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S u m m a r y .  - -  Starting from the idea of generalized observables, related 
to effect-valued measures, as introduced by Ludwig, some examples 
of continual observations in quantum mechanics are discussed. A func- 
tional probability distribution, on the set of the trajectories which are 
obtained as output of the continual observation, is constructed in the 
form of a Feynman integral. Interesting connections with the theory 
of dynamical semi-groups are pointed out. The examples refer to small 
systems, but they are interesting for the light they may shed on the 
problem of the connections between the quantum and the macroscopic 
levels of description for a large body; the idea of continuous trajectories 
indeed seems to be essential for the macroscopic level of description. 

l .  - I n t r o d u c t i o n .  

In  the ordinary formulation of quan tum mechanics the (~ preparat ion *~ of 

a system is represented by  a statistical operator  14 r (which is said to specify 

the (~ state of the system ,~) and an observable quan t i ty  A by  a self-adjoint 

operator ~ ,  both  acting in an appropriate  t I i lber t  space ~9. At  a given t ime t 

the expectation value of any  function r  of the quan t i ty  A is given by  

O.:t) 

where 

(1.2) 

( r  = Tr ( ~ ( 1 )  l~rs(t)} = Tr (~(fl~(t)) 1~}, 
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the  first equa l i ty  referr ing to  the  Sehr6dinger  p ic ture ,  the  second one to  the  

He i senbe rg  pic ture .  
Accord ing  to  the  spectra l  t he o re m  with  the  opera to r  A a (~projeeticn- 

va lued  )) measure  
+r 

T - - c o  

(~.3) 

is associa ted  such t h a t  

(1.4) 
q-co 

qS(d) = f dE(a) ~(a) .  
- c o  

Special izing eq. (1.1) to  the  charac te r i s t ic  func t ion  of an  in te rva l  I - - (a ,  a + A a ) ,  

we ob ta in  

(1.5) P ( W  :A �9 I ,  t) = Tr  {E(I)  I~s(t)} = Tr  {F,u(I, t) IV} 

for the  p robab i l i ty  tha t ,  observ ing  A at  the  t ime t, we find a value in the  in- 

t e rva l  I .  

E q u a t i o n  (1.5) is comple te ly  equ iwden t  to eq. (1.1), which in t u r n  can 

be der ived f rom (1.5) v ia  (1.4). 

On the  o ther  side, eq. (1.1), or (1.5) corresponds  in some w a y  to  an  over-  

idealized s i tua t ion  in which it is possible to d iser iminate  sha rp ly  be tween  values 

of A belonging to  I a nd  values  no~ belonging to  it (~). 

A more  general  m a t he m ~l i c a l  cha rac te r i za t ion  of an  observable  has been 

g iven  b y  LUDWIG in the  con tex t  of an  ax ioma t i c  fo rmula t ion  of q u a n t m n  

mechanics .  
Accord ing  to  LUDWm (2) an  observable  A is associa ted  wi th  an  ((effect- 

va lued  ~ measure  
+co 

( 1 . )  = 

T co 

r a the r  t h a n  wi th  a ( (projec t ion-valued ~) one, and  one has 

(1.7) P ( W I A  �9 r ,  t) = Tr  {F(I )  VG(0} = Tr  {-G(I ,  t) W}.  

(*) E. P. %VIGNER: Z. Phys., 133, 101 (1952); H. ARAKI and M. N. YANASE: Phys. 
l~ev., 120, 622 (1960); ~[. N. YANASt;: Phys. Rev., 123, 666 (1961); M. N. YANASE: 
in Proc. S.I.JF., Course IL,  edited by B. D'EsPA(;NaT (New York, N. Y., 1971), p. 77; 
K.-E. HELLWIG: in Proc. S.I.F., Course IL, edited by B. D'ESPAGNAT (New York, N. Y., 
1971), p. 338. 
(2) G. LUDWIG: Commun. Math. Phys., 4, 331 (1967); 9, l (1968); Lecture Notes in 
Physics, Vol. 4 (Berlin, 1970). See also E. B. DAV~;S and J. T. L~wls:  Commun. 
~]lath. Phys., 17, 239 (1970); A. S. HOLEVO: Trans. 3Ioscow 3lath. Soc., 26, 133 (1972); 
J. Multivariate Anal., 3, 337 (1973). 
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We recall that,  according to Ludwig's terminology, an effect is a positive 
self-adjoint operator smaller than unity: 

(1.8) .B + = .B, o < # < 1 .  

~ote  that,  whilst from idempotency it follows immediately tha t  

(1.9) ~(T~) k(T~) = ~(T~ n T.) = ~ (T . )  ~ (T1) ,  

we have, in general, 

(1.10) ~(T1) P(T,) ~: f(T,)P(T1). 

Significant examples of such generalized observables have been given by 
LUDWIG and collaborators (3), HOL~.VO (4) and DAVIES (6). 

The main advantage of the new definition in comparison with the ordinary 
one stays in its greater flexibility. Since generalized observables can represent 
observations of limited accuracy and discrimination power, they arc suitable 
for describing inaccurate simultaneous measurements of incompatible quan- 
tities. In particular, they seem to be very convenient for describing continual 
macroscopic observations and it is just this aspect that  interests us here. 

In fact, LUDWIG has also given an axiomatic formulation of macroscopic 
physics (6) which for our present purpose can be stated in the following sim- 
plified way: 

1) the state of a macroscopic system is specified at any time t of a given 
interval (tl, t~) in terms of a set of variables z = (zl, z~, ...) which belongs to 
a (( macroscopic phase space ~) Z (which can be given the uniform space structure); 

2) a definite choice of the physical conditions imposed on the system 
corresponds to a probability distribution on the space :Y of the continuous 
functions .z(t) on the interval (ti, t~); 

3) the macroscopic dynamics must be specified by a set of rules for the 
actual construction of the probability distribution mentioned above. 

In this context, in order that  the quantum and the macroscopic descrip- 
tions of a large body be consistent, it should be possible to define an effect- 

(3) See ref. (2) and  K.  KRAUS : in  The Uncertainty Principle and -Foundations of Quantum 
Mechanics, edi ted b y  C. PRICE and  S. S. CHISSIK (London,  1977), p. 293. 
(4) A. S. HOLEVO: Rep. Math. Phys., 13, 379 (1978); 16, 385 (1979). 
(5) E.  B. DAVIES: Quantum Theory of Open Systems (London,  1976). 
(a) G. LUDWIG: in  Lecture Notes in Physics, Vol. 29 (Berlin,  1973), p. 122; Makrosko. 
pisehe Systeme umd Quantenmechanik, in  Notes in Math. Phys. (Marburg,  1972). 

6 - 11 .Nuovo (M.mento B. 
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valued measure  F (M)  on an  appropr ia te  a-algebra of subsets of Y such t h a t  

the  quan t i ty  

(1.11) P(Wl[z( t )  ] e M) = Tr  {P(M) ~ }  

could be in te rpre ted  as the  probabi l i ty  t h a t  the funct ion z(t) describing the  
actual  macroscopic behaviour  of the  body  belongs to the  specific subset  M of Y. 

Once an equat ion of the  t ype  (1.11) is assumed,  it is possible, among  other  
things,  to give a sat isfactory solution of the prob lem of measu remen t  in q u a n t u m  
mechanics in t e rms  of an in teract ion (7) be tween  microscopic and  macroscopic  
objects and  all paradoxical  aspects  of q u a n t u m  mechanics disappear.  I tow- 
ever,  no explicit  construct ion of such a funct ional  p robabi l i ty  dis tr ibut ion or 

(~ effect-valued ~ measure  has  been given so far. 
Although a realistic solution of this p rob lem should be given in the  frame- 

work of the  seeond-quant izat ion formalism, it seems worthwhile beginning to 

s tudy  models with finitely m a n y  degrees of freedom. 
In  this paper  we shall consider two different models which arise f rom the 

following generalized observables :  

I) a (~ coarse-grained ~ posit ion for a one-dimensional  part icle  defined 

by  the  t r iv ia l  (~ effect-valued )) measure  

(1.12) F(T)=V~fdxexp[--~(x--4)~], ~ > 0 ,  
T 

where ~ denotes the  ordinary  posi t ion opera tor  for the sys t em;  

I I )  a generalized observable which in ordinary  language corresponds to a 
s imultaneous inaccurate  measu remen t  of posit ion and  m o m e n t u m  (again for 
a one-dimensional  particle) and  which is defined by  (~) 

(1.~3) P( T) = f dx dp2~-~( exp [~ (p~ -- x~) ] ~ exp [-- ~ (p~ -- x~) ] , 
T 

where ~ is a given positive~ trace-one operator ;  for instance,  it can be chosen as 

(1.14) ~ = c exp [ -  ~(i~ + ~p~)], a, ~ > o .  

(7) G. LUDWIG: Lecture Notes in Physics, Vol. 29 (Berlin, 1973), p. 122; G. LVDWIG: 
in Proc. S.I.~., Course IL, edited by B. D'EsPAG•AT (New York, N.Y. 1971), p. 122; 
L. LANZ: in The Uncertainty Principle and ~oundations o/Quantum Mechanics, edited 
by C. I~RICE and S. S. CHISSIK (London, 1977), p. 87; for a review of different ap- 
proaches on this problem see also G. M. PROSPERI: in Lecture Notes in Physics, Vol. 29 
(Berlin, 1973), p. 163. 
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The fact tha t  measure (1.13) satisfies the second of equations (1.6) is shown 
in appendix A. 

For both models we shall consider repetitions of the measurement at  sub- 
sequent regularly separated t imes between t~ and  t~ and  shall evaluate the 
probabil i ty of a certain sequence of results by  an obvious generalization of the  
Wigner formula for repeated observations (8). Then we set 

(1.15) a = 7v 

(3 being the t ime interval  between two subsequent measurements) and  show 
tha t  the limit for T --> 0 can be performed and a functional  densi ty of proba- 
bili ty or density of effect for a continual observation can be defined. 

For  instance, for model I) we can write 

(1.16) p(Wl[x(t)]) = Tr ( f [x( t ) ]~} ,  fd/~o[x(t)]][x(t)] = 1, 

(1.17) P(W][x(t)] e M) =fdl~o[x(t)]p(W][x(t)]), 
M 

where Sd#o Ix(t)] denotes an appropriate functional integral and M a subset of :Y. 
Quite unexpectedly it turns out  t ha t  a set M'  of the type  

(1.18) M ' =  {x(t)la(t ) < x(t)< b(t)} 

occurs with zero probability. On the contrary, a set 

(1.19) M " =  

for given t,, 

(1.20) 

{ i f tx,,, i, x(t) ~, < 3, - -  3,_1 

tO ~---tt< 31< " " <  3~,-1<~ t , = t t ,  

has a finite probability.  
Actually, for what  concerns the second statement,  we prove tha t  the ordinary 

density of probabil i ty 

(1.21) p(WrZ0; ~, ,  ~,; ~ ,  ~2; ... ; ~ , ,  ~,) =fd~o[X(t)]. 
�9 ~ " Z , - - 3 , _ 1  

exists and  is finite�9 

(s) E . P .  WIG~V.R: Am. J. Phys., 31, 6 (1963); R. M. F. HOUTAPPEL, IX. VAN DAM 
and E. P. WmN]~R: Rev. Hod. Phys., 37, 595 (1965); E. P. WIaNER: in Proc. S.[.F.,  
Course IL, edited by B. D'ESPAGNAT (New York, N.Y. ,  1971), p. 1. 
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As we shall see, it is also possible to write eq. (1.21) in the form 

(1.22) p(Wl~o; .~, ~;-Y2,t2; . . . ; -~,  tv) : Tr  (~-(.Y~, tv--t~_~) . . . .  ~'(~'~, t~--to)]~s(to)}, 

where ~'(x,  t) is an operator  act ing in the space vc(.~) of trace class operators 
on the space ~.  Then it is part icularly significant to consider the expression 

(1.23) 
~co 

= f dx t),  
- c o  

which provides the evolution of the statistical operator  under  continual  
observation when no notice is taken  of the result. I t  is worthwhile ment ioning 
tha t  the operator  ~(t) satisfies the semi-group condition 

(1.24) .~(t~) ~(G) : .r + t~), t~, t . ,>o ,  

and the differential equat ion 

(1.25) d~(t)  _ Lf~( t ) ,  
dt 

where ~q~ is again an operator  in vc(�9 defined by  

(1.26) z ~  - ~  [/~, ~] - ~ [q, [~, w]] 

Equat ions (1.25) and (1.26) define typical ly a t ime evolution which satisfie.~ 
the requirement  of preserving the trace and the posi t ivi ty of the operator  I?V 
to which it  is applied (9). 

We note  tha t  the parameter  a occm'ing in eqs. (1.12) and (1.15) specifies the 
degree of accuracy in the observation related r ~hc considered (( effect-valued )) 
measure. For  instance, in terms of the eigenstatcs of ~, 

(1.27) qlq> = q[q>, 

eq. (1.12) can be wri t ten  a,s 

+co 

(1.28) P(~)= V: fdxfdqlq>cxp[--~(x--q)~]<q I , 
T --co 

(9) V. GORINI, A. KOSSAKOWSKI and E. C. G. SUDARSrIA~: J. Math. Phys. (N. :Y.), 17, 
821 (1976); G. LINDBLAD: Commun..3lath. Phys., 48, 119 (1976). 
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which for ~ -+ + oo becomes 

(1.29) /~(T) =fdqlq> <q] 

and our ~ coarse-grained ~> position x becomes identical to the (( microscopic, 
position q. On the contrary, as ~ -+ 0, the information implied in the statement 
x e T becomes progressively poorer for what concerns the microscopic position q. 

The meaning of eq. (1.15) is that,  in order to introduce consistently a con- 
tinual observation of a quantity starting from a sequence of subsequent discrete 
observations, the accuracy of the single observation has to decrease as the 
number of the repeated observations increases. I t  is just this circumstance 
that  enables us to circumvent the difficulties that  have been found in the  
preceding attempts of introducing a continual observation for ordinary ob- 
servables and, in particular, the curious paradox, that  has been called Zeno 
paradox, according to which a system is frozen in a definite state by such an 
observation (10). The quantity 7 simulates what should be, in a certain order 
of ideas, a fundamental constant occurring in the relationship between the 
macroscopic and the quantum level of description. 

As a generalization of models I) and II),  finally, we consider the case of a 
continual coarse-grained observation of a set of nonc0mmuting quantities 
A1, A2, ..., A, for an arbitrary system with a finite number of degrees of freedom. 

In  conclusion, it should be mentioned that,  in a different context, a theory of 
continual observations (tailor-made for photon counting exper iments)has  
been developed by DAVIES (~) and DAVIES and SRINIVAS (11). Strictly connected 
with the concept of continual observation is also the treatment of unstable 
systems of FO~DA, G H I R A R D I  a n d  ]~rYIINI (12), 

The plane of the paper is the following one. 
In sect. 2 we discuss the probability distribution for the outcome of repeated 

measurements of an ordinary or a generalized observable according to the 
usual rules on the reduction of the state in quantum mechanics and we derive 
the Wigner formula and its generalization. 

In  sect. 3 we perform the limit z -~ 0 for model I) and evaluate p(W[[,(t)]) 
and p(W]to;~, t l ; . . . ; ~ ,  Z~) in terms of Feynman integrals. 

In  sect. 4 we study the operator ~-(z, t) and its Fourier transform ~'(k, t) 
for which a simple differential eqlmtion can be given, in some way Similar 
to eq. (125); then we consider the evolution operator ~ ( t ) =  :~(0, t) and 
establish eqs. (1.25), {1.26). 

In sect. 5 we treat model II) along the same lines and in sect. 6 we give 
the generalization to the case of noncommuting quantities A~, A~, ..., A~. 

(lo) B. MIS~A and E. C. G. SUDARSrlAN: J. Math. Phys. (N. Y.), 18, 756 (1977). 
(n) E. B. DAVIES and M. D. SRII~IVAS: Opt. Acta, 28, 981 (1981). 
(t2) L. FO~A, G. C. GHIRARDI and A. R1~INI: Rep. Prog. Phys., 41, 587 {1978). 
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In  sect. 7 expectat ion values and correlation functions are t rea ted  and 

a generalized Ehrenfest  theorem is obtained. 
In  sect. 8 finally the  explicit  results are worked out for the free particle 

and the harmonic oscillator in the one-dimensional case. 

2. - Repeated  observat ions .  

In  the ordinary formulat ion of quan tum mechanics the probabi l i ty  for 
observing a value in the interval  11 = (a~, a~ + Aa~) for the quan t i ty  A at  
t ime t~ is given by eq. (1.5), as we have recalled. Taking into account the idem- 
potency of the projections (~2 = ~)  and the cyclic proper ty  of the trace opera- 

tion, we can write, e.g. in the Heisenberg picture,  

(2.1) P ( W I L ,  tl) = Tr  { E , ( L ,  t , )WE.( I1 ,  tl)}. 

We m a y  ask now what  is the probabi l i ty  tha t  s tar t ing from a given initial con- 
dition one jointly observes A ~ I~ at the t ime t~ and A ~ I~ at the subsequent  
t ime t2. The answer to this problem depends on the assumption tha t  we make 
on the measuring apparatus.  I f  we assume tha t  the disturbance in t roduced by  
the apparatus  at the t ime t~ is the minimum one consistent with the discrimina- 
t ion between the two situations A ~ I~ and A ~ I~, the usual reduct ion postulate 
can be applied. Then, if the result  A ~I~ at t~ is found~ the probabi l i ty  of 

observing A ~ 12 at  t~ is given by  

Ao(W1]I~, t2)  = Tr {/~j~(I~, t~) 1~ ~:H(I~, t~)}, (2.2) 

where 

~ I t ( I 1 ,  t l)  HfEH(-/1, t l)  
(2 .3 )  - T r  

and for the joint probabi l i ty  one has 

(2.4) P(WIL, t l ;L . , t~ )  ---- P ( W I L , t l )  P(W~!I.~,t~)= 

By repeated application of such an equation, we find the  Wigner formula (a) 

for the case of many  subsequent  observations:  

(2.5) P(WlIx, t l ;I2, t~ ; . . .;Iu ~- 

= Tr {J~r~(IN, t~v).../~.(I2, t2)/~H(I~, t~) ~-/~r~(I~, tl)En(I~, t2) ... ~r~(I~v, t~v)} �9 

In  a similar way for a generalized observable we can write eq. (1.7) in a 

form parallel to eq. (2.1): 

(2.6) -P(wlz , tl) = Tr  
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An obvious generalization of eq. (2.5) is then  

(2.7) P(W]I t ,  t,; I , ,  t~; ... ; I~,  t~) = 

. . . .  ~ P . ( x ,  t~) L , ( I , ,  t,) ... P~(I~,, t~,)}. Tr {P~(I~, tx) l~(I~,  t~) P~(I~, t~) ~ t 

Equat ion  (2.7) corresponds to restat ing the reduction postulate  for a generalized 
observable in the  form 

P~(II ,  t 0 ~ P ~ ( I , ,  t~) 
(2.8) I~, = Tr { /~ ( I , ,  i t )I~P~(I~,  tl)}" 

The meaning of such an assumption for the  pure-state  case is i l lustrated in 
appendix B. 

One of the  most  appealing aspects of eqs. (2.5) and (2.7) is tha t  t hey  could 
be assumed as a fundamenta l  postulate  for repeated observations,  independent ly  
of the  way  they  have been derived, avoiding any  explicit reference to a reduc- 
t ion postulate.  

We note tha t  both  equations (2.5) and (2.7) can be wri t ten as 

(2.9) 

where 

(2.1o) 

P(WII t ,  tt; ...; Ix ,  ix) = Tr {P(I , ,  t~; ...; Ix ,  tx) l~'}, 

.~(I~, tl; ...; IN, tN) = 

= ~a(I~, tx) ... ~- ( I~-x ,  tx_x) ~a( I~ ,  t~) ~H(I~_,, t~_,)... B.(I,, t,) 

for an ordinary observable and as 

(2.11) P ( I , ,  t~; ...; Ix ,  ix) = 

= JO~a(I~, t ,). . .  P~(Iz,_~, tx_~)JO.(Ix, tx)iP~(Ix_x, ix_l)... P~(I , ,  it) 

for a generalized one. 
In  both  eases -~(I~, t l ; . . . ; Ix ,  tx) is an effect and eq. (2.9) is similar to 

eq. (1.7) under  this respect,  showing once more the  much greater generality 
and  concrete relevance of effects as compared wi th  projections. 

Such an effect, however, does not  generate a measure on R x, in fact, if I~ 
and I~ axe two disjoint intervals,  we have 

(2.12) P(I~ u I t ,  tl; I~, t~; ...; Ix,  tx) # 

# P( I ; ,  tl; I , ,  t~;...; Ix ,  t~,) + P(I~,  t~; I~, t , ; . . . ;  B,, t~,) 

apar t  from trivial cases. Thus repeated observations cannot  be considered as 
a generalized observable in general. Having  in mind eq. (1.12) or (1.13), 
however, we are led to consider (( e f fec t -valued,  measures which derive from 
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densi t ies  of effects,  i.e. 

(2.13) 

wi th  

(2.1a) 

d/~(a) = f (a)  d#(a) 

fa/~(a)f(a) = 1, 

where  d#(a) is a numer ica l  measure  and  f (a )  is a func t ion  on t he  rea l  axis 
(or, more  general ly ,  on a real  space R') wi th  values  in the  set  of the  posi t ive  
opera tors  in $2- i n  this  ease, replac ing  eq. (2.13) into (2.11), we ob ta in  for 
inf ini tes imal  in tervals  

(2.15) ~(dI1 ,  11; ...; dI.v, t,v) - - f ( a ~ ,  tl; ... ; as ,  ta . )d#(al) . . ,  d#(a.v) = 

- f~ (< ,  tl) "~ - -  ... fu(a,, ._,,  t.,=l)fu(a.,., t.,-)f~u(a~._:, t~_l) ... f~ (a , ,  t~) d/~(al) ... d#(a~v) 

and  f rom (2.9) 

(2.16) P ( W I d I 1 ,  tl; ... ; dI.,-, G-) = p ( W ] a l ,  tl, ... ;a.v, t~v)d#(al).., d#(a~.) = 

= Tr  {f(al ,  tl ; . . .  ; a~, t~) ~/-} d#(al)  ... @t(a~).  

F r o m  eq. (2.14) it  follows t h a t  

--co 

(2.17) j d# (a .u  tl ; ... ; ax_l ,  t.,-_l : ax,  t , )  = 
--ca 

= f~(a l ,  ~: t l ) . . . f ~ ( a x _ l ,  tx_l)f,5,(ax 1 , ix  1 ) . . . f rS~(a l , f : )~ - f (a l , t : ; . . . ;aN- : , t ze - : )  

and,  by  i tera t ion,  

fd/~(al) ... dg~(aN)f(al, tl : . . .  ; aN, t•) = 1 ,  (2.18) 

fd# (a l )  ... d#(a . , . )p (Wla l ,  tl; ...; aN, (2.19) t~v) 1 .  

Thus  we ar r ive  a t  a normal ized  dens i ty  of effects for r epea ted  observa t ions  and 
a t  a dens i ty  of p robab i l i t y  which aetuMly genera te  an  effect -vMued measure  
on R N: 

t: ; . . .  ; IN,  t v) =_fd#(a l ) . . . fd~ , (< , . ) f (a l ,  t~ ; . . . ;  aN, (2.2O) f " ( I~ ,  tee) 
I1 IN 

and  a new p robab i l i t y  d i s t r ibu t ion  

,1; . . . ;  t,; . . . ;  (2..91) tN) 

= Tr  {/O'(I:, tl; ...; IN,  t~)I?V} 

having  all t he  requ i red  proper t ies .  
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We note  t ha t  the  result  we have obtained depends s tr ict ly on having con- 
sidered generalized observables for the  measurement  a t  the single t imes 
tl, $2, ..., tN. For  an  ordinary observable a significant l imit  exists for vanishing 
intervals 411, ..., d/N only in the  case of a purely discrete spectrum. ! ~  the  1)re- 

senco of a continuous spectrum, if one tries to set d~(a)  = ~(a)da, eq. (1.9) 
implies 

(2.22) ~(a) ~(a') - -  ~ ( a - -  a') ~(a),  

thus  $(a) cannot  be an ordinary operator-valued function,  bu t  mus t  be an 
operator-valued distr ibution and  an equat ion similar to (2.15) cannot  hold (*). 

F rom the  physical  point  of view, the difference between the  cases of an  
ordinary and a generalized observable can be t raced  back to the  fact  tha t ,  in 
the  first case, as the  ampli tudes Aa,, Aa,, ..., AaN of the intervals  11, I , , . . . ,  Iv  
vanish, the  dis turbance produced by  every  observat ion on the  subsequent  ones 
explodes;  on the  contrary ,  in the  second case for an effect-valued measure,  
e.g. of the  type  defined by  eq. (1.12), the  dis turbance remains l imited due to  
the  intr insic inaccuracy in t roduced by  the  pa rame te r  a. 

Note  also t ha t  there  is a physical  difference between eqs. (2.20), (2.21) 
and eqs. (2.11), (2.9). In  the  case of eqs. (2.20), (2.21) the  measurement  ap- 
para tus  is supposed to  be as accurate as possible consistent ly with the  form 
of IP(T): large in te rva l s  I1, I , ,  . . . , IN simply m e a n  tha t  we are asking for less 
information than  tha t  in principle available. Ins tead,  in the  case of eqs. (2.11), 
(2.9), the  appara tus  is assumed to be buil t  in such a way  tha t  the minimal dis- 
turbance  on the  system is produced compatible with the required information:  
diminishing Aal, Aa,,...,AaN amounts  to modifying the  appara tus  and to  

increasing the  disturbance.  
Equat ions  (2.13)-(2.21) will be at  the  basis of our subsequent development.  
To close this section i we note  tha t ,  by  i tera ted application of eq. (2.17), it  

follows t ha t  

(2.23) Jdft(a,+l) ... d~t(aN)p(Wlal , tl; ... ; a~, t ,;  a~+x, t,+x; ... ; aN, tzr 

-~p(W]al,t l; . . .;a, , t ,) ,  P < h r ;  

(*) Actually, in this case too it is possible to set 

P(d/1, tl; ...; d/N, iN) ---- ~H(d/1, tO .. ./~HtdU-, tN-0" 

�9 ~ ( d / N ,  tN)/~(d/N-1, tN-1) ... ~ ( d / 1 ,  h) 

and correspondingly to define an effect-valued measure _#'(11, tl; ...;IN, tN), but for 
this measure it is not possible to perform the limit z --+ 0, N --+ 0% discussed in the 
next section. 



90 A. BARCHIELLI, L. LANZ and a. M. PROSPERI 

ins tead ,  we h a v e  

(2.24) f d z ( a t ) . . . d t ~ ( a ~ l p ( W l a , , t ~ ; . . . ; a ~ , t ~ ; a ~ + ~ , t ~ + ~ ; . . . ; a , . , t , .  ) 

:/: p ( W [ a ~ + i ,  t~+l; ... ; (t~-, tlv)�9 

The  difference b e t w e e n  (2.23) a n d  (2.24) expresses  t he  i r r eve r s ib i l i t y  iJ~ the  t i m e  
evo lu t ion  i n t r o d u c e d  b y  the  r e p e a t e d  obse rva t ions .  

3. - Continual observation o f  the coarse-grained position. 

We will now ana lyse  the  case of t he  (, coarse-g,, 'aincd ~) pos i t ion  for  a one- 
d imens iona l  p~r t ie le  def ined b y  eq. (1.12). Se t l i ng  

(3.])  dtt(x) = V !  

we can  wr i t e  

d , r ,  f ( x )  = exp  [ - -  ~(~ - - x ) ~ ] ,  

(3.2) ](x, ,  t l; . . . ;  x,., t~.) 

"eXI)[--O~(qH(t.v)--XN)2]PxP[--2 (qH(t~. 1)--XN_I)2]...exp[--~ (~g(tl)--Xl)2 ] 
a n d  

(3.3) P ( W l x l ,  tt; ...; XN, t~-) ~-- T r { f ( x l ,  tt; ...; Xlv, tN)W} ~--- 

L e t  us t h e n  consider  a defini te  i n t e r v a l  of t i m e  (t~, tf) a n d  a con t inuous  func-  
t ion  x( t )  on i t ;  t h e n  set  in eqs. (3.2), (3.3) 

1 ( t f - -  ti) xs = x( t~) .  ( 3 . 4 )  ts = tl - ~  s ~ ,  ~ ~ ~ , 

I f  we f u r t h e r  a s s u m e  z = y v  (cf. eq. (1.15)) a n d  p e r f o r m  the  l imi t  for  N - >  co ,  
we o b t a i n  

(3.5) j~x(t)]  = T* exp  - -  ~ t (~ . ( t )  - -  x ( t ) )  2 �9 T exp  - -  ~ t (~n(t) - -  x ( t ) )  2 

ti  $1 
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and 

(3.6) ~(Wl[~(o]) = ~r{][~(t)] $ }  = 

tl t i  

Here T denotes the time-ordering prescription and T* the prescription of 
reverse order, tha t  is equivalent in this case to considering the adjoint operator 
of the expression with T. 

Equations (3.5) and (3.6) define functional densities of effect and the proba- 
bility corresponding to a continual observation in the considered t ime interval. 
Such densities refer to the functional integration which formally can be derived 
from the ~ measure ,  

(3.7) dpa[x(t)] = lim dp(x,) ---- " /~,~\N/, H dx, 

and are normalized with respect to it. E.g. we have 

As we mentioned, the density of probability p(Wl[x(t)] ) is such tha t  a sub- 
set M' of the type defined by eq. (1.18) of the functional space Y has zero 
probability: 

(3.9) fdpo[x(t)]p(Wl[x(t)] ) = l i  a fdtt(xt).. .fd#(xN)p(W[xl,tt; . . . ;xN, t s )=0 .  
a(t) a(h) a(tH) 

On the contrary, a subset M" of the type of eq. (1.19) has a positive probability 
or, what  is the same, the density of probability in eq. (1.21) 

(3.10) ~(w[~o; 71, i~; ~,,  t,; ...; ~, ,  i,) = 

----fd#,~[~ ~ ~ ( ~  

=fd#o[x(t ) ]  ~ ~ (.% 

i, 

t f  

t i  t i  

is well defined and nonzero. 
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In  order to  prove the  above s t a t emen t ,  it  is convenien t  t~) use l.he F e y n m a n  
integral  formalism.  

We have  
t f  

(3.11) <q,, t, IT exp - -  ~ tq,, t,> = 

t i  

= dffF[q(t)] exp dt .L(q(t), ~(t)) - -  ~ (q(t) - -  x(t)) ~ , 

t l  

where L(q, q) is the (, classical ~ Lagrang ian  of the  particle,  

(3.12) 

and,  formally,  

(3.13) 

wi th  

(3.14) 

]q,t} cxp [~ /J ( t ) J  ic> 

\2~i/gr] ,=,[I dq(t,) 

q(to) = qi , q(t~.) = q,. 

Replacing eq. (3.11) in (3.6), we obta in  

S r ! r ~ ! (3.15) p(Wl[x ( t ) ] )=  dq, dq, d q f d q ~ d ( q ~ _ q j ( q , , t ,  IWIqi , t l} .  

]1 S If * ' I f  [~ 7 ( ( q - - x ) ~  �9 df~.[q(t) dff,.[q (t)Jexp dt (L(q, Ol--L(q' , f~'))--  ~ 

t i  

We can then  perform explici t ly the  in tegra t ion  over the funct ion  x(t) in eqs. (3.9) 
and  (3.10). 

We have  

(3.16) 

b(t) t f  

a(t) t i 

b(t 1 ) b(t~,-) 

f x, 
a(tl)  a(t2c) 

�9 exp - - 7 T ~ .  xs 2 i (q (G)  = 

t f  

t i  
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+~ 

1 fd b(t)--a(t) (3.17) ~(~) = ~ y exp [-- y~] < 1 ,  B = max 2 

and eq .  (3 .9)  follows. 
In  a similar way, taking advantage of the identity 

(3 .18)  

we obtain 

' 

~t $f 

~t-I ti 

~t-x ti 

where we have set At z = i ~ - - i , .  In conclusion, eq. (3.10) becomes 

(3.20) (WjZo; ~,, z, ;...; ~ ,  ~,) =fda,  da; da, dq; ~(qt - -  q~). 

~t 

~t,_j 2 / j]  
$1-1 

tf 

tl 

in which only ordinary Feynman integrals occur. 
In  the above manipulations for clarity we have formally exchanged the 

functional integrals in d/~F[q(t)] and in dpa[x(t)]. Actually one should proceed 
in the following way: 

1) introduce a partition of the time interval (ti, t~) according to eq. (3.4), 

2) replace the integral in d/u~[x(t)] in eq. (3.10) by the corresponding 
discrete integrals, 
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3) write each of the  two exponent ia ls  in eq. (3.10) as a p roduc t  of the  

N factors corresponding to the  par t i t ion  of (t~, tf), 

4) introduce between the  factors  completenesses of the fo rm ]dq~lq, , t , } .  

�9 <q~, t~!, 

5) use the F e y n m a n  a sympto t i c  formula  for small  intervals ,  

6) pe r fo rm the  l imit  N ~ c~. 

Therefore,  a single l imit  N -+ cx~ has to be used for defining globally all the  
funct ional  integrat ions;  the exchange of the integrals is made  before the  

l imit  and  formula  (3.18) is used (~3). 

Equa t ion  (3.20) is our basic result.  
~ o t e  t ha t  a so significan~ result  depends s tr ict ly on assumpt ion  (1.15). 

ILiad we t aken  ~ fixed ra ther  t h a n  ~, we should have  repl%ced y by  ~/v in 
eqs. (3.16) and  (3.19) and  we would have obta ined  vanish ing  results also for 

~(w]~0; ~ ,  ~,; ...; � 9  ~ ). 
:Note also t h a t  eq. (3.20) in te rms  of a densi ty  of effect can be equivalent ly  

wri t ten  as 

(3.21) 

= f dq~dq; ~(q, -- q3 f d~.[q] f @;[q'] ~ [(u ~t') ' exp - -  7 Atz" 

�9 ~ , - - ~ , .  - -  j d t  _ ( q_q , )2  i 

t t -1 ti 

Final ly  let us consider a finer subdivision of the macroscopic t ime  intervals  

(tz_~, tt) into smaller  ones ~nd set  

(3.22) tz0 = t~ - i  < t~l < . . .  < t ~ , , =  tz , A t ~  = t ~ j - - t ~ _ l .  

By using the  obvious iden t i ty  

(3.23) ... dY:z~,, 

�9 d 2 ~ j - - ~  d tx ( t )  = 
J=l 

tt 

1 fdtxl,t) 

(13) A rigorous treatment of the whole m~tter can be given using the Albeverio 
ttoeg-Krohn definition of the Feynman integral (G. LUPIERI: Generalized stoct~stic pro- 
cesses and continual measurements i~ quantum mecha~dcs (preprint, ~ilano)). 
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we obtain from eq. (3.10) 

(3.24) ~ , ,  ~,~ ... ~ ,  pC w I~o; ~:-,,, ~1,; ~'~, ~, ;...; .~,,., ~,,.) �9 

~ t . , ~  ~ ~(wl~o;~.,~; ~; ;~.,~.) At--7 " ] =  "'" ' 

or a similar equat ion for the  densi ty  of effect ](to; x l, t~; . . . ;x , ,  t,). 
Equat ion  (3.24) is the  analogous for the  case of the  continual  observat ion 

of the  addi t iv i ty  of the  effect tO'(I~, t~; ... ; I~ ,  t~), or the  corresponding prob- 
abili ty P'(WII1 , tl; ...; I~, t~) as defined by  eqs. (2.20), (2.21). 

Equat ion  (3.24) will be referred as the  consistency property. 

4. - The probability density and semi-group properties. 

As s ta ted  in the  introduction (eq. (1.22)), the  probabil i ty  densi ty 
p(Wlio; ~ ,  Z~; ~ ,  t2; ...; ~ ,  t~) can be buil t  up b y  means of operators ~'(x,  3) 
acting on the "~c(,~) space. 

Actually~ we define 

(4.1) 
T 

i l fdt x(t))exp[--~t~'~JT" ~(x, ~) �9 =fd#.[x(t)] a (x--  7 
r 

T ] [rd ]E l �9 exp --~7 t ({~( t ) - -x( t ) ) '  ~ T * e x p  - - ~ .  t(~(t)--x(t))' exp ~/~T 

0 0 

Where now the functional  integral has to be unders tood as defined on the con- 
t inuous fimctions in the  interval  (0, ~). F rom this definition, it is trivial to 
see tha t  we have 

so tha t  eq. (3.10) can be rewri t ten as 

(a.3) p(Wlio; ~, ,  ~1; ...; ~,_1, ~,_1; ~, ,  Z,) - -  
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By eq. (4.3) the s tudy  of the probabili ty density can be reduced to the 
s tudy of the operator ~ ( x ,  v) (and of its Fourier t ransform ,~(k, T)). 

By using the Feynman  integral formalism, it is possible to explicitly per- 
form the d#o[x(t)] integration in eq. (4.1), as done in eqs. (3.18)-(3.20). We have 

(4.4a) 

where 

+co 

<ql(5~-(x, ~) 1~)!q'} = f d q o d q ' o F ( x ,  ~ Iq, q' ; qo, q'o) (qoll~lq;>, 
--co 

(4.4b) F(x, ~ ]q, q'; qo, qo) = 

] 
o 

�9 exp dt ~ [ L ( q ( t ) , O ( t ) ) - - L ( q ' ( t ) , q ' ( t ) ) ]  Y (q ( t ) - -q ' ( t ) )  2 --~ 

By using eqs. (4.4) and (4.3) 7 we immediately reobtain eq. (;3.20). 
From definition (4.1) and eq. (3.23), we see tha t  for the operators o~(x, v) 

the (( consistency property  ~ takes the form 

-~co 

(4.5) -~(x,=q Q - T 2 ) ~ - ; d x l d x 2 ~ ( x  -TlxI-~T1 @- T2T2X2-~] ~-(X2) T2) ,~~(Xl ~ T1) . 

-co 

Note tha t ,  if we discard all information referring to a t ime interval (t~_ 1 , t,), 
we must  integrate the probabili ty density with respect to the variable ~l and 
consider the expression 

(4.6) f d ~  ~(W]~o; ~ ,  ~; ...; ~ ,  Z,; ...; ~,, L) = 
--r 

+co 

_co 

"-~--(Xi--1, t i - -1-- t i - - .  9) "'" "~(Xl ,  t l - - t o )  Ws(t0)} �9 

We see tha t  ~ ( t - - t ' ) ,  defined by 

(4.7) 
+co 

~( t  - -  t') = f dx  ~ ( x ,  t - -  t') , 
-- r 
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acquires the meaning of <( evolution operator ~ for the time interval (t', t). 
Moreover, from property (4.5) we have 

(4.8) ~(t~ -4- t~) = ~(tD ~ ( tD ,  h ,  t ~ > o ,  

so that  the set of operators {~(t)}t>~o is a semi-group of completely positive, 
trace-preserving transformations on the Tc(~) space. In  the literature such a 
set of operators is calle4 (, quantum-dynamical semi-group ~ (see, for instance, 
ref. (~,,,1,)). 

Obviously the Feynman integrals in eq. (4.4b) can be performed only in 
special cases (e.g. flee particle and harmonic oscillator). However, it is pos- 
sible to give a significant differential equation for the Fourier transform of 
.~'(x, 3). Let us put 

(4.9) 
-{-r 

exp [-- ikx].  
- - c o  

In  terms of ~ (k ,  ~) the consistency property (4.5) becomes 

(4.10) + J [ k * ' -  , k** 

This equation takes a simpler form if we introduce a new operator ~(~, 3) as 

(4.11) ~(}, v) = ~(~v, v). 

In terms of this operator eq. (4.10) becomes 

(4.i2) ~r -~ + ~)  = ~(}, ~) ~(~, v~). 

Again ~(~, T) defined a semi-group. If  we denote by  ~f(~) its generator, 
the W-operators satisfy the differential equation 

(4.13a) ~(~, ~) = ~(~)  ~(~, ~). 

Then, using the initial condition 

(4.13b) ~(~, o) = ~ ( o ,  o) = 1 ,  

(14) V. GORI~I, ~t. FRIGERIO, M. V~.RRI, A. KOSSAKOWSKI and ]~. C. G. SUI)ARSHAN-" 
l~ep. Math. Phys., 13, 149 (1978). 

7 - H N u o v o  C ' i m e ~ o  B .  
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we can write 

(4.14a) 

o r  

(4.14b) 
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~'(~:, , )  = exp [,J.('(~)], 

~ ( k ,  3) = exp [zY(k/~)] .  

Note  that ,  for the (~ evolution operator  ~, we have 

(4.15a) ~(t) = ~(o,  t) = i f ( o ,  t) = exp [~' t]  

where 

(4.15b) Lf = JT'(0). 

In  order to obtain an explicit  expression for the generators 3V(~) and ~Sf, 
it is convenient  to use the F e y n m a n  integral formalism. F rom cqs. (4.4), 

(4.9) and (4.11) we have 

(4.16a) 

-~-r 

<q!(~(~, ~)W)lq'> =fdqodq'o (qoli~[q'o> G(~, zlq, q' ; qo, q'o) 

with 

(4.16b) 

o (L(q(t), O(t)) 

If _ �9 q (t)]. G(~,~]q,q';  qo, q~) ----cxp ~yy~2  d#F[q(t) d#~[ ' 

- L(q'(t/, O'(t/)) - ~ ( q ( t / -  q'(t/) ~ - g ~(q(t /+  q'(t/) 

where the F e y n m a n  integrals must  be performed with the boundary  conditions 

(4.16c) q(~:) = q,  q'(T) ~ q' , q(O)=qo,  q'(O)=qo. 

From eq. (4.16b), in the limit ~ -+ 0, using the F e y n m a n  asymptot ic  for- 

mula, we have 

(4.17) a(~, ~ Iq, q'; ~o, q;) ~Z~ a ( q -  ~o) a ( q ' -  eo). 

[ ~ 2 _ r ~  i ] 
�9 1 - ~  T ( q - q ' ) ~ - ~ ( q §  ') - 

i i , , 
/~ v<q I/2 leo) O(q' - -  q'o) § ~ m (qo ]/2 lq ) O(q - -  qo) . 



A M O D E L  F O R  THE MACROSCOPIC DESCRIPTION ETC.  9 9  

Introducing this expression into eq. (4.16a), we have finally 

i 
= -  [l, 

4y 

where (,~,/}} denotes the antieommutator between -~ and J~. )Tote that  ~f 
has the typical form of the generators of completely positive and trace-pre- 
serving semi-groups (~). This is apparently not true for ~/~(~). Indeed, ~(~, z) 
transforms trace class operators into trace class ones, but  not positive operators 
into positive ones. 

Finally, we observe that the density of the effect-valued measure introduced 

into eq. (3.21) can be written as 

(4.19) f(to; xx, tx; ... ; x , ,  t,) -~  ~ " ( x , ,  f , , - - to)  . ~ ' ( x , ,  1~ - - t , )  . . .  #~- ' (~ , ,  t ~ - - t , , _ , ) " 1 ,  

where ~ is the identity operator on the space ~0 and ~ ' (x ,  ~) is the adjoint 
operator of ~-(x, z), which acts on the space of the bounded operators on ~) 
(the dual space of ~c(~)). 

Note that  the trace-preserving property of ~(t) is equivalent to the fol- 
lowing equation for its adjoint ~'(t): 

(4.20) ~'(t) ~1 = '1. 

5. - Continual observation o f  coarse-grained posit ion and m o m e n t u m .  

Let us consider now model II) of the introduction defined by  eq. (1.13) 
and (1.14). In  this case, we have an effect-valued density for the simultaneous 
measurement of a coarse-grained position and momentum, which can be 
written as 

(5.1) .f(x, p) = c exp [ -  ~[(~- x)~ + ~(~ - p ) q ] .  

We can repeat the whole construction done for model I) starting from the 
new effect-valued density and build up a theory for the continual simul- 
taneous observation of position and momentum. In  particular, we can con- 
struct a probability density p(Wlto; xl, Pl, ti; ...; ~,, P,, t,), where the variables 
�9 ~ and ~ have the meaning of position and momentum time averages in the 
interval (Z~_I, t~). 

Using the formalism of sect. 4 we obtain 

(5.2) P(Wl~0; ~,, ~1, t,; ...; x,, ~,, t,) = 
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where 

(5.3) 

and 

(5.4) 
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y(x, p; : f  a o[x(t), p(t)]" 

T 
i ^  

o o 

] 
0 

�9 T*exp - -  dt[(~(t)--x(t))2-4-2(~a(t)--p(t)) 2] exp ~H~ 
o 

d#o[x(t), p(t)] = lira ~ ~ /~N l~i dx(t~)dp(t~). 

The consistency property now is 

+co +co 

(5.5) ~ ( x , p ; ~ d - r ~ ) =  x~dx2  p ~ d p ~  x - -  �9 
T1 ~ -  T2 / 

--co --co 

( TlPl -~ T2p2) ~(X2, P2~ T2) ~(Xl, ~I"~ T1) 

and the evolution semi-group is given by 

(5.6) 
+co +co 

--r --co 

If we set 

(5.7) 
-I-co +~  

f~(8, ~;  "~) - = f d x f d p  exp [--  i~'cx - -  i~vp]  Y ( x ,  p ; v) , 
--co --co 

we have again N ( t ) =  f~(0, 0;t )  an4 

(5 .8 )  ~ ( ~ ,  ~ ;  "l~l "@ ~2) : ~ ( ~ ,  ~ ;  ~2) '~(~,  9]; ~1)" 

As before we can obta in  an expression for N(~, ~; 3) in the Feynman in- 
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tegral formalism. We have 
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-}-co 

(5.9a) <q [(~(~, 7; 7) l~) [q'> -:--fdqo dq~ <qo [l~lq'o> G(~, ~1; T [q, q'; qo, q~) , 
--r 

(5.9b) a(~,n;~lq, q'; qo, qo) = 

# { '  ' ' 

0 

�9 _ i + p'( t ) )}  - -  7-4 (g(t) - -  q'(t))'  - -  ~ (p(t) - -  p ' ( t ) ) '  - -  2 ~(q(t) -t- q'(t)) -~ ~l(p(t) 

where the following con4itions on q(t) and q'(t) have to be understood: 

(5.1oa) q(v) = q ,  q'(v) = q', ~(o) = q. ,  

and the Feynman (( measure ,  in phase space 

q'(o) = q'o 

~-~ fi dp(L) (5.10b) d/zr[q(t), p(t)J = lim= I-[ 4q(tA 2~/  
t~=l s = l  

has to be used. 
Then, proceeding as in the previous section, we can write 

(5.11) 

where 

(5.12a) 

and 

(5.12b) 

~(~,  ~; ~-) = exp [~,~($,  ~ ) ] ,  

~r ~)i~---- ~I~--~ ~{~, I~}--~ ~{~, I~}--~y(~ + ~ 

i ~ t  = ~(o, o ) ~ _ - - ~  [~, ~ _ ~  ([~, [~, ~ ]  + ~[~, [~, g]]). 

Note tha t  all the results of the previous section can be obtained from the 
present ones; for example, 

(5.18) ~(~, ~) ---- lira fg(~, O; ~). 
~1-+0 
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6 . -  Continual observation of  a finite number of  noncommuting quantities. 

Let  us consider a n y  sys tem with  a finite nmnber  of degrees of f reedom 
and a set of ordinary  observables  A~, j = 1,2,  ..., % associ,'~ted with  the  non- 
commut ing  operators  ~ .  

Equat ions  (5.2), (5.7), (5.11) and (5.12) suggest a possible general izat ion 

of the  results of the previous sections to the  case of the  A / s .  
Le t  us in t roduce 

(6.~) ~(~; ~) = e x p [ ~ ( ~ ) ] ,  

where ~ = (~,  ~2, ... ,  ~ )  and  

2 i Sj (62) m= sem-  

(6.3) Z ~ [  / - -  ~ - -  ~ .= yj [Xj ,  . 

Here  / ]  is the  Hami l ton i an  of the sys tem and  yj > 0. 
Note  t h a t  N(~; r), defined b y  eqs. (6.1)-(6.3), satisfies the equat ion 

(6.4) ~(~; ~ + T~) = ~(~; T~) ~(~; T~). 

Then the  opera tor  

(6.5) J ( x ;  T) = d ~  
j = l  

is the  analog of the  operators  defined in eqs. (4.1) or (5.3) and  the  quan t i ty  

(6.6) p(Wlto; x l ,  tl; x2, t2; ...; x~, t~) = 

= Tr >~(x.; t~--t ,_~).Y(x~_~; t~_~--t~_2) ....)~-(x~; tx--to) Ws(t0) 

~.an be in te rpre ted  as the  p robabi l i ty  densi ty  for the t ime  averages of the  values 

of the  coarse-gz'ained A / s .  
Natura l ly ,  in this case, we have  to prove  t ha t  this  p robabi l i ty  densi ty  is 

well defined. I t  mus t  be, obviously,  posi t ive and  normal ized;  moreover ,  in 
order t h a t  the par t i t ion  of the  t ime  in terva l  can be arb i t rary ,  the  consistency 

p rope r ty  (3.24) m u s t  hold. 
The three ment ioned  proper t ies  are consequences of the  analogous ones 

for the  opera tor  ~ ' ( x ;  T): 

i) ~ ( x ;  v) is a posi t ive  m a p  on Tc(~), i.e. 

(6.7) 1~/~0 ==> S ( x ;  T) Id />0 ;  
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ii) ~'(X; T) is normalized: 

(6.8) a~rfa-x~-(x; ~) # = ~r #, 

( 6 . 9 )  

1 0 3  

V # e  To(.9):,; 

iii) the following consistency proper ty  holds: 

5 r ( x ; - r ~ + ~ ) =  "x " x ~ I ] a  x~. 
j=~ TI -i- z~ / 

The proof of properties ii) and  iii) is trivial. Equat ion (6.8) follows from 
the fact  t ha t  the evolution operator 

(6.10) &(t) ----fd-x ~ ( x ;  0 ---- expert]  

is a trace-preserving map, as is clear from the structure of ~q~. Equat ion (6,9) 
is an  immediate  consequence of eq. (6.4). 

By  i terat ion of eq. (6.9) i t  is then  obvious t ha t  it  is sufficient to prove the 
posit ivity property  i) for an infinitesimal time. We insert eqs. (6.1)-(6.3) into (6.5) 
and expand the  exponential  in the following way:  

i e  e " i e  " 

8 ~ ~'{"-~" {~'-~" W}} + . . . .  

J--I 

e ~j turn  out  to be of the same Tote  tha t ,  after  integration, the terms with ~ ~ 
order as the terms with  e; this is not  the  case for the other e~-terms. Performing 

the  integrals, we obtain 

(6.12) 

- �89 i e  e " 

L~ow, one could prove directly t h a t  ~ ' (x ;  e) is positive apart  from terms 
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of relat ive order ~2. Equivalent ly ,  note tha t  eq. (6.12) can be wri t ten  as 

(6.13) 

The order chosen for the exponentials  on the r.h.s, of eq. (6.13) is un impor tan t :  
a change of order changes this expression only for s~-terms. As wri t ten in 
eq. (6.13), ~-(x;  e) is apparent ly  positive ; this closes the proof of the posi t ivi ty 
of ~ ( x ;  3). 

:Note tha t  now we have no explicit  expression for the effect related to the 
simultaneous measurement  at  a single t ime of our n observables as in eqs. (1.12)- 
-(1.14) for models I) and H) .  This effect is implicit ly given by  

(6.14a) _P(T) : "x ~2~) ~ 

T 

where 

(6.14b) [ ] ~ ( k ) = e x p  - - ~  ~J ~ - - ~  . 
J = l  .q=l "= 

Here the normalizat ion (_F(R ~) = ~) is tr ivial;  the  proof of the  posi t ivi ty  is 
similar to tha t  the posi t iv i ty  of ~-(x;  3). 

7. - Mean  va lues  and corre lat ion  funct ions .  

Mean values and correlation functions can be introduced as usual in proba- 
bilistic theories and obtained from derivatives of the Fourier  t ransform of the 
probabi l i ty  densities. 

Ii1 our case, from. 

t = I  

we have 

(7.2) ~ x x ~ , x ~  . . .  x ~  ~ ~ ( x ;  At) = \ ~ ]  ~ ~ ... ~ ,  . 
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We recall tha t  derivatives must  be calculated from the formula (~) 

(7.3) 
0 

First ,  let us consider mean values referring to the  t ime interval  (t, t -4- At) 

(7.4) 

where 

(7.5) if(t) ~- if(0; t) ---- exp[t~ce] 

is the  evolution operator (here and in the  following t~---- to ~-- 0). Using eqs. (7.2), 
(6.1) and (6.2), we obta in  

1 F 
(7.6) <x~.A~>, = ~-~ _ldt Tr (~j  ff(t') t~ ) .  

Note tha t  for mean values the limit At -~ O exists and gives the  usual quantum 
formula 

(7.7) <x~,a,-o>, ~-~ Tr (J, ~(t) ~) .  

For  the  t ime derivative of mean values we have 

$+At t+A~ 

(7.8) ~ <X,.A,>, = ~ dr' Tr ~ , ~ t~ ~-- ~ dr' Tr (.~, .Sfe(t') ~ ) ,  

t 

where Lf is given b y  eq. (6.3). In  the  case of model I I )  (sect. S) for 
/~---- (1/2m)1~ ~ ~-~(q), the  action of the  adjoint  of ~ on ~ and ) can be cal- 
culated and a generalized Ehrenfest  theorem is obtained:  

d 1 
(7.9a) ~ <xA,>, ----- m (PA,>,, 

~§ 

For the  free particle and the harmonic oscillator it turns  out  tha t  <xA,> ~ and 
<PA,}t satisfy exact ly  the  classical equations of motion. 

(15) See, for instance, R. M. W~,cox:  J. :Math. Phys. (iu lr.), 8, 962 (1967). 
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In  a similar way, for the variances we have 

(7.10) (Ax~,~)~ ------fd"x (x~ --  (x~,~,>3~Tr (.Y(x; At) ~(t) W) -- 
1 

2~jAt + 

t+At tl 

+ (At) ~ dta dt2 Tr [ ( 2 , - -  <X,,At}t) (~(t~ --  t~){(2j-- <Xj,~,}t), (~(t2) l~)}] �9 

t t 

For small At, we can write 

(7.]1) (Axj,A,)~ ~ 1 _ 2r~A t + Tr [ ( ~ -  <xr ~ ~(t)14z], 

showing tha t  the actual  limit At -+ 0 cannot be performed. The second term 
on the r.h.s, of eq. (7.~ 1) is the usual quantum expression for the squared variance 
(when the t ime evol,afion is give~ by ~r ~o te  tha t  eq. (7.13) can also be 
written ~s a kind of uncertain~y relation between time resolution and variances: 

(7.12) At (Axj, At)~ > 1/27~. 

Finally,  for the one-time correlation functions, we have (j :A j') 

(7.13) (Axj, a~, Axj,,at)~ ~_fd"x (xj --  <x~,~)t)(x~,- (x/,A~>~). 

t+At t~ 

2(At)~ d/1 dt~ Tr ((~-j - -  <XGAt>t  ) ,(~(tl - -  t2)"  

t t 

�9 ( ( ~ , -  (<x~,,~>~), (~(t~)if0} + ( ~ , -  <x~,,A,>~) ~ ( t ~ -  t~). 

I~ote t ha t  

(7.~4) l~m o <~x~,A~, A~, ~>~ = �89 Tr ({(-~-- <x~,~=o>~), (-~,--<x~, A~=o>~) } ~(t) # ) .  

In  the literature this expression is sonletimes called << quantum (symmetrized) 
correlation function }> (see, for instance, ref. (~)). 

8.  - C o n t i n u a l  p o s i t i o n  m e a s u r e m e n t  on  a f ree  par t i c l e .  

Our models I) and II)  are completely solvable when the system is a free 
particle or a harmonic oscillator. In  these eases everything can be explicitly 
calculated in several ways:  

(16) R. KUB0: Statistica~ mechanics o] equilibrium and nonequilibrium, in Proceedings 
of the I.U.P.A.P. Symposium, Aachen, 1964, edited by J. MEIXN]~R (Amsterdam, 1965), 
p. 81. 
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a) the construction given in sect. 3 and 4 can be followed, starting from 
a discrete set of repeated coarse-grained measurements, by  assuming condition 
(1.15) and taking the limit T-+ 0; 

b) path integrations in eqs. (4.4b) or (5.9b) can be performed directly; 

c) the semi-group structure of ~(~;t) or ~(~,~; t )  can be exploited. 

As an example we work out the ease of continual position measurement 
on a flee particle by  using the last procedure. 

We shall start by  solving eq. (4.13a) when ~(~; ~) is applied to a suitable 
statistical operator t~ x. Let us choose this statistical operator to be given in 
the position representation by  

<q,l~,q'> = ,p~,(q)~p~(q')exp[--~(q--q')~],  (8.1a) 

where 

(8.~b) 

and 

Yx(q) ---- ~ a  exp - 2(~ (q ~ a)~ + ~ pq 

0 <  a < ~ ,  O<~e~< oo,  a, p, ~ real.  

This operator, for ~ ~ 0, becomes a pure state; in this case the meaning of 
the other parameters is apparent from the relations 

(8.2) 
[ <k~ ~ Tr(~t~) ---- a, <(4-- a)~> ---- 2' 

in particular, u~ ~ 0 corresponds to minimal uncertainties. 
We will prove that  ~(t) transforms the statistical operator (8.1) into an 

operator of the same kind and, moreover, that  ~(~; t) transforms it into a trace 
class operator ~x having the following slightly more general structure: 

(8.3) <qlXxlq'> = ~ox(q)~o[.(q')ex]3 [ - - ~  ( q - q ' ) ~ +  g],  

where ), and ),* are shorthand notations for (~, ~1, ~ ,  a, p, X) and for (0, ul, ~ ,  
a*, p*, g*) respectively, a and p are now complex numbers, g is a new complex 
parameter, due to the fact that  ~(~; $) does not conserve the trace. 

Precisely, for the operator :~x one has 
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where 

(8.5a) 

(8.5b) 
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-5-~m~ § m---~ r ~ ~ t §  , 

t lq 
xdt) = ~ § ~ dt' a(t') , 

o 

m da(t) 
~ ( t ) - -  2~ dt ' 

i 
p(~,t) = p - -  ~ m~(a(t) - - a )  , 

t 

( f ) m ~ a t - - 3  dtla(t~) , 

o 

t t i  

0 o 

The proof of eqs. (8.4), (8.5) is given by the  following points.  

i) By set t ing 2~x(~, t ) ~  ff(~, t).Yx, the  differential equat ion (cf. eqs. (4.].3a) 
and  (4.18)) 

(8.6) ~ 2x(~, t) = - -  ~ 2--mm' Xx(Gt) - - ~  [~, [~, 2x(G t)]] - -  

i ~ ^  
~{q, 2~(~, t)} - ~ x~(~, t) 

can be wri t ten  in terms of mat r ix  elements as 

(8.7a) 
~t - -  m eQ er 4 rr~ § i~Q - Q § -~ 

71 

where we have set 

(8.7b) Q = l (q  § q,),  r = q - q ' .  

if) (Q § r/2lfs t)l Q - - r / 2 }  satisfies the  initial  condit ion 

(8.8) 

1 [ 1  21/1 )r~ ~ i ] 
- - V ~ - ~ e x p - -  ( Q - - a ) - - ~ ( ~ §  § 2 4 7  �9 
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iii) An expression of the type  <Q-{-r/21~xr is a solution of 
eq. (8.7a) if ), (2, t) is given by  eqs. (8.5). In fact, inserting <Q + r/2 Ixxr - r/2> 
into eq. (8.7a), one has 

( 8 . 9 )  

1 �9 exp ~ (O--a,~, t))'--a(1-~(1 -Jr-x,(t))r'~-i ~ )  (O--a(~, t))r -Jr- 

+ ~ p(~, t) r + z(~, t) - -  P(Q, r) ~ )  e xp  ~ (Q - a(~, t))' ~ . . .  = o ,  

where P(Q, r) is a polynomial of 2nd degree in Q and r. Equating to zero the 
coefficients of such a polynomial, with some manipulations one obtains the 
following system of differential equations: 

(8.10) 

_ dx,(t) 1 a(t) dz,(t) ~ (1 + 4x~(t) + u](t)), da(t) 2tg us(t), -- ra(t) , -- 
dt m dt 4 dt m 

Op(~, t) i _,. da(t) Oa(~, t) 1 p(~, t ) - -  ~a(t) ,  
Ot = ~  Ot = - - ~ r  ~ ' 

Ot = - -  i~a(~, t) - -  ~ ; 

the three first equations are linked to the 2nd-order terms in P(Q, r), they 
are independent of ~ and imply for a(t) the equation 

(8.11) dSa(t) _ 2t/, 
d$ a m 7 

Starting from this equation and taking into account the initial conditions 

(8.22) x(8 ,  0) = x ,  

one obtains eqs. (8.5a) and (8.5b). 

vi) <Q ~-r/2]Xx~.,~[Q--r[2> with ~.(~, t) given by  eqs. (8.5a) and (8.5b) 
satisfies initial condition (8.8). 

In conclusion, since eq. (8.6) is of the first order in time, the identity of 

~(~, t).~ x and :~x(~.,~ is proved. 
We note that, in the case ~-~ O, eqs. (8.5b) become much simpler and, 

for Z ~ 0 and a, p real, fC(t)l~ x is a statistical operator of the form ]~rx(,~ with 
a(t), ul(t), us(t) given by  eqs. (8.5a) and with 

P (8.13) T(t) : p  , a(t) : a-~ mr '  g(t) : O. 



l l 0  A .  B A R C H I : E L L I ,  L .  L A : N Z  a I l ~  G .  M .  P R O S P ~ R I  

Finally,  in order to show tha t  Xx(~,t) is a trace class operator for t > 0 ,  we 
note tha t  g ( t ) >  0 and z , ( t )>0;  then, taking into account the :Fourier repre- 

sentation 

_ _  + r  

- c o  

we Ban write 

- c o  

where 

(8.15b) (fflk($, t), k) = ~f~(~.,)(q) exp [ - i k q ] .  

-- Tr (Xx~.f)X~(~,~)) ~ we obtain the in- 

equali ty 

. _ - -  +co 

(s.z6) l] 2~e,,> )1~ < lexp [Zg:, t)]/5 I' ~ , ( t )  k exp L-  ~xi(tj ~ = ]exp [z(~, t)] I, 
~co 

where the trivial inequality l/l~> <~/It,< II1~>/i lily,> II h~,s b~ . ,  used. 
:Now we are in a position to explicitly calculate the ~,~ matr ix  elements ~) 

G(~, tlq , q~; q0, q'o) of the operator ~(~, t) (cf. eq. (4.16a)) or, more conveniently, 
changing the variables, 

(8.17) G(#, riO, r; Qo, to) = (;(~, rio -~ r/2, O - r / ~  Oo -}- to/2, Oo-ro/2) .  

:in fact, let us write eq. (8.4) for ~1 ~ x2 ~ Z -- 0, g == (to, 

(s. ls)  f d  1 QodroG(~, tlQ, r; Qo, ro) V ~  o" 

or, equivalently, 

(8.29) fd :~ [ :[ (Qo-.)~]:= 
1 r r i pro]. 

- c o  
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Taking in eq. (8.19) the limit a0 -+ O, one obtains 

(8.20) 
o. 0 ~/2~rh 

+co 

l i m V 2  1 f d ,  e x p [ 1  , i 1 = ~o - ~  w o -  b-~) (Q - ~(~' t))" - 
- - G O  

~(t) + ~ ( t )  r ' + , - ~ - ~  (q - -a (~ , t ) ) r  + g p ( ~ , t ) r  + X(~,t) . 

Since by  eqs. (8.5b) the functions a(~, t), p(~, t) and g(~, t) depend linearly 
on p, the integral over p can be performed easily; the  subsequent limit go -+ 0 
requires some calculations. The final result is 

(8.21) G(~, tlQ , r; Qo, to) = 2 ~  exp - 7t(r~ + fro + r~) + 

im i i ~ '  t~(r + to) - -  i ~' t* t~ +-~-~(Q--Qo)(r - - ro) - -~ t  Q +Qo---~-4-m -~ l ~ m  ~ �9 

The probabili ty densities (4.3) can be obtained by  applying to l~ products 
of the Fourier  t ransform with respect to ~ of the operator defined by  (8.21). 
The calculation becomes rather  simple if one chooses a statistical operator 
of the type  (8.1). Let  us give some results for this ease. We set for simplicity 
to = 0 and  choose W = Wx.. 

Firs t  we consider the probabili ty density reduced to only one of the 
t ime intervals into which (to = 0, t f) is parti t ioned, i.e. one integrates 
p(WIt.; x~, tl; x~, t~; ...; x ,  t )  over all variables Xl, x~, ..., x ,  except the va- 
riable x, referring to the selected interval  (t,_l, t,). Taking into account the 
consistency property,  one has 

(8.22) Jdxl ... dx~_ldx~+~ ... dx, p(WIto; x~, t~; x~, t~; ...; x, ,  t,) ---- 

---- Tr ~ ( x , ;  t, - -  r~_x) ~(4-x) l~x.. 

Sett ing tr_ 1 ~ t, t , -  tr_l = At and  xt----x, one has 

(8.23) Tr ~ ( x ;  At) ~(t) ~ .  

-{-to 

= ~ ~ exp [iAt~x] Tr ~(~; At) ~(0;  t) S x . .  
--co 



112 A. BARCHI~ELI,I, L. LANZ and G. M. PI~OSPEI~I 

The parameters  X(t) of the  stat ist ical  operator  I~z(t)= ~(0;  t)l~x~ are 
given by  eqs. (8.5a) and (8.13): 

(8.24) 

= 5 - ~  +m--~-- ~o + ~ ( m ~  t+~o  , 

t 

} f od ltl Xl(t) = ;~[o) ~_ )' d t ' a ( t ' ) ,  ~2(t) - -  2t/ dt 
o 

~)0 p(t) = p o ,  a ( t ) = a O §  z ( t ) = o .  

The parameters  of ~r At)~(0,  t)I~Xo are given again by  eqs. (8.5), if we set 
t = At and take as initial values ~. the X(t) just  calculated; the only parameter  

we need is 

(8.25) 

where 

(8.26) 

] z(~, At) = - i~ ao + ~ t At § 2T~ At~ - -  ~- ~t(At) 

A t  t '  

~t(At) = 2), g dr' dt"~(t + --  -i ~(t)~Xt~ 
0 0 

with a(t) given by  eq. (8.24). 
Then (8.23) becomes 

(8.27) 

-~oo 

Tr  ,~-(x; At) ~(t) I~Xo ~ ~ e x p [ i A t ~ x  -~ Z(~, At)] : 

--co 

= 2z,(at)[ ~ at V 2 ~ t ( A t )  exp - -  ~ X - - a o - -  t +  ; 

this is a Gaussian probabi l i ty  distr ibution with max imum at the  classical t ime 

average 

t + A t  

(8.28) a0 -~- t + At = ~-~ dt'xc,(t ' ) ,  xc,(t) = ao + m t ,  

t 

and with squared variance given by  ~t(At)/At~. 
I f  At << t, one can replace in eq. (3.26) a(t -~- t") by  a(t); then  one has 

(8.29) (Ax) 2 _~ 1 1 2)' A ~  § ~ z(t). 
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In (8.29) the peculiar term 1/27At occurs that  has already been discussed 
in sect. 7. 

Now let us consider the probability density reduced to two time intervals 
($1, t~ -Jr- Ate) and (tz, t~ q- Ate) with t~>tl § At1. I t  is given by  

(8.30) 

AttAr2 f d -- (2~r)~ ~ d ~  exp[i(Atl~iX~ ~- A t~x~)  ~- Z(~ex, ~ ;  At1, At2)], 

xl, x2 have the meaning of time averages, respectively, over (t~, tl -]- At1) and 
(ts, t~ -f- Ate), 

where 

(8.32) ~,,,,,(Atl, Ate) = 

)] 
o 

and ~tl(Atx), ~t.(Ats) are given by  eq. (8.26). 
The probability distribution (8.30) is a Gaussian with maximum at 

1 ) 
(8.33) x 1 ----- a.  -~ m ~ l  + ~ At~ , 

and with correlation functions 

~,,(Atl) ~,,(,%) L,,,,(Atl, Ate) 
(8 .34)  <Xl' x l>  - -  m t ~  ' <x2' x2> - -  m~2 ~ • <•1, x2> - -  mtlmt2 

If At1 << tl, At~ << t2, the correlation functions become 

(8.35) 

1 1 1 1 
<Xl, Zl> --- 27~t-----~ + ~ ~(t~), <x~, x~> ___ 2r~t ~ + ~ e(t2), 

~Xl, x~> _~ ~- e(tl) + ~-~ (t~-- tl) ~(tl).  

Finally we quote some results in the case of model II) for the harmonic 
oscillator; obviously, the corresponding results for the free particle can be 



114 A. BARCHIELLI ,  L. LANZ a I l d  G. M. PROSPERI 

obtained by sett ing the frequency 0)/27~ equal to zero. Even in this case an equa- 
t ion similar to eq. (8.4) can be established; the parameters X(~,~; t), corre- 
sponding to those oY eqs. (8.5), are given by 

7h ~ 
(8.36a) a(t) - -  4 m  ~0)3 

7~h2 (20)t ~- siii20)t) ~- (20)t - -  sin 2o~t) + -40) 

§ 
2m 2 0)2 a ( 1 ?/ x - -  (1- -  cos 2cot) + ; ~ ~ s i n 0 ) t + a c o s o ) t  , 

m da(t) 1 7),~ m 
(8.36b) ~2(t) - -  2/t dt 2 ' 

~ 2 7 2  
(8.36e) ~h(t) : ~:~ -~ 16m2 0)~ [1 -4- m 2 o)2(1 -~- m 2 0)~ X)](0)2 t 2 _ sin 2 0)t) ~- 

+ -80)2- sin 2 0)t ~ 16o) a 
t 

-~ 16m ~t~27m a 1 Jra --  sin20)t) @ - - 4 a  dt' mm ~2 cosmt' - -  a siii~ot' % 

o 
t 

-+- ~a 3 
o 

(8.37a) a ( ~ , ~ ; t ) = a c o s 0 ) t - ~ -  p siii 0)t ~- 
m 0 )  

J r ~  dt m 20)2\ + ~  m\m0) I 

--m20) ( l + 4 ~ + ~ ) s i n 0 ) t  + ~ ]  m a c o s m t - - m a ( t ) +  (]~m;t7+~2) sin0)t , 

i 
(8.37b) p(~,~; t ) = p c o s 0 ) t - - a m m s i n 0 ) t @ - ~ "  

{ m  d2a(t) /g ( ~ 7  --~2~ sin0)t /g~ (1 -~ 4z l -}-~)  cos0)t-~ ma(t)} -}- 
" dt  2 a) \m0)2 ] m0)2a 

m I - - m  da(t) m0)a sin0)t -[- h(]gmTX + ~)  cos 0)t -~- hu2(t) l  
-[- i~ 2- ( dt --  j 

(8.37~  _  (siii0)t+0) 1-cos0)t)0)2 

siiigt m a ( 1  - -  cos (or) --  2 [27 20)2 + mi-0)47 1 ~- - - i ~  p 0) 

h {~Tz ~ ~ h2 (1 + 4~1 + ~) ( 1 -  cos 0)t)]- ~ --  ~] sin 0)t + m ~ r 
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2 /272 -f- 2~ m r2t -F lm~(a(t) d- a)--m~aeostot--'--o~ (hm27 -4- u~) sin~ot.-- 

[-- sine~ m da(t) ~ ' r  (1--e~ + ~ ( 1 ) 
- -  ~1 ms 2o) ~r ~ d t  + ~ ~-; -~ ~im2~, + x~ �9 

"(cos t o t - l )  -4- ~' sine)t] 2nuo~ a (1 + 4 ~  -4- x~) 

lqow we choose as before I~---- l~x. The probability density, referring to 
the time interval (t, t -4- At), can be read off from Z($, ~; t). We again obtain 
a Gaussian with the maximum at the classical time averages 

t+At 

(8.38a) x = a(t) sinto Ate_At d- ~1 p(t) 1 --Ato~,cos o~At - Atl fdt'a(t') 
t 

t+A~ 

sin tot 1 --  cos to At 1 fd 
(8.38b) p = p(t) ~ - t  ma(t) At -- At t' p(t') , 
where t 

a(t) = ao costot -4- Po s in~t ,  
9r 

p(t) = Po costot --  mtoao sintot. 

Similarly the one-time correlation functions <x, x>, (p, p>, <x, p> are obtained 
from the coefficients of the terms - -~212 , - -~212 , - -~  in expression (8.37e) 
of g(~, Y; t), through the following steps: i) t is replaced by At; ii) a, u~, u~, 
are put equal to a(t), u~(t), s~(t), where these functions are given again by 

. (o) x~o); iii) one must eqs. (8.36), in which now ~, u~, ~ are replaced by %, ~ , 
multiply by llAt~. The result is 

_ ~'h~ (3 1 ) 
(8.39a) (x, x)  m~tosAt~ ~ toAt--  sintoAt -F ~ sin2toAt d- 

72~ ( 21 - ) ~ l d-4u,(') +4~--~;A~At~ coAt-- sin2o~At -F2-~i~4(1--eoso~At)2 s(t) d- 

()  [ into ~ ( 1 - c ~  ~L2},A t ~ ~s(t)-+-2?At,  

(8.39b) <p,p>= 4m2tosAt 2 w ~ - - ~ s i n 2 t o A t  + 

? 2 ~  ~ [ 3  1 . . . .  \ _ ~ sin s to At 1-4- 4~i( t )  
-4- ~ ~i ~o At --  sin co At d- g sm ~to a t )  -f- 2m'  to* At' - ~  -4- 

, ,,-coso A, )3] 
-F 2a(t) At~ ~ ~ a(t) --  into---- ~ u~(t) sin to At -4- 

-4- 2~,2At -~ 2~(t) (1 d- 4s,(t) -t- ~(t)) + 2r2At,  
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(8.39c) <x, p> L 4m~~ (1 --  2m~9~)(1 - coso)At) ~- ~( t )~  coseoAt 

~ ] COS 
_ _  21 mcoa(t)sino~At-~- 2mcoa(t)-- (1-~- 4~1(t) + z~(t)) sin o At :t--~o ~ At ~r176176 ~ z~(t). 

The uncer ta inty  principle takes the form 

(s.~0) 
-_ + U + § 

Note Mso the very simple results tha t  are obta iner  if one chooses At ~ 2zlco: 

(s.41) <x, p> = 0 , 

7 3yA 1 )12 

9.  - C o n c l u d i n g  r e m a r k s .  

In  conclusion, we want  to stress once more some few points. 

i) In  the probabili ty densities for the t ime averages described by 
eqs. (1.21), (3.10), (5.2), (6.6) the t ime intervals At can be t~ken as sma]] ~s 
one likes, reflecting the fact tha t  they  derive from functionM probabili ty den- 
sities. As is apparent  from eq. (7.12), however, the dispersion of the t ime 
~verages diverges as At -+ 0 with a pat tern  typicM of the so-cMled generalized 
stochastic processes. 

ii) There exists a certain eoaaection between our joint probabili ty distri- 
bution for noncommuting quantities (eqs. (6.6), (6.5), (6.1)-(6.3)) nnd the 
(generalized) \Vigner quasi-probability, i n  f~ct, our probabil i ty density for 
time-avernged observables in the iIlterval (t, t q-At),  which is given (when 
to ~- 0) by 

(9.~a) 

where 

p(w(t) Ix; At) = Tr {~(x;  At) gz(t)}, 

(9.1b) Hz(t) ~ ~(t) W, 

c,~n be writ ten as 

h i 2  n n 

(9.2) p(W(t)[x;At)=- yi "yexp --At y,y~ T)(W(t)]x--y;At), 
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where 

(9.3) 
(1). 

~(w(~)l , , ;  •  = 

"Wr {e P rat }1 re(t) 1 " [  2,_, J 

The function ~(W(t)Ix; AS) is something like a time-smeared Wigner quasi- 
probability density; more precisely, we have 

(9.4) ~ ( w ( t ) l x ;  0) = ~w,,(w(t)lx) = -  

~)wf,(W(t)Ix ) is the density of the Wigner quasi-probability when the sta- 
tistical operator is I~(t). 

Note that  p(W[x;At) and ~wf,(W[x) are not positive functions of x for 
every statistical operator W, in contrast with our probability density (9.1a). 
Since the convolution with the Gaussian in eq. (9.2) comes from the ~-terms 
in eq. (6.2), the essential role of these terms is apparent. For related results, 
see ref. (s), subseet. 5.5, and references quoted therein. 

iii) The discussion of sect. 6 shows that  the metho4 we have employed 
for the construction of our probability distribution for trajectories is fairly 
general and significant extensions can be foreseen and are actually in progress. 

iv) If  our discussion is intended to provide a model for a fundamental 
theory of the connection between the macroscopic and the quantum level 
of description of the physical world, some form of (~ energy conservation ~) 
would be desirable. However, as is-apparent from the expression of ~ as 
given by eqs. (1.26), (5.12b) or (6.3), the (( microscopic, energy /~  is not con- 
served under the time evolution described by the operator if(t). Nevertheless, 
as discussed elsewhere by two of us (~7), at least in certain eases, a conserved 
modified energy can be defined as a generalized observable. 

More coherently, a (( coarse-grained ~) energy should be introduced in the 
theory as a linear combination of the quantities A~ (see sect. 6), but, in general, 
the probability distribution for this (( coarse-grained ~) energy too is not con- 
stant in time. A detailed discussion about this point seems to be out of place 
here; our feeling is that  the problem of energy conservation could be dealt 
with and possibly resolved only inside more realistic models, based on field 
theory. 

(17) A. B~tCHIELLI and L. LANz: Nuovo Cimento B, 44, 241 (1978). 
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APPENDIX A 

Let  us prove tha t  the effect-valued measure defined by (1.13) (model II)) 
satisfies the equation 

+ c o  + r  

(A.1) F(R 2) : ~ d p exp[~ (Pq--  x~) ~ exp --  ~ (p~--  x~) = 1 .  
- -co --r  

From the well-known ident i ty  

(A.2) exp [fl_ + / ~ ]  = exp [fl_]. exp [jg]. exp [-- �89 

which holds true if [fl~,Jg] is a e-mmlber (15), we can write 

i i 
(A.3) exp[~(p~--x,~)]~-exp[~p~]exp[--~x~]exp[---~-~px]. 

Denoting by ]q> the eigenstate of ~ and by I k> the eigenstates of ~3, we have 
then  

+ c o  + c o  

(A.41 <q[F(R2)lq'>--2~rh d p <qlexp ~pq. 
- -co  --co 

i ~ ~ i ~ i 

+ r  + ~  

=2~h f dx f d p exp [ ~ P ( q -- q') ] (q ] exP [-- ~ xPJ e exp [~ xP] Iq } = 
- c o  - -co  

+ c o  + c o  + c o  

~ t o  - - t o  - -co 

+ t o  + c o  + c o  

--0o - -co  - -co  
+ c o  

1 ] f �9 < k l ~ l k ' > ~ e x p  ~ (x-q,>~, = ~ ( q - q , )  dk@l~lk > = O(q--q ' ) .  
- -co  
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APPENDIX B 

:For a pure s ta te  I ~ =  [V><~I and in the  Schr6dinger picture eq. (2.8) 
takes the  form 

(B.1) /~+l,p~(c)> 
Iw,> - tlP+lw~(t~)> ll' 

[v,(t)> = exp [- -  ~ ~ t ]  [,/,> �9 

Equat ion  (B.1) is a generalization of the  usual  postula te  (el. eq. (2.3)) on the  
collapse of the  wave function as a consequence of a posit ive answer to a yes-no 
exper iment  related to an effect rather  than  to a projection. 

In  order to be t te r  unders tand the  assumptions implied in eq. (B.1), let  us 
consider an ordinary observable A associated with the  self-adjoint operator 

t "  

and  a related effect of the  form 

(B.3) ~ = ~ I~,>1,<~,1, o < h < z .  
!" 

With  obvious notat ions we have 

(B.4) P(~IA = ~, C) = l<~,l~(t,)> P 

and 

(B.5) .P(~[.E = yes, t~) --=-- <~'s(t~)[/~,~'s(tx)> = II~Jl,p~(t,)>ll ~ = ~ ],l<~H,ps(t,)>P 
f. 

and, in particular,  

(B.6) P([~,>I/~ = yes,  0) = 1,. 

According to eq. (B.6) the  quant i ty  /, can be interpreted as the  efficiency of 
the  device associated with the  effect F in detecting the  sys tem if i t  is prepared 
in the  s ta te  I~,>. Correspondingly, if, a t  the  t ime tl~ before we perform a ]irst- 
kind measurement of the  quant i ty  A and immediately later we allow the device 
associated with /~ to act ,  the  probabi l i ty  of obtaining an outcome A----~, 
and /~ ~ - y e s  is given b y  

(B.7) P ( w l x  = ~, ,  t ~ ) . P ( l ~ , > i v  = yes ,  o) = f<~,l,p~(t,)>pl, �9 

Equat ion  (B.1) states tha t  the  same result  is obta ined if the  two devices cor- 
responding to A and ~ act in the  reversed order 

(B.S) P( ,plV = yes ,  t~)~(,P, ia  = ~, ,  O) = I<~,t~,~(t~)>]'l, 
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a n d  t h a t  t h e  m o d i f i c a t i o n  on t h e  s t a t e  v e c t o r  of t h e  s y s t e m  is t h e  m i n i m u m  
one c o n s i s t e n t  w i t h  such  p r o p e r t i e s  ( the  p h a s e s  of t h e  e igens t~ t e s  ]~,} in  t h e  
e x p a n s i o n  of I%(t~)} a n d  i~,~} zc F}lFs(t~) } a r e  t h e  same) .  

A m o r e  g e n e r a l  p r e s c r i p t i o n  which  cou ld  be  a s u b s t i t u t e  for  eq.  (B.:I) is 

(B.9) f 

t" 

w h e r e  /~ , /~2 ,  ... is a s e q u e n c e  of b o u n d e d  o p e r a t o r s  w h i c h  d e c o m p o s e  _P: 

(B.10) 1~ = ~ / ~ ,  t0,. 
r 

O b v i o u s l y ,  in  g e n e r a l ,  t h e  m a p p i n g  de f ined  b y  (B.9),  w h i c h  is c a l l ed  an  opera- 
tion, changes  p u r e  s t a t e s  in to  m i x t u r e s .  

A n  e q u a t i o n  of t h e  f o r m  (B.9) is o b t a i n e d  if  t h e  effect  _P is de f ined  as  t h e  
r e s u l t  of t h e  i n t e r a c t i o n  of t h e  s y s t e m  w i t h  a n  a p p a r a t u s  a n d  t h e  o b s e r v a t i o n  
of a n  effect  /O, on t h e  a p p a r a t u s  (%5,~8). The  specif ic  sequence  /~ , /~2 ,  ... is 
t h e n  a consequence  of t h e  n a t u r e  of t h e  a p p a r a t u s ,  i t s  i n t e r a c t i o n  w i t h  t h e  
s y s t e m  a n d  t h e  choice  of t h e  effect  ~ ' .  

O b v i o u s l y  for  a g i v e n  _F a d e c o m p o s i t i o n  of t h e  f o r m  (B.10) is n o t  u n i q u e  
c o r r e s p o n d i n g  to  t h e  f ac t  t h a t  m a n y  d i f fe ren t  dev ices  can  b e  u s e d  to  d e t e c t  
t h e  same effect  f t .  

E q u a t i o n  (B.1) is u p a r t i c u l a r  case  of eq. (B.9) a n d  c o r r e s p o n d s  to  a h i g h l y  
i d e a l i z e d  (( dev ice  ~) wh ich  i nduces  t h e  m i n i m u m  poss ib l e  d i s t u r b a n c e  on t h e  
s y s t e m .  I n  a c e r t a i n  sense  we can  s a y  t h a t  eq.  (B.1) or  (2.8) re fe rs  to  ~ ]irst- 
k ind o b s e r v a t i o n  of an  effect .  

(is) K. KRA~S: in Lecture ~u in Physics, Vol. 29 (Berlin, 1973), p. 206. 

�9 R I A S S U N T 0  

Par tendo dal concerto di osservabile generalizzata, associata a una misura a vMori di 
effetto, come formulate da Ludwig,  si discutono alcuni esempi di  osservazione con- 
t inuata  in meccanica quantistica. Usando il formalismo dell ' integrale di Feynman,  
si costruisce una distribuzione di probabil i t~ funzionale sull ' insieme delle t raiet torie  
che rappresentano i possibili  r isul ta t i  dell 'osservazione continuata.  Si mettono inol~re 
in evidenza in~eressanti connessioni con la teoria dei semigruppi dinamici.  Gli esempi 
si riferiscono a sistemi con pochi gradi  di libert'~; il lore interesse ~ tu t t av ia  sopratut to 
in ordine alla luce che possono get tare  sul problema del rapporto  t r a i l  livello di descri- 
zione quanto-meccanica e di descrizione macroscopica di  un corpo grande, per  la quale 
u l t ima il concetto di t ra ie t tor ia  continua sembra essere essenziale. 
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M o ~ e a b  ~ a  Magpocgome~ecgoro onacamm ~ nenpeptanmax ~ 3 M e p e ~  B lCBaRTOBOg 

M e x a m ~ e .  

Pe~mMe(*). ~ H c x o ~  ~3 ~ e ~  o 6 o 6 m e m a ~ x  ~a6mo~aeMbvr B e r i n g ,  c B ~ a m ~ v r  e 
H3MepeHIIe~M 3(~KTIIBHbIX 3Ha~eHnfi, xaK 6~LaO c~OpMyJIHpOBaHO ~rO~BIlrOM, 06Cy~K- 
~aIOTCI[ HeKOTOpl~le npnMcpbr HenpepLmH~X g3MCpeHI~ B ICBaIITOBO~ MCXaHI~e. I/IcHoJIb- 
3ylI (~e~d~VIaHOBCI~I~ ~opMa3Ill3M nHTCrpanoB, I~OHCTpYHpyeTC~I pacnpenencmae ~bymc- 
I~OHa3IbHO~ Bepo~rrHOCTH Ha CHCTeMe TpaeKTOpl~I, KOTOpI~Ie Ilpe~CTaBJLCIIOT BO3MO~tIlbIe 
pe3yyii, TaT],i Honpepbmmsix H3MepeHl~.  OTMOqaIOTC~ nHTepecrmie CBII3H C TeOpHe~, .nm~a= 
MHqecutHX n o n y r p y i m .  HpHMep~ OTHOC~rrc~ r Maymn~ CHCTeMaM, HO OHH ~BYL~OTC~ 
m~-l'epeCHHMn, T.IC. MOFyT I/poYIHTb CBeT Ha npo6neMy CBII3H MC~r162 KBaHTOBbIM H 
Ma~pocKoma~eCKnM ypoBnaMn omacarm~ 6o~]~mnx Ten; ~rbff KOTOp~X H~e~ HenpepblBHb~ 
TpaexTopm~, no-~n~nMOMy, ~BnaeTCS cy~ecTVeHHO~ ~n~ Ma~pocKonnqecxoro ypOBH~ 
OHHCaHHIL 

(*) HepeseOeuo pec)a~t4ue& 


