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Summary. — On the basis of the new approach to the cascade theory
accurate numerical results on the mean numbers of electrons produced
in small thicknesses in a shower initiated by a single electron or photon
are presented. Agreement with the experimental results is satisfactory
if due allowance is made for tridents.

1. — Introduction.

Since the report of an anomalous electron shower by SCHEIN ef al. in 1954,
2 number of anomalous high energy showers have been observed in emul-
sions (*). More recently FAY (2) at Gottingen has observed similar showers in
which the mean number is greater than that predicted by cascade theory.
Though most of the showers can be fully accounted for by the theory of
bremsstrahlung and pair production, the present experimental evidence cannot
wholly exclude multiple processes in which there may be emission of two or
more high energy quanta or pair production by charged particles. While on
the one hand accurate cross-sections for these higher order processes have
to be derived, on the other the cascade theory by itself has to be modified so
as to enable easy interpretation of cosmic ray events in nuclear emulsions.
A beginning in this direction has been made by RAMAKRISHNAN and SRINI-
VASAN (%) who have dealt with the particles with reference to their « primitive »

(*) Also supported by the Nuclear Research Foundation within the University ot
Sydney.
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(2) H. Fay: Nuovo Cimento, 5, 293 (1957).
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78 8. K. SRINIVASAN, J. C. BUTCHER, B. A. CHARTRES and H. MESSEL

energies, i.e. the energy of the particles at the time of production. Such a
modification, apart from relieving the experimenter from the difficulties that
are involved in keeping track of the particles, helps bim to interpret events.
which form only part of a shower.

The numerical results relating to the mean number of particles produced
between 0 and ¢ rather than the mean number at ¢ (¢ denotes the thickness:
in cascade units) have been presented by SRINIVASAN and RANGANATHAN (%)
for various values of energy and depth. Since the numbers presented in that
paper pertained to large thicknesses, they cannot be checked against exper-
iments. It would be very difficult to make accurate energy measurements.
for the very large number of particles that are produced in such large thick-
nesses. Thus from the experimental point of view only calculations relating
to small thicknesses of emulsions are of interest. An attempt was made to:
calculate the mean number for small thicknesses (5) by the saddle point
method. However the results were found to be in large deviation from the
numbers observed by Fay. The numbers were computed as the difference
of two integrals (evaluated by the saddle peint method) each of which is so-
large that the difference itself is within the percentage of error to be expected.
The only alternative is to compute the integral accurately without recourse
to the saddle point method.

Tt has long been realized that if the Mellin inverse transform is integrated
along a line (through ¢, 0) parallel to the imaginary axis, the sequence of
contributions to the integral converges slowly. However, BUTCHER, CHARTRES
and MESSEL (*) have overcome the difficulty by deforming the path of integ-
ration into the parabola y® = 4a(oc — ). By choosing suitable values of a
and ¢, they have ensured fairly rapid convergence of the cumulative contri-
butions to the integrand. By the same method, we have now calculated the
mean numbers for small thicknesses, using the electronic computer, SILLIAC..

2. — Teoretical mean numbers.

The mean number of electrons with energies greater than E that are pro-
duced between 0 and ¢ is given by (?)

o+icm 1

A vis| Bo; 1) B, —1
) €V w31} = g | j”ﬁ‘——i;_-‘f%‘l“ﬁﬁ)-ﬂards,(*)

g—iew 0
(%) 8. K. SriNIvasaN and N. R, RaNGaNaTHAN: Proc. Ind. Acad. Sci., 45, 69 (1957)..
¢} 8. K. Srin1vasan and N. R. RaNcanaruan: Proc. Ind. Acad. Sci., A 45, 268.
(1957).

() J. C. ButcHER, B. A. CuarTtrEs and H. MESSEL: Journ. Nucl. Phys., 6, 271
(1958).

(*) Throughout this paper we shall use the symbol & to denote the mean value..
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where y = log, (E,/E) and E, is the energy of the primary; ¢ =1 denotes an
electron initiated shower and i =2, a photon initiated shower. »i(s|Hy;t)
(i=1,2), are the Mellin transforms of the product densities of degree one
(the differential mean number) of photons and are given by (7%)

) C,
2) vi (8| B3 1) = s {exp [— Ait] — exp [— u.t]},

(3)  i(s|BEo; 1) = iz {(— D + p,) exp [ A1) 4 (D —1,) exp [ ut]}.

Tasre 1. — &€ {N¥y; 1)} .
€ {nl(y; 1)} is given in brackets.

N 4 5 6 7 8 9 10 11

0.5 .524 750 994 | 1.251 1.521 | 1.801 | 2.092 | 2.394 !
(1.139) | (1.338) | (1.553) | (1.781) | (2.019) | (2.268)| (2.527)| (2.796)

0.6 .129 1.053

(1.252) | (1.530) | (1.836) | (2.163) | (2.512)] (2.880)| (3.269)| (3.678)

i
1.407 1.786 2.188 2.612 3.057 3.526 \
|
|
|

(1.381) | (1.751) | (2.162) | (2.611) | (3.096)| (3.616)| 4.173) | (4.767)’
‘ 7 H
2.437 | 3.151 3.931 | 4.777 | 5.693 | 6.679 |
(2.530) | (3.123) | (3.773)| (4.483)| (5.254)| (6.088)

| i
0.7 .961 1.400 ‘ 1.888 2.418 2.988 3.598 4.248 4.940

0.8 1.216 | 1.790
(1.524) | (1.995)

0.9 1.492 | 2.220 . 3.054 | 3.989 5.027 | 6.170 | 7.423 | 8.792 |
(1.677) | (2.261) | (2.936) | (4.548)| (4.458)| (5.491)| (6.530)| (7.670)}

1.0 1.788 | 2.600 | 3.740 | 4.938 6.288 | 7.797 | 9.745 | 11.330
(1.887) | (2.546) | (3.378) | (4.336) | (5.424)| (6.649)| (8.020)| (9.546)

1.1 2.103 | 3.199 | 4.497 | 6.003 7.726 . 9.682 | 11.887 | 14.360
(2.003) | (2.848) | (3.856) | (5.039) | (6.408) | (7.970)| (.9747)|(11.752)

1.2 2.433 | 4.735 | 5.326 | 7.189 9.356 | 11.851
(2.172) | (3.159) | (4.366) | (5.806) | (7.498)! (9.466)
1.3 2.779 | 4.327 | 6.226 | 8.502 | 11.189 | 14.329
(2.343) | (3.485) | (4.908) | (6.638) | (8.705) | (11.147)

14.703 | 17.940
(11.733) | (14.326)

17.965 | 22.145
(14.002) | (17.310)

t

{*) L. JAnossy and H. MESSEL: Proc. Roy. Irish Aead., A 54, 217 (1950).
(®) B. Rosst and K. GREISEN: Rev. Mod. Phys., 13, 240 (1941).
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Thus €{Ni(y;?)} and E{N2(y;1)} are given by

(4)  ENYy;0)} =
g+
1 B,C; {1 —exp[—Ait] 1—exp [—,uiti]} exp [(s —1)ly ds
2mi | py— s | As s s—1 !
O'le
1 B [
By E{Ny;t) = —— | — " 1 —exp [— At
o’—-iw
D— A,
+ (1 — exp [ pt])} exp [y(s — 1) ds
s f
Tasre 1. - € {N2(y; D}
(:'{n2 Y t} is aiven in brackets.
| s | s 6 7 8 | 9 10 ‘ 11
. ‘
n o \ .
05 710 766 . .822 879 938 | 1.000 | 1.063 ~ 1.128
(.682) | (.746) ‘ (.806) | (.865)  (.925) ! (987) (1.050) | (1.115)
‘ 0.6 063 951 | 1.044 | 1.141 | 1.243 ‘ 1.349 | 1.459 \ 1.573
(817) | (:017) | (1.015) | (L114) (1.216) | (1.323) | (1.432) | (1.546) |
—_ ! |
0.7 1.025 | 1.157 | 1208 | 1450 : 1611 T 7 1.959 ‘ 2.146
(.955) \ (1.102) | (1.249) l (1.403) ' (1.564) } (1.910) ‘ (2.095) |
- |
0.8 1.198 | 1.384 | 1.590 | 1.813  2.054 | 2.311 ‘ 2.584 | 2.872 \
(1.097) | (1.300) (1511 ‘ (1.736) | (1.975) | (2.229) | (2.499) | (2.784) |
‘ [ ‘
i | e |
0.9 1.382 | 1.636 | 1.922 | 2237 | 2.582 ‘ 2054 | 3.354 | 3.781 \
(1.243) ‘ (1.513) | (1.803) ‘ (2.117) | (2.457) ‘ (2.823) ‘ (3.216) | (3.637) |
: | i — \
1.0 1579 | 1914 | 2.298 | 2729 3.206  3.727 . 4.293 | 4.906
(1.391) i (L741) . (2.125) . (2.550) \ (3.016) | (3.526) | (4.080) | (4.680)
| :
|
1.1 1788 | 2.219 | 2722 | 3.205 | 3.935 [ g6as | 5.426 ‘ 6.281
(1.541) | (1.982) | (2.479) | (3.037) | (3.659) & (4.349) ‘ (5.109) | (5.492)
1.2 2.011 ‘ 2553 | 3.106 | 3.939 | 4.782 ‘ 5.728 | 6.781 | 7.947
(1.604) | (2.237) | (2.864) | (3.580) | (4.392) | (5.304) | (6.322) | (7.452)
| | 7
1.3 2.246 | 2.916 | 3.723 | 4.668 | 5756 | 6.992 | 8.385 | 9.947
(1.847) (2.505) | (3.280) \ (4.182) | (5.220) | (6.403) | (7.741) | (9.243)
\ | ! 5 \
V i
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E{N(y; 1)} and E{N*y; )} are given in tables I and II. For comparison,
we have also tabulated the corresponding mean numbers E{n'(y;?)} and
&{n2(y; t)} that exist at ¢{. For a given y, E{N(y; ?)} is less than €{n'(y; 1)}
for very small ¢, as is to be expected, sinece the primary is not counted in the
former. Of course E{N?(y; )} is always greater than €{n3(y; t)} for any given

4 and ¢.

3. — Comparison with experimental data.

The experimental results obtained by FAY (2) can now be compared with
the mean numbers given above. We first note that the energy referred to
by FAY is the total energy of the pair and the shower is initiated by a pair
of electrons obtained from photon materialization. From a physical point
of view, it is clear that the mean number of pairs each with a total energy
greater than E produced by a pair of total energy FE, is exactly the same as

&~
T

w
T

efney:th] —

—

6+

075 1fo 1.25 15 05 75 10 %5

Fig. 1. — Mean number of pairs plotted
against thickness measured in radiation
units; y=4. Broken curves denote the
total number of observed pairs while
broken curves with dots denote the total
number of pairs excluding tridents.

G - Il Nuovo Cimento.

Fig. 2. — Mean number of pairs plotted
against thickness measure in radiation
units; y=>5. Broken curves denote tF
total number of observed pairs, v’
broken curves with dots denote th
number of pairs exeluding tr™
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the mean number of single electrons with emnergies greater than ¥ produced
by a single electron of energy F, (*). Hence the numbers presented in Table T
can be directly compared with Fay’s results. Since Fay’s data are based on six
showers, the statistics can be expected to be reasonably good. Further as the
energies involved are fairly high we have used the data based on scattering
measurements, rather than on opening angle (¥).

In Fig. 1 and 2, we have plotted the theoretical mean numbers of pairs
and the experimental limits against ¢ for y =4 and 5. For comparison we
have also indicated the extent to which the experimental curves will be de-
pressed if the reported tridents are subtracted (¥). It will be found that there
is good agreement between the theoretical curve and the depressed curves.
(obtained by subtracting the tridents). Calculations relating to higher moments
of the distribution can be expected to give a decisive answer to the role played
by tridents and other multiple processes.

In conclusion, we would like to thank Dr. Fay of the Max Planck Institute.
for supplying us the details of his experimental results.

APPENDIX

The mean number of electron pairs (the total energy of each pair being
greater than FE) produced in a shower initiated by an electron of energy FE, is.
given by (?)

1 o+ic
(A1) E{My; )} = 2m,f]f(s; t)exply(s —1)lds,

Gg—ito

(*) In view of the fact that such a result does not hold good for higher order mo-
ments, a forthal proof is presented in Appendix.
(*) We are thankful to Dr. SOLNTSEFF for clarifying this point.

1

&) We are aware that real tridents cannot be distinguished from pseudo tridents.

experimentally.
(®) 8. K. SRINIVASAN: Ph. D. Thesis, University of Madras (1957).
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where

(p— A) (s — 1)

(A.2)  K(s: t) = Da, {1 - exa) [— 4t };ez%[___/‘ﬁ]_l )

We then observe that the probability that an electron is produced in the
energy range (E,, E,+dE,) at {=0 given that a photon of energy FE, mate-
rializes at ¢=0 is

1

D Q(EM Et;) dE,,

where ¢ is the differential cross-section for pair production and D, the total
cross-section. Hence €{M'(y’; 1)} the mean number corresponding to a shower
produced by an electron pair of total energy K, is given by

1 , o
(A3) €{M'(E|E); 1)} — Bff{Mw; D} Lo(Eo; By) + o(By — B, B))]AH, =

=) g4i

2 1 ; '
=5 f .;,m.f K(s; t) exp [y(s — D)]o(E,, E,) dE,ds .

Y

The dependence of €{M(y; )} on F, is through exp [y(s — 1)] or (E,/E)-1
Interchanging the order of integration over E;, and s and observing that

Eq
o E s-1 , E' —sl
(A.4) 2] ('Eg) o(Eq; Ey)dE, = (ﬁ) B,
0
we obtain
, 1 [K(s;t ,
(A.5) E{M(E|E, t)}:%fib’ ) B, exp ly'(s — 1)]ds ,

where 3’ =log E,| E. Substituting the expression for K(s;t) in {A.5), we find
(A.6)  E{M'(y;0} =

1 B0, 1 —exp [— Ait] 1 —exp [— u.t]
b B w'ls — 111 [ o
f =y (s —3) P18 < 7 us ds.-

g-i®



84 S. K. SRINIVASAN, J. C. BUTCHER, B. A. CHARTRES and H. MESSEL

Comparing (A.6) with (4), we note

(A.T) E{M'(y';50); = E{N(y; 1)}

provided y' = y.

RIASSUNTO (¥)

Sulla base del nuovo trattamento della teoria della cascata si presentano accurati
risultati numeriei sul numero medio di elettroni generati in piccoli spessori in uno

sciame iniziatosi con un singolo elettrone o fotone. I accordo col risultati sperimentali
& soddisfacente se si tien conto dei tridenti.

(" Praduzione o cura deotha Redazione.



