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A BIOECONOMIC MODEL OF A RATIO-DEPENDENT
PREDATOR-PREY SYSTEM AND OPTIMAL HARVESTING
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Abstract. This paper deals with the problem of a ratio-dependent prey-
predator model with combined harvesting. The existence of steady states
and their stability are studied using eigenvalue analysis. Boundedness of
the exploited system is examined. We derive conditions for persistence
and global stability of the system. The possibility of existence of bionomic
equilibria has been considered. The problem of optimal harvest policy is
then solved by using Pontryagin’s maximal principle.
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1. Introduction

Harvesting has a strong impact on the dynamic evolution of a population
subjected to it. First of all, depending on the nature of the applied harvesting
strategy, the long run stationary density of the population may be significantly
smaller than the long run stationary density of a population in the absence of
harvesting [12]. Therefore, while a population can in the absence of harvesting
be free of extinction risk, harvesting can lead to the incorporation of a positive
extinction probability and therefore, to potential extinction in finite time. Sec-
ondly, if a population is subject to a positive extinction rate then harvesting
can drive the population density to a dangerously low level at which extinction
becomes sure no matter how the harvester affects the population afterwards.
In order to stabilize and conserve fish population in marine ecosystems, vari-
ous dynamic models for commercial fishing have been proposed and analyzed
by taking into account the economic and ecological factors ( See Clark [12, 13],
Chaudhuri [10], Kar and Chaudhuri [17], Kar [18], Chaudhuri and Saha Ray [11],
Pradhan and Chaudhuri [24], Samanta et al.[27]). In particular, an extensive
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study has been conducted by Clark [12, 13] to study the effect of harvesting and
other parameters on fishery resources by using ecological and economic models.
He also studied the optimal harvesting of two ecologically independent species
whose dynamics is governed by the logistic law of growth. Mesterton-Gibbons
[20] also examined an optimal policy for combined harvest of two ecologically
independent species which grow logistically and are harvested at a rate pro-
portional to both stock and effort. Pradhan and Chaudhuri [23] studied the
dynamics of a single species fishery in which fish species follows the Gompertz
law of growth. Bhattacharya and Begum [5] proposed three types of models of
two species system:

(i) a logistic growth model of two ecologically independent species
(ii) a logistic growth model of two competing species, and
(iii) a Lotka-Volterra model of one prey and one predator.

In each case they obtained the feasible bionomic equilibrium points. Ragozin
and Brown [25] studied an optimal policy of a prey-predator system in which the
predator is selectively harvested and prey has no commercial value. Mesterton-
Gibbons [21] investigated an optimal policy for maximizing the present value
from the combined harvest of two ecologically independent species, which would
coexist as predator and prey in the absence of harvesting. Recently, Zhang et al.
[29] studied the optimal harvesting policy of a stage-structured prey- predator
model and obtained necessary and sufficient condition for the permanence of two
species and the extinction of one species or two species. Jerry and Raissi [16],
Brauer and Soudack [7-9], Dai and Tang [14], Gamito [15], Kar [18] and some
other authors also have discussed the fishery model with harvesting.

Generally speaking, a bionomic model consists of a biological (or biophisical)
model that describes the behaviour of a living system and an economic model
that relates the biological system to market prices and resource and institutional
constarints. Bioeconomic models often contain a single equation to represent
biological process. The logistic equation is perhaps the most commonly used
function to capture the essential features of population dynamics in fishery and
forestry models. However, there is an increasing trend towards using simulation
models developed by biologists and agricultural scientists. These models often
attempt to make the models behaviour approximate reality as closely as possible
and their complexity may preclude their use directly as part of optimal control
models.

The management of renewable resources has been based on the MSY (maxi-
mum sustainable yield). The MSY is a simple way to manage resources taking
into consideration that over exploiting resources lead to a loss in productivity.
Therefore, the aim is to determine how much we can harvest without altering
dangerously the harvested population. The main problem of the MSY is econom-
ical irrelevance. It is so since it takes into consideration the benefits of resource
exploitation, but completely disregard the cost operation of resource exploita-
tion. For example, it ignores the fact that if a species is harvested such that its
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population decreases to a certain level, then the cost of harvesting can become
time consuming. This might lead to a situation where the cost of harvesting is
higher than the benefit. Confronted with the inadequacy of the MSY, people
tried to replace it by the OSY, that is , the optimum sustainable yield, which is
based on the standard cost benefit criterion used to maximize revenues. Actu-
ally renewable resources management is complicated and constructing accurate
mathematical models about the effect of harvesting is even more complicated.
This is so because to have a perfect model we need to consider its size, growth
rate , carrying capacity, competitors combined with the cost of harvesting and
the price obtained for the harvesting species. More informations can be found
about these factors in Clark [12].

This paper is organized as follows. In the next section we study the existence
and local stability of the equilibria and their dependence on the harvesting ef-
forts. We have concentrated more on the interior equilibrium of the system as
we are interested in the existence of the species. Next we derive the conditions
for persistence and global stability of the system. Taking simple economic con-
siderations into account, we discuss the possibilities of existence of a bionomic
equilibrium when the system is exploited. The optimal policy of exploitation is
derived by using Pontryagin’s maximum principle. Some numerical results have
been done. The problem ends with a brief description of the principal results
obtained here.

2. The model

The dynamic relationship between predators and their prey has long been and
will continue to be one of the dominant themes in both ecology and mathematical
ecology due to its universal existence and importance [4]. These problems may
appear to be simple mathematically at first sight, they are, in fact, often very
challenging and complicated.

A milestone progress in the study of predator-prey interactions was the discov-
ery of the now well known “paradox of enrichment,” which states that according
to the Lotka-Volterra type predator-prey theory (with Michaelis-Menten-Holling
type functional response) enriching a predator-prey system will cause an increase
in the equilibrium density of the predator but not in that of the prey and will
destabilize the community equilibrium. Another similar paradox is the so-called
“biological control paradox,” stating that according to the classic predator-prey
theory, you can not have both a low and stable prey equilibrium density. Berry-
man [4] show that the ratio-dependent models are capable of producing richer
and more reasonable or acceptable dynamics.Beretta and Kuang [2] studied the
global qualitative analysis of a ratio dependent prey-predator system. Stability
analysis of some delayed ratio dependent prey predator system were also stud-
ied by Beretta and Kuang [3] and Rao and Rao [26]. It is easy to see that the
paradox of biological control is no longer valid for ratio dependent systems. It
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can also be easily shown that the ratio dependent type models do not produce
the so-called paradox of enrichment. For this reason, we will focus our attention
here on the ratio-dependent type predator-prey model, which takes the form of

dx

dt
= ax

(
1 − x

k

)
− cxy

my + x

dy

dt
= y

(
−d +

fx

my + x

)
(1)

We consider only biological meaningful initial condition x(0) = x0, y(0) = y0.
Here x(t), y(t) represent the population density of prey and predator re-

spectively, at any time t and a, k, c, m, d, f are all positive constants. More
specifically, a > 0 is the intrinsic growth rate and k > 0 is the carrying capacity
of the prey. f > 0 is a conversion factor specifying the number of newly born
predators for each captured prey. d > 0 is the death rate of the predator. The
function g(x) = a

(
1 − x

k

)
is the specific growth rate of the prey in the absence

of any predator. g(x ) is the so-called logistic growth function [12], which is the
simplest and perhaps the most useful growth function.

Assuming that both the prey and predator are subjected to a combined har-
vesting effort E, we may write

dx

dt
= ax

(
1 − x

k

)
− cxy

my + x
− q1Ex

dy

dt
= y

(
−d +

fx

my + x

)
− q2Ey (2)

We consider the initial condition x(0) = x0, y(0) = y0. Here q1 and q2 are
catchability co-efficients of the two species. The catch rate functions q1Ex and
q2Ey are based on the CPUE (catch-per-unit-effort) hypothesis [12] .

3. The steady states

The possible equilibria of the dynamical system (2) are

P0(0, 0), P1

(
k

(
1 − q1E

a

)
, 0

)
, P2(x∗, y∗)

where

x∗ = k

[
c(d + q2E) − f(c − m(a − q1E)

]

amf

y∗ =
x∗(f − d − q2E)

(d + q2E) m
.

The unique positive equilibrium P2(x∗, y∗) exist if and only if any one of the
following two conditions is true :
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(i) (d + q2E) < f <
(d + q2E)c

(c − m(a − q1E))
, when E >

(ma − c)
(mq1)

(ii) f > (d + q2E), when E ≤ (ma − c)
(mq1)

.

We shall point out here that although (0, 0) is defined for system (2), it can
not be linearised there. So, local stability of (0, 0) cannot be studied. Indeed,
this singularity at the origin, while causes much difficulty in our analysis of the
system, contributes significantly to the richness of dynamics of the model.

Figure 1. Both the prey and predator populations converge to their equilibrium
values.

It is easy to check that, whenever the positive steady state P2 exists, P1

(
k
(
1

−q1E

a

)
, 0

)
is unstable. Now following Beretta and Kuang[2], after some straight-

forward computation, it is easy to show that P2 is locally asymptotically stable
if

−a + q1E +
(

1 − d + q2E

f

)
[
c +

d(c − mf)
f

]

m
< 0

Example 1. Let k = 1000, a = 1, c = 0.9, m = 6, d = 0.07, f = 0.8, q1 =
0.09, q2 = 0.03, E = 2. For these values of the parameters it is found that

(i) (0, 0) is unstable
(ii) (1000, 0) is unstable but
(iii) the only interior steady state (698, 598) is stable.
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Figure 2. Phase plane trajectories with reference to different initial levels. The
graph shows that the interior equilibrium point P2 (698, 598) is globally asymp-
totically stable.

Figure 3. For E=15, both the populations tending to the origin, showing P0(0,
0) is a global attractor.

4. Boundness of the system

The positive quadrant R+
2 is the domain of solutions of the system (2) and

all the standard results on existence, uniqueness and continuous dependence on
initial condition of solutions are evidently satisfied. Now, we shall show that the
solutions of the system (2) are uniformly bounded.
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Lemma 1. All the solutions of (2) which initiate in R+
2 are uniformly bounded.

Proof. We define the function

W = x +
c

f
y (3)

The time derivative along a solution of (2) is

Ẇ = ax
(
1 − x

k

)
− q1Ex − cd

f
y − c

f
q2Ey

For each λ > 0, we have

Ẇ + λW = ax
(
1 − x

k

)
− q1Ex − cd

f
y − c

f
q2Ey + λx +

λc

f
y

≤
k

4a
(a − q1E + λ)2 +

c

f
y (λ − d − q2E) (4)

Now, if we choose λ < d+ q2E, then the right-hand side of (4) is bounded for
all (x, y) ∈ R+

2 .
Thus we find a µ > 0 with Ẇ + λW < µ. Applying a theorem on differential
inequality [6], we obtain

0 ≤ W (x, y) ≤ µ

λ
+

{
W (x(0), y(0)) − k

λ

}
e−λt (5)

and for t → ∞ , we have 0 ≤ W ≤ µ
λ .

Therefore, we have

B =
[
(x, y) ∈ R+

2 : W <
µ

λ
+ ∈, for any ∈> 0

]
,

where B is the region in which all the solutions of system Eq. (2) that start in
R+

2 are confined.

5. Permanence of the system

Before starting our theorem, we give some definitions:

Definition 1. System (2) is said to be uniformly persistent if there is an η > 0
(independent of initial data) such that every solution (x(t), y(t)) of system (2)
with given initial condition satisfies

lim
t→∞

inf x(t) ≥ η, lim
t→∞

inf y(t) ≥ η.

Definition 2. System (2) is said to be permanent if there exists a compact region
Ω0 ∈ int Ω such that every solution of system (2) with given initial condition
will eventually enter and remain in region Ω0.
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Clearly for a dissipative system uniform persistence is equivalent to perma-
nence. Now following the Theorem 2.2 of Beretta and Kuang [3], we may state
the following theorem.

Theorem. If E < min
[

1
q1

(
a − c

m

)
,

1
q2

(f − d)
]
, then system of Eq. (2) is

permanent.

6. Global stability

In this section, we consider the global stability of the system (2) by construct-
ing a suitable Lyapunov function. We define a Lyaponov function

V (x, y) =
[
(x − x∗) − x∗ log

( x

x∗

)]
+ α

[
(y − y∗) − y∗ log

(
y

y∗

)]

where α is a suitable constant to be determined in the subsequent steps. It can
be easily verified that the function V is zero at the equilibrium (x∗, y∗) and is
positive for all other positive values of x, y.
The time derivative of V along with the solutions of (2) is

dV

dt
= (x − x∗)

[
−a

k
(x − x∗) − c(yx∗ − xy∗)

(my + x)(my∗ + x∗)

]

+α(y − y∗)
[
−mf

(yx∗ − xy∗)
(my + x)(my∗ + x∗)

]

= −
[
a

k
− cy∗

(my + x)(my∗ + x∗)

]
(x − x∗)2

−
[

cx∗

(my + x)(my∗ + x∗)

]
(y − y∗)2

[
taking α =

c

mf

]

⇒ dV

dt
< 0 if my + x >

cy∗k

a(my∗ + x∗)
Thus we find that the feasible region in which the interior equilibrium point
(x∗, y∗) is globally asymptotically stable, is above the line my + x = M, of the

first quadrant in the xy -phase plane, where M =
cy∗k

a(my∗ + x∗)
.

7. Bionomic equilibrium

The term bionomic equilibrium is an amalgamation of the concepts of bio-
logical equilibrium and economic equilibrium. As we already saw, a biological
equilibrium is given by ẋ = 0 = ẏ. The economic equilibrium is said to be
achieved when TR (the total revenue obtained by selling the harvested biomass)
equals TC (the total cost for the effort devoted to harvesting).
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Let
c′ = constant harvesting cost per unit effort,
p1 = constant price per unit biomass of the prey species and
p2 = constant price per unit biomass of the predator species.

The economic rent is given by

π (x, y, E) = p1q1xE + p2q2yE − c′E. (6)

Now,
ẋ = 0 ⇒ x = 0 or, E =

a

q1
− a

kq1
x − c

q1

y

my + x

and
ẏ = 0 ⇒ y = 0 or, E = − d

q2
+

f

q2

x

my + x
.

Hence the nontrivial equilibrium solution (ẋ = ẏ = 0) occurs at a point on
the curve

a

kq1
x2 +

am

kq1
xy −

(
a

q1
+

d

q2
− f

q2

)
x −

(
am

q1
− c

q1
+

dm

q2

)
y = 0. (7)

The bionomic equilibrium (x∞, y∞) is determined by (7) together with the
condition

π = TR − TC = (p1q1x + p2q2y − c′) E = 0. (8)
Eliminating y from (7) and (8), we get

(
a

kq1
− amp1

kp2q2

)
x2 +

[
acm

kq1p2q2
−

(
a

q1
+

d

q2
− f

q2

)
− p1q1

p2q2

(am

q1
− c

q1

+
dm

q2

)]
x − c′

p2q2

(
am

q1
− c

q1
+

dm

q2

)
= 0

which is of the form
A1x

2 + B1x + C1 = 0 (9)
where

A1 =
a

kq1
− amp1

kp2q2

B1 =
acm

kq1p2q2
−

(
a

q1
+

d

q2
−

f

q2

)
+

p1q1

p2q2

(
am

q1
−

c

q1
+

dm

q2

)

C1 = − c′

p2q2

(
am

q1
− c

q1
+

dm

q2

)
.

In equation (9), we have
sum of the roots = - B1/A1 and product of the roots = C1/A1 .

Now, the following cases may arise :
Case I. Let p2q2 > mp1q1. In this case, A1 > 0. We have one positive root

when C1 < 0. Then we must have
c

q1
< m

(
a

q1
+

d

q2

)
. (10)
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Case II. Let p2q2 < mp1q1. In this case, A1 < 0. We have one positive root
when C1 > 0. Then we must have

c

q1
> m

(
a

q1
+

d

q2

)
. (11)

In both these cases,

p2q2y∞ = c′ − p1q1x∞ ⇒ y∞ =
c′ − p1q1x∞

p2q2
> 0 provided x∞ <

c′

p1q1
.

Case III. p2q2 = mp1q1. Then A1 = 0, and x = −C1/B1. We have the
following two subcases:

(i) For c
q1

< m
(

a
q1

+ d
q2

)
, we have C1 < 0. Now, B1 > 0, provided c > kp1q1

and f > d. In this case, (7) and (8) intersect at a unique point (x∞, y∞) in the
first quadrant provided

x∞ = −
C1

B1
<

c

p1q1
.

(ii) For c
q1

> m
(

a
q1

+ d
q2

)
, we have C1 > 0. Now, B1 < 0, provided c < kp1q1

and f < d. Then (7) and (8) intersect at a unique point (x∞, y∞) provided

x∞ = −C1/B1 < c/p1q1.

8. Optimal harvesting policy

Wilen [28] pointed out that, from the point of view of humans, the ultimate
users of natural resources, “population of natural organisms are not conveniently
viewed as stocks of capital or assets which provide potential flows of services.
Determining how to maximize benefits from these resources thus becomes a
problem of capital theory deciding mainly how to use this portfolio of stocks over
time”. Hence optimal control theory provides the correct approach to natural
resource management.

The present value J of a continuous time-stream of revenues is given by

J =
∫ ∞

0

π(x, y, E, t)e−δtdt (12)

where π(x, y, E, t) = (p1q1x+p2q2y−c′)E and δ denotes the instanteneous annual
rate of discount. Our problem is to maximise J subject to the state equation
(2) by invoking Pontryagin’s Maximal principle [22]. The control variable E(t)
is subjected to the constraints 0 ≤ E(t) ≤ Emax, so that Vt = [0, Emax] is the
control set. Emax, stands for a feasible upper limit of the harvesting effort.
Let us now construct the Hamiltonian

H = e−δt [p1q1x + p2q2y − c′] E + λ1

[
ax

(
1 − x

k

)
− cxy

my + x
− q1Ex

]

+λ2

[
y

(
−d +

fx

my + x

)
− q2Ey

]
(13)
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where λ1(t) and λ2(t) are the adjoint variables. By the maximal principle, there
exists adjoint variables λ1(t) and λ2(t) for all t ≥ 0 such that

dλ1

dt
= −∂H

∂x

= −
{

[e−δtp1q1 − λ1q1]E + λ1

[
a − 2ax

k
− mcy2

(my + x)2

]}

−λ2
famy2

(my + x)2
(14)

dλ2

dt
= −∂H

∂y
= −

{
[e−δtp2q2 − λ2q2]E + λ1

cx2

(my + x)2

}

−λ2

[
−d +

fx2

(my + x)2

]
(15)

We now consider an optimal equilibrium solution of the above problem so that
we may take

E =
a

q1
−

a

kq1
x −

c

q1

y

my + x

= − d

q2
+

f

q2

x

my + x
(16)

Using (16), (14) and (15) become

dλ1

dt
= −p1q1e

−δtE + λ1

(
ax

k
−

cxy

(my + x)2

)
− λ2

fmy2

(my + x)2
, (17)

dλ2

dt
= −p2q2e

−δtE − λ1
cx2

(my + x)2
+ λ2

fmxy

(my + x)2
. (18)

Now eliminating λ2 from (17) and (18), we have

d2λ1

dt2
−

[
ax

k
− cxy

(my + x)2
− fmxy

(my + x)2

]
dλ1

dt

−
[

cmfx2y2

(my + x)4
+

mfxy

(my + x)2

(
ax

k
−

cxy

(my + x)2

)]
λ1

= M1e
−δt (19)

where

M1 = δp1q1E +
p2q2Efmy2

(my + x)2
− fmxy

(my + x)2
p1q1E

The auxiliary equation for (19) is

µ2 −
[
ax

k
− cxy

(my + x)2
− fmxy

(my + x)2

]
µ

−
[

cmfx2y2

(my + x)4
+

mfxy

(my + x)2

(
ax

k
− cxy

(my + x)2

)]
= 0 (20)



398 T. K. Kar, Swarnakamal Misra and B. Mukhopadhyay

The complete solution of (19) is of the form

λ1(t) = A1e
µ1t + A2e

µ2t +
M1

N
e−δt (21)

where the Ai’s (i = 1, 2 ) are arbitrary constants and µi’s (i = 1, 2) are the
roots of the equation (21) and

N = δ2 +
[
ax

k
− cxy

(my + x)2
− fmxy

(my + x)2

]
δ

−
[

cmfx2y2

(my + x)4
+

mfxy

(my + x)2

(
ax

k
− cxy

(my + x)2

)]
6= 0

It is clear from (21) that λ1 is bounded iff µi < 0 (i = 1, 2) or the Ai (i = 1, 2)
are identically zero. For robust calculations we ignore the cases where µi < 0
(i = 1, 2) and take Ai ≡ 0 (i = 1, 2) .
Then we have

λ1(t) =
M1

N
e−δt (22)

Proceeding in a similar way, we have

λ2(t) =
M2

N
e−δt (23)

where

M2 =
[
δp2q2E +

cx2

(my + x)2
p1q1E + p2q2E

(
ax

k
− cxy

(my + x)2

)]

Thus eδtλi(t), (i = 1, 2), remains constant over time in optimal equilibrium
when they strictly satisfy the transversality condition at ∞[1], i.e., they remain
bounded as t → ∞. The Hamiltonian (13) must be maximized for E ∈ [0, Emax].
Assuming that the control constraints are not binding ( that is optimal solution
does not occur at E=0 or E = Emax) we have singular control [12] given by

∂H

∂E
= e−δt (p1q1x + p2q2y − c′) − λ1q1x − λ2q2y = 0 (24)

or,

λ1q1x + λ2q2y = e−δt ∂π

∂E
(25)

Therefore, we may conclude that the total user cost of harvest per unit effort
must be equal to the discounted value of the future price at the steady state
effort level. Substituting the values of λ1 and λ2 from (22) and (23) into (24),
we get

q1x

(
p1 −

M1

N

)
+ q2x

(
p2 −

M2

N

)
= c′ (26)

Equation (26), together with (16), determine the optimal equilibrium popula-
tions x = xδ , y = yδ when δ → +∞, it can be easily seen that (M1

N ), (M2
N ) → 0

which imply that p1q1x∞ + p2q2y∞ = c′.
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So, π(x∞, y∞, E) = 0 which shows that the economic rent is completely dissi-
pated. This conclusion was also drawn by Clark [12] in the combined harvesting
of two ecologically independent populations.

Using (26), we have

π = (p1q1x + p2q2y − c′) E =
(

M1q1x + M2q2y

N

)
E.

Here, we note that each of M1 and M2 is 0(δ) where N is 0(δ2) so that π is
0(δ−1). Thus π is a decreasing function of δ(≥ 0). We therefore, conclude that
δ = 0 leads to maximization of π.

We have established here the existence of an optimal equilibrium solution that
satisfies the necessary conditions of the maximum principle. As pointed out by
Clark [12], it is extremely difficult to find an optimal approach path consisting of
a combination of bang bang control and non-equilibrium singular controls. This
difficulty was faced by Clark [12] even in the study of a simple model of two
ecologically independent fish species populations. The present model is much
more complicated than the said model of Clark. Due to these difficulties, we
have considered an optimal equilibrium solution only.

Example 2. Let k = 1000, a = 1, c = 0.9, m = 6, d = 0.07, f = 0.8, q1 = 0.09,
q2 = 0.03, p1 = 1, p2 = 2, c′ = 45, δ = 1.5. For these values of parameters, we
find that the bionomic equilibrium (415, 128) and the optimal equilibrium (747,
141) exist.

Also we find that the harvesting effort E, which corresponds to the bionomic
equilibrium (415, 128) is 7.02 units and the optimal harvesting effort, E(t), which
leads the system to the optimal equilibrium (747, 141) is 10.17 units.

9. Concluding remarks

Though the problem related to harvesting is an important part of population
dynamics, but this sort of important phenomenon has not yet received much
attention to researchers. In this paper we have considered and analyzed a ratio-
dependent predator-prey model with Michaelis-Menten type functional response,
where both the species are subject to combined harvesting effort.
It has been observed that the persistence of the prey-predator species depend
on the values of the fishing effort. We have proved the global behavior of the
system constructing a suitable Lyapunov function. It has been found that the
system is globally asymptotically stable in a certain region. We then examine the
various possibilities of existence of bionomic equilibria of the exploited system.
The problem of optimal harvesting policy has been solved by using Pontryagin’s
Maximal principle theory. It has been proved that the optimal equilibrium
populations xδ and yδ lead to a situation where the total user’s cost of harvest
per unit effort equals the discounted value of the future profit. It is proved that
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zero discounting leads to maximization of economic revenue and that an infinite
discount rate leads to complete dissipation of economic rent.
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