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Summary. — The motion is analysed, in general, in the Kerr metric
with the use of first integrals. Some of the high-energy particles and
photons are found to move in a giant vortex around the axis of sym-
metry above and below the equatorial plane, dragged by the gravita-
tional field.

1. - Introduction.

Because of the increasing importance of rotation in relativistic configura-
tions (spinors, gravitational collapse, etec.) several authors have looked for the
effects of gravity on light rays emitted by rotating bodies (1-2).

The aim of the present paper is to investigate in detail the laws of motion
in the Kerr metric, outside the equatorial plane as well as off the axis of sym-
metry. These last two cases have been investigated respectively by (*) and (%),
while the general motion has been outlined by CARTER (%).

() R. H. BoyEr and R. W. LinpQuisT: Journ. Math. Phys., 8 265 (1967).

(3} R. H. Bover and T. G. Price: Proc. Cambridge Phil. Soc., 61, 531 (1965).
F. DE FELICE: Nuovo Cimenio, 37 B, 351 (1968).

() F. DE FELICE: Mem. Soc. Astr. Ital. (to appear).

() B. CARTER: Phys. Rev., 141, 1242 (1966).

(® B. CARTER: Phys. Rev., 174, 1559 (1968).
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2. - The general }-motion.

The Kerr metric describes stationary axigymmetric gravitational fields in
vacuum {?), It is characterized by two parameters ¢ and m, which are asso-
ciated with the specific angnlar momentum and active gravitational mass of
the source in geometrical units (1238).

We shall confine ourselves to the case a4 =m because of the important
role it has had in recent investigations (%-1°),

The Kerr metric reads in this case

@) ds? = dr2 + 2a sin2 G drdd + (r2 4+ a2) sin?2 F de? 4+
Zar

4+ (2 4 a2 cos? 19) ddz—di® 4 W

(dr + a sin®*#de + dt)?,

where use is made of the (r, &, ¢, t) co-ordinates in the Boyer-Lindquist form (),
The equations of motion are given by a suitable analysis of the Hamilton-
Jacobi equation associated with (1) (), leading to the following first integrals:

(2) (—«1 +-2g)t+24g(asinzﬁ¢+¢)=~y,

(3) wt’—{—asiﬁﬁ 1-{—@ # -+ | (r* + a?) sinz & +2a3rsin4ﬁ =1,
A P pA

(4) 292 = L2 — a? cos? G — v?) — 075’

12
(5) 2% = (al + 2ary)? + & [— eZ + (X + 2ar) 7>2——22192—Sin2 19] ,
with
X =1r?4 a?cos?d,
0 = (r—a)t.
In (2)-(5), y is the total energy of the particles; L and I are constants of
motion which are easily interpreted as the total angular momentum and its

g-component, in the limit ¢ = 0. & is a sign indicator which is +1 or zero
according to whether the geodesic is timelike or null.

() B. P. Kerr: Phys. Kev. Lett., 11, 522 (1963).

(#) J. LENse and H. THIRRING: Phys. Zeil., 19, 156 (1918).

(®) J. BARDEEN: Nature, 226, 64 (1970).

(¥ J. M. BarpEEN and R. V. WAGONER: Astrophys. Journ., 167, 359 (1971).
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On any curve, the domain of the allowed values of the co-ordinates is given,
as is well known, by the equations of motion and by the initial conditions.
In ref. (®) one of us has looked for the domain of the allowed values of the
radial co-ordinate r on the equatorial geodesic in the Kerr metric.

Here we shall extend that method of analysis to investigate, in general,
the behaviour of the angular co-ordinate ¢ in the geodesic motion. Putting
e= 41 in (4), we can learn how massive particles move. We have

12
6 2 2 2.9 —_
(6) L? 4- a2l cos? sinzﬁ_o’

where

I'=9y2—1,

We solve eq. (6) with respect to 12 and draw the surface 12 =1*(L2, &, I').
Consider I'> 0; the surface 2 is zero at ¢ = 0 and & = =. Its first d-deri-
vative

(7) P = sin 29[ L* + @21 cos 28]
is zero at ¢ =0, ¢ =x/2, 9 =x and along the curve
(8) I? = —1Ta2cos 29 .

The shape of (8) is the curve @) in Fig. 1. The shapes of 12 are given in Fig. 2

(b) (b)

o

»
2 0

+lQ

I .3 7
2

Fig. 1. — The analytic behaviour of eq. (8) (curve a)) and that of eq. (10) (curve b))
are given on the (L2-9)-plane.
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for L*< a*I" and for L*> a*I. In Fig. 2, when L*< a2]', the maximum for I?
occurs at

1
2 2 2 M2
[ 1T (L24a21)
and the minimum at 1> = L?; when L?> a2, I2 has a maximum at 2 = L* only.

1”4 r»>o

(r=y9

v

0y

Fig. 2. — Sections with L? = const of the surface 3= %(I?,9, I') given by eq. (6) with
I'>0 or I'= 92

When I'=0 we notice from (6) that, with our choice of the co-ordinate
gystem, the rotation does not affect the #-motion on the geodesics. The par-
ticles with I"=0, however, do not move as in the Schwarzschild field (a=0)
because their p-motion is now different, as is easy to deduce from (2)-(5).

Consider now the case I'<< 0. Equation (6) may be written again as

(9) 12 =sin? 9[L?— a?|I"| cos® 9] .
The zeros for 12 are at 4 =0, & =z and along
(10) L* = a?|I cos* @ .

The locus where 12 is zero in (9) is the curve b) in Fig. 1. It is easy to see that
in the region of definition for I? there are no other zeros of its first derivative
except ¢ = m/2, where 1* has 2 maximum equal to L. The general shape of
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the surface 12 =1*(L2, [I'|,®) is given in Fig. 3. The maximum occurs at
12 = L2,

Let us now put in (4) & =0, to describe the behaviour of photons. Equa-
tion (4) is the same as for ¢e=+1, provided we put I'=y% The relative

Fig. 3. — A three-dimensional picture of the surface I =12(I% 8, I') given by eq. (9)
with I'<< 0.

loci of zeros for & are again given by Fig. 2. The reality requirement for I2
confines the motion inside the surfaces (6) and (9). We are now in a position
to draw attention to a peculiar relativistic effect. In Fig. 2 it is evident that
for (*)

Lr<a?l’,
(11) 1
402"

(Lt + a2 >13> L2,

the motion is confined to the space between two coaxial hyperboloids with
angles ¢, and ¢, (Fig. 2), and never reaches the equatorial plane (°). There is

(*) The same inequalities holding for photons with I'=4y2. In the following we
shall speak about particles without specifying their nature.
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no stable motion at ¢ = const = z/2, while we can have two stable modes at
©# = const when
(L2l
402’
In this case the motion occurs on the surfaces of the hyperboloids with semi-
angles

2

arl’’

x 1
- - -1
(12) '19‘:!: =3 + 3 CcOoS

The angles 9, range from z=/4 at L?*=0 to n/2 at L2=a?I" (Fig. 1, curve a)).

Particles and photons with parameters I and L in the range (11) are con-
fined by the gravitational field to the northern or the southern hemisphere
of the rotating body.

We can summarize the previous results, recalling the following facts. The
motion in the equatorial plane (& ==/2) occurs when L=1. It is stable for
all (I'<0)-particles and for the (I'> 0)-particles (or photons with L2>a2l";
it is unstable for the latter when L®*< a2I'. In this case, stable motion with
¥ = const is allowed with

_ (L2 4 a2

12
4021

(I" = y? for photons).

Along the axis (9 = const =0), it seems that no stable motion is allowed,
owing to the dragging along by the gravitational field. The particles are then
forced to spiral around it in a sort of a giant vortex. The optical distortion
produced by the vortical motion of photons may be relevant to astronomical
observations, but more information may be achieved once the behaviour of ¢
is understood as it is for the equatorial plane (*). Work in this sense is now
in progress (*).

3. — The radiation emission. The r-motion for photons.

Let us now investigate the photon emission. Introduce for simplicity the
following nondimensional quantities:

and put y =1.

(*) When I'= 0, stable motion with # = const occurs when =L = 0. In this case,
however, the equations of motion (2)-(5) indicate that the particles also move on the
surface of hyperboloids with semi-angles ranging from 7/2 to zero.
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curves 1,, A_

Fig. 4. — The loci of extreme points in the (4, g)-plane for the surface (14) £2=2%(4, o)
on the solid curves A, and j_; the loci of the points where 2= 12lie on the dashed
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Using ¢ =0 in eq. (5) and putting # = 0, we have from (4) and (13) the
locus of turning points at

. (A+20)2
(14) &z ———(29_1)2-4-9 +o.

We shall look for the surface #2= #2%(4,9). The first g-derivative of (14)
is zero along the curves

(15) Ay =20"—20—1%,
(16)

A

Fig. 5. — The domain for #2 and 4 of permitted emission. It is bounded from below

by the composite curve F2=12, |A| >}, > = + 1—1}, 0<|1| <}, and above from the

curver #?(p) when #%(g) < Loy, and Fa, otherwise. In the picture are drawn, as
[1) 1]

an example, the curves .,'Z’?F*, (to scale) and #7453 (not to scale). The other curves are

0 [}

to scale.
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The shapes of 1, and A_ are given by the solid lines in Fig. 4. They intersect
at A=—1; A_ is the locus of the minimum for #2, 4, is that of the maxi-
mum at p<< }, and the minimum again at o> §.

At p =14, #* diverges positively except for I'= —1. From the considera-
tions made in the previous Section, the general motion cannot occur for arbi-
trary values of % and A. In fact we know that for %2> } the motion is
allowed only with #2>1%. When #2<}, the vortex effect arises for values
of A in the range

(17) —i<i<

o=
o=

The admissible values of % and A for the motion are defined by the shaded
regions in Fig. 5. The composite curve which limits form below the allowed
domain of Z and A in Fig. 5 will be called #2. We shall now examine whe-
ther turning points occur within the vortex condition (17). The locus of points
where

(18) Pre R

lies between the two curves

(19) li=—@+%),
» 1—p +2¢°
20 T

Their shapes are given by the dashed lines in Fig. 4. We can draw the sur-
face (15) with the help of Fig. 4 and 5, keeping in mind the following prop-
erties:

lim 22 = 22, lim #? = oo,
e—>0 e—%
%]:._I)Iologz=00, zi_xnx}ffe=(2l—|—1)2,
Q>1:>{Z+</'L<Z_},
2 2
(21) S TS R
0 }.<~_ ’
>1= A>1
9 Z<Z+ ’
Lr)?
@<1=>{1_<Z<Z+}.

Sections of the surface (15) are then given in Fig. 6 a)-f). From them we
easily recognize that particles moving in vortex with A as in (17) do not find
turning points.
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4. - Conclusion.

The information we have from Fig. 5-6 may be summarized as follows-
Ingoing photons with A< —1 and 1> % can never strike the pseudosingularity
¢=1%. Photons with A<—} can never cross the ring singularity at ¢ =0.
Photons with — } <A<} can cross the ring singularity only with #2< A2 and
in that case the motion is of spiral type and confined up or down the equatorial
plane. For the outgoing photons we can distinguish three cases:

a) Photons emitted at p>2. All radiation can escape to infinity and
]

the allowed values of A lie in the interval (Fig. 4)

(22) 1+<e><z<1_<g> ,

]

and the corresponding values of %2 are in the range
(23) L L2 < L0) .
0

The area defined by the limits (22) and (23) (Fig. 4) is proportional to the
amount of the emitted radiation.

b) Photons emitted at $< p<< 2. Not all the radiation emitted can es-

0
cape to infinity; the range permitted for 4 is now

[UN)

(24) T(e)<i<

b

and the corresponding interval of #? for the emission is again (23). In this

case however, as we can see from Fig. 4-6, the upper limit for #2 is given

by #*(¢) when the minimum of #2(p) falls to the left of g, and is given by £2,
1] 0

otherwise. .7 is the projection on the plane (.#2, 1) of the minimum values
of #* given by the curve A, in eq. (15). From (15) and (14), we have

(25) L=+ (A1) +2VEA 1)

Its shape is given in Fig. 5.
¢) Photons emitted at 0<p<< 3. No radiation whatsoever can escape
0

to infinity owing to the pseudosingular character of the surface o =%. The
radiation which is trapped inside for the black-hole effect may be released
if a slide change in the angular momentum brings @ >m. The photons emitted

30 — Il Nuovo Cimenito B.
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in this case are characterized by the following parameters:

[S18

(26) I_(p) <A<

and
Fhin (gliin< 32(%)) ’

27 Li< £2< 2
(27) <¥< L0 (Lan> L7(9))

(upper curve in Fig. 5).
‘We notice however that as g goes to zero the curve Ez(g) becomes F*p) =
1}

= A%, and in that case the domlnant emission is confined to the equatorial plane
(£*=A?) and to the vortex region (12).

% % %k
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® RIASSUNTO

8i analizza il moto geodetico nella metrica di Kerr in condizioni generali con I'ausilio
degli integrali primi. Si trova che aleune delle particelle di alta energia e fotoni, trascinati
dal campo gravitazionale, si muovono secondo grandi vortici intorno all’asse di rota-
zione al di sopra ed al di sotto del piano equatoriale.

OpOHTATbHOE H BHXPeBOe ABmxkenne B Merpuke Keppa.

Pesiome (*). — B o0meM cnyuae aHanw3upyeTCcs OBIKeHAe B MeTpuke Keppa ¢ Hcmonb3o-
BaHHEM HEPBHIX MHTErpanoB. Ilonydaercst, YTO HEKOTODBIC YACTHIBI BBICOKO JHEPTHH
¥ (POTOHBI ABMXKYTCA B TMTAHTCKOM 3aBHXPEHHM BOKPYT OCH CHMMETDHH BBHINIC W HHXKE
3KBATOPHAIIBHOM IUIOCKOCTH, YBJIICYCHHBIC I'DABATALMOHHBIM IIOJIEM.

(*) IHepesedeno pedaxyueil.



