above 

case but  considering now (an)  and (en) as defined in L e m m a  4. Let 

, ~ en+k  w h e r e  ck = (k q- 1) 4. 
£n ~ Ck 

k=O 

Then  %' < 2k~cke~+k for e = (fl -- p), and there exist posi t ive constants  A'  and 

B '  such t ha t  
o ¢ 3  

- Z ' B' A I < ~nenq_k 

n ~ O  
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for every k ~ N. Let  

x 

f(x) ~ and  F(x) (x t)tp-2f(t)dt ~tnX(2-(.+l) ,2-,~1 (x) =- - 
n ~ 0  

for 0 < x _< 1. R e a s o n i n g  as above  we get  t h a t  t he  space  g r ( i )  c o n t a i n s  an  

i s o m o r p h i c  copy  of  ~B(F) for F C I ,  and  also t h a t  a F  = p and  ¢/F < P + e. In  

o rde r  to  see t h a t  ¢~F _> P + e, we cons ide r  m = m i  < m i + l  - n,  so 

2pnF(2 -m) > ( a -  b)em~ 

and  

Hence 

! ! 2P(m+m)F(2 - '~-n)  <_ a %~+~. 

2-B~F(2  - ' ~ )  > a -  b em~ 
sup F ( 2  . . . .  ) - a ! sup , m i ~mi+n 

a - b  
>- at! Cn 2en 

for some posi t ive  cons tan t s  a t! > a !, since 

1 ~ 5mi+n+k 
i 

5 m l  k = 0  Ck 

mi+l--m--n--1 
Cnl2--ne E 

k=0 
oo 

c~12-n~ E 1 
k = O  Ck 

1 emi+l + - -  

mi+n 

~mi 

for i ~ oo. Thus  flF = P + e. 

Final ly ,  let  us show 7F = P + e = 3'. As 

Ck ~mi 

1 

k = m i + l  --m--n 

2 P ' ~ F ( 2  - m ' )  _> (a - b)em~ = (a - b)2 - m ~  

we have 

l im sup ~ > 2 -(p+e). 
n 

On the  o ther  hand ,  

2P~F(2 - ~ )  <_ a' e n' <_ a' E 2-(P-1)k2-(n+k)e 
k----0 

a t 
< 2 -ne,  
- -  1 - -  2 - ( P  - 1 )  
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which implies 

lira sup ~ _< 2 -(p+~). 
n 

Hence ~/F = P + e = % which concludes the  proof. | 

Remark: Note tha t  for the case p > a the function F const ructed in the above 

Propos i t ion  is a-convex.  It  holds in general tha t  if an a -convex  space ~.F(I) 

contains an isomorphic copy of gP(F) for p = a and F uncountable,  then  gF( i )  _~ 

~ ( I )  and the funct ion F is equivalent to x ~ at  0. 

I V .  K e y  l e m m a s  

In this Section we present  some technical Lemmas ,  which are the  key to prove 

later  t ha t  the  Orlicz spaces ~F(I), constructed in Proposi t ion  5, contain ~P(P)- 

subspaces  for different values of p. 

LEMMA 6: Given 5 > O, for every 0 < 5' < 5 there exists an integer ko >_ 0 and a 
, o o  positive sequence (an)n= 0 such tha t  if  (Sn)~=o is the sequence defined in Lemma 

2, then 
o o  

2-sk-1 <- E a'nSn+a2-(n+k)5 <- 2-sk+l  
n ~ O  

l o t s - - - - ( 5 - 5  t ) > 0 a n d e v e r y k > _ k o .  

Proo~ We can assume,  by L e m m a  2, tha t  5' < 5. Thus  there exists an integer 

k0 > 0 such t ha t  [2 kS'] < [2 kS] for every k > k0. 

We now apply  L e m m a  I in the case of taking the sequence (ha) as ([2n~]), hence 

finding the associated sequences ( i)i=0 and (mi) i= o. Thus,  for every na tu ra l  n 

there  exist exact ly  [2 n~] couples (k i ,mj )  such tha t  mj - ki = n. Let us denote  

by An the  set  of the  [2 n~] na tura l  numbers  ki t ha t  appea r  in this pair  (k i ,mj) ,  

and by A~ we denote the subset  of An given by the last [2 ~ ' ]  na tura l  m e m b e r s  

ki which are in An. 

We claim tha t  the set 

Bk -: U n Ak 
n ~ k o  
n ~ k  

contains a t  mos t  one element.  Indeed, if k~ E Bk then there exists mj such tha t  

mj - ki = k, and hence j _> i. Now if j > i it follows from the cons t ruc t ion  in 

L e m m a  1 t ha t  mj-1  < k < mj,  and this implies tha t  there  is at  mos t  a na tu ra l  j 

verifying those. Let  us suppose now j = i, which means  k = mi - ki = gi. Since 

ki E A~ for some n :> k0 with n ¢ k, there exists j '  > i such tha t  n = mj ,  - ki. 
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Hence n > k. Let  us now show tha t  hi is the  first e lement  of the  set A~, which 

will con t r ad ic t  t h a t  ki E A~. If n = mi, - ki, = fi, ,  as n > k, we have i ~ > i and  

hence ki, > ki. Thus  ki is the  first e lement  of An. 
l (30 We pass  now to define the  sequence (an)n= o by 

n~ i f  n E U h = k 0  h ,  

an = otherwise.  

N oo Since Ak Uh=ko A~h = A~ U Bk we have 

~---~ a~nTn+k2-('~+k) ~ = Z 2n~Tn+k2_(~+k) e 

n = 0  nEA~uBk 

for k > /Co. Hence 

~ 0/ 5n k 2-(n+k)5 < 1 2 - k s + l  
1 

+ _ ~ ;~(  + [2k~']) _< 
n : 0  

and  

-~ ,~  . - (n+k)~  [ 2k~'] 

n----0 

for every k > k0 and  s = (5 - 5'), which concludes the  proof. | 

LEMMA 7: Let  e > 5 > O, (en) be the sequence defined in L e m m a  3, and  (a~)  be 

the sequence defined in L e m m a  6 associated with each 0 <_ 6 ~ <_ 5. Then 

oo 
E ! ~--n6 OLn Z ~ O0 
n..~O 

and 
oo 

E '  A'2 - sk  <_ anen+k <_ B ' 2 - s ( k + l )  

n ~ 0  

for every  natural  k >_ O, and  s = (5 - 5') >_ O, and where A'  and B '  are  posi t ive 

constants.  

Proof: We will p roceed  as in L e m m a  3 bu t  using now L e m m a  6. We have 

~ ' ~ + ~  > 2_, ~ + k ~  -> 2 
n = 0  n = 0  
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for k > k0, and  

k 

E E  
i=O n+kEMi 

~ ~ ~l X . o-(nq-k-i)5 ! tXnUn+k--i~., 
O~n~n+k ~ 2i e 

i = 0  n = 0  

eo 21+s ~ 2  - s ( k - i ) + l  __2_s(k+l)~-~ 
<_ 2i- e 2i(e-s) 

i=O i=O 

since e -  s k e - -  5 > 0. 

' < a n w e h a v e  Using now tha t  c~ n __ 

O~nenq- k ~ 
i=k+l n+kCMi 

ce' 5 2 -(n+k-i)5 

2ie 
i=k+l n 

< ~ ( i - k + 2 )  22(~_k) ~ 
-- 2ie 

i=k+l 

1 ~ 2 ~ ( i -  k + 2) 2 

~=k+l 

- - , ,  , 1  ~ 2¢(i2i( ~-~)+ 2) 2 - ~k+~----% < oo. 
i = 1  

Hence as s < e, there  exist  posi t ive  cons tants  A '  1 and B '  such t ha t  = 3  

o o  

E t < B '2 - s (k+ l )  A '2  -~k <_ anen+k _ 
n----0 

for k > ko, which concludes  the  proof  since we can replace the  cons tan t s  in order  

to  get  t h a t  the  above  inequal i ty  holds for every k > 0. | 

In  the  ex t reme  case of 5 = e we also have a s imilar  result :  

LEMMA 8: Let  e >0 and (en) be the sequence defined in L e m m a  4. Let  0 < 5' < 

5 = e and (a~n) be the sequence defined in L e m m a  6. Then 

oo 

OLn A ~-- O0 

and 

, B ,2 - s (k+H A'2 -~k <_ c~nen+k <_ 
r~=O 
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for every k >_ 0 and s = (e - 5') >_ O, and where A'  and B '  are posit ive constants. 

Proof." We will proceed in a similar way as in Lemma 4. We have, by Lemma 

6, tha t  

cCe,~+k _> ' ~  a'd~+k2-(~+k)~ _> 2 -~k 
n ~ 0  n ~ 0  

for k > k0. Now, 

k 

E E  
i=0 n+kEMi 

t ~ ":- 
(~n Cn+k _ 2~e Ci 

i---0 n=0 

2 - s ( k - i ) + l  2 ~ 21+s 
< , _ _- , (k+l)  _ _  < co 
- 2~eci 2i5' c i 

i=0 i=0 

' _< we have since e - s = 5' >_ 0 and ci = (i + 2) 4. And, as a n an ,  

o o  

E E ' 
i=k+l  nq-kEMi 

O(3 Z (i- k +.2)22"-k) 
2~ci 

i=k+l  

1 ~ T(i - k + 2) 2 

2 e(k+l) Ci 
i=k+l  

1 ~ 2~(i -t- 2) 2 

2 e(k+l) ci 
i=1 

< c o .  

1 and B '  such tha t  for k > k0 Hence, as s ~ e, there exist positive constants  A' = ~ 

we have 
oo 

A'2 - sk  ~- E a'nen+k ~- B'2-s (k+l )  

for every k _> ko, which concludes the proof as in Lemma 7. | 

V .  M a i n  r e s u l t s  i n  t h e  d i s c r e t e  case  

This  section is devoted to prove the ma in  results in the discrete case s ta ted in 

the In t roduc t ion .  

THEOREM 3: Let  0 < a ~ 3` ~ /3 < co. Then  there exists an Orlicz s p a c e  ~F(I)  

wi th  indices a F  = a, /3F = /3 and 3`f = 3  ̀such that  ~F ( I)  contains an isomorphic 

copy of tq(r) if and only i f  q e [aF, 3`Y]. 

Proof: The  extreme case a = 3' has been solved in [H-R2] Thin .  B' ,  so we can 

assume a < "r -</3. We will dis t inguish two cases: 
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(i) The  case a < 3" < / 3  

Using s tandard  arguments  (see [H-R2]) we can suppose w.l.o.g. 1 < a = p < 

3, = p + 5 < /3 = p + e. Let f and F be the functions defined in Proposi t ion  5, 

i . e .  

/0 f ( z ) =  e~X[2-(~+l~2-~)(x) and F ( x ) =  (x- t ) tP-2f ( t )d t  
n = 0  

for 0 _< x _< 1. Let (a~) be the sequence defined in Lemma 7 associated with 

each 0 < 5' _< 5, hence there exist positive constants  A'  and B '  such tha t  

oo  

A'2-sk ~-- E a~en+k < B'2  -s(k+l) 
n----0 

for every k _> 0 and s = 5 - 5' _> 0. This implies tha t  

c o  (x) 
A,xS <_ <- B'x 

n~-O 

for 0 < x _< 1. And,  by integration and the Beppo-Levi  Theorem, we get 

o o  

A' xP+S < ~ a ' ~ 2 P n F ( ~ )  < B '  xP+~ 
( p + s ) ( p + s - 1 )  -z...~ 2 - ( p + s ) ( p + s - 1 )  

n.~O 

for 0 < x <_ 1. Then,  if /z' denotes the discrete measure on (0,1] defined by 

# ' (2  - n )  = a~2PnF(2 -'~) and we consider the function 

fo F(x t ) ,  ,,., a ( x )  = (o < • < t),  

we get tha t  G is equivalent to the function x p+~ = x p+~-~' at 0. Hence, by using 

([R] T h m  B or [H-T] Prop.  5), we conclude tha t  gF(I) contains an isomorphic 

copy o f / q (F )  for e v e r y a K q = p + s = p + 5 - 6 ' < p + 6 = 3 ' < f l .  

(ii) The  case a < 3' = fl 

We can assume w.l.o.g, tha t  1 < a < 3' = /3 .  Let us denote a = p < fl = p + e 

and define the functions f and F as in the case (B) of Proposi t ion 5. Now we 

consider the sequence (a~) associated with 0 <_ 5' _< 5 = e in Lemma 8. Then  

there exist two positive constants  A'  and B '  such tha t  

o o  

A'2-sk < E a'nc~+k < B'2-s (k+l )  
n ~ 0  
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for e v e r y k > O a n d s = 5 - 5 ' = e - 5 ' > O .  Hence 

A 'x  ~ < a'~f ~-~ < 
n=O 

for 0 < x < 1, and by integration,  

A' xP+8 ~ ( ) xV+8 
< E oI~2p~ F x B'  

( p + s ) ( p + s - 1 ) -  2-~ < n=o - (P  + s ) ( p  + s - 1) 

for 0 < x < 1. This  implies, reasoning as in the above case, tha t  the  space IF ( I )  

contains an isomorphic  copy o f / q (F )  for every a < q = p + s < p + e = 7. 

This  ends the  proof  of the Theorem since we have already computed  the indices 

of the spaces ~F(I) in Proposi t ion  5. II 

The  following result  shows tha t  in general the set of scalar p 's  such t h a t / P ( F )  

embeds  isomorphical ly  into a given space i F ( I )  is not closed (compare  with the 

countable  case [L-T1], [L-T2], [K1]) 

THEOREM 4: Let  0 < a < 7 ~ /~ < oz. There exists an a-convex Orlicz space 

IF( I )  with indices (~f = a, t3F = t3 and ~ f  = 7 such that  IF( I )  contains an 

isomorphic copy of  iq(F) i f  and only i f  q E (aF, 7El. 

Proof: We shall differentiate two cases: 

(i) The  c a s e a < 7 < f l  

Using s t andard  tricks we can assume w.l.o.g. 1 = a < 7 -= 1 + 5 < / 3  = 1 + e. 

Let (en) be  the  sequence defined in L e m m a  3, and f and F be the functions 

fo x f ( x )  = Z enX(2-(~+~),2-~] (x) and F ( x )  = (x - t ) t - '  f ( t ) d t  
n~-~-O 

f o r 0 < x  < 1. 

increasing) and 

I t  holds tha t  F is a convex function (since F ' ( x )  > 0 and 

o o  

(*) F ( 2 - n )  = E ek(a2-n - b2-k) < c<~ 
k = n  

where a = log2 and b = ½ (since l imsupn ~ n  = 2-5 ----= 2-( ' r -1)  < 1). 

In order  to  show tha t  CeF-=l let us prove 

2qnF(2 -m-n) 
supm,n F(2 -m) = cc 
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for every q > 1. Indeed, for m = m i  - -  n > m i - t  and using (,)  we have 

2 m + n F ( 2  - m - n )  >_ (a - b ) e~+n  = (a - b)em~ 

and 

with 

2mF(2  -m)  < a ~ ek = a(em + ' "  + ~ ,  + ' " )  

a 
-< 1 - 2 - - ~ ( e ' ~  + em,) 

e m :  .2  - ( m - m i - a )  __2en2-(m~-mi-1)(e-5) 
6.m~ 2-(m~-m~-~-) 5 

for i -+ e~ and n fixed since e > 5. Then  

~0 

2q=F(2 - ~ - ' ~ )  sup > a - b(1 _ 2_5)2(q_1) n 
m F(2  - '~)  - a 

and 
2q-F(2  - m - n )  

SUPm,~ F(2  - m  ) = ~ 

for every q > 1. Hence a g  = 1. 

Let us show now tha t /~F = 1 + e. It  follows from (*) tha t  

oo 2 - n F ( 2  -m)  < a ~ k = o e m + k  < a ~ 
_ ~ _ b 2 , g ( 2  - m - n )  a - b ~"~k=o em+,~+k a -- 

which implies tha t /3F  < 1 + e. In order to get the converse inequality, let us take 

m = m i  < m i + l  - n.  Then  

2 m F ( 2  - m )  > (a - b)em = (a - b)em, 

and 

Hence, as 

for i ~ c~, we have 

a 
2m+~F(2 - ' ~ - n )  < _--- : -~(em+,~ +em~+,) 

- 1  
a 

__ [ 2 - e n ~  + Em~.+l ). 
< 1 _ 2 _ 6 t  ml 

£rn~+l __ 2 - 5 ( m ~ + 1 - m ~  ) 

£mi 
~0 

2-~F(2 - ' )  a -  b 
supra F(2 -m-n) > a -(1-2-~)2 e'~, 
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which implies tha t  /3F > 1 + e. Thus  flF = 1 + e. 
It  holds also tha t  ~F='~. Indeed, as 

2re 'F(2  - m ' )  > (a - b)em, = ( a -  b)2 -m~6, 

we deduce tha t  

l imsup ~ > 2 -(1+~). 
n 

On the other  hand,  it follows from (*) tha t  

and, hence, 

2'~F(2 -n) < a E Cn+k <_ a E 2--(n+k)5 ~ I --a2--~'2--~n 
k=0 k=0 

lim sup ~ _< 2 - (1+5) .  
n 

Thus  7~- = 1 +  5 = 7. 

Finally, given 1 = a < 7 = 1 + (~ < ~ = 1 + e, it follows from Lemma 7 tha t  

for every 0 _< 5' < 5 there exists a sequence (c~) verifying 

n = 0  

for 0 < x _< 1, s = 5 - 5' > 0 and A'  and B '  positive constants.  This implies, by 

integrat ion and the Beppo-Levi  Theorem, tha t  

A ' xl+~ ~ ( x )  B' x'+~ 
( 1 +  <- < (1 + 

n : 0  

for 0 < x <_ 1 and s > 0. Now, using [R] Thin  B or [H-T] Prop. 5, we conclude 

tha t  gF (I)  contains a subspace isomorphic to O (F) for every q = 1 + s < 1 + 5 = -y 

and hence for every 1 < q _< % Finally, as the function F is convex, the space 

gF(I) cannot  contain a gl(F)_subspace. 

(ii) The  case a < "y = / 3  

We can assume w.l.o.g. 1 = a < -y = / 3  = 1 + e. We proceed as above to build 

the sequences (en) and (a~), using now Lemma 4. Thus,  let f and F be defined 

by 

" fo f(x)  = E e~X(2-(-+l,,2-~l and F(x) = ( x -  t)t-l  f(t)dt 
rt~O 

f o r 0 < x <  1. 
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Let  us  show t h a t  aF = 1. If m = mi - -  n > m i - 1  t h e n  

2"~+"F(2  - ' ~ - " )  _> ( a - b ) e m ~  

a n d  

w i t h  

a 

2 " ~ F ( 2 - m )  -< 1 - 2 ---------~(e'~ + Cm~), 

~m 2--emc--1 2en 
m - - m i - i  

Cm i Cm- - rn i -1  

for i > oo a n d  fixed n.  T h u s  

>0 

sup  2 q n F ( 2 - m - n )  > a - b(1 _ 2_¢)2(q_1) n 
m F ( 2  - m )  - a 

a n d  
2qnF(2 - m - n )  

sup  F ( 2 _ m )  = oo 
m~n 

for every  q > 1, and ,  hence,  a F  = 1. 

Let  us  show t h a t  ~F  = 1 + e. I t  follows f rom (*) t h a t  

2 - n F ( 2 - ~ )  < a E k _ 0 e m + k  < a 2nec 
- ~ - b n ,  F ( 2  - m - " )  a - b ~-~k---0 em+.+k  a - 

which  impl ies  t h a t  /~F --< 1 + e. To prove the  converse i n e q u a l i t y  we cons ide r  

m = mi  < mi+l  - n. T h e n  

2mF(2  -m)  > (a - b)em, 

a n d  

Hence ,  as 

2m+nF(2_m_n)  < a 
- 1 - 2---------;'(em~+" + e .~+l . )  

a (2_nec_l£ 
<-- 1__ 2 _ ~  n m, -~ Emi+l)" 

for i > 0% we have 

£mi+l  _ 2 - e ( m ~ + l - m i )  

Em i 

>0 

sup  2 - " F ( 2 - m )  > a - b(1 _ 2 _ ~ ) 2 ~ n c . ,  
m F ( 2  - m - = )  - a 

which  impl ies  ]~F ~ 1 + e. T h u s  ~F  = 1 + e. 
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It  also holds tha t  7F = 1 + e = 7. Indeed, since 
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2re'F(2 -m~) > ( a -  b)2 -m" 

we have l imsupn ~ > 2 -0+~).  On the other hand, from (.) it follows 

tha t  
(X) (X~ 

E E a 2~ n 2nF(2 -n)  ~ a £n+k ~_ a 2 - ( n + k ) e  --< 1 - 2 - e  

k=0 k=O 

Hence l imsuPn ~ < 2 -(1+~). Thus 7F = 1 + e. 

Finally, reasoning as in the above case, using now Lemma 8 instead of Lemma 

7, we deduce tha t  gF(I) contains an isomorphic copy of gq(F), for F C I uncount-  

ables, if (and only if) 1 < q _ 7 = fl- | 

V I .  M a i n  f u n c t i o n  s p a c e  r e s u l t s  

In this Section we prove the main function space Theorems, which follow now 

quite easily from the above results: 

THEOR.EM 1: Let 0 < a < 7 <- f < c~. There exists an Orlicz function space 

LF[0, 1] with indices a ~  -- a, f ~  = f and 7 ~  = 3' such that LF[o, 1] contains a 

lattice-isomorphic copy of L p for every p e [7~, f~] .  

Remark: In the case a = 7 = f the above space LF[0, 1] is non-trivial (i.e. 

LF[o, 1] # LP[0, 1]). 

Proof: Let 0 < c~ < 3' ~ f < r < oe. We consider a0 = r - f  , f0  = r - a  

and 70 -- r - 3'. I t  follows from Theorem 3 tha t  there exists an Orlicz function 

Fo with indices at  0, aFo = a0, fifo ---- fl0 and 7Fo = 70 such tha t  for every q 

with (~Fo ~ q <-- 7Fo there exists a probabili ty measure Ftq on [0,1] for which the 

function Gq, defined by 

Gq(x) = F°_(X!)d#q(t) (0 < x < 1), 
~b(t) 

is equivalent to the function x q at O. Since r > f0 we can assume w.l.o.g, tha t  

Fo(st) >__ srFo(t) for 0 _< s , t  <_ 1. 

Let us consider now the non-decreasing function F defined by 

F ( x ) = x r F o ( 1 ) ,  for x_> 1. 
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Now a ~  = r - / 3 0  = a , / 3 ~  = r -  a0 = / 3  and 7 ~  = r -  3"0 = 3" hold. Also, the 

function G, defined by G(x)  = x~Gq(x -1) for x > 1, satisfies 

fa ~ F ( x t ) .  "t' ( x > l ) ,  G(x)  = ~ apk ) _ 

where # is a probabil i ty measure on [1, co) given by It(t) = #q(1/ t ) .  Hence G is 

equivalent to the function x ~-q = x p at cx~. Thus  x p E E~F,1 for 3' _ < P <_ /3 and, 

by [J-M-S-T] Thm.  7.7, [H-R2], we conclude tha t  L p is latt ice-isomorphic to a 

sublat t ice of L F [ 0 ,  1] for every 3"F -< P -</37. | 

Remark:  When  a < 3" </3 ,  the above result can even be obtained for a-convex 

Orlicz function spaces LF[0, 1]. 

The  proof  is the same, only we need to realize tha t  the associated function 

Fo defined at 0 is equivalent to a /3o-concave function at 0 in all the possible 

cases: when ao = 3"0 it is proved in Theorem B'  of [H-R2] and when ao < 3'0 it 

is shown in Proposi t ion 5. Now from the/3o-concavity of Fo at 0 it follows tha t  

the function F ,  defined at oo by F ( x )  = xrFo(1 /x )  is equivalent to an a-convex 

function at 0% since 

y~F(x )  v~°F0(u) 
sup - - - -  sup - -  <cx~. 

l<_x,y f ( x y )  o~u,v<l Fo(uv) 

Finally, let us show tha t  in general for r.i. function spaces X[0, 1] the  set P x  

of scalar p 's  for which L p is lattice embedded into X[0, 1] is not  closed: 

THEOREM 2: Given 0 < a <_ 3" < 13 < 0% there exists a ~3-concave Orlicz 

function space LF[0, 1] with indices ac~ = a, /3~ = /3 and 3"~ = "y such that  

L F [0, 1] contains a lattice-isomorphic copy of  L p i f  and only i f  p E [ ~ ,  ~ ) .  

Proo~ Let us consider the case 2 < a < / 3  < r < oo (the general case can be 

deduced from this by convexification). Let us take ao = r - / 3  < 3'o -- r - 3' _< 

/3o = r - a.  We apply Theorem 4 to find an Orlicz function Fo with indices ao,  3"o 

and/30 at 0, which is ao-convex at 0 and x q E EFo,1 for every q C (ao, 3'0]- Now 

we define the Orlicz function F at ~ ,  by F ( x )  = x~Fo(1/x)  for x > 1. Also, 

a ~  = a,  /3~ = fl and 3 '~ 3' hold, and x p e E ~ for e v e r y p  E [3"~,/3~). -'~ F,1 

Using [J-M-S-T] Thm.  7.7, we deduce tha t  LF[0, 1] contains a sublatt ice lattice- 

isomorphic to L p for every p C [3"~, f3~). 

Finally, since Fo is an ao-convex function at 0, and 

inf y ~ F ( x )  inf v~°F°(u)  - -  - > 0 ,  
,<,,y F ( x y )  o<~,.<1 Fo(uv) 
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we have tha t  F0 is equivalent to a ~-concave function at exp. Hence it follows from 

Proposi t ion  5 in [G-H] (also Theorem 3.6 in [H-K]), tha t  the space L z cannot  be 

lattice isomorphic to a subspace of LF[0, 1], which concludes the proof. | 
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