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ABSTRACT

We study the set Py of scalars p such that LP is lattice-isomorphically em-
bedded into a given rearrangement invariant (r.i.) function space X|[0, 1].
Given 0 < o < 8 < oo, we construct a family of Orlicz function spaces
X = L¥[0,1], with Boyd indices o and 3, whose associated sets Px are
the closed intervals [y, 8], for every v with @ < v < 3. In particular
for « > 2, this proves the existence of separable 2-convex r.i. function
spaces on [0,1] containing isomorphically scales of LP-spaces for different
values of p. We also show that, in general, the associated set Px is not
closed. Similar questions in the setting of Banach spaces with uncountable
symmetric basis are also considered. Thus, we construct a family of Orlicz
spaces £F (I}, with symmetric basis and indices fixed in advance, containing
£P(T')-subspaces for different p’s and uncountable I' C I. In contrast with
the behavior in the countable case (Lindenstrauss and Tzafriri [L-T1]), we
show that the set of scalars p for which €P(T") is isomorphic to a subspace
of a given Orlicz space £F (I) is not in general closed.

I. Introduction

The structure of rearrangement invariant (r.i.) Banach function spaces has been
studied in the Memoirs of Johnson, Maurey, Schechtman and Tzafriri [J-M-S-T]
and Kalton [K4] (see also Lindenstrauss and Tzafriri [L-T3]). The problem of
classifying subspaces of certain special classes of r.i. function spaces has been
considered by several authors: for instance, for Lorentz spaces in [C1],{C;], [C-D]
and [D-K] and for Orlicz spaces in [B-D], [L-Ty], [H-R], [H-Ru[, [Ra] and (S].
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N. Kalton in [Kj] proved that if a separable r.i. Banach function space X on
[0,1], having no isomorphic copy of ¢y, has a sublattice isomorphic to L![0,1]
then X[0,1] is precisely L'[0,1]. This result is even valid replacing sublattice
by subspace ([K2]) and holds in general for the class of all separable Banach r.i.
spaces as it can be deduced from results in [K4] (see also [H-K]).

The impossibility of extending the result of Kalton mentioned above to L?[0, 1]
= LP spaces (instead of L[0,1]) has been shown in [H-Ry]: given 1 < p < oo,
there exist separable Banach r.i. function spaces on [0, 1], with Boyd indices
fixed in advance, containing a sublattice isomorphic to LP. In particular, in
the case p > 2 this also proves the existence of (non-trivial) separable Banach
r.i. function spaces on [0,1] containing a subspace isomorphic to LP. Notice that
in many cases, under additional hypothesis, the existence of an embedding of
LP? into an r.i. function space as subspace implies, in fact, the existence of an
LP-sublattice (see [K3] Thm. 10.9, [K4] Thm. 8.7 and [H-K] Coroll. 7.4).

One of the purposes of this paper is to study, for separable r.i. function spaces
X on [0,1], the associated set Px of scalars p such that L? is lattice isomorphically
embedded into X[0,1]. It is known that this set Px is empty for some special
classes of r.i. function spaces. For examplie: if X is a (non-trivial) Lorentz space
Ly 4[0,1] or Ly, 5[0, 1] defined by a submultiplicative weight (Carothers [C4], [C2]),
or if X is an Orlicz space L¥[0,1] generated by a submultiplicative function
[J-M-S-T]. On the other hand, [H-R;] gives several classes of Orlicz spaces X =
L¥[0,1] whose associated sets Px are precisely singletons. To prove the existence
of separable r.i. function spaces X on [0,1] containing LP-spaces as sublattices for
different p’s (and also as subspaces for the case p > 2) has remained open.

We answer in the positive the above question: we obtain a class of Banach
(and quasi-Banach) Orlicz function spaces X = L¥[0,1] whose associated sets
Px are closed intervals of positive numbers. It is also proved that, in general,
the set Px is not necessarily closed.

For the statements of the main results, we need to recall some definitions.
Given an Orlicz space LF[0,1] the inclusion indez 7% ([H-Ry)),

log F
vy = limsup log F(z)

T—>00 10g z ’

satisfies o < v < B%, where af and 7 denote the usual Boyd indices of
the space (cf. [L-T3]). If L? is lattice isomorphic to a sublattice of L¥[0,1] then
7% < p < B%. This follows from the fact that LP[0, 1] is included in L¥[0,1] (by
[J-M-S-T] Thm. 7.1). As a converse, we will prove the following:
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THEOREM 1: Let 0 < a < v < 8 < oo. There exists an Orlicz function space
LF[0,1] with indices o = a,v¥ = v and By = (@ such that L? is lattice-
isomorphic to a sublattice of L¥[0,1] for every p € [y¥, 8%].

And we also show that the associated set Py of scalars is not necessarily closed:

THEOREM 2: Given 0 < a < v < 8 < o, there exists a f-concave Orlicz
function space L¥[0,1] with indices o = a,y% = v and BF = B, such that
LF[0,1] contains a lattice-isomorphic copy of L? if and only if p € [y&, BF).

In order to prove these function space results we need to deal with similar
questions in the uncountable discrete setting. For this, we will consider the ques-
tion of finding Banach spaces with symmetric basis containing ¢P(I")-subspaces
for different p’s and I' uncountable.

S. Troyanski in [T] proved the impossibility of embedding ¢*(I') spaces for
uncountable I' into Banach spaces with symmetric basis different of £(I). In the
case of p > 1, the existence of non-reflexive Orlicz spaces £7'(I) with symmetric
basis containing an isomorphic copy of ¢#(T") for uncountable I' was proved in
[H-T], while the reflexive case has recently been obtained in [H-Ry]. So far, it
has been unknown whether or not there exists a Banach space with symmetric
basis containing ¢P(I')-subspaces for different p’s. Here we will fill this gap by
constructing suitable Banach (and quasi-Banach) Orlicz spaces £F(I) with this
property.

We will consider the inclusion indez v at 0 ([H-Ra)),

~vF = liminf M

)
z—0 log 2

that satisfies ap < v < B, where ar and Bp are the usual indices of the

function F at 0 ([L — T»]). It follows from ([R] Thm. B or [H-T] Prop. 5) that
if £2(T) is isomorphically embedded into an space £ (I) for uncountable I' C I,
then ar < p < vr. Here, as a converse, we will show the following:

THEOREM 3: Let 0 < a < y < 8 < co. There exists an Orlicz space ¢¥(I) with
indices ap = a,vg = v and B = B such that £F (I) contains an isomorphic copy
of /P(T") for any p € [aF,vrF|.

In contrast with well-known results in the countable case ([L-Ti}, [L-T2], in
the non-convex case [K;]), it turns out that the set of scalars p such that ¢P(I')
is isomorphically embedded into an Orlicz space ¢7(I) is not necessarily closed:
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THEOREM 4: Let 0 < a < v < 8 < oo. There exists an a-convex Orlicz space
£F(I) with indices ap = a,yr = v and Bp = f such that ¢¥'(I) contains an
isomorphic copy of £P(T'), for uncountable I C I, if and only if p € (ap,vF].

The constructed Orlicz functions are of type

F(z) = /Om(m —)f(t)dt (0<z<1)

where the function f is defined by

(e o)
f = Z EnX(z—n—lyz—n]
n=0

for a suitable coefficient sequence (e,). The construction of this coefficient se-
quence (€,), depending on «, 8 and v, requires several technical Lemmas, which
are sharp extensions of previous ones given in [H-T] and [H-R;). In particular,
Lemma 1 extends a crucial result for these methods given in ([H-T] Lemma 8)
and Lemma 7 improves Lemma 1.2 of [H-R;]. We also make use of the criteria
for the isomorphic embedding into spaces £F(I) given in ([R], (H-T]): An Orlicz
space £F(I) contains an isomorphic copy of £°(T") for some uncountable set T’
contained in I if and only if G € L1, where X is the set of Orlicz functions
equivalent at 0 to a function

! Fzs
H(z) = /0 I;f(s))du(s) (0<z <),

where p is a probability measure on (0,1].

The paper is organized as follows. Firstly, we consider the uncountable discrete
case. In Section 2 we give some basic Lemmas in order to prove in Section 3
partial statements of Theorem 3. Section 4 collects several Lemmas which are
the key to obtain Orlicz spaces £ (I) containing P (I")-subspaces for different p’s.
Section 5 contains the proofs of the main results in the discrete case.

Section 6 is devoted to showing the function space results of the paper . They
are deduced quite easily from the previous ones in the uncountable discrete case,
by using a simple transference argument and the criteria for lattice isomorphic
embedding Orlicz spaces into an Orlicz function space given in ([J-M-S-T]): An
Orlicz space L¥ [0, 1] contains a lattice isomorphic copy of L¢(0, 1] provided that
G € ©%,, where T, is the set of Orlicz functions equivalent at co to a function

H(z) = /Ooo F;ZS) du(s) forx >1,
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where p is a probability measure on (0, 0o) satisfying

* du(s)
F(s) —

Our notation is standard and we refer to the monographs [L-T3), [Gu] and [M]
for unexplained definitions.

II. Preliminary lemmas

In this Section we give some technical Lemmas. We begin with a crucial Lemma
which extends Lemma 8 in [H-T:

LEMMA 1: Given a sequence (h;)2, of positive integers (hy = 1), there exist
two mteger sequences (k;)52, and (m;)52,, strictly increasing, with m; > k; =
St i—omy fori=1,2,... such that

(1) il_if{.lo(mwl —m;) = 00,
(2) Zf(n+ki)=hn (n=0,1,2,...),
(3) ka—-n (n+2? (n=1,2...),

where f is the function

= Z X[m,-,mi+1) (J")

=0
Proof: We will proceed by induction. Assume that we have built
1=k’0<k1<"'<kj,
l=mg<m < <My,
0=l <ty <+ <4y,
where ki+1 =m; + k;; My = ki+l + €i+1 fori=0,...,7—-1.
We will say that the integer n > 1 is “covered” in the step j if there exist
exactly hy,, couples (ki,m;/) such that n = mj — ki with ¢/, 5" < j.
Let £;41 be the smallest integer which is not covered in this step j. Let us
consider k;+1 = mj + kj; mjy1 = kjq1 + £j11. It is clear that

mjt1 — kj+1 = €41,

Mgy — ki 2 myyy — kj =m;j + 4541 > m;
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fori=0,1,...,7, and

mjr — ki < mjr < m;j
for i/, 3’ < j. Hence the new differences introduced in the last step (j + 1) are
either equal to £;4; (so uncovered) or they appear for the first time. Then, it

follows that the sequences (k;) and (m;) satisfy the conditions (1) and (2).
Let us now prove (3). By the definition of the function f,

D fi=m) =" Ximemesy (ks = 7).

j=0 =0 i=0

If k; —m; > n > 1 we have k; > m;, and hence, j > i. And if kj — (m; +1) <n,
we have
j-1
n>ki—(mi+1)=Y mp—1>j-2.
=0
2#£1

Hence, we deduce i < j < n + 2, and

00 n+1
Y flki=n) =) Ximomesn) (ks =)
j=0 3=0i<j

n+1

<) (n+2) < (n+2)°

holds, which concludes the proof. |

LEMMA 2: Given § > 0, there exist two positive sequences (@)%, and (8,)22,
such that

o0
E 278" = o0,
n=0

1« -
5 <D ondap2” PR <1,

n=0
and

o
Y 0nbn_ k2R < (k4 2)%2%

n=k

for every ke N.

Proof: We will consider the sequences (k;) and (m;) constructed in Lemma 1
for the case of the sequence (h,) equal to ([2"]) ([ ] denotes here the integral
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part). And we define the sequences (o) and (8,) by ax, = 2%%;6,,, = 1 for
i=0,1,..., and ¢; = §;; = 0 in the other remaining cases. Then, using Lemma
1, we have

o0
Z an27%" = o,
n=0

o (o]
Z G2~ PR sziaéki+k2—(ki+k)5 _okop, >

n=0 1==0

DO}

for k=0,1,.... Further

oo o0
Z an(sn_k2—(n—k)5 — sziédki_kZ—(ki—k)L; S (k + 2)221(:(57
n=k 1=0

which concludes the proof of the Lemma. |

LEMMA 3: Given e > § > 0, there exist a constant B and two sequences (a,)32
and (€,)2, of positive numbers such that

[o o]
Z 2" =00, limsup /e, = 27%  and €, < CEnti
=0 n
forn €N, and ¢ = 2¢ > 1, verifying

A=

N | =

o0
<D anensr < B
n=0

for every k € N.

Proof: We apply Lemmas 1 and 2 in taking (a,) and (m;) as given there. Let
M={m;::1=0,1,...},

Mi = (M +i)\ (M +5)
=0

and

oo
G =D anbp k27 7R < (K 4+ 2)%2%
n=k

for k =1,2,.... Let us define the sequence (e,) by €, = 0 and

B 2—716 ifneM= M07
én = cko-(n-k)8 — ~ko-(n—K)85 . ifp e M,
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where (6,) is defined as in Lemma 2. It is clear that 3 oo ,2™™ = o0,
limsup, /€, = 2%, and €, < cepy1(n € N); in addition, by Lemma 2, we

Zan5n+k> Z an2” (n+k)s _ Za Snsk2” (n+k)5

n+keM n=0

have

for every k € N.
On the other hand,

Zanw—z D, Onek

1=0 n+keM;
Now, as
y oo 00 00 an ki 2 (n+k—i)s
D D aneapk < ZZ
1=0 n+keEM,; =0 n=0
o0
1 1
<D = 1o
1=0
and
— . n+k— 12 (ntk=2)8
Y Y < Y
i=k+1n+keEM; i=k+1 n
oo 0 . 2
Qi—k (t—k+2)° ks
S Z Qe S Z Qe 2t
i=k+1 i=k+1
z+2
Z 9i(e—4 00,
we deduce -
1+ 2
> oneurs < 7= + 2 Gy =B <o
n=0
which concludes the proof. ]

LEMMA 4: Let € > 0 and ¢, = (k+1)* for k € N. There exist a constant B and
two sequences (o). and (€,)5%, of positive numbers such that

Za,ﬂ_"e =00, limsup /en =2"¢ and €, < 2crensn
=0

n=0

for n,k € N, verifying

mlr—-l

00
Z Onéntk < B
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for every k € N.

Proof: We proceed as in Lemma 3, using now Lemma 2 for § = ¢. We define
the sequence (€,)3%, by

[ itne M= M,
€n = 2_"‘66;1 = 2'"‘c;16n_k if n € My.

It is clear that Z?:o 27" = oo, limsup,, /e, =27¢ and €, < 2k cren i for
n,k € N. From Lemma 2 we have

oo 00
Z Qnntk 2 Z O‘n(sn—t—k2—(TL—HC)6 >

[

for every k € N. On the other hand,

Z Z Op€nig < Zzan ntk—i2 (n+k)e

i=0 n+keM; 1=0 n=0
—(n+k—i)e
oo ntk—i2
< Z >
1=0 n=0
k
1 1
<2 2 ST1_2-
1=0
and
(n+k—1})é
an n+k— i
Y Y o< Y v
i=k+1nt+keM; i=k+1 n i
o . oo - 20(i—k)e
Qi—k (7' k+ 2) 2
< —_ < -
- Z 2“01‘ - Z 2zeci
i=k+1 1=k+1
Z l + 2
Hence
00 0o 4.
1 (i +2)2
Zan€n+k < 1—9—¢ +Z (i-l—l)4 =B <o,
n=0 =1

which concludes the proof. ]
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III. A basic result

An important step in order to get the main results for discrete spaces is the fol-
lowing result (which extends Theorems B and B’ of [H-R5) given in the particular
case of p equal to the inclusion index yg):

ProrosSITION 5: Let 0 < a < p < v < B < co. Then there exists an Orlicz
space ¢F (I) with indices ap = o, Br = 3 and yp = « such that ¢F(I) contains
an isomorphic copy of ¢P(T") for any set I C I.

Proof: Since the case p = v has been solved in [H-R5], we have to consider the
cases (A) a < p<vy<Band (B)a=p<v<p. Now in the case (A), by using
convexification and basic properties of the sets Lg; (see [H-Rz]), we can reduce
to distinguish only two subcases:

(AJ) THE CASE =1 < p <y < B: We will built a convex Orlicz function F
with indices ap =1,8r=8=pt+ecandypr=7=p+dwith0 < d <e

Let (e,) be the sequence defined in Lemma 3. Let f be the function defined
by

o

fz) = Z €nX(2-(n+1) 2-0)(T),

n=0

and F be the convex function given by

F(z) = /0 z(z — P2 f(t)dt

for 0 < z < 1. Using Lemma 3 we have

Asianf(%) <B

n=0

for 0 < z < 1. This implies by integration and the Beppo-Levi Theorem that

Azp & z Ba?
x <Y 0,2 F (2] <
) plp—1) T &= (2"> p(p—1)

for0<z<1.

It follows now that the space £F(I) contains a subspace isomorphic to £P(I")
for I'-uncountable. Indeed, if x4 denotes the discrete measure on [0,1] defined by
w(27") = @, 2P"F(27 ™), we consider the function

o) = [ Hduty 0wz
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Then, by (x), the function G is equivalent to z* at 0, so, by [R] Theorem B or
[H-T] Proposition 5, we deduce that £ (I) contains a subspace isomorphic to
£7(T) (we prove below that the function F satisfies the AJ-condition).

Let us compute the associated indices. Since

1 N
Fl—)= 27" — P2t
() =X [ .m0

o0
=) 27 Vk(g2" — p27F)
k=n

with L o) -
a=———— and b= ,
p—1 p
we deduce
(o]
(%) PF(27") =) (a—b27F)2 ke,
k=0

Let us show that ap = 1. It is enough to check that

o 2F@ETY
mn F(27™)

for every q > 1. Indeed, for m = m; — n > m;_1, using (**) we have
2P(MFR) P(27MPY > (g — B)eman = (@ — b)ém,

and
o0
m pp(g—m _m Y ~(p=1)(n+k)
2pr F(2 ) <a (1 —o-(-1) + k_OEmi+k2 p n

a
e ~(p-1)n )
ST 201 (6"‘ +2 e

with ( )
—{m—m;—1)€
€m - _2__—_1_ — 2en2—(mi—mi_1)(e—5) 0

€m; 2~ (mi—mi-1)é —

for ¢ = oo and n fixed. Then
2MF(27™ ™) a—b

1 — 9—{p=1)yolg-1)n
F2™) ~— a ( )

sup
m

and
o 2E@TY
m— F(2)



202 F. L. HERNANDEZ AND B. RODRIGUEZ-SALINAS Isr. J. Math.

Let us now see that 8r = (p + ¢€). It follows from (¥x) that

2R a S 2P ke . _a

2%
F(Z_m‘n) “a-b5 Z;?—.O 2_(p—l)k€m+n+k “a-—b ’

so we deduce that 8r < p+ €. In order to show the converse inequality, let us
consider m = m; < m;y; —n. Then

2P"F(27™) 2 (a - b)em = (a — e,

and
m —-m—n a
9p( +n)F(2 meny < m—-(Tl—) (€m+n + €mi )
a —en
S oo (2T Fema ).

Hence, as

Gmi+1 —_ 2—5(mi+1—mi) 0

€m,

for 1 — 0o, we have

2-PF(2°™) _a—b

S TF@meny = T4

which implies that 8r > (p+¢€). Then fp =p+e.
Finally, let us show that yp=-y. Since

9P F(27™) < (a — b)em, = (a — b)27™°

we have

limsup Y/F(2-7) < 27(P+9),

On the other hand, it follows from (xx) that

o—(p—1)k

Nk

?PF(27") <a €ntk

==
Il
o

9—(p=1kg—(n+k)s a —nd
— 1201

IN
ol
8

E
Il

0

and, hence,

limsup Y/F(2-7) < 27(PF9),

Thus vr = p + 6 = 4, which ends the proof in this case (A.I).
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(AJI) THECASE a = 1 < p <y = f < oo: Given e > 0 with 8 = p +¢,
we proceed as in the above case but now using the sequence (e,) of Lemma 4 in
order to define the functions f and F.

Let us show that ar = 1. Like above we consider m = m; —n > m;_;. Then

P(ME (27 > (a — b)em,

and
pmpog-my <« ¢ —(p=1)n
PME(27™) < T o= 1)(em+2 €m;)
with )
6_m_42€m7:1m11_ 9en 0
€m,; 27ems Cr—mi_y

for i —— oo and fixed n. Now

WFET a—b

1 — 9~ {p—Thyple-L)n
S gy 2 g ¢ )
for ¢ > 1, and
s 29 (2™
up —————= = 00.
mn F@™)

Hence ap = 1.
Let us now prove that Br = (p + €). It follows from (*x) that

2-PRF(27™) <- a Yo 2 P=Vke ik
F(2-m=m) bZk —02 e yntk

a
< o bZHGCns

which implies that 8r < p + €. In order to prove the converse inequality let us
consider m = m; < m;41 — n. Now, as above,

2P F(27™) > (a — blem,

and

gp(mtn) r(g-m-ny < %

- m(z_m e me + €myy)-

Hence, as
Gmi+1 — 2—e(m,-+1—m,') 0

€m;

for i — o0, we have

9—pn f(9—m -
sup F(2 )>a b

(2 T2 (1—2-(P=ygeme,
m —m-n a
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which implies 8 > p+¢€. Thus p =p+e= 0.
Finally, let us also show that yg = p + €. Indeed, as

2P F(27™) > (a — b)27 ™€,

we have

limsup Y/F(2-n) > 2~ (P+e),

On the other hand, it follows from (*x) that

et oo
2pnF(2—n) < a22-(p—1)ken+k < az2—(P—1)k2—(n+k)e
k=0 k=0
a

< 1 —2-(-1)

—ne¢

and, hence,

limsup Y/F(2-7) < 2~(P+e),

Thus v = (p +€) = B. This ends the proof in the cases of type (A). (Notice
that the constructed Orlicz function F is always a-convex.)

We pass now to the case (B). As above, by standard tricks, we only need to
consider two subcases:

(B.I) THE CASE 1l <a=p< vy < f<oo: Let(ap)and () be sequences as
in Lemma 3 for e = (3 —p) > § = (y — p) > 0. Let us consider

o0

En+k
=)

c
k=0 K

where ¢, = (k + 1) Then €, < c*e, , = 2%/, and there exist positive
constants A’ and B’ such that

o9}
A< ZQHG'M_,C <P

n=0

for k € N. Let

(e o]

f(w) = Z e;;X(z—"—l‘zw](l‘)

n=0

for0 <z <1, and

F(z) = /0 z(:c — 1)tP~2f(t)dt.
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For0<z<1,

_1)<Zan p"F( ) B,(p—iT)

holds, which implies, by using [R] Thm B or [H-T] Prop. 5, that the space £ (1)
contains an isomorphic copy of ¢(I") for I C I.
Let us show that ap = p. We have

o0

2" F(27") =Y (a—b27F)2 Nk
k=0
and
PR R (27m) a D02’ (p=lke) mintk
F(2=™)  “a-b Y20 27F-Vke
a a
< = —— 1)4,
< 3¢ p— {(n+1)
since

€ 1 ¢ 1

17 m+ntk m4n+k ’

M2 TS E ) T
k=0 n+k n o k n

Hence ap = p.
Let us show now that 0 = p + €. Since

2-PRF(27™) < O
F@2-mn) ~a-b

we have that F is (p + €)-concave, so Br < p+ €. In order to show the converse
inequality, we consider m = m; < m;y1 —n, so

2PME(27™) > (a — b)el, > (a — b)em,

and
o«
m-+ — n
gp(mtn) p(g=m- Z m+n+k
k=0
< adm+n chz—(P—l)k - a,dm+n
k=0
and, hence,
su 27PrF(27™) 5 8- b sup ™
W FEmmy < d e
> a— b2€”
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for some positive constants a” > o/, since

< 9 Z ..1_.4_5% i _1_

C €m.: C,
k mi k=m;;1—m-n k

for i — oco. Hence Br > (p+€),s0 Brp=p+e=0.
Finally, let us show that vy# =p+J = ~. Since

2P F(27) > (a — b)ém, = (a — b)27™9,
we have
limsup {/F(2-7) > 27 (P+9),
n
On the other hand,
27" F(2 <a22 (p=1)k <a22 (p=1)kg-(n+k)s
k=0
< ‘1' —k$
- 1-—2-({1 ’

hence

limsup Y/F(2-7) < 27+,
Thus v7 = p + § = 7, which ends the proof of this case (B.I).

(B.II) THE CASE l < a=p <y =f <oo: We will proceed as in the above
case but considering now (o) and (€, ) as defined in Lemma 4. Let

= Z otk Ghere o = (k + 1)%

Then €, < 2*¢cel, + for € = (B —p), and there exist positive constants A’ and

B’ such that
o0
A <Y o < B
n=0
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for every k € N. Let
flz)= Z eﬁlx(z_(nﬂ),z_n](:c) and F(z)= / (x — t)tp_zf(t)dt
n=0 0

for 0 < z < 1. Reasoning as above we get that the space £F(I) contains an
isomorphic copy of 2(I") for I" C I, and also that ar = p and B < p+e€ In
order to see that 8r > p + ¢, we consider m = m; < m;y1 — N, 80

WNF(27™) > (a - b)em,

and
2p(m+m)F(2-m~n) < ale'lrn-l-n'
Hence
27PPF(27™) _a—b T
su u
o FR@mny =g e
a—-b _..
= a’ Cn2

for some positive constants a” > o', since

' o]

€mitn _ L Z Emitntk
€m.; €m., C,

mi mi g k

m,-+1-—m—n—1

1 €m, 1

S C;lz—ne § — M4t § =
Ck €m,;

k=0 v

= 1

—1lo—ne
—C, 2 E Z—
x—o0 k

for i —— oo0. Thus S =p+e.
Finally, let us show vF =p+e=1~. As

PTE(27™) > (a — bley, = (a — b)27¢

we have
limsup {/F(2-7) > 27 (®+9),
n

On the other hand,

o
PP < déy <@ 3 2 Dkg (e
k=0

al

S {0

—ne
27,
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which implies

limsup {/F(2—7) < 27(p+e),
n

Hence yr = p + € = v, which concludes the proof. |

Remark: Note that for the case p > « the function F constructed in the above
Proposition is a-convex. It holds in general that if an a-convex space £F(I)
contains an isomorphic copy of £#(I') for p = « and T uncountable, then ¢¥ (1) =
£>(I) and the function F is equivalent to z* at 0.

IV. Key lemmas

In this Section we present some technical Lemmas, which are the key to prove
later that the Orlicz spaces £7 (1), constructed in Proposition 5, contain £#(T)-
subspaces for different values of p.

LEMMA 6: Given é > 0, for every 0 < 8’ < § there exists an integer ko > 0 and a
positive sequence ()32, such that if (0,)52 is the sequence defined in Lemma
2, then

00
2—sk—1 < Za;6n+k2—(n+k)5 < 2—sk+1

n=0

for s = (6 —&') > 0 and every k > ko.

Proof: We can assume, by Lemma 2, that &’ < §. Thus there exists an integer
ko > 0 such that [2%0'] < [2K%] for every k > kq.

We now apply Lemma 1 in the case of taking the sequence (h,,) as ([2"°]), hence
finding the associated sequences {(k;)$2, and (m;)$2,. Thus, for every natural n
there exist exactly [2"%] couples (k;,m;) such that m; — k; = n. Let us denote
by A, the set of the [27] natural numbers k; that appear in this pair (k;,m;),
and by A’, we denote the subset of A, given by the last [2"%'] natural members
k; which are in A,,.

We claim that the set

By = U A;L N Ag

n>kg
n¥k

contains at most one element. Indeed, if k; € By then there exists m; such that
m; — k; = k, and hence j > i. Now if j > 4 it follows from the construction in
Lemma 1 that m;_; < k < m;, and this implies that there is at most a natural j
verifying those. Let us suppose now j = ¢, which means k& = m; — k; = £;. Since
k; € A!, for some n > kg with n # k, there exists j' > i such that n = mj — k;.
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Hence n > k. Let us now show that k; is the first element of the set A,, which
will contradict that k; € AL. If n =m; — ky = £;, as n > k, we have ¢’ > 4 and
hence k;» > k;. Thus k; is the first elemeunt of A,.

We pass now to define the sequence (a,)22 by

0/ = 2715 lf ne U;L..;ko ;17
" 0  otherwise.

Since Ay N Uy, Ah = A} U By we have

0
Z a;6n+k2_(n+k)6 — Z 2n66n+k2—(n+k)6
n=0 neA’kUB;C

for k > ky. Hence

1
Za 677, k2 (n+k)d 2 (1 + [2k5 ]) < 2—k8+1

and

i 1 o (ntk) 2] S g—ks-1
QL 0n4k = 2k5 fousl

n=0

for every k > kg and s = (6 — ¢'), which concludes the proof. |

LEMMA 7: Let € > § > 0, (¢,) be the sequence defined in Lemma 3, and (c],) be
the sequence defined in Lemma 6 associated with each 0 < ¢’ < §. Then

o
Z o 27™ = 0o

n=0

and

o0
A/2—Sk S Zaiﬁnq—k S B/2—s(k+1)

n=0

for every natural k > 0, and s = (6§ — §') > 0, and where A" and B’ are positive
constants.

Proof: We will proceed as in Lemma 3 but using now Lemma 6. We have

Za en+k>2a B2 (MHRIS >

n=0

27°

D | =
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for k > kg, and

(n+k—1)é

Z Z aen+k<zza (5n+k1

i=0 n+keM; i=0 n=0
9= s{k— ¢)+1 0 9 1+s

< Z N Z 9i(e— s)

sincee-s>¢—46>0.
Using now that o, < @, we have

o0
ol B pomi2 —(ntk—i)é
S Y s Y 3 G
i=k+1n+k€EM; i=k+1 n
2 (i—-k+2)?
I
i=k+1
1l & 2(i—k+2)?
T o(k+1)e _Z 2(i—k)(e—6)
1 o= 2¢(i +2)?
= 2(k+1)ez 2i(e—3) 0.

=1
Hence as s < ¢, there exist positive constants A’ = 1 and B’ such that
2
o0
A’2_Sk < Zalnen—{vk < Blz——s(k+l)
n=0

for k > kg, which concludes the proof since we can replace the constants in order
to get that the above inequality holds for every k > 0. B

In the extreme case of § = € we also have a similar result:

LEMMA 8: Let € >0 and (¢,) be the sequence defined in Lemma 4. Let 0 < §' <
d = ¢ and (o),) be the sequence defined in Lemma 6. Then

o

5 9g—nd _
Zan2 =00
n=0

and

o0
AI2—sk < al € < B’2—s(k+1)
> nnt+k >

n=0
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for every k > 0 and s = (e —¢') > 0, and where A’ and B’ are positive constants.

Proof: We will proceed in a similar way as in Lemma 4. We have, by Lemama

6, that
Za €ntk > Za Snp k2 (ER)E > 5

n=0

;.._n

for k > kg. Now,

o 5n+k _i2 (n+k-—1)e
> Y aen <Z§: e
1=0 n+keM; 1=0 n=0
oo
21+s
—-s(k+1)
— Z Qzec =2 Z 2':15'0_ < oo
i=0 i=0 t

since € — s =6’ > 0 and ¢; = (i + 2)%. And, as &), < o, we have

o0
(i—k+2) 29(i=k)e
DD ek > ! v
i=k+1n+keM,; i=k+1
1l & ik +2)?
- 2¢(k+1) Z ¢
i=k+1

1 Z“’ 2¢(i +2)2
_<_ 2€(k+l) £ G < 00.
1=

Hence, as s < ¢, there exist positive constants A’ = % and B’ such that for k > ko

we have -
AI2—sk < Zafnen+k < B/2—s(k+1)
n=0
for every k > ko, which concludes the proof as in Lemma 7. |

V. Main results in the discrete case

This section is devoted to prove the main results in the discrete case stated in
the Introduction.

THEOREM 3: Let 0 < o <y < 8 < 0o. Then there exists an Orlicz space eF (1)
with indices ar = o, Br = B and v = 7y such that ¢F(I) contains an isomorphic
copy of £4(T') if and only if q € [ap,YF].

Proof: The extreme case o = v has been solved in [H-R;] Thm. B’, so we can
assume a < v < 3. We will distinguish two cases:
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(i) Thecasea <y < g3
Using standard arguments (see [H-Ry]) we can suppose w.lo.g. 1 <a=p<

v=p+6< B =p+e Let f and F be the functions defined in Proposition 5,
ie.

o0

f(z) = Zenxlz_(ﬁu,z_ﬂ)(x) and F(z)= /Om(a: — )P 2 f(t)dt

n=0

for 0 < z < 1. Let () be the sequence defined in Lemma 7 associated with
each 0 < §’ < §, hence there exist positive constants A’ and B’ such that

[o.0]
A,2—Sk S Z a;€n+k S BI2—S(’C+1)

n=0

for every k > 0 and s = 4§ — &' > 0. This implies that
> x
Alg® < Za;lf (2_") < B'z*

n=0

for 0 < z < 1. And, by integration and the Beppo-Levi Theorem, we get

ZPts

p+s)p+s—1

zPte

(p+s)p+s—1)

!

7 < Za;QP"F(%) <B
n=0

for 0 < z < 1. Then, if y/ denotes the discrete measure on (0,1] defined by
W(27") = ol 2P"F(27™) and we consider the function

1
o) = [ b o<z<,
we get that G is equivalent to the function xP+s = zP+5-8" a4t 0. Hence, by using
([R] Thm B or [H-T] Prop. 5), we conclude that £F(I) contains an isomorphic
copy of £9(T') for every a < g=p+s=p+d—-d <p+d=7<p.

(ii) Thecasea <y=8

We can assume w.l.o.g. that 1 <a<~y=p0. Let usdenotea=p<f=p+e
and define the functions f and F as in the case (B) of Proposition 5. Now we
consider the sequence (c/,) associated with 0 < ¢’ < 0 = ¢ in Lemma 8. Then
there exist two positive constants A’ and B’ such that

o0
Alz—sk .<_ Za’lneil_'-k S Blz-—s(k-’rl)

n=0
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for every k >0and s =6 — & = ¢ — ¢’ > 0. Hence
s x
Az’ < ;a;f (—2—n> < B'z?
for 0 < z <1, and by integration,

Pts pts

FTETEn Z“ZPnF(zn)— FEDETES)

!

for 0 < z < 1. This implies, reasoning as in the above case, that the space £ (I)
contains an isomorphic copy of £4(T") forevery a < g=p+s<p+e=v

This ends the proof of the Theorem since we have already computed the indices
of the spaces #F(I) in Proposition 5. |

The following result shows that in general the set of scalar p’s such that £°(T)
embeds isomorphically into a given space ¥ () is not closed (compare with the
countable case [L-T;], [L-T2], [Ki])

THEOREM 4: Let 0 < a < v < 8 < oo. There exists an a-convex Orlicz space
¢F(I) with indices ar = o, Br = B and yp =y such that £F(I) contains an
isomorphic copy of ¢4(T') if and only if q € (ap,Vr].
Proof: We shall differentiate two cases:

(i) The case a < v <

Using standard tricks we can assume w.log l1=a<y=1+d<f=1+¢
Let (&) be the sequence defined in Lemma 3, and f and F' be the functions

o0

f@) =) enX(@z-ntv g-nj(z) and  F(z) = /Om(:c—t)t_lf(t)dt

n=0

for 0 < z < 1. It holds that F' is a convex function (since F'(x) > 0 and
increasing) and

(%) F(2™) = i ex(a27" —b27F) < 00
k=n

where a = log2 and b = } (since limsup,, {/€, = 278 =2-(-1) < 1),
In order to show that ar=1 let us prove
2R F(2-™)

m—— F2™)
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for every q > 1. Indeed, for m = m; —n > m,_; and using (*) we have

2HRE(ZT ) > (a = Bemn = (a— b)em,

and -
2mF(2-'M) Sazek :a(EM+"'+€mi +)
k=m
a
< ?2—_5(6m+em1)
with

Em 9—(m—mi_1) — 9eng—(mi—m;i_1)(c—8) s Q)

€m; T 9—(mi—mi—1)8

for 7 — oo and n fixed since € > 4. Then

QMF(2-™=") g} PN
> 1—27%)20@bn
SUP oy 2 g ¢ )
and

su 2T =0

mn F@™)

for every ¢ > 1. Hence ap = 1.
Let us show now that 8p = 1 + ¢. It follows from (x) that

27 F(27™) @ Y Emtk a
< 50
F(z—m—n) a—b E k=0 Em+n+k a—b

IA

£72
27,

which implies that S < 1+ €. In order to get the converse inequality, let us take
m =m; < m;41 — n. Then

2MF(27™) > (a— b)ey, = (a — b)em,

and a
2m+nF(2—m—") < ]_—:F(em.*—n + 5m«;+1)
a —
< 1-—-2-¢ (2 enémi + €m£+1)'
Hence, as
Cmigr _ 9=8(miy1i-mi) ____ 4 g
Em;

for i — oo, we have

2-nF(2"™) _a—b
>
WP F@mny = g

(1-27%)2m,
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which implies that 8F > 1+ €. Thus fp=1+e€.
It holds also that yp=-y. Indeed, as

9™ F(27™4) > (a — b)em, = (a— b)2"™¢,

we deduce that

limsup {/F(2-7) > 2~ (49,

On the other hand, it follows from (x) that

27LF < aZ €nik < < aZ2 (n-Hc)zS — 2—5 2—577,

and, hence,

limsup 3/F(2-7) < 27(1+9),
n

Thus yp=1+d=7
Finally, given 1l = a < vy=1+6 < f =1+, it follows from Lemma 7 that
for every 0 < ¢’ < § there exists a sequence (o) verifying

e <Y df (%) < B'z®
n=0
for0<z<1,5=8§—46>0and A" and B’ positive constants. This implies, by

integration and the Beppo-Levi Theorem, that

1+s o0 145
AL < ’2"F(f—)<B' ad
(1+s)s _gan /7 (1+s)s

for 0 <z <1 and s > 0. Now, using [R] Thm B or [H-T] Prop. 5, we conclude
that £F (I) contains a subspace isomorphic to £4(T) for every g = 145 < 1+ = v
and hence for every 1 < ¢ < «. Finally, as the function F' is convex, the space
£F(I) cannot contain a £!(T')-subspace.

(ii)) Thecase a <y =

We can assume w.lo.g. 1 =a <y =0=1+¢. We proceed as above to build
the sequences (¢,) and (), using now Lemma 4. Thus, let f and F' be defined
by

o0

flz) = Z €nX(2-(nt1) g-n] and  F(z) = /Oz(x — )t~ f(t)dt

n=0

for0<z<1.
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Let us show that ap = 1. If m = m; — n > m;_ then

2MRE(27 ) > (g — b)em,

and
_ a
2MF(27™) < 1o (ém + €m,),
with )
€~m B 2—6777,(/.7—71_1"“_1 B 9en . 0
€m, 2—emi Cm—mi_y '

for i — o0 and fixed n. Thus

2MF(2T™ ") a
F(2™) =~

—-b
sup (1 —27¢)2@"bn
m a

and
o ZFET )
il S SN
mn F(2-™)
for every ¢ > 1, and, hence, ar = 1.

Let us show that Br = 1 + €. It follows from (x) that

27"F(27T™) <_4 D e Emetk
_ [o o] —
F(2=m™) Ta—b) , g€mintk  a—b

ne
2"%¢cy,

which implies that 8 < 1 + €. To prove the converse inequality we consider
m =m; < M1 —n. Then

9MmF(27™) > (a — b)em,

and a
2m+nF(2-—m—n) < T (GmH—n + Em,-_H_)
a - —
S o (2 "ECnlemi 4 Emi+1)‘
Hence, as
6mi+l

— 2—e(mi+1—mi) ) 0
Emy

for i —— o0, we have

27"F(2™™) _a—b
>
SPF-mn) = g

(1= 2792¢,,

which implies Bp > 1+ €. Thus fp =1 +e¢.
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It also holds that vy = 1 + € = . Indeed, since
2™ F(27™) > (a— b)27™

we have limsup,, {/F(2-") > 2=+, On the other hand, from (*) it follows
that

o0 o0
F(2) <aY enr a2 MR < 1—“27626"_
k=0 k=0

Hence limsup,, 3/F(27") < 2=0%9). Thus vp = L + €.

Finally, reasoning as in the above case, using now Lemma 8 instead of Lemma
7, we deduce that £¥ (I) contains an isomorphic copy of £4(T"), for I' C I uncount-
ables, if (and only if) 1 < g <y = 8. ]

VI. Main function space results

In this Section we prove the main function space Theorems, which follow now
quite easily from the above results:

THEOREM 1: Let 0 < a < v € 8 < oo. There exists an Orlicz function space
L¥[0,1] with indices af® = «, B = 8 and ¥ = v such that LF[0,1] contains a
lattice-isomorphic copy of LP for every p € (Y&, B%].

Remark: In the case @ = v = f3 the above space L¥[0,1] is non-trivial (i.e.
LF[0,1] # LP[0,1)).

Proof: Let0<a<y<pB<r<oo. Weconsideragy=r—08,0o=1r—«
and vg = r — ~. It follows from Theorem 3 that there exists an Orlicz function
F, with indices at 0, ap, = ap, Br, = Bo and yr, = 7o such that for every ¢
with ap, < ¢ < g, there exists a probability measure p4 on [0,1] for which the
function G4, defined by

_ ! Fo(xt)
Gylz) = /0 Pt ©<e<1),

is equivalent to the function 27 at 0. Since r > By we can assume w.l.o.g. that
Fy(st) > s"Fp(t) for 0 < s,t < 1.
Let us consider now the non-decreasing function F' defined by

F(z)=2"F, (%) , forz>1.
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Now o =r—fp =a, B =r—ay = and v =r — vy = v hold. Also, the
function G, defined by G(z) = 2"G4(z™") for > 1, satisfies

6 = [ Zedaut) 2,

where p is a probability measure on [1,00) given by p(t) = pq(1/t). Hence G is
equivalent to the function 777 = ¥ at co. Thus a¥ € XF, for v < p < j and,
by [J-M-S-T] Thm. 7.7, [H-Ry], we conclude that L? is lattice-isomorphic to a
sublattice of L¥[0,1] for every v < p < %. 1

Remark: When o < v < 3, the above result can even be obtained for a-convex
Orlicz function spaces L¥[0,1].

The proof is the same, only we need to realize that the associated function
F, defined at 0 is equivalent to a fo-concave function at 0 in all the possible
cases: when o = 7y it is proved in Theorem B’ of [H-Rz] and when ap < vy it
is shown in Proposition 5. Now from the fy-concavity of Fy at 0 it follows that
the function F', defined at oo by F{z) = 2" Fp(1/z) is equivalent to an a-convex
function at oo, since

y*F(z) B vPo Fy(u)
1<zy F(zY)  o<uw<1 Fo(ww)

< 0.

Finally, let us show that in general for r.i. function spaces X[0,1] the set Px
of scalar p’s for which L? is lattice embedded into X[0,1] is not closed:

THEOREM 2: Given 0 < a < v < f < oo, there exists a (-concave Orlicz
function space L¥[0,1] with indices o = a, 8% = B and v¥ = v such that
LF[0,1] contains a lattice-isomorphic copy of LP if and only if p € [v§, B%°).

Proof: Let us consider the case 2 < a < f# < 7 < oo (the general case can be
deduced from this by convexification). Let us take o =r - B <7y =7r—7 <
Bo = r —a. We apply Theorem 4 to find an Orlicz function Fp with indices o, 7o
and By at 0, which is ag-convex at 0 and z? € T, ; for every g € (oo, 10]. Now
we define the Orlicz function F at oo, by F(z) = z"Fy(1/z) for z > 1. Also,
a® = o, fF = B and 4§ = v hold, and z? € XF,; for every p € (Y%, 6%).
Using [J-M-S-T] Thm. 7.7, we deduce that L¥[0, 1] contains a sublattice lattice-
isomorphic to LP for every p € [v%, 6%).
Finally, since Fy is an ag-convex function at 0, and

YPF@) . v F(u)

— = >0
1<z,y F(zy) 0<uws Fy(uv) ’
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we have that Fj is equivalent to a S-concave function at 0o. Hence it follows from
Proposition 5 in [G-H] (also Theorem 3.6 in [H-K]), that the space L? cannot be

lattice isomorphic to a subspace of L¥[0, 1], which concludes the proof. ]
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