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Summary., — Starting from the idea of generalized observables, related
to effect-valued measures, as introduced by Ludwig, some examples
of continual observations in quantum mechanics are discussed. A func-
tional probability distribution, on the set of the trajectories which are
obtained as output of the continual observation, is constructed in the
form of a Feynman integral. Interesting connections with the theory
of dynamical semi-groups are pointed out. The examples refer to gmall
systems, but they are interesting for the light they may shed on the
problem of the connections between the quantum and the macroscopic
levels of description for a large body; the idea of continuous trajectories
indeed seems to be essential for the macroscopic level of description.

1. — Introduction.

In the ordinary formulation of quantum mechanics the « preparation » of
a system is represented by a statistical operator W (which is said to specify
the « state of the system») and an observable quantity 4 by a self-adjoint
operator A, both acting in an appropriate Hilbert space §. At a given time ¢
the expectation value of any function @(A) of the quantity 4 is given by

(1.1) (D(A)) = Tr{B(A) Wy(t)} = Tr {D(Au(t)) W},

where

Ws(t) = exp [— % Ht] W exp [% Ht] ,

(1.2) : ;
A4(t) = exp [% ﬁt] A exp [—-— % ﬁt] ,
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the first equality referring to the Schrodinger picture, the second one to the
Heisenberg picture.

According to the spectral theorem with the operator 4 a «projecticn-
valued » measure

+
(1.3) B(T) :de(a), de(a) —1
is associated such that
-+
(1.4) O(4) = de(a) ®(a).

Specializing eq. (1.1) to the characteristic function of an interval I=(s, a-+Aa).
we obtain

(1.5) P(W el t)=Tr{EI)W,t)} = Tr{Eu(, t) W}

for the probability that, observing A at the time ¢, we find a value in the in-
terval 7.

Equation (1.5) is completely equivalent to eq. (1.1), which in turn can
be derived from (1.3) via (1.4).

On the other side, eq. (1.1), or (1.5) corresponds in some way to an over-
idealized situation in whieh it is possible to discriminate sharply between values
of A belonging to I and values not belonging to it (*).

A more general mathematical characterization of an observable has been
given by Lupwic in the context of an axiomatic formulation of quantum
mechanies.

According to LUDWIG (2) an observable A is associated with an «effect-
valued » measure

(1.6) Py :fdﬁ(a) , fdﬁ(a,) —1,

rather than with a «projection-valued » one, and one has

1.7) P(WlA el t) =Te{PI)Wyt)} = Tr {(Fu(L, O W} .

(1) E.P. WIGNER: Z. Phys., 133, 101 (1952); H. Araxr and M. N. YANASE: Phys.
Rev., 120, 622 (1960); M. N. Yanase: Phys. Rev., 123, 666 (1961); M. N. YANASE:
in Proe. 8.1.F., Course IL, edited by B. p’EspasNar (New York, N. Y., 1971}, p. 77;
K.-E. HELLWIG: in Proc. S.I.F., Course IL, edited by B. D’ EsraaNaT (New York, N. Y.,
1971), p. 338.

() G. Luvpwic: Commun. Math. Phys., 4, 331 (1967); 9, 1 (1968); Lecture Notes in
Physics, Vol. 4 (Berlin, 1970). See also E. B. Davies and J. T. Lewis: Commun.
Math. Phys., 17, 239 (1970); A. S. HoLevo: DPrans. MHoscow HMath. Soc., 26, 133 (1972);
J. Multivariate Anal., 3, 337 (1873).
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We recall that, according to Ludwig’s terminology, an effect is a positive
self-adjoint operator smaller than unity:

(1.8) Fr=F, 0<F<1.
Note that, whilst from idempotency it follows immediately that

(1.9) BT)E(T,) = B(T,n T,) = B(T,) B(T,),

we have, in general,

(1.10) R F(1,) = B(1,) (T, .

Significant examples of such generalized observables have been given by
Lupwie and collaborators (), HOLEVO (4) and DAVIES (5).

The main advantage of the new definition in comparison with the ordinary
one stays in its greater flexibility. Since generalized observables can represent
observations of limited accuracy and diserimination power, they are suitable
for describing inaccurate simultaneous measurements of incompatible quan-
tities. In particular, they seem to be very convenient for describing continual
macroscopic observations and it is just this aspect that interests us here.

In fact, Lupwic has also given an axiomatic formulation of macroscopic
physics (°) which for our present purpose can be stated in the following sim-
plified way:

1) the state of a macroscopic system is specified at any time ¢ of a given
interval (f,?) in terms of a set of variables s = (#, 2,, ...) which belongs to
a « macroscopic phase space » Z (which can be given the uniform space structure);

2) a definite choice of the physical conditions imposed on the system
corresponds to a probability distribution on the space ¥ of the continuous
functions-z(f) on the interval (1,1,);

3) the maecroscopic dynamics must be specified by a set of rules for the
actual construction of the probability distribution mentioned above.

In this context, in order that the quantum and the macroscopic deserip-
tions of a large body be consistent, it should be possible to define an effect-

(®) Seeref. (%) and K. Kraus: in The Uncertainty Principle and Foundations of Quantum
Mechanics, edited by C. Price and 8. 8. Cmissik (London, 1977), p. 293.

(*) A. 8. HoLEvVo: Rep. Math. Phys., 13, 379 (1978); 16, 385 (1979).

(*) E. B. Davies: Quanium Theory of Open Systems (London, 1976).

(®) G. Lupwie: in Lecture Notes in Physics, Vol. 29 (Berlin, 1973), p. 122; Makrosko-
pische Systeme wnd Quantenmechanik, in Notes in Math. Phys. (Marburg, 1972).
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valued measure F(M) on an appropriate ¢-algebra of subsets of ¥ such that
the quantity

(1.11) P(W|[=s(t)] € M) = Tr {F(M) W}

could be interpreted as the probability that the funetion z(t) describing the
actual macroscopic behaviour of the body belongs to the specific subset M of Y.

Once an equation of the type (1.11) is assumed, it is possible, among other
things, to give a satisfactory solution of the problem of measurement in quantum
mechanics in terms of an interaction (?) between microscopic and macroscopic
objects and all paradoxical aspects of quantum mechanics disappear. How-
ever, no explicit construction of such a functional probability distribution or
« effect-valued » measure has been given so far.

Although a realistic solution of this problem should be given in the frame-
work of the second-quantization formalism, it seems worthwhile beginning to
study models with finitely many degrees of freedom.

In this paper we shall consider two different models which arise from the
following generalized observables:

I) a «coarse-grained » position for a one-dimensional particle defined
by the trivial «effect-valued » measure

(1.12) Firy = V;_: fdx exp|[— a(x — ¢)%], x>0,

where § denotes the ordinary position operator for the system;

11) a generalized observable which in ordinary language corresponds 1o a
simultaneous inaccurate measurement of position and momentum (again for
a one-dimensional particle) and which is defined by (%)

Ao [ dedp T, | 4 i, .
(1.13) K(T) —f i <P [% (pd— wp)] 0 exp [— 7 (pd— wp)} )
T

where § is a given positive, trace-one operator; for instance, it can be chosen as

(1.14) ¢ = Cexp[—a(d* + 15%)], o, A>0.

(") G. Lupwic: Lecture Notes in Physics, Vol. 29 (Berlin, 1973), p. 122; G. Lubwic:
in Proc. 8.I.F., Course IL, edited by B. p’Espacnar (New York, N. Y. 1971), p. 122;
L. Laxz: in The Uncertainty Principle and Foundations of Quantum Mechanics, edited
by C. Prick and 8. 8. Cuissik (London, 1977), p. 87; for a review of different ap-
proaches on this problem see also G. M. PROSPERI: in Lecture Notes in Physics, Vol. 29
(Berlin, 1973), p. 163.
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The fact that measure (1.13) satisfies the second of equations (1.6) is shown
in appendix A.

For both models we shall consider repetitions of the measurement at sub-
sequent regularly separated times between !, and #, and shall evaluate the
probability of a certain sequence of results by an obvious generalization of the
Wigner formula for repeated observations (})). Then we set

{1.15) o=9yT

(r being the time interval between two subsequent measurements) and show
that the limit for v — 0 can be performed and a functional density of proba-
bility or density of effect for a continual observation can be defined.

For instance, for model I) we can write

(1.16) p(WILa(®)]) = Tr{fle®] W}, [dudo®)fa] =1,

(1.17) P(W|[2()] & M) = [auo [z p(W[[(®)) ,

where [du, [(t)] denotes an appropriate functional integral and M a subset of Y.
Quite unexpectedly it turns out that a set M’ of the type

(1.18) M’ = {2(t)|a(t) < @(?) < b(t)}

oceurs with zero probability. On the contrary, a set

ts
1 -
a, < = fdtm(t)<b,, s =1, 2,...,v}

i, — bs—1

(1.19) M= {w(t)

(7

for given 1i,,
(1.20) io=ti<i1< -..<i,_1<z1=tf’
has a finite probability.
Actually, for what concerns the second statement, we prove that the ordinary
density of probability
(1.21) P(Wlko; Zyy by Zay b5 e By 3,) = | dpal2(t)]-

s

O e LEO L ED

s=1 ta . 7 |

te-1

exists and is finite.

(®) E. P. WiGNER: Am. J. Phys., 31, 6 (1963); R. M. F. HouTaPPEL, H. VAN DaM
and E. P. WiGNER: Rev. Mod. Phys., 37, 595 (1965); E. P. WiGNER: in Proc. 8.I.F.,
Course IL, edited by B. p’Espagyar (New York, N. Y., 1971), p. 1.
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As we shall see, it is also possible to write eq. (1.21) in the form
(1.22) P(Wﬂo; Ty, by Tyyla; s Xy iV) =Tr {9’(9‘5,7 ty—t,_1) ... F (T, t—1,) Ws(to)} ’

where F#(xz,t) i3 an operator acting in the space zc(§) of trace elass operators
on the space . Then it is particularly significant to consider the expression

~+ o

(1.23) F(1) :fdm F, 1),

which provides the evolution of the statistical operator under continual
observation when no notice is taken of the result. It is worthwhile mentioning
that the operator #(t) satisfies the semi-group condition

(1.24) g(tl) g(tz) = gt + t,) ’ fy 1, >0 ’
and the differential equation

(1.25) df? = 290,

where & is again an operator in rc($) defined by
N i o
(1.26) LW — — (8, W1—L14,04, W]

Equations (1.23) and (1.26) define typically a time evolution which satisfies
the requirement of preserving the trace and the positivity of the operator |4
to which it is applied (¢).

We note that the parameter « oceuring in eqg. (1.12) and (1.15) specifies the
degree of accuracy in the observation related to the considered « effect-valued »
measure. For ingtance, in terms of the eigenstates of 4,

(1.27) o> = qle,

eq. (1.12) can be written as

— +
(1.28) (1) = V;; fdcvqu lg> exp [— a(x — ¢)*1<q/ s

(®y V. Gomrini, A. Kossarowskr and E. C. G. SUDARSHAN: J. Math. Phys. (N. Y.), 17,
821 (1976); G. LinpBLAD: Commun. Math. Phys., 48, 119 (1976).



A MODEL FOR THE MACROSCOPIC DESCRIPTION ETC. 85

which for o — 4+ oo becomes

(1.29) ry= f dqlg> <g]

and our ¢ coarse-grained » position z becomes identical to the «microscopic »
position g. On the contrary, as « — 0, the information implied in the statement
z ¢ T becomes progressively poorer for what concerns the microscopic position g.

The meaning of eq. (1.15) is that, in order to introduce consistently a con-
tinual observation of a quantity starting from a sequence of subsequent discrete
obgervations, the accuracy of the gingle observation has to decrease as the
number of the repeated observations increases. It is just this eircumstance
that enables us to cirecumvent the difficulties that have been found in the
preceding attempts of introducing a continual observation for ordinary ob-
servables and, in particular, the curious paradox, that has been called Zeno
paradox, according to which a system is frozen in a definite state by such an
observation (). The quantity ¢ simulates what should be, in a certain order
of ideas, a fundamental constant occurring in the relationship between the
macroscopic and the quantum level of description.

As a generalization of models I) and IT), finally, we consider the case of a
continual coarse-grained observation of a set of noncommuting quantities
4A,, A, ..., A, for an arbitrary system with a finite number of degrees of freedom.

In conclusion, it should be mentioned that, in a different context, a theory of
continual observations (tailor-made for photon ecounting experiments) has
been developed by DAvIES (5} and DAVIES and SRINIVAsS (11). Strictly connected
with the concept of continual observation is also the treatment of unstable
systems of FoNDA, GHIRARDI and RIMINT (2).

The plane of the paper is the following one.

In sect. 2 we discuss the probability distribution for the outcome of repeated
measurements of an ordinary or a generalized observable according to the
usual rules on the reduction of the state in quantum mechanies and we derive
the Wigner formula and its generalization.

In sect. 3 we perform the limit 7 — 0 for model I) and evaluate p( W |[x(t)])
and p(Wlk; %, &;...; %,,1,) in terms of Feynman integrals. 5

In sect. 4 we study the operator #(z,t) and its Fourier transform F(k,?)
for which a simple differential equation can be given, in some way similar
to eq. (1.25); then we consider the evolution operator %(t) = F (0,%) and
establish eqs. (1.25), (1.26).

In sect. 5 we treat model TI) along the same lines and in sect. 6 we give
the generalization to the case of noncommuting quantities 4,, 4s, ..., 4,.

(**) B. Misra and E. C. G. SuparsHaN: J. Math. Phys. (N. ¥.), 18, 756 (1977).
('t E. B. Davies and M. D. SriNivas: Opt. Acta, 28, 981 (1981).
(*¥) L. Fonpa, G. C. GHIRARDI and A. RiMini: Rep. Prog. Phys., 41, 587 (1978).
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In sect. 7 expectation values and correlation functions are treated and
a generalized Ehrenfest theorem is obtained.

In sect. 8 finally the explicit results are worked out for the free particle
and the harmonic oscillator in the one-dimensional case.

2. — Repeated observations.

In the ordinary formulation of quantum mechanics the probability for
observing a value in the interval I, = (a,, @, - Aa,) for the quantity A at
time ¢, is given by eq. (1.3), as we have recalled. Taking into account the idem-
potency of the projections (£? = £) and the cyelic property of the trace opera-
tion, we can write, e.g. in the Heisenberg picture,

(2.1) P(W(Iu t1) =Tr {EH(II7 i) WEH(II7 tl)} .

We may ask now what is the probability that starting from a given initial con-
dition one jointly observes A €I, at the time ¢, and A €I, at the subsequent
time ¢,. The answer to this problem depends on the assumption that we make
on the measuring apparatus. If we assume that the disturbance introduced by
the apparatus at the time ¢, is the minimum one consistent with the discrimina-
tion between the two situations 4 € I, and A ¢ I,, the usual reduction postulate
can be applied. Then, if the result A e, at ¢, is found, the probability of
observing A € I, at ¢, is given by

(2.2) P(Wlu-z’ tz) =Tr {EI{(IZ’ f2) I’,‘V1 EH(IZ7 tz)} ’

where

(2.3) Wy =

and for the joint probability one has
(2.4)  P(W|L,t; I, 1) = P(WIL, 1) P(W, Loy t)) =
= Tr {By(Ly, ) By(Ly, t) Whn(Ly, ) Ba(l, ta);} -

By repeated application of such an equation, we find the Wigner formula (8)
for the case of many subsequent observations:

(2.5) P(W|L, by Loy to; o5 Iny ty) =

= Tr {Ba(Iy, ty) .. Bu(Ls, to) Bu(Ly, ) WE(I,, 1) By(Iy, o) o BnlIy, tn)} -

In a similar way for a generalized observable we can write eq. (1.7) in a
form parallel to eq. (2.1):

(2.6) P(W|IL, t,) = T {FY(L,, 1) WEL(I,, )} .
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An obvious generalization of eq. (2.5) is then

(2.7) P(W|Lyy ty; Iy, by o5 Iny ty) =

— Tr BTy, t) ... PoTs, 1) FA(L,, 1) WEA(L, 1) PY(T, 1) ... Pi(Twy 1)} -
Equation (2.7) corresponds to restating the reduction postulate for a generalized
observable in the form

. F;;(In tl) WF]*I(IU tl)
T Tr {F}l(Il, i) WF%[(IN tl)} )

(2.8) W,

The meaning of such an assumption for the pure-state case is illustrated in
appendix B.

One of the most appealing aspects of eqs. (2.5) and (2.7) is that they could
be assumed as a fundamental postulate for repeated observations, independently
of the way they have been derived, avoiding any explicit reference to a reduc-
tion postulate.

We note that both equations (2.5) and (2.7) can be written as

(2.9) P(W|Lyty; oo; Iny ty) = Tr{P(Ly, ty; <3 Ins ta) W},
where
(2.10)  FP(I,t;...; Iy, ty) =
= Ba(Iy, t) ... BaIy 1yt ) Bally, tv) Ba(Iy_1y tys) oo Bu(Iy, t)

for an ordinary observable and as

(211) Py, ty;...; Iy, ty) =
= PYI, 1) oo P Ty, ty) Py ) PoTy sy tes) oo PRI, 1)

for a generalized one.

In both cases F(I,,t;...; Iy,y) is an effect and eq. (2.9) is similar to
eq. (1.7) under this respect, showing once more the much greater generality
and concrete relevance of effects as compared with projections.

Such an effect, however, does not generate a measure on R¥, in fact, if I;
and I;' are two disjoint intervals, we have

(232) P, VIl t; 1,4, .. Ly, ty) 5
#F(I{’ b5 Loy tos ooy Iy tw) + F(I{’, b5 Loy taj o5 Iny t)
apart from trivial cases. Thus repeated observations cannot be considered as

a generalized observable in general. Having in mind eq. (1.12) or (1.13),
however, we are led to consider «effect-valued » measures which derive from
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densities of effects, i.c.

(2.13) dF(a) = f(a)du(a)
with

oo
(2.14) [du@)fia) =1,

where du(a) is a numerical measure and f(a) is a function on the real axis
(or, more generally, on a real space R’) with values in the set of the positive
operators in $. In this case, replacing eq. (2.13) into (2.11), we obtain for
infinitesimal intervals

(2.15)  F(dIy, ty; .5 ddy, ty) = flay, ty; .5 ay, ty) dulay) ... dulay) =

_fn ay, 1) . fH Ne1y Ev_y) f (aw, 1 fu Ay_1yty_a) ---fxi(%, tl)dﬂ(a’l) d—,u(alv)
and from (2.9)
(2.16) P(W\dll, ty .y dly, tN) = p(W}al, ti . Ay, ty) dulay) ... dplay) =

= Tr{f(as, t;; ...; an, tv) W}dp(a;) ... du(ay) -
From eq. (2.14) it follows that

de (ay)f al, Pt Ayt gt @y, ) =

—fH (ay, 1 fH Ay 14ty fH Uy 1y by ) ...fé(al,tl) = flayy b3 v Oy 1y tya)
and, by iteration,
(2.18) fd,u(al Cdplay) flay, s e ay, ty) =1,
(2.19) fdu(al) e dpalay) p(Way, ts oo gy ) = 1.

Thus we arrive at a normalized density of effects for repeated observations and
at a density of probability which actually generate an effect-valued measure
on R¥:

(2.20) PrI b s Iy, b fd‘u (a,) fdy () gy b5 oo oy )

and a new probability distribution

(2.21)  PUW|L,t; ooo; Iy, ) :fdﬂ(m) .,.fd‘u(azv)p(W}al, B3 i Oy by) =
11 In - vy
= Tr{F"(I, ts; ...; Ly, tn) W}

having all the required properties.
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We note that the result we have obtained depends strictly on having con-
sidered generalized observables for the measurement at the single times
ti, 1y, ..., ty. For an ordinary observable a significant limit exists for vanishing
intervals dZ,, ..., d7y only in the case of a purely diserete spectrum. In the pre-
sence of a continuous spectrum, if one tries to set dE(a) = é(a)da, eq. (1.9)
implies

(2.22) éa)é(a') = d(a—a')é(a),

thus é(s) cannot be an ordinary operator-valued function, but must be an
operator-valued distribution and an equation similar to (2.15) eannot hold (*).

From the physical point of view, the difference between the cases of an
ordinary and a generalized observable can be traced back to the fact that, in
the first case, as the amplitudes Aa,, Ag,, ..., Aay of the intervals Iy, I,,..., Iy
vanish, the disturbance produced by every observation on the subsequent ones
explodes; on the contrary, in the second case for an effect-valued measure,
e.g. of the type defined by eq. (1.12), the disturbance remains limited due to
the intrinsic inaccuracy introduced by the parameter .

Note also that there is a physical difference between eqs. (2.20), (2.21)
and eqs. (2.11), (2.9). In the case of egs. (2.20), (2.21) the measurement ap-
paratus is supposed to be as accurate as possible consistently with the form
of F(T): large intervals I,, I,, ..., Iy simply mean that we are asking for less
information than that in principle available. Instead, in the case of egs. (2.11),
(2.9), the apparatus is assumed to be built in such a way that the minimal dis-
turbance on the system is produced compatible with the required information:
diminishing Aa,, Ag,, ..., Aey amounts to modifying the apparatus and to
increasing the disturbance.

Equations (2.13)-(2.21) will be at the basis of our subsequent development.

To close this section, we note that, by iterated application of eq. (2.17), it
follows that

(2.23) fdy(a,+1) o d‘u(a'N)p(WlaU t15 e Bpy Uy} Apiny bpis oees Qns tN) =
:p(Wla’htl;'";a/mtp)’ p<N;

(*) Actually, in this case too it is possible to setb
F(dlp [P Aly, ty) = En(dlv ) ... EH(dIN—I’ tv-1)"
- B(@ly, ty) Be(@Ly—y, ty-y) - Bu(dly, 1)

and correspondingly to define an effect-valued measure F(I,t;...; Iy, ty), but for
this measure it is not possible to perform the limit v — 0, N — oo, discussed in the
next section.
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instead, we have

(2.24) fdy(al) e Q) P(W @y by oo By, s gy tyans oo iy 1) 4
FE P(W iy toirs oo Qyy ty)

The difference between (2.23) and (2.24) expresses the irreversibility in ths time
evolution introduced by the repeated observations.

3. — Continual observation of the coarse-grained position.

We will now analyse the case of the « coarse-graincd » position for a one-
dimensional particle defined by eq. (1.12). Setiing

(3.1) dufr) = V:: dr, flr)=exp[—a(—x)?],

we can write

(3.2) flag, by o @y, ty) =

= exp [— g (dalty) — xl)z] ... €Xp [— g (Fealtn—y) — wal)Z:I .

o

“exp [_ ‘x(qAH(tN) - '77‘\7)2] exp [ 5 (éu(ﬂ\'q) — wl\'—l) 2} ... €Xp [_ g (q‘H(t1) — xl)z]

and
(3:3)  p(Wlry, tis ooy 2y, ty) = Tr{f(ay, ty; ... Ty, ty) W} =

— Ty {exp [_ %‘ (Gulty) — er)z] .er XD [— g (dult,) — xl)z] w-

*€Xp [“‘g (én(tl) — wx)z] ... €XP [—g (‘jN(tN) — WN)Z]} .

Let us then consider a definite interval of time (t,!) and a continuous func-
tion x(t) on it; then set in eqs. (3.2), (3.3)

(3.4) tb=t+48T, T=—(—1t), & =a).

=) =

If we further assume o= yv (cf. eq. (1.15)) and perform the limit for ¥ — oo,
we obtain

tf

(3.5)  flo(t)] = T* exp [— ;—’ fdt (galt) — x(t))z}- T exp [—g fdt (du(t) — w(t))z}

1 13
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and

(3.6)  p(W|[=(®)]) = Tr{fl=®)]W} =

=Tr {T exp [—— g f dt (gult) — ac(t))’] WT* exp [—— 22—) fdt (dal(®) — m(t))’]} .

L3}

Here T denotes the time-ordering prescription and T* the prescription of
reverse order, that is equivalent in this case to considering the adjoint operator
of the expression with 7.

Equations (3.5) and (3.6) define functional densities of effect and the proba-
bility corresponding to a continual observation in the considered time interval.
Such densities refer to the functional integration which formally can be derived
from the « measure »

N y-[ Ni2 N
(3.7) dug[#(t)] = lim ]’! du(x,) = lim (—) I1 de,

N—>o \ T =1

and are normalized with respect to it. E.g. we have
(3.8) fdﬂa[m(t)]P(Wl[w(t)]) = }1_1}010 fd.u(wl) ---J.dll(wN)P(W[wntl; 3Ty ty) = 1.

As we mentioned, the density of probability p(W|[»(f)]) is such that a sub-
set M’ of the type defined by eq. (1.18) of the functional space Y has zero
probability:

b(e) b(t,) b(¢n)

(3.9) fdﬂa[”(t)]P(Wl[w(t)]) = }Eg fd,u(%) ---fd/‘(wN)P(Wlmu ty3 s @y t) =0,

a(t) a(ty) alty)

On the contrary, a subset M* of the type of eq. (1.19) has a positive probability
or, what is the same, the density of probability in eq. (1.21)

(3.10)  p(Why; By by; Fay by o3 &,y 1) =

~ [auetson T8 (m— = Jat ) ston -

i=1 tl - tl 1

t1-1
i

= |dudla(1)] ”a(zu— = fdtw(t))-

= tl i

Tl exp | — 2 |at (¢utt) — 2(t))2| WT* exp |—L |t (da(t) — 2()?
2 2

is well defined and nonzero.
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In order to prove the above statement, it is convenient to use the Feynman
integral formalism.
We have

it

(3.11) {qe, &|T exp [— 5 fdt (du(®) t))2J g:y 8) =

ti

:fduF[q(t)] exp [ fdt [;;L(q( )y gi(t)) —

iy

l\DtY

% (a(®) -—I(t))zﬂ )
where L{q, ¢) is the «classical » Lagrangian of the particle,

(3.12) (g, 1> = exp [;‘j ﬁ(t)] 0

and, formally,

) m N/ ¥
(3.13) duq()] = lim (Qm.ﬁ%) ];[1 dq(t,)
with

(3.14) gt =q,, qltx)=g¢,.

Replacing eq. (3.11) in (3.6), we obtain

(3.15)  p(W[2(t)]) — f dg. dg dg,dq, 8(g. — ) <q, LW |, 1>~

Jamtaon[ansta wress [ Jat]; @ o=z, a0 =] (0= + 0 Mﬂ -

£i

We can then perform explicitly the integration over the function x(t) in eqs. (3.9)
and (3.10).

We have
b(e)
(3.16) fdﬂ(,[x )] exp [ dt[ (g—x)* + (q’—m)ﬂ] =

alt)

b(t,) blty)
yT N/2

= Jim ()" fa

alty) altn)

exp [~ S [(w —"’(—”—gq—@) + 7 la) — q'(ts))zﬂ -

if

~ exp [~ ? fartan q'm)z] lim [$(/77E)] =

i
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+&

(3.17) $(&) =—= |dnexp[—7*]<1, B=max
|

b(t) —a(?)
9 ’

and eq. (3.9) follows.
In a similar way, taking advantage of the identity

(3.18) fdwl...dw,,(g) " (x—-g )exp[ ozgl(w —é.]

we obtain

(3.19) fd,ug[a; )] H é (a:, — Z—S— dea(s [

Ty

= l; {(Z—?)* exp [ y At, (x, —AL dt + ) ]} exp [— < fdt (g—gq )z] "

t1-1

L\DI‘€

dt[(q x)*+ (¢ —)* ]]

where we have set At, =7 —1Z_ . In conclusion, eq. (3.10) becomes

(3.20) P(Wlio; Fyy b oees Ty t,) zfd% dg; dq,dq; (g, — q1)-

'<q“t1|qu{’vtl> d/‘F[Q(t)] d,u;‘[q,(t)]'

S R T

[ 1

it

-exp [ f de [,—z (L(g, 9) — Llg', §)) — ?Z, (4— q’)z]] ’

[31

in which only ordinary Feynman integrals oecur.

In the above manipulations for clarity we have formally exchanged the
functional integrals in dg.[¢(?)] and in d,uG[w(t)] Actually one should proceed
in the following way:

1) introduce a partition of the time interval (¢, t,) according to eq. (3.4),

2) replace the integral in duy[x(f)] in eq. (3.10) by the corresponding
discrete integrals,



94 A. BARCHIELLI, L. LANZ and G. M. PROSPERI

3) write each of the two exponentials in eq. (3.10) as a product of the
N factors corresponding to the partition of (¢, 1),

4) introduce between the factors completenesses of the form [dg,|q,, %, -
) <q.w ts!;

5) use the Feynman asymptotic formula for small intervals,

6) perform the limit N — oco.

Therefore, a single limit N — co has to be used for defining globally all the
functional integrations; the exchange of the integrals is made before the
limit and formula (3.18) is used {('3).

Equation (3.20} is our basic result.

Note that a so significant result depends strictly on assumption (1.15).
Had we taken « fixed rather than y, we should have replaced y by «/r in
egs. (3.16) and (3.19) and we would have obtained vanishing results also for
P(‘Vlitﬁfniﬁ- v,t,,)

Note also that eq. {3.20) in terms of a density of effect can be equivalently
written as

(3.21) <q;’ti‘f(io§§nz1§--'§Ev,ivHQiyti>:
! ’ * ! = yAtl ¥
:ququ, 8(q,— qi)fd/tpmfdm[q 1 L[l (7 ) exp [— y At

1 f e o ‘ ,
.(x;——A—tl_ dtth)]}exp[J‘dt[%(L(q,q)———L(q,q))_%}(q_q)z]jl_

1y i

Finally let us consider a finer subdivision of the macroscopic time intervals
(f,1,1,) into smaller ones and set

(3.22) o=t <lh<..<l,=1, Aty =1, —1t,;_,.

By using the obvious identity

(3.23) fd:‘cn...do“cz,“ ( EAAttw—,).
12

(13) A rigorous treatment of the whole matter can be given using the Albeverio
Hoeg-Krohn definition of the Feynman integral {G. Lurier1: Generalized stochastic pro-
cesses and continual measurements in quantum mechanics (preprint, Milano)).
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we obtain from eq. (3.10)

(3.24) J'din A%y ... d:_iwl,P(leO; Ty, z115 Thay bias ooy ';21'/4,’ i,,,,,) *

? Aty -
Hé(x; S. 4 U)—‘P W lto; Fyybys Taytas o3 Ty by) o
=1 f=1

or a similar equation for the density of effect f(fy; %1, b3 ...3 %,, 1)

Equation (3.24) is the analogous for the case of the continual observation
of the additivity of the effect F’(Il, ty;...; Iy, ty), or the corresponding prob-
ability P'(W|I,,%;...; Iy, ty) as defined by egs. (2.20), (2.21).

Equation (3.24) will be referred as the consistency property.

4. — The probability density and semi-group properties.

As stated in the introduction (eq. (1.22)), the probability density
P(Wty; %y, b5 Tay b5 ... %,, 1) can be built up by means of operators F(w, 7)
aeting on the 7c(P) space.

Actually, we define

(4.1) F(z,T) W = | dug[a(t)]6 (a: — % fdt w(t)) exp [-—;;Ht] T

-exp [—’5’ f dt (dul(t) — w(t))”] WT* exp [—g fdt (da(t) — w(t))’] exp [,—: HT] )

where now the functional integral has to be understood as defined on the con-
tinwous functions in the interval (0,7). From this definition, it is trivial to
see that we have

(4.2) F@E;Lh—L)W= f dugl=(t)] 6 (z, — 317 f de w(t)) exp [— 7’; Hi,] T
Tt . Fos .
-exp [——22 fdt (du(t) — w(t))z] exp [% Hi,_l] W exp [—% Hi,_l]-

T exp [—— f at (dalt) — ot ))*] exs; 5],

t1-1

so that eq. (3.10) can be rewritten as

(4.3) (Wltoy Ty by eees Byay buoas Ty t’) =
= Tr{f By by — 3y 1) FFyry fpoa— o) oo F @y bi— o) Walha)} -
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By eq. (4.3) the study of the probability density can be reduced to the
study of the operator #(x,t) (and of its Fourier transform F(k, 7)).

By using the Feynman integral formalism, it is possible to explicitly per-
form the du {«(t)] integration in eq. (4.1), as done in eqgs. {3.18)-(3.20). We have

+
(tda)  al(F @, 1) W)le> = [dg,dgs F (@, 71a, 0’5 0y 08) 0ol W lab)

—

where

(4.4b)  F(z,7)q, q'5 9o, 40) =

yT 1 £) -+ q'(t))2
:fdﬂy{qm]fdﬂ;[q'(t)] V’: exp {—— YT (x—; fdt q_()_g_q#Q) ]

]

exp [ Jarfj (o, a0 — 2w, gun =7 o - q'u»zﬂ .

0

By using eqgs. (4.4) and (4.3), we immediately reobtain eq. (3.20).
From definition (4.1) and eq. (3.23), we see that for the operators #(x, 1)
the « consistency property » takes the form

+ @

{(4.5) F (2,7, + Ty) :J‘da“1 da, 6 (x

— o

T, X T, o o
_ 1_1+_2%) F(a,, 1)) Flan, 1)
Tl + T2

Note that, if we discard all information referring to a time interval (¢,_,, %),
we must integrate the probability density with respect to the variable ; and
consider the expression

+ @
(4.6) fd?c,—p(Wﬁo;fl,Zl;...;ii,i,;...;%,h):

—

+CD
— Tr{f(a‘cy,iv—i,_l) s F(Forns im—i,.)[ f A4z, ?(%i,ii—ii_l)]-

CF (B 1y by —Tiy) oo F(Fyy bi—1o) Ws(io)} .

We see that %({ —1'), defined by

4
(4.7) G(t —1') :fdx Flw,t—1),
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acquires the meaning of « evolution operator » for the time interval (¥/,1).
Moreover, from property (4.5) we have

(4-8) g(tl + tz) = g(tz) g(tl) ] i, 1,>0 ’

80 that the set of operators {#(t)},., is a semi-group of completely positive,
trace-preserving transformations on the vc($) space. In the literature such a
set of operators is called « quantum-dynamical semi-group » (see, for instance,
ref, (59:14)),

Obviously the Feynman integrals in eq. (4.4b) can be performed only in
special cases (e.g. free particle and harmonic oscillator). However, it is pos-
sible to give a significant differential equation for the Fourier transform of
F(z,t). Let us put

+co

(4.9) Fk, 1) = f do F (x, 7) exp [— k] .

In terms of F (k, ) the consistency property (4.5) becomes

~ - k'rz o~ k‘ll
(4.10) Fkyt,+1,) = F (T1 T 1,) ¥ (T1 T 11) .

This equation takes a simpler form if we introduce a new operator ¥%(&, ) as
(4.11) Y&, v) = F(br, 7).

In terms of this operator eq. (4.10) becomes

(4.12) Y&t 7) =996 ).

Again (£, t) defined a semi-group. If we denote by (&) its generator,
the %-operators satisfy the differential equation

(4.130) 2 9, ) = A (@) 9,

Then, using the initial condition

~

(4.13b) 9(£,0) = #(0,0) =1,

(1) V. Gorini, A. Friger1o, M. VERRI, A. XossakowskI and E. C. G. SUDARSHAN:
Rep. Math. Phys., 13, 149 (1978).

7 — Il Nuovo Cimenio B.
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we can write

(4.14a) (&, 1) = exp [1A(§)],
or
(1.14b) F (k, 7) = exp [vH (k[7)].

Note that, for the « evolution operator », we have

(4.15a) (1) = 9(0,1) = F(0,1t) = exp [L1]
where
(4.15b) P = A(0).

In order to obtain an explicit expression for the generators %°(§) and %,
it is convenient to use the Feynman integral formalism. From eqs. (4.4),
(4.9) and (4.11) we have

+co
(+.164) Q(%E W)l =quon; g\ Wlghy GL&E Tla, 45 40, 40)

with

(4360) G 710, 4'; dor ) =exp[—§y—£2]- fdMF[q(t)] apsl ()]

"exp Udt {ﬁ (L(g(t), ) — L(¢'(1),4'(1)) —E (@ —q'®)* — 5 &0 +4q (t))ﬂ ,
0

where the Feynman integrals must be performed with the boundary conditions

(4.16¢) (=g, ¢@O=q, @O)=0, ¢O)=g.

From eq. (4.16b), in the limit v — 0, using the Feynman asymptotic for-
mula, we have

@17) G745 o, 00) = 8(g — gu) S0’ — g0)-
. —_ L 2 __ ZI. — a2 ,._2 [AY TN
[1 ST 21£(q+q)]

— 2wl g0y 3(a’ — @) + 5 TG 01— @)
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Introducing this expression into eq. (4.16a), we have finally

(4.184) W =— % (a2, W]— ?z’ (4,4, W11,
(4.18b) H(EW = W — % E{q, W} — é—;; gew,

where {4, B} denotes the anticommutator between A and B. Note that %
has the typical form of the generators of completely positive and trace-pre-
serving semi-groups (*). This is apparently not true for 5'(£). Indeed, ¥(, )
transforms trace class operators into trace class ones, but not positive operators
into positive ones.

Finally, we observe that the density of the effect-valued measure introduced
into eq. (3.21) can be written as

{4.19) f(t,,; Byy by enns Boy bo) = F'( @y, by —1o) F' (@, ta—11) oo F'(@rytv— ,,_1)“i y

where 1 is the identity operator on the space © and F'(x, ) is the adjoint
operator of % (,7), which acts on the space of the bounded operators on 9
(the dual space of zc(9)).

Note that the trace-preserving property of %(¢) is equivalent to the fol-
lowing equation for its adjoint %'(¢):

(4.20) gH1=1.

5. — Continual observation of coarse-grained position and momentum.

Let us consider now model IT) of the introduction defined by eq. (1.13)
and (1.14). In this case, we have an effect-valued density for the simultaneous
measurement of a coarse-grained position and momentum, which can be
written as

(5.1) J@,p) = Cexp[—al(§ —=)* + 2B —p)]]-

We can repeat the whole construction done for model I) starting from the
new effect-valued density and build up a theory for the continual simul-
taneous observation of position and momentum. In particular, we can con-
struct a probability density p(Wlk; %, D1, b5 ...3 &,, D,, 1,), Where the variables
Z; and P, have the meaning of position and momentum time averages in the
interval (¢;_,,1,).

Using the formalism of sect. 4 we obtain

(5.2) P(Wliﬁiu Prs b ---5@’?"9’?”) =
=Tr 3‘7(5,,, ﬁv; Z1’_.'v—1) 9‘(57-7—-” ?v——l; iv—l"'iv-—z) vee 'g:(xli P tl )W (tO) H
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where

(6.3)  Fla,p; )W =fdﬂe[w(t),p(i)]'

) (m — —fdt (1 )) ) (p ——%J‘dt p(t)) exp [— % EH]-

T

T exp [~ 5 f @ [(gult) — #()* + A(Bald) — p(1))*]

0

§>

T

+I* exp [— ; f At [(dult) — 2()* + MPu(®) — p(t))ﬂ] exp [7; Hr]

0

(5.4) dug[z(t), p(t)] = lim (W \/l) H da(t

N—>o s=1

The consistency property now is

+ 4

(5.5) 37(90,1);Tl—{—'rz):fdwld%fdpldpg@( T‘W‘JFT’%)

Ty + Ts

.6(17_}'1171 + T2,

7, L7, )y(xzypzifz)ﬁ(wnpl;ﬁ)

and the evolution semi-group is given by

4o 4o
(5.6) 0 =fdmfdp Fla,p3t).
If we set
4+ 4o
(5.7) (&, 13 7) = [o [dp exp [— it —inep) F(a, p; )

we have again %(f) = %(0,0;1) and
(5.8) GE 1+ 1) = 9&n; 1) 9E 0 T) .

As before we can obtain an expression for #(&, »;7) in the Feynman in-
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tegral formalism. We have

+ o
(8.90) <ql(%(& ;1) W)|gD =quodq3 {@o|W)gey G(&,m3 710, €5 90s 3)

—a0

(5.95) @G(&,7m57|g, 45 05 40) =

= |8uslq(8), p()] dﬂF[‘l'(t),p’(t)]exp[—Z};.._m

-exp dt{—;—z[ﬂ(q(t),p(t))—ﬂ( 0,2 0)] + 5 [p 4(t) —p'(1)4()]—
—¥ @) — a0y —Z o0 —p ) — 3 6a) + ) — Eno) +p'<t))},
where the following conditions on ¢(f) and ¢'(f) have to be understood:

(5.10a) i)=q, ¢@O=¢q, ¢0)=g, ¢0)=4d

and the Feynman «measure » in phase space

(5.100) dusq(t), p(t)] = Lim Hd (%) H dp (t)

=1

has to be used.
Then, proceeding as in the previous section, we can write

(6.11) Y(&,m; ) = exp [vA'(§, )],

where
i i 1(,, .1,
(812e) A&, W = ‘gW—gf{f’ W}—gﬂ{ﬁ, W}—E(E“ +37 )W

and

(6.128) LW = H(0,0) W = [H w]— [4, L4, W11 + A[%,[8, W11) -

Note that all the results of the previous section can be obtained from the
present ones; for example,

(5.13) (&, 7) = lim (&, 0; 7).
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6. — Continual observation of a finite number of noncommuting quantities.

Let us consider any system with a finite number of degrees of freedom
and a set of ordinary observables 4;, j =1,2,...,n, associated with the non-
commuting operators A, .

Equations (5.2), (5.7), (5.11) and (5.12) suggest a possible generalization
of the results of the previous sections to the case of the 4,’s.

Let us introduce

(6.1) Y(&;7) = exp[r X (§)],

where § = (&, &,,..., £,) and

(6.2) HEW = ffW—giE]{A“ W}—Z%W
(6-3) ,?W/:—% ﬁa W]_i iyi[fiﬂ[fiﬂw]]'

Here H is the Hamiltonian of the system and y; > 0.
Note that 4(€; 1), defined by eqs. (6.1)-(6.3), satisfies the equation

(6.4) GE; T+ 1,) = G(§;T) F(E; 7o)

Then the operator

T

(6.5) ey T) = ( )"fdﬂg exp [iT ifﬂ%] Y(E;7)

27
is the analog of the operators defined in eqs. (4.1) or (5.3) and the quantity

(6.6) P(Wlte; X1y i %oy bs} oos oy 1) =

= Tv (%3 by —ty 1) F (%5 by 1 — 1y o) or F (215 8 —10) Walto)

~an be interpreted as the probability density for the time averages of the values
of the coarse-grained A4,’s.

Naturally, in this ease, we have to prove that this probability density is
well defined. It must be, obviously, positive and normalized; moreover, in
order that the partition of the time interval can be arbitrary, the consistency
property (3.24) must hold.

The three mentioned properties are consequences of the analogous ones
for the operator F(x;1):

i) F(x; 1) is a positive map on wc($H), i.e.

(6.7) W=>0 = ;3?(x;r)W>0;
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ii) F(x; 1) is normalized:
(6.8) Trfd"xf(x; NW="TrW, YWerc();

iii) the following consistency property holds:

(6.9) F(x;7, +7a) = | dra | av, T] a(x,- _ T—lf’—‘-Jr——w) F (25 73) F(#1371) -
=1 T+ T,

The proof of properties ii) and iii) is trivial. Equation (6.8) follows from
the fact that the evolution operator

(6.10) G(1) = f dnx F(x; ) = exp[1L]

is a trace-preserving map, as is clear from the structure of &. Equation (6.9)
is an immediate consequence of eq. (6.4).

By iteration of eq. (6.9) it is then obvious that it is sufficient to prove the
Ppositivity property i) for an infinitesimal time. We insert eqs. (6.1)-(6.3) into (6.5)
and expand the exponential in the following wajy:

(6.11) F(x; )W = (2 ) f drg exp[—s Z 4%]
(w3 m—; 3 4,14, W] +53 et —4, M~

_—25;{‘7" _'A.") {wj Aj, W}}+...).

1"1

Note that, after integration, the terms with ¢*&? turn out to be of the same
order as the terms with e; this is not the case for the other ¢*-terms. Performing
the integrals, we obtain

(6.12) ﬂ'(;x;s)W ( )m(ﬁy,) (W——[H W]—-Zw[Aj,[A,,W]]._

=1

2 271{“"1 AH {.’D,———- Ala W}} + 0(8’)) =

= (‘E)ﬂ/z ( ﬁyf)*(W—;—g[H, W] —g zyj{(wj—ﬁ,)ﬂ, W} + 0(8:)) )

JT i=1

Now, one could prove directly that F(x;e) is positive apart from terms
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of relative order 2. Egquivalently, note that eq. (6.12) can be written as

(6.13) F (x5 ) Wzo(f)m ( ﬂ v;)! exp [— g Pal@n — Am] .

T ~1
- exp [~—§y1(m1—fil)2] exp{—%sﬂ]Wexp[%s ]
‘exp [— g yo@, — 111)2] exp[ 3 Vol @n —11,,)2].

The order chosen for the exponentials on the r.h.s. of eq. (6.13) is unimportant:
a change of order changes this expression only for e-terms. As written in
eq. (6.13), F(x; ¢) is apparently positive; this closes the proof of the positivity
of F(x;1).

Note that now we have no explicit expression for the effect related to the
simultaneous measurement at a single time of our # observables asin eqs. (1.12)-
-(1.14) for models I) and IT). This effect is implicitly given by

- 1 ., &
(6.14a) F(T) :f "x(2n)" fd"kg(k) exp [z;ijj],

T

where

(6.14) (k) — exp [__ 3 ;’— ’

=1

[ SR E
ﬂMs

kA, .} —

Hal
I
R
—

a, ...]]]1

Here the normalization (F’ R®) = 1) is trivial; the proof of the positivity is
similar to that the positivity of F(x;1).

7. — Mean values and correlation functions.

Mean values and correlation functions can be introduced as usual in proba-
bilistic theories and obtained from derivatives of the Fourier transform of the
probability densities.

In our case, from

(7.1) G(E; At) :fdnx (x5 At) exp [—iAs 3 £,
i=1

we have

i \Brtoat. oy Qpitat.. Fon
(7.2) fdnxxflwgﬂ' a7 F(x; At) = ( i )v Dot ton Qprtpat.to 'g At)

Kt asp, 85“ 85“ £=0 *
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We recall that derivatives must be calculated from the formula (%)

T

13) - explr §)] = oxplr — ) ®]1 F 2 explr A 8],

0

First, let us consider mean values referring to the time interval (¢, ¢ 4+ Af)

(7.4) (@i = [Arxa, Tx (7 (x5 A OV W) ,
where
(7.5) g(t) = 9(0; 1) = exp[tL]

is the evolution operator (here and in the following ¢,=¢,=0). Using eqgs. (7.2),
(6.1) and (6.2), we obtain

1 t+A¢
(7.6) (s peye = f dt' Tr (4, 9(t) W) .

t

Note that for mean values the limit A¢ — 0 exists and gives the usual quantum
formula

(7.7) (@ ppmope = Tr (4, G(t) W).
For the time derivative of mean values we have

t+A¢

A
(7.8) <,A,>t= fdt' (ﬁ,%ﬁ) W) A fdt'Tr(A,y.@(t')W)

t

where % is given by eq. (6.3). In the case of model II) (sect. 3) for
= (1/2m)p* -V (q), the action of the adjoint of # on ¢ and $ can be cal-
culated and a generalized Ehrenfest theorem is obtained.:

d
(7.99) = Oade = Bades
1 aP(g)
I q 1
(7.9b) T <pm>t fdt [(— d—q) g(t) W] .

For the free particle and the harmonic oscillator it turns out that {z,,, and
{Pay, satisfy exactly the classical equations of motion.

(3%) See, for instance, R. M. WmLcox: J. Math. Phys. (N. X.), 8, 962 (1967).
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In a similar way, for the variances we have

1
2y, At

(7.10) (A a,)} Ejd"x (@ — (@000 )T (F (25 A) G(1) W) = -+

t+At 4y

f a, f A, Tr (A, — <@, a00) Bits — (A, — (wyades (Gt W]

i t

T B

For small Af, we can write
(7.11) (Ax; A0)F ~ 1 + Tr[(A4; — (@ amop)? G W],
B 2y,;At o
showing that the actual limit A¢ — 0 cannot be performed. The second term
on ther.h.s. of eq. (7.11) is the usual quantum expression for the squared variance

(when the time evolution is given by #(t)). Note that eq. (7.11} can also be
written as a kind of uncertainty relation between time resolution and variances:

(1.12) At (Az, 5 )P >1[2y,.

Finally, for the one-time correlation functions, we have (j = j')

(713)  (Awyan Aryad, zfd"x @A)y — (T ad)-
t+At ¥y
T (F (s 80 GO W) — 5 fdzlfdt Tr (4, — <@ya) 9l —t)-

¢

'{(ji]' - (<x1",At>t)7 (g( 2 )} + Ai' - <wj',At>l) g(tl —_ tz) )

(A, — wad), (B W)}) .
Note that

(7.14)  lim <A@, 0,y Ay, 0>, =3 Tr (A — (2, g0y (A — iy amg )} E D) W) .

In the literature this expression is sometimes called « quantum (symmetrized)
correlation function » (see, for instance, ref. (1%)).

8. — Continual position measurement on a free particle.

Our models I) and II) are completely solvable when the system is a free
particle or a harmonic oseillator. In these cases everything ecan be explicitly
calculated in several ways:

(*®) R. Kuso: Stafistical mechanics of equilibrium and nonequilibriwm, in Proceedings
of the I.U.P.A.P. Symposium, Aachen, 1964, edited by J. MEIXNER (Amsterdam, 1965),
p. 81.
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a) the construction given in sect. 3 and 4 can be followed, starting from
a discrete set of repeated coarse-grained measurements, by assuming condition
(1.15) and taking the limit 7 —0;

b) path integrations in eqs. (4.4b) or (5.9b) can be performed directly;
¢) the semi-group structure of #(£;t) or ¥(& 7;t) can be exploited.

As an example we work out the case of continual position measurement
on a free particle by using the last procedure.

We ghall start by solving eq. (4.13a) when #(£;1) is applied to a suitable
statistical operator W,‘. Let us choose this statistical operator to be given in
the position representation by

Bla) - <l = w(@ i) exp [—”; (a— q')z] :
where

1 i .
(8.10) o) = g o152 (g0 + 1 24
and

0<o<oo, O0<mu<oco, a P, x,real.

This operator, for x», — 0, becomes a pure state; in this case the meaning of
the other parameters is apparent from the relations

D =Tr(@l) =0, G—ay>=3,
(8.2)

2 _;,;2 2y .
@)ZZ), <(ﬁ”“p)>—§&(1+”2)’

in particular, », = 0 corresponds to minimal uncertainties.

We will prove that %(f) transforms the statistical operator (8.1) into an
operator of the same kind and, moreover, that %(£; ) transforms it into a trace
class operator X, having the following slightly more general structure:

®3) Al = (@) ¥3e0) exp[— 2 (g~ + 1,

where A and A* are shorthand notations for (o, %, %, @, p, x) and for (o, %, %,
a*, p*, y*) respectively, @ and p are now complex numbers, x is a new complex
parameter, due to the fact that %(&;?) does not conserve the frace.
Precisely, for the operator X, one has
(8.4) gE0X, =X

A
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where

fi? fir 144 1(% 2

t

(8.5a) xﬁ):%r+iy at'o(t'),

0

_m do(2)

%0 =57 ~dr

M&Hzp—£MHﬂU~®,

p @ t
sy | a0 =at i 5(at—3fdtla<tl)),

— y pz 2t__g2 §t d
x@ﬁ)—x—wﬁ@r+§ﬁt)—f(g;ég +3 mJﬁ@w@O-

The proof of eqs. (8.4), (8.5) is given by the following points.

i) By setting X, (& t)= %(¢, #)X,, the differential equation (cf. eqs. (4.13a)
and (4.18))

d . [ 52 N
8 %0 =—7| 2o i 0] L1410, Sk 00—
4 N &2 4
— 9? E{é; Xl(é:; t)} _ Z,; Xh(§7 t)
can be written in terms of matrix elements as

o i e 1 e rog o

where we have set
(8.70) Q=%0¢+4q¢), r=qg—7.

il) <Q 4 r/2|X,(&,¢)|Q — r/2)> satisfies the initial condition
8.8)  (Q+7 1% 0@ — 1) =

i%exp[—%(@—a)z—%(iwl)rz+i%<@—a)r+%pr+x].
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iii) An expression of the type (@ - 7/2|X,0|@ —7/2> is a solution of
eq. (8.7a) if A (&, t) is given by egs. (8.5). In fact, ingerting <Q—|—r/2|XM€, )@ —r/2>
into eq. (8.7a), one has

o 4k 0? 1, . 1
A r+5@——£)

v o‘(t)
1 "
"exp [ o(?) @—al& ) — O_'-::-ﬂ(i + nl(t)) 41 t_((t? (@—a(&)r+
+ ;—zp(é, Hr -+ x(& t)] = P(Q,7) \/n [ B @ — a8, 1) — ]= 0,

where P(Q,r) is a polynomial of 2nd degree in @ and r. Equating to zero the
coefficients of such a polynomial, with some manipulations one obtains the
following system of differential equations:

a 9 . . ] 2
1 = Bontt, T Tyow, ot TP =5 (o 0+ 0,

a0 | 20 Loy Seo, 2ED__ Jo 000

ot ot dr ’
ox(&, 1) . &2 3
s =l —

the three first equations are linked to the 2nd-order terms in P(Q, r), they
are independent of & and imply for o(t) the equation

doo(t)  ofs

8.11 ==
( ) dts m L4

Starting from this equation and taking into account the initial conditions
(8.12) A& 0) =1,

one obtains eqs. (8.54) and (8.5b).

vi) <Q + 7/2| X, 1@ —7/2> With A(,?) given by egs. (8.54) and (8.50)
satisfies initial condition (8.8).

In conclusion, since eq. (8.6) is of the first order in time, the identity of
g, 1) X, and X, , is proved.
We note that, in the case &= 0, egs. (8.5b) become much simpler and,
for y = 0 and @, p real, ¥ W, is a statlstlcal operator of the form WM” with
o(1), #:(t), 2(t) given by eqs. (8.54) and with

(8.13) p)=p, a)=a+1lt, z0)=0.
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Finally, in order to show that Xus o 18 a trace class operator for >0, we

note that ¢(f) > 0 and x,(¢)>0; then, taking into account the Fourier repre-
sentation

(1) ‘__(t)
(8.14) exp [um (g — } l/ym ) fdk exp[— ik(g—q") — £4,(1) ]

we can write

a(t)

(8.18a) Xy = V () fdk[l &), &> exp[ k4 y(&, 1)] (AF(E 1), K,

(1)

where
(8.15b) GIME B), &) = g (q) exp [—ikq].
Then, for the trace class norm || X, |, = Tr (X, , X6ty We obtain the in-
equality

. +oo
8.1 Laie nly < , 11/ o) a(1) ;e
(8.16)  [Xaenla<lexp[z(& 015 ) ll) dk exp |— vl(t—)k = lexp[x(&, D]l

where the trivial inequality |lg) <w||< [lo> |- [llv> | has been used.
Now we are in a position to explicitly calculate the «matrix elements »

G, tg, q'5 4y, q,) of the operator Z(&, 1) (cf. eq. (4.16a)) or, more conveniently,
changing the variables,

(8.17) Gy(ff 1O, 75 Qo, 7o) = G(E,8Q +7/2,Q —7/[2; Qo -+ 70/2, Qo —70/2) .

In fact, let us write eq. (8.4) for x, =%, = y = 0, ¢ = a,,

- 1
{8.18) fon dr, G(Sy t|Q7 75 Qo 7'0) %——;—
exp [’&1: (Qy—a)*— ;}, s+ 7 P"o] <@ + 5 [ Xl @ — §> ’

or, equivalently,

(8.19) fdgoé(f, 1@, 75 Qos 1) \/% exp [—“5]:; (@ — a)z] =

ﬁV%{%eXpmo ]fdp<Q+ | X0 @ — >exp[ ﬁpro]

-
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Taking in eq. (8.19) the limit ¢, — 0, one obfains
1 1,
(8.20) G(5,t1Q,1; ay 1) = v—>°\/2nﬁ exp [400 ]

fdp (@ -+ 51 usalo—3) exp[— o] =

. 1 1 . ¢ A o 2
=1V et Jor e[t =)

1 (1 _ .
_@(Z -I-%l(t))'rﬂ +4 o0 (@ — alé, t))r—l—%p(f, Hr + x(&, t)].

Since by eqs. (8.5b) the funections a(,t), p(&,t) and yx(&,t) depend linearly
on p, the integral over p can be performed easily; the subsequent limit oy — 0
requires some calculations. The final result is

(8.21) (5; £)@; 75 Qoy 7o) = : &XP [ 19 yi(r® 4 rro + 70) +

e
2ot +r)] -3 [ylt + T30mi t]] :

The probability densities (4.3) can be obtained by applying to W products
of the Fourier transform with respeet to & of the operator defined by (8.21).
The calculation becomes rather simple if one chooses a statistical operator
of the type (8.1). Let us give some results for this case. We set for simplicity
t, = 0 and choose W = W,‘..

First we consider the probability density reduced to only one of the
time intervals into which (f, =0,%) is partitioned, i.e. one integrates
p(Wlto; @1, 8,5 5, b3 .05 4, %) over all variables y, &, ..., #,, except the va-
riable x, referring to the selected interval (f,_,,?,). Taking into account the
consistency property, one has

+ @@ ——a[czwo

(8.22) J-dml v Ay Ay ... Ao p(W [Ey5 @1,y 115 @ay T35 2005 Ty ty) =

= Tr F (2,5 t,—1r_y) G(t,_2) Wa

Setting ¢, =1, t, —t_, = At and &, = «, one has

r T

+
fdfexp[zAt&m]Tr?f AL) G(0;8) W, .

—c0

(8.23) Tr F(w; At) G(t) W, =
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The parameters A(f) of the statistical operator Wm) = %(0;1) Wn., are
given by eqs. (8.5¢) and (8.13):

(0
o(t) — ity 3+ﬁ21+4x t2+i(2x‘2°)t+0-0)2’

3m2 o, oo \M
t do(t
(8:24) )=+ pofavat), e =555

0

Pty =po, alt)=a+2¢, )=
m

The parameters of #(£, At) %(0, 1) W,\o are given again by eqs. (8.5), if we set
t = At and take as initial values A the A(t) just caleulated: the only parameter
we need is

, &%
(8.25) (& At = — ¢ [(a + B t) At 2o A#]— =74,
where
A 3 At ¢t 1
t
~ __ = < / " [ A 2
(8.26) T Aty = 2y+ 5 fdt fdt ot +1") — 7 o(t) At
(1} 0
with o(f) given by eq. (8.24).
Then (8.23) becomes
+c0
At

(8.27) Tr F(x; At) G(t) Wa, = 5 | A& explidegs + (&, At)]=

_ A A P, LAY
= Vm;zt(m) oxp [_2 ;}t(m)[“} % m(t 3 At) } i

this is a Gaussian probability distribution with maximum at the elassical time
average
1 t+AL
1 ; p
(8.28) ot Bk 30 = f aaalt),  mald)=a+ L,
4
and with squared variance given by %,(Af)/A.

If At < t, one can replace in eq. (8.26) ¢(f +t") by o(¢); then one has

(8.29) (Az)2 ~ 5y & L Za(t).
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In (8.29) the peculiar term 1/2y At occurs that has already been discussed
in sect. 7.

Now let us consider the probability density reduced to two time intervals
(t,, t, + At) and (3,8, + Af,) with ¢,>%, + At;. It is given by

(8.30) Tr F(wy; Aty) Dty — b, — Aly) F (x5 Ab) G(t,) Wa, =
+oo

fd§1 dé, exp[";(At1£1w1 -+ Atzfzmz) + 1(51’ a3 Atu Atz)] ’

-

At AL,
T (2w

®,, ¥, have the meaning of time averages, respectively, over (%, !, 4 At;) and
(t27 tZ + AtZ)’

(8.31) 2(Eyy Ea; ALy, ALy) = — 18, ALy [ao + % (tl -+ % Atl)] —

2 2
— it + B+ 00 )| ity M) — S 00— T 0,

where

(8.32)  xp,0(A, Aty) =

_ AtAL[ 3
- Aty Aty

A,
— ot 1
S fdt,a(tl 1) — oty 4 St A — o o(tz +an—t— Atl)]
)]
and 7, (At,), %, (At,) are given by eq. (8.26).
The probability distribution (8.30) is a Gaussian with maximum at
1 1
(8.33) m1=ao+%’(tl+§ml), , =ao+%(tz+§mﬁ)

and with correlation functions

(Ot (At Feue( Aty ALy)
®38) ey =20 o) =20, a0 < Bty

It At,«t,, At,«t,, the correlation funetions become

1 1 1

{Byy B1) = 5 o(t)y, By~ 2_?’372 -+ ) a(ls),

DN
(8.35) reh

gy Xy = :}2“7“1) + 2'—%”7,, (tz — 1) 2a(2y) .

Finally we quote some results in the case of model II) for the harmonic
oscillator; obviously, the corresponding results for the free particle can be

8 — IT1 Nuovo Cimenio B.
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obtained by setting the frequency w/2z equal to zero. Even inthis case an equa-
tion similar to eq. (8.4) can be established; the parameters A(&,%;1), corre-
sponding to those of egs. (8.5), are given by

ke o yAR? .
(8.36a) o(t) = At (20t — sin 2wt) + 1o (20t -+ sin 2ewt) -
B2 14, 1% )2
‘{—émz—aﬂ—q—(l—COSZwt)—i—(—;(,,—nz;%lenwt'—f—O'COSCOt s
m da( ) 1
(8.36D) #y(t) = TR T yrfim ,

2
16m2 wt

fizy2 ] hw 1+ ds,

+ =g sintot 4

t
h? 1+ 4 2 2 2
ey T 4% (2wt — sin 2ewt) -+ yhm® o fdt’ (ﬁ% %, COS Wl — o 8in wt’) +

(8.360)  y(t) =

[1+ m? (1l + m*w?d)](w?f® — sin? wi)

(2wt -+ sin 2wt) 4

16m2 w3 o 40
0

t
l ! _ﬁ__ 1 ! 12
+ 1o fdt (mw *, 8in wt’+ o cos wt ),

0

(8.37a)  a(,n;t) = acoswt - % sin ot -+

_i_s{ldo'(t)_ hry (1+%mzwzz)+ﬁ(_ﬁl—x2)coswt—

2w2° |2 di m2w? m\mw?
}Lz i ﬁ '
= og (1 42, + 53) sinowty -+ - ’7 mo cos ol — ma(t) -|—5(ﬁm;{y - #,) sinwt},

(8.37b) p(&,m;t) = p cos wt — amw sinwt—l—gﬁ-

m_d*e(t) fi Ay .
2w2 ar  o\mer

+ iy ;—n-{— m di;_(tt) — mwo sinwt -+ f(fmyd + x,) cos wt 4 ﬁxz(t)} )

ﬁzg (1 4 4oy -+ 22) eos wt - ma(t)} +

. i 1— i
(8.37¢) y(&m;t) :x—lf( sin wt ot ﬁ_%‘?_)
_ sinwt_ - g t ot)—o %277 1. B
'ﬂ][l’ @ ma(l cosmt):l—2 [2—)/——2602 +m?w4 1—[—§m w1}
h_(fyd . A2 .
e (,mw2 - %2) sin wt - mrolo (14 45, + 23) (1 — cos wt)]—
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2
— %—[ﬁ -+ %ﬁ" m2yAt + %m”(a(t) 4+ 0)—m?g cos wt—-%n (mly + ;) sinwt]—

—Eﬂ[—m sinwt  m do(t)

%0 z&aﬁr

(1 —coswt) + aﬁ; (% fimly - "z)'

2m4

1 fi2 .
-(coswt — 5) -+ Smate (14 45, -+ %3) smwt] .
Now we choose as before W = W,o. The probability density, referring to
the time interval (4, 4- At), can be read off from x(&,7;t). We again obtain
a Gaussian with the maximum at the classical time averages

+At
sinwAt 1 1—ecoswAt 1 ,
(8.38a) - 2= all) oAl + . p(t) ~Atet — — Al fdt a(t’),
. ; 1 A 1 t+At
sinw — cos w Al ,
(8.38b) p = p(t) oAl — ma(t) A1 = Al fdt p(t),
where ¢

a(t) = a, cos wt - % sinwt, p(t) = p, cos wl — Mmwa, sin wt .

Similarly the one-time correlation functions <{x, x>, {p, p>, <, p> are obtained
from the coefficients of the terms — &2/2, —#?/2, — &, in expression (8.37¢)
of x(&,7m;1), through the following steps: i) ¢ is replaced by At; ii) o, », Koy
are put equal to o(f), #,(t), #,(¢), where these functions are given again by
eqs. (8.36), in which now ¢, #, x, are replaced by o,, »”, »”; iii) one must
multiply by 1/At2. The result is

(8.39a) {w, &y = mz_ﬁs%{z( oAt —sinw At + % sin 2w At) +
+ 43;?%:# (wAt L sm2wAt) + 2—73:—0)4 (1 —cos w At)® %ﬂ +
+ 55| L sino [+ 5m = 590+ 55
(8.39b) {p, p> = mt w”[iﬁ% (wAt s1n2wAt) +
+ a’:‘ z; (Z wAt—sino At 4 % sin 20 At) + 2:112 &ﬁt ! 4;?‘;)‘1(’) +
+ 20_(:) A (1 —;(Z;twAt o(t) — #,(1) sinwAt)z] +
R = g (460 +40) + 1

20AAt T 20(t)
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ﬁz
(8.39¢) {e, > = [45}1(02 (1 — 2m2w?)(1 — cos m At) + x,(t) 7 cos w At —
L ooty sinw Al —5 (1 de(t) + (D) sinew At 1—cosobiaizoh
2 2mawo(t) " i w? A2 — g

The uncertainty principle takes the form

(8.40) V<@, ay<p p>A’3°ﬁ(1+ #)*(Hu (1) + 30 +
! BT g ya(t) At t ?

a(t) \*
YA At) ’

Note also the very simple results that are obtained if one chooses At = 2z/w:

, 3y yi o \}
PR B SR i
@y @yt =k (8nm2w3 T 8w T 47tyh2) ’

(8-41) <.’L‘, p> =0 ’

y 3yd 1 )%‘
* - — —_— .
<, pt = fimos (8mn2 o ' 8nw  dyimhimie

9. — Concluding remarks.

In conclusion, we want to stress once more some few points.

i) In the probability densities for the time averages described by
eqs. (1.21), (3.10), (5.2), (6.6) the time intervals A¢ can be taken as small as
one likes, reflecting the fact that they derive from functional probability den-
sities. As is apparent from eq. (7.12), however, the dispersion of the time
averages diverges as At — 0 with a pattern typical of the so-called generalized
stochastic processes.

ii) There exists a certain connection between our joint probability distri-
bution for noncommuting quantities (eqs. (6.6), (6.5), (6.1)-(6.3)) and the
(generalized) Wigner quasi-probability. In fact, cur probability density for
time-averaged observables in the interval (¢,¢ - At), which is given (when
t, = 0) by

(9.1a) p(W(8)|; At) = Tr { F(x; Aty W (1)},
where
(9.1b) W) = g0 W,

can be written as

02 (W0 s 80 = (£) Y Tl fary exp [= 8 s pviole— 5 20,
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where

9.3)  B(W()x; Aty = (%z) f dok exp [i 3 k,.w,].

i=1

Ty {ex‘p [Atz—g S k{4, -}] W(t)} .

=1

The function E( W(t)|x; At) is something like a time-smeared Wigner quasi-
probability density; more precisely, we have

(94)  B(W(t)|x; 0) = Pug(W(t)J2) =

= (517—!) f drk T {exp [—i Z ko4, — w,)] W<t)}-

=1

Pwi(W(#)|%) is the density of the Wigner quasi-probability when the sta-
tistical operator is W(¢).

Note that p(W|x;At) and py, (W|x) are not positive functions of x for
every statistical operator W, in contrast with our probability density (9.1a).
Since the convolution with the Gaussian in eq. (9.2) comes from the &}-terms
in eq. (6.2), the essential role of these terms is apparent. For related results,
see ref. (%), subsect. 5.5, and references quoted therein.

iii) The discussion of sect. 6 shows that the method we have employed
for the construction of our probability distribution for trajectories is fairly
general and significant extensions can be foreseen and are actually in progress.

iv) If our discussion is intended 10 provide a model for a fundamental
theory of the connection between the macroscopic and the quantum level
of description of the physical world, some form of «energy conservation »
would be desirable. However, as is -apparent from the expression of . as
given by egs. (1.26), (5.12b) or (6.3), the « microscopic » energy A is not con-
served under the time evolution described by the operator %(¢). Nevertheless,
as discussed elsewhere by two of us (%), at least in certain cases, a conserved
modified energy can be defined as a generalized observable.

More coherently, a «coarse-grained » energy should be introduced in the
theory as a linear combination of the quantities A, (see sect. 6), but, in general,
the probability distribution for this «coarse-grained » energy too is not con-
stant in time. A detailed discussion about this point seems to be out of place
here; our feeling is that the problem of energy conservation could be dealt
with and possibly resolved only inside more realistic models, based on field
theory.

(**) A, BarcarerLr and L. LaNz: Nuovo Oimento B, 44, 241 (1978).
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APPENDIX A

Let us prove that the effect-valued measure defined by (1.13) (model II))
satisfies the equation

4+ 4w
. 1 i ny (RN
(A1) PR = o fas[ap exp|7 (pi— o) | exp |~ pa— o] =1

From the well-known identity
(A.2) exp[4 + B] = exp[4]-exp[B]-exp[— 1[4, B,

which holds true if [4, B] is a c-number (%), we can write

(A,S) exp [% (pq—— wp)] = exp [% Pq] exp [— % xp] eXD[— 2—%2950] .

Denoting by |¢) the eigenstate of ¢ and by |k) the eigenstates of §, we have
then

4o 4w

(Ad)  (F(RY)|g> = ﬁ fdwfdp {g|exp [% M]-
*exp [— 7 wp] 6 exp [; z‘)] exp [— ,—Z pé] lg"> =
o 4o .
= 5.7 fdwfdp eXP[ plg—q ]<QIeXp[—£ ]e eXp[ wp] lg"> =

+@® 40 +o

ota— o) [a [ [ <qlex [ 5| w5 chlg ey v exo[ o8] 10> =

40 4o oo

Sg—q fdwfdk dk’\/__exp[;(q-—m)k]-

~® —w —©

+co

1 ) N1l o A _ o
RS e exp [ o — 00 | = ta — 0 [ar righy = st — ).

-—C0
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APPENDIX B

For a pure state W = |p)(p| and in the Schrodinger picture eq. (2.8)
takes the form

F*I"/’s(h»

)
i o =o[ 38w

(B.1) ly> =

Equation (B.1) is a generalization of the usual postulate (cf. eq. (2.3)) on the
collapse of the wave function as a consequence of a positive answer to a yes-no
experiment related to an effect rather than to a projection.

In order to better understand the assumptions implied in eq. (B.1), let us
congider an ordinary observable A associated with the gelf-adjoint operator

(B°2) A = z I‘xr> “r(arl

and a related effect of the form

(B.3) F =73 |a>f <], 0<f.<1.

With obvious notations we have

(B.4) P(pld = a,, t,) = [Cote[195(t2) > 2
and

(B.5) P(y|F = yes, t;) = {ys(t) lﬁ’l’s(tl» = HF}I"/)SUI)>“2 = Z fr Kot la(t2)> 12
and, in particular,

(B.6) P(jo.>|F = yes, 0) =f,.

According to eq. (B.6) the quantity f, can be interpreted as the efficiency of
the device associated with the effect F in detecting the system if it is prepa:red
in the state |a,). Correspondingly, if, at the time f,, before we perform a fu:st-
kind measurement of the quantity 4 and immediately later we allow the device
associated with F' to act, the probability of obtaining an outcome 4 = .
and F = yes is given by

(B.7) P(iplA = Oy, tl) 'P(I‘xr> F = yes, 0) = l<“rl1l’s(t1)>|2fr .

Equation (B.1) states that the same result is obtained if the two deviees cor-
responding to 4 and F act in the reversed order

(B.8) P(wlF = yes, t1) P(%IA == Oy O) = l(%l%(h))l“fr
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and that the modification on the state vector of the system is the minimum
one consistent with such properties (the phases of the eigenstates [«,> in the
expansion of |ys(¢)> and jy,> oc Fijyg(t,)) are the same).

A more general prescription which could be a substitute for eq. (B.1) is

(B.9) [ A—

where f’l, f’g, ... is a sequence of bounded operators which decompose .

(B.10) F=3TT,.

Obviously, in general, the mapping defined by (B.9), which is called an opera-
tion, changes pure states into mixtures. N

An equation of the form (B.9) is obtained if the effect F is defined as the
result of the interaction of the system with an apparatus and the observation
of an effect F' on the apparatus (>%1#). The specific sequence I3, 15, ... i8
then a consequence of the nature of the apparatus, its interaction with the
system and the choice of the effect F.

Obviously for a given F a decomposition of the form (B.10) is not unique
corresponding to the fact that many different devices can be used to detect
the same effect F.

Equation (B.1) is a particular case of eq. (B.9) and corresponds to a highly
idealized « device» which induces the minimum possible disturbance on the
system. In a certain sense we can say that eq. (B.1) or (2.8) refers to a first-
kind observation of an effect.

(**) K. Kravus: in Lecture Notes in Physics, Vol. 29 (Berlin, 1973), p. 206.

@ RIASBSUNTO

Partendo dal concetto di osservabile generalizzata, associata a una misura a valori di
effetto, come formulato da Ludwig, si discutono alcuni esempi di osservazione con-
tinuata in meccanica gquantistica. Usando il formalismo dell’integrale di Feynman,
i costruisce una distribuzione di probabilitd funzionale sull’insieme delle traiettorie
che rappresentano i possibili risultati dell’osservazione continuata. Si mettono inoltre
in evidenza interessanti connessioni con la teoria dei semigruppi dinamici. Gli esempi
si riferiscono a sistemi con pochi gradi di liberta; il loro interesse & tuttavia sopratutto
in ordine alla luce che possono gettare sul problema del rapporto tra il livello di deseri-
zione quanto-meccanica e di descrizione maeroscopica di un corpo grande, per la quale
ultima il concetto di traiettoria continua sembra essere essenziale.
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Mogeab 8 MAKDPOCKONMIECKOTo ONHCAHMS M HENpephBHBLIX H3MepenHil B KBAHTOBOMH
MEXaHBKeE.

Pestome (*). — WVicxoms w3 mumed 000OHICHHBIX HAOFOZAaeMBIX BEIMYHMH, CBA3AHHBIX C
m3MeperneM 3bCKTHBHEIX 3HAYeHMH, Kak Obuio cdopMymiposano Jlromsarom, oGCyx-
IAIOTCS HEKOTOPbie MPEMEpHL HelpePHIBHFIX H3MEPEHNi B KBAHTOBOM Mexannke. Mcmois-
3ysa ¢eiaManoBckaif (OpMaNE3M HHTErpPajioB, KOHCTPYHPYEICA pacmpeneneame Gymx-
IHOHANLHOM BEPOSITHOCTH HA CHCTEME TPACKTOPHH, KOTOPBIE HPEICTaBILIOT BO3SMOXHEIC
PE3YIILTATH HEOPEPHIBHEIX H3MepeHnii, OTMEIAIOTCS MHTEPeCHBIE CBA3H ¢ TeOpHel NHHa-
MEYECKHX NOIyrpymr. IIpuMepbl OTHOCATCA K MaibIM CHCTEMaM, HO OHH SABILTIOTCA
HMHTEpeCHHIMH, T.K. MOIYT IPOJHTH CBET HA IpoGNeMy CBSI3H MEXAY KBAHTOBBHIM H
MAaKPOCKOIMYECKAM YPOBHAME OMHACaHust GONBIIMX Tell; A/ KOTOPHIX HICsS HeIPePLIBHBIX

TPACKTOPHi, HO-BHIAMOMY, SBJISETCS CYLIECTBEHHOM M MAKPOCKONMYECKOrO YPOBHA
OIMHACAHWSI.

(*) IIepesedeno pedaxyuei.



