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STABILITY AND OPTIMAL CONTROL OF
MICROORGANISMS IN CONTINUOUS CULTURE

XIAOHONG LI∗, ENMIN FENG AND ZHILONG XIU

Abstract. The process of producing 1,3-preprandiol by microorganism
continuous cultivation would attain its equilibrium state. How to get the
highest concentration of 1,3-propanediol at that time is the aim for pro-
ducers. Based on this fact, an optimization model is introduced in this
paper, existence of optimal solution is proved. By infinite-dimensional op-
timal theory, the optimal condition of model is given and the equivalence
between optimal condition and the zero of optimality function is proved.
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1. Introduction

The study of 1,3-propanediol(1,3-PD) from fermentation of glycerol by mi-
croorganisms has caused great focus in the world since 1980’s. Now many re-
search works have been done in the laboratory, such as kinetics model of product
formation, growth of cells, substrate consumption and inhibition(see [1]and[2]).
Some theoretical studies have been reported too, such as the analysis of mul-
tiplicity, hysteresis, bifurcation et al.(see [3]-[5]), and the effect caused by time
delay to the dynamic behavior in continuous culture(see [6]). At the same time,
some results on dynamical model and its bifurcations and oscillation of some
biology system are reported recently(see[7]-[9]). In the process of continuous
culture, the system will attain the equilibrium state by auto-catalysis of mi-
croorganisms, at that time, how to get the highest concentration of 1,3-PD by
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controlling the operating conditions is the aim of producers. In this paper, tak-
ing the stable equilibrium state of system as mainly constraint condition, the
concentration of 1,3-PD as objective function, we give the optimal model, and
prove the existence of optimal solution. In order to study the optimal condition
of this kind of nonlinear optimal control problem, the optimality function is de-
fined in this paper, and the equivalence between the zero of optimality function
and optimal condition is proved by infinite-dimensional optimization theory.

The rest of this paper is organized as follows. In section 2 we give the stability
analysis in the continuous culture system and optimal control model. The main
results of this paper are presented in section 3, we prove the existence of optimal
solution and the equivalence between the zero of optimality function and optimal
condition.

2. Stability of continuous culture process and optimal control model

The material balance equations in continuous culture can be written as fel-
lows(only one product 1,3-PD is considered):





ẋ1(t) = h1(x, u) = (µ−D)x1(t)
ẋ2(t) = h2(x, u) = D(x20 − x2(t)) − qsx1(t)
ẋ3(t) = h3(x, u) = q3x1(t) −Dx3(t)

t ∈ [0, T ] (1)

where 



µ = µm
x2(t)

x2(t) + k2

(
1 − x2(t)

x∗2

) (
1 − x3(t)

x∗3

)

qs = ms +
µ

Y m
s

+ g2

q3 = m3 + µY 3 + g3

g2 = ∆qm
s

x2(t)
x2(t) + k∗s

g3 = ∆q3
x2(t)

x2(t) + k3

(2)

Where the elements of the state variable x(t) := (x1(t), x2(t), x3(t))T ∈ R3 are
biomass, substrate concentration in reactor, product concentration in reactor,
the elements of the control variable u := (D, x20)T ∈ R2 are dilution rate,
substrate concentration in medium, µ, qs q3 are the specific growth rate of
biomass, the specific consumption rate of substrate, and the specific formation
rate of product. µm = 0.67 is the maximum specific growth rate, x∗1 = 10 is
the maximum biomass, x∗2 = 2039, x∗3 = 940 are the critical concentrations of
the substrate and product above which cells cease to grow. Y m

s = 0.0082, Y 3 =
67.69, k∗s = 11.43, k2 = 0.28, k3 = 15.5, ∆qm

s = 28.58, ∆q3 = 26.59, ms =
2.2, m3 = −2.69 are parameters.

According the fermentation experiment, the ranges of the state variable x(t)
and control variable u are W := (0, 10) × (100, 2039) × (0, 940) and U :=
(0.01, 0.67)× (500, 2039).
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The vector form of model(1):

ẋ(t) = h(x, u) = (h1(x, u), h2(x, u), h3(x, u))T t ∈ [0, T ] (3)

Where x(t) ∈W ⊂ R3, u ∈ U ⊂ R2.

Definition 1. A point x̄ ∈ W is called the equilibrium point of the system (3)
if there exists a point ū ∈ U such that h(x̄, ū) = 0.

Xiu(see[3]) had pointed that the system (3) defined by (1)(2) existed equilib-
rium points. Let hi(x, u) = 0(i = 1, 2, 3) in (1) eliminate x1 and x3. Then we
can get a polynomial equation of degree 5 of x2 as fellow:

c0x
5
2 + c1x

4
2 + c2x

3
2 + c3x

2
2 + c4x2 + c5 = 0

where x2 is unknown number, u = (D, x20) is unknown parameters, and

c0 := µm(m3 +DY 3 + ∆q2)

c1 := µm

(
(m3 +DY 3 + ∆q2)(k∗s − x20 + x∗3 − x∗2) + (m3 +DY 3)k3

)

c2 := µm

[
(k3k

∗
s − x20k3 + x∗3k

∗
s − k3x

∗
2)(m3 +DY 3)

+(x∗3k3 − x20k
∗
s − k∗sx

∗
2 + x20x

∗
2 − x∗2x

∗
3)(m3 +DY 3 + ∆q2)

]

+Dx∗2x
∗
3(ms +D/Y m

s + ∆qm
s )

c3 := µm

[
k3k

∗
s (m3 +DY 3)(x∗3 − x20 − x∗2)

+x∗2(x20 − x∗3)(k
∗
s + k3)(m3 +DY 3)

]
+ µmx

∗
2∆q2(x20k

∗
s − x∗3k3)

+Dx∗2x
∗
3

[
(k2 + k3 + k∗s )(ms +D/Y m

s ) + (k2 + k3)∆qm
s

]

c4 := µmx
∗
2k3k

∗
s (x20 − x∗3)(m3 +DY 3)

+Dx∗2x
∗
3

[
(k2k3 + k∗sk2 + k∗sk3)(ms +D/Y m

s ) + k2k3∆qm
s

]

c5 := Dx∗2x
∗
3k

∗
sk2k3(ms +D/Y m

s )

According polynomial theory, above polynomial equation exists at least 1 and
at most 5 differentiable real value functions x2(u) of u = (D, x20) ∈ U . Suppose
k ∈ N, 1 ≤ k ≤ 5. Let I := {1, . . . , k}, x(i)

2 (u) := x2(u), i ∈ I by (1) and (2), we
have that:

x
(i)
1 (u) =

D

ms +D/Y m
s + g2

(
x20 − x

(i)
2 (u)

)

x
(i)
3 (u) =

m3 +DY 3 + g3
ms +D/Y m

s + g2

(
x20 − x

(i)
2 (u)

)

i.e., x(i)
1 (u) and x(i)

3 (u) are unique determined by x(i)
2 (u).

Let x(i)(u) :=
(
x

(i)
1 (u), x(i)

2 (u), x(i)
3 (u)

)
.
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Consider the linear approximate system of system (3) on the equilibrium point
x̄ = (x̄1, x̄2, x̄3):

ẋ(t) = A(x− x̄) (4)

where A = h
′

x(x̄, ū).
Suppose |λI − A| = λ3 + a1λ

2 + a2λ + a3 is the characteristic polynomial of
matrix A where

a1 = D̄ +D1, (5)

a2 = D̄D1 +
∂µ

∂x2
x̄1qs +

∂µ

∂x3
x̄1

(g′

3x̄1

Y m
s

− q3 − Y 3g
′

2x̄1

)
, (6)

a3 = x̄1D̄
( ∂µ

∂x2
qs −

∂µ

∂x3
q3

)
− ∂µ

∂x3
x̄2

1(q3g
′

2 − qsg
′

3), (7)

D1 = D̄ + x̄1

(
g

′

2 +
∂µ

∂x2
/Y m

s − ∂µ

∂x3
Y 3

)
, (8)

x̄ is asymptotic stable equilibrium point of system (3) when a1 > 0, a3 > 0 and
a1a2 − a3 > 0(see[3]).

Now we want to look for an asymptotic stable equilibrium point on which the
concentration of 1,3-PD is the highest, i.e. the objective function is max

i∈I
max
u∈U

x
(i)
3 (u).

For I is finite set, for all i ∈ I , first we consider max
u∈U

x
(i)
3 (u). According (1) we

know that x(i)
2 (u) − x20 ≤ 0 if and only if x(i)

1 (u) ≥ 0, x(i)
3 (u) ≥ 0, i.e., when

x
(i)
2 (u) ∈ [100, x20], x

(i)
1 (u) ≤ x∗1, and x(i)

3 (u) ≤ x∗3, we have x(i)(u) ∈W . So the
following optimal control problem is obtained:

P: maxu∈U J(u) = x
(i)
3 (u)

s.t. f1(u) := x
(i)
2 (u) − x20 ≤ 0

f2(u) := 100− x
(i)
2 (u) ≤ 0

f3(u) := x
(i)
1 (u) − x∗1 ≤ 0

f4(u) := x
(i)
3 (u) − x∗3 ≤ 0

−a1 < 0
−a3 < 0
a3 − a1a2 < 0
u ∈ U.

For convenience, for ε > 0 sufficiently small, let f5(u) := ε − a1, f6(u) :=
ε− a2, f7(u) := ε+ a3 − a1a2, f0(u) := −x(i)

3 (u), then P can be written as

P1: min
u∈U

{f0(u)|f j(u) ≤ 0, j ∈ q := {1, 2, . . . , 7}}.
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3. Existence of optimal solution and optimality condition

For all i ∈ I , let Si := {x(i)(u)|u ∈ U}, Ui := {u ∈ U |x(i)(u) ∈ Si ∩W},
U0 := {u ∈ ∪i∈IUi|a1 ≥ ε, a3 ≥ ε, a1a2 − a3 ≥ ε}. Then it is easy to see that
Si ⊆ R3 is close set, Si ∩W ⊆ R3 is compact set, Ui, U0 ⊆ R2 are compact
sets, and Si ∩W is equilibrium point set of system (3), U0 is control variable set
which corresponding equilibrium point of system (3) is asymptotic stable. It can
be shown(see e.g.[3]) that the system (3) exists asymptotic stable equilibrium
points. Thus U0 is un-empty. Because x(i)(u)(i ∈ I) is continuous function of
u ∈ U , the following conclusion is obtained:

Theorem 1. The optimal solution of (P1) exists.

Let ψ(u) := maxj∈q f
j(u), F̂ (u) := max{f0(u)−f0(û), ψ(u)} = max{f0(u)−

f0(û),maxj∈q f
j(u)}, where û is parameter. If û is local minimum of (P1), û is

the local minimum of F̂ (u) too.

Theorem 2. If û is local minimum of (P1), there exists multiplier

µ̂ ∈
7∑

0

:=



(µ0, µ1, . . . µ7)

∣∣∣
7∑

j=0

µj = 1, µj ≥ 0, j = 0, 1, . . . , 7



 such that

7∑

j=0

µj∇f j(û) = 0, (9)

7∑

j=1

µjf j(û) = 0. (10)

Proof. Suppose û is local minimizer of (P1). Then it is the local minimum of
F̂ (u) too. There must exist minimum µ̂ ∈

∑7
0(see [10]) such that

µ0∇(f0(u) − f0(û))|u=û +
7∑

j=1

µj∇f j(û) = 0,

7∑

j=1

µj(F̂ (û) − f j(û)) = 0.

Note that ∇(f0(u) − f0(û))|u=û = ∇f0(û), F̂ (û) = 0, which completes our
proof. �

Let

F (u, v) := max{f0(u) − f0(v) − γψ(v)+, ψ(u) − ψ(v)+},
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ψ(v)+ := max{0, ψ(v)},
F̄ (u, u+ h) := max{〈∇f0(u), h〉 − γψ(u)+,

max
j∈q

{f j(u) − ψ(u)+ + 〈∇f j(u), h〉}} +
δ‖h‖2

2
,

θ(u) := min
h∈R2

F̄ (u, u+ h), (11)

h(u) := argminF̄ (u, u+ h) (12)

where γ, δ ∈ R+, v ∈ U, h ∈ R2.
Notice if û is local minimum of (P1), then ψ(û) ≤ 0, and for any u ∈ U , we

have F (u, û) = F̂ (u).
We call θ(u) defined by (11) is the optimality function of (P1). The next

Theorem shows the equivalence between the zero of the optimality function and
optimal conditions (9)(10).

Theorem 3. Consider the optimality function θ(u) defined by (11). Then
(a) for all u ∈ U , θ(u) ≤ 0.
(b) for all u ∈ U ,

ψ(u) − ψ(u)+ + dψ(u;h(u)) ≤ θ(u) − 1
2
δ‖h(u)‖2 ≤ θ(u),

−γψ(u)+ + df0(u;h(u)) ≤ θ(u) − 1
2
δ‖h(u)‖2 ≤ θ(u).

(c) an alternative expression for θ(u) and h(u) are given by

θ(u) = − min

µ∈

0∑

q

{
µ0γψ(u)+ +

q∑

j=1

µjψ(u)+ −
q∑

j=1

µjf j(u)

+
1
2δ

∥∥∥
q∑

j=0

µj∇f j(u)
∥∥∥

2}
, (13)

h(u) = −1
δ

q∑

j=0

µj∇f j(u). (14)

(d) suppose ψ(û) ≤ 0. Then equalities (9)and (10)hold if and only if θ(û) = 0.

Proof. (a) Because F̄ (u, u) = max{−γψ(u)+, max
j∈q

{f j(u) − ψ(u)+}} ≤ 0, then

θ(u) = min
h∈R2

F̄ (u, u+ h) ≤ 0.

(b) From (11) and (12), we obtain

θ(u) =max{〈∇f0(u), h(u)〉 − γψ(u),max
j∈q

{f j(u) − ψ(u)+ + 〈∇f j(u), h(u)〉}}

+
1
2
δ‖h(u)‖2.



stability and optimal control of microorganisms 431

Hence,

θ(u) ≥ 〈∇f0(u), h(u)〉 − γψ(u)+ +
1
2
δ‖h(u)‖2, (15)

θ(u) ≥ max
j∈q

{f j(u) − ψ(u)+ + 〈∇f j(u), h(u)〉} +
1
2
δ‖h(u)‖2. (16)

Note that
df0(u;h(u)) = 〈∇f0(u), h(u)〉,

dψ(u;h(u)) = max
j∈q̂(u)

〈∇f j(u), h(u)〉

where q̂(u) = {j ∈ q|f j(u) = ψ(u)}. Then

maxj∈q{f j(u) − ψ(u)+ + 〈∇f j(u), h(u)〉} +
1
2
δ‖h(u)‖2

≥ ψ(u) − ψ(u)+ + dψ(u : h(u)) +
1
2
δ‖h(u)‖2.

From inequality (16), we can get

ψ(u) − ψ(u)+ + dψ(u;h(u)) ≤ θ(u) − 1
2
δ‖h(u)‖2 ≤ θ(u).

From inequality(15), we get

−γψ(u)+ + df0(u;h(u)) ≤ θ(u) − 1
2
δ‖h(u)‖2 ≤ θ(u).

(c) First we know that

θ(u) = min
h∈R2

[
max

{
〈∇f0(u), h〉 − γψ(u)+,

max
j∈q

{f j(u) − ψ(u)+ + 〈∇f j(u), h〉}
}

+
1
2
δ‖h(u)‖2

]
.

Because the maximum over a finite set is equal to the maximum over their
convex hull, we find that

θ(u) = min
h∈R2

max

µ∈

7∑

0

{
µ0〈∇f0(u), h〉 − µ0γψ(u)+ +

7∑

j=1

µj(f j(u) − ψ(u)+

+〈∇f j(u), h〉) +
1
2
δ‖h(u)‖2

}

= min
h∈R2

max

µ∈

7∑

0

{ 7∑

j=1

µjf j(u) +
7∑

j=0

µj〈∇f j(u), h〉 − µ0γψ(u)+

−
7∑

j=1

µjψ(u)+
1
2
δ‖h(u)‖2

}
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Applying Corollary 5.5.6 in e.g.[10] to above equality, we conclude that

θ(u) = max

µ∈

7∑

0

min
h∈R2

{ 7∑

j=1

µjf j(u) +
7∑

j=0

µj〈∇f j(u), h〉 − µ0γψ(u)+

−
7∑

j=1

µjψ(u)+
1
2
δ‖h(u)‖2

}
. (17)

Now consider the function

g(u) := min
h∈R2

{ 7∑

j=1

µjf j(u) +
7∑

j=0

µj〈∇f j(u), h〉 − µ0γψ(u)+

−
7∑

j=1

µjψ(u)+
δ

2
‖h(u)‖2

}
.

Solving above unconstrained minimization problem for h in terms of µ, we find
that

δh = −
7∑

j=0

µj∇f j(u) (18)

and, hence, that

g(u) =
7∑

j=1

µjf j(u) − µ0γψ(u)+ −
7∑

j=1

µjψ(u)+ − 1
2δ

∥∥∥∥∥∥

7∑

j=0

µj∇f j(u)

∥∥∥∥∥∥

2

Substituting back into (17), we obtain

θ(u) = max

µ∈

7∑

0

{ 7∑

j=1

µjf j(u) − µ0γψ(u)+ −
7∑

j=1

µjψ(u)+

− 1
2δ

∥∥∥∥∥∥

7∑

j=0

µj∇f j(u)

∥∥∥∥∥∥

2 }

= − min

µ∈

7∑

0

{
µ0γψ(u)+ +

7∑

j=1

µjψ(u)+ −
7∑

j=1

µjf j(u)

+
1
2δ

∥∥∥∥∥∥

7∑

j=0

µj∇f j(u)

∥∥∥∥∥∥

2 }
.
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It shows equality (13) holds, it follows from (18) that equality (14) holds.

(d) (⇒). Suppose that ψ(û) ≤ 0, and there exist multiplier µ̂ ∈
7∑

0

such

that (9) and (10) hold, it means ψ(û)+ = 0, take it into (13). Then θ(û) ≥ 0.
Note the conclusion (a), we know θ(û) = 0.

(⇐). Suppose that ψ(û) ≤ 0 and θ(û) = 0. It follows from (13) that

0 = min

µ∈

7∑

0




−

7∑

j=1

µjf j(û) +
1
2δ

∥∥∥∥∥∥

7∑

j=0

µj∇f j(û)

∥∥∥∥∥∥

2



.

Since ψ(û) ≤ 0, for all j ∈ q, we have f j(û) ≤ 0, i.e., −
7∑

j=1

µjf j(û) ≥ 0.

Because

∥∥∥∥∥∥

7∑

j=0

µj∇f j(û)

∥∥∥∥∥∥

2

≥ 0, we know that there must exist µ̂ ∈
7∑

0

such that

7∑

j=1

µjf j(û) = 0 and
7∑

j=0

µj∇f j(û) = 0. i.e., (9) and (10) hold. �
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