Flavonoids from the Whole Plants of Orostachys japonicus

Hee Juhn Park, Han Suk Young[§], Kun Young Park^{*}, Sook Hee Rhee^{*}, Hae Young Chung and Jae Sue Choi^{**}

College of Pharmacy, Pusan National University, Pusan 609-735, Korea *Department of Food Science and Nutrition, Pusan National University, Pusan 609-735, Korea **Department of Nutrition and Food Science, National Fisheries University of Pusan, Pusan 608-737, Korea (Received May 3, 1991)

Abstract \Box From the whole plants of *Orostachys japonicus*, kaempferol, quercetin, astragalin, quercitrin, isoquercitrin, cynaroside, afzelin, 3-*O*- α -L-rhamnosyl-7-*O*- β -D-glucosyl kaempferol, and 3,7-di-*O*- β -D-glucosyl kaempferol were isolated and characterized by spectral data.

Keywords 🗌 Flavonoids, Orostachys japonicus, ¹³C-NMR

Orostachys japonicus (Crassulaceae) is a perennial herb which is fairly distributed over Korea, and the herbs have been used as a Chinese crude drug for the treatment of fever, breding and intoxication and used in folk medicine as an anti-cancer agents¹⁾. Since its chemistry has not yet been investigated, we have examined the herbs and here report the results.

EXPERIMENTAL METHODS

All melting points were measured on a Thomas Hoover 6406-H apparatus and are uncorrected. The IR spectra were determined in KBr tablets on a Shimadzu IR-400 spectrophotometer and the UV spectra were runned with CE 599 Universal automatic scanning spectrophotomer. The ¹H- and ¹³C-NMR spectra were obtained on either a Bruker AM-300 or a Jeol-GX 400 spectrometer using TMS as an internal standard. The FAB mass spectrum was taken with Kratos MS 25 RFA spectrometer. For TLC, Kieselgel 60 F₂₅₄ sheets (Merck) were used.

Plant material

The O. japonicus used was purchased from the

§To whom all correspondence should be addressed

Chinese herb medicine shop at the Pyongwha market, Pusan, Korea. A voucher specimen is deposited in the herbarium of College of Pharmacy, Pusan National University, Pusan, Korea.

Extraction, fractionation and isolation

Dried whole plants of commercially available *O. japonicus* were extracted with MeOH under reflux. The MeOH extract (102 g) was partitioned with *n*-hexane (13 g), CHCl₃ (27 g), EtOAc (10 g), *n*-BuOH (15 g) and H₂O (4 g) successively. The EtOAc extract (10 g) was chromatographed over silica gel using CHCl₃:MeOH:H₂O (65:35:10, lower phase) mixture to give **1** (0.24 g), **2** (0.14 g), **3** (0.13 g), **4** (0.15 g), **5** (0.125 g), and **6** (0.25 g). The *n*-BuOH extract (13 g) was subjected to chromatography using SiO₂ (solvent; EtOAc:MeOH:H₂O=600:99:81) column to give **7** (0.03 g), **8** (0.55 g) and **9** (0.015 g).

Compound 1 (kaempferol)

Yellowish needless from MeOH, mp. 277-279°C, FeCl₃, Mg/HCl, Zn/HCl; positive. IR v_{max}^{KBr} (cm⁻¹): 3350 (-OH), 1667 (α , β -unsaturated ketone), 1620, 1575, 1510 (aromatic C=C), 1375, 1245, 1175, 810. UV λ_{max}^{MeOH} nm: 257 (sh.), 269, 300 (sh.), 330, 370, $\lambda_{max}^{MeOH+NaOMe}$ nm: 280, 320, 420, $\lambda_{max}^{MeOH+AlCl_3}$ nm: 270, 308, 350, 428, $\lambda_{meOH+AlCl_3}^{MeOH+AlCl_3+HCl}$ nm: 258 (sh.), 270, 308, 350, 427, $\lambda_{meOH+NaOAe}^{MeOH+NaOAe}$ nm: 274, 310, 380, $\lambda_{max}^{MeOH+NaOAc+H_{3}BO_{3}}$ nm: 270, 298, 324, 370.

Compound 2 (quercetin)

Yellowish needles from MeOH-H₂O (1:1), mp. 310-313°C, FeCl₃, Mg/HCl, Zn/HCl; positive, IR ν_{max}^{KBr} (cm⁻¹): 3380, 3300 (-OH), 1670 (α , β -unsaturated ketone), 1610, 1510, (aromatic C=C), 1360, 1315, 1240, 1160, 1090, 995, 817. UV $\lambda_{max}^{\text{MeOH}}$ nm: 258, 305 (sh.), 375, $\lambda_{max}^{\text{MeOH}+\text{NaOMe}}$ nm: 248 (sh.), 335, 420 (dec.), $\lambda_{max}^{\text{MeOH}+\text{AlCl}_3}$ nm: 275, 340 (sh.), 460, $\lambda_{max}^{\text{MeOH}+\text{AlCl}_3+\text{HCl}}$ nm: 270, 307 (sh.), 365, 435, $\lambda_{max}^{\text{MeOH}+\text{NaOAc}}$ nm: 260 (sh.), 278, 328, 388, $\lambda_{max}^{\text{MeOH}+\text{NaOAc}+\text{H}_3\text{BO}_3}$ nm: 243, 285 (sh.), 372.

Compound 3 (afzelin)

Yellowish needles from MeOH-H₂O (1:1), mp. 173-178°C, FeCL₃, Mg/HCl, Zn/HCl, Molisch test; positive. IR $\nu \frac{\text{KB}^{\text{r}}}{\text{max}}$ (cm⁻¹): 3400-3100 (broad, -OH), 1655 (α , β -unsaturated ketone), 1605 (aromatic C= C), 1355, 1170, 1100-1000 (glycosidic linkage). UV $\lambda \frac{\text{MeOH}}{\text{max}}$ nm: 268, 357, $\lambda \frac{\text{MeOH}}{\text{max}}$ nm: 276, 402, $\lambda \frac{\text{MeOH}}{\text{max}}$ nm: 274, 351, 403, $\lambda \frac{\text{MeOH}}{\text{max}}$ nm: 268, 350. ¹H-NMR (DMSO-d₆, 400 MHz) & 0.81 (3H, d, J=5.6 Hz, rha-CH₃), 5.32 (1H, d, J=1.47 Hz, anomeric), 6.21 (1H, d, J=2 Hz, H-6), 6.41 (1H, d, J=2 Hz, H-8), 6.92 (2H, d, J=8.8 Hz, H-3' and H-5'), 7.76 (2H, d, J=8.8 Hz, H-2' and H-6'), 12.63 (1H, s, H₅-OH). ¹³C-NMR (DMSO-d₆, 100 MHz) & s: see Table I.

Compound 4 (astragalin)

Pale yellowish needles from MeOH, mp. 230-233°C, FeCl₃, Mg/HCl, Zn/HCl, Molish test: positive. IR v_{max}^{KBr} (cm⁻¹): 3500-3100 (broad, -OH), 1560 (α , β unsaturated ketone), 1650, 1575, 1505 (aromatic C= C), 1350, 1170, 1180, 1100-1000 (glycosidic linkage). UV $\lambda_{meoH}^{\text{MeOH}}$ nm: 267, 300 (sh.), 352, $\lambda_{meoH}^{\text{MeOH}+\text{NaOMe}}$ nm: 275, 327, 400, $\lambda_{meoH}^{\text{MeOH}+\text{AlCl}_3}$ nm: 269, 295 (sh.), 306, 352, 398, $\lambda_{meoH}^{\text{MeOH}+\text{AlCl}_3+\text{HCl}}$ nm: 276, 296 (sh.), 304, 347, 398, $\lambda_{meoH}^{\text{MeOH}+\text{NaOAe}}$ nm: 276, 307, 370, $\lambda_{max}^{\text{MeOH}+\text{NaOAc}+\text{H}_3\text{BO}_3}$ nm: 261, 379. ¹H-NMR (DMSO-d₆, 300 MHz) & 5.54 (1H, d, J=7.2 Hz, anomeric), 6.21 (1H, d, J=2.1 Hz, H-6), 6.43 (1H, d, J=2.1 Hz, H-8), 6.89 (2H, d, J=8.8 Hz, H-3' and H-5'), 8.04 (2H, d, J=8.8 Hz, H-2' and 6').

Compound 5 (quercitrin)

Yellowish needles from MeOH. mp. 186-187°C,

FeCl₃, Mg/HCl, Zn/HCl, Molisch test: positive. IR ν ^{KBr}_{max} (cm⁻¹): 3500-3100 (broad, -OH), 1650 (α, βunsaturated ketone), 1600, 1570, 1505, (aromatic C=C), 1360, 1275, 1175, 1100-1000 (glycosidic linkage). UV λ ^{MoOH} nm: 256, 265 (sh.), 301 (sh.), 350, λ ^{MoOH+NaOMe} nm: 270, 326, 393, λ ^{MeOH+AlCl3} nm: 276, 304 (sh.), 333, 430, λ ^{MeOH+AlCl3+HCl} nm: 272, 303 (sh.), 353, 401, λ ^{MoOH+NaOAc} nm: 272, 322 (sh.), 372, λ ^{MeOH+NaOAc+H3BO3} nm: 260, 300 (sh.), 367. ¹H-NMR (DMSO-d₆, 300 MHz) δ: 0.80 (3H, d, *J*=5.8 Hz, rha-CH₃), 5.28 (1H, d, *J*=1.47 Hz, anomeric), 6.23 (1H, d, *J*=2.1 Hz, H-6), 6.39 (1H, d, *J*=2.1, H-8), 6.88 (1H, d, *J*=8.3 Hz, H-5'), 7.27 (1H, dd, *J*=2.1 Hz and 8.3 Hz, H-6'), 7.32 (1H, d, *J*=1.9 Hz, H-2'). ¹³C-NMR (DMSO-d₆, 100 MHz) δ: see Table I.

Compound 6 (isoquercitrin)

Yellowish needles from MeOH, mp. 234-236°, FeCl₃, Mg/HCl, Zn/HCl, Molisch test: positive. IR $\lambda_{max}^{\text{KBr}}$ (cm⁻¹): 3500-3100 (broad. -OH), 1650 (α , β -unsaturated ketone), 1596, 1590, 1480 (aromatic C=C), 1350, 1285, 1195, 1100-1000 (glycosidic linkage). UV $\lambda_{max}^{\text{MeOH}}$ nm: 258, 359, $\lambda_{max}^{\text{MeOH}+\text{NaOMe}}$ nm: 273, 412, $\lambda_{max}^{\text{MeOH}+\text{AlCl}_3}$ nm: 276, 435, $\lambda_{max}^{\text{MeOH}+\text{AlCl}_3+\text{HCl}}$ nm: 271, 404, $\lambda_{max}^{\text{MeOH}+\text{NaOAc}}$ nm: 275, 376, $\lambda_{max}^{\text{MeOH}+\text{NaOAc}+\text{H}_3\text{BO}_3}$ nm: 262, 380. ¹H-NMR (DMSO-d₆, 400 MHz) & 5.46 (1H, d, J=7.9 Hz, anomeric), 6.20 (1H, d, J=1.8 Hz, H-6), 6.40 (1H, d, J=1.8 Hz, H-8), 6.85 (1H, d, J=9.2 Hz, H-5'), 7.58 (1H, d, J=2.4 Hz, H-2'), 7.58 (1H, dd, J=2.4 and 9.2 Hz, H-6'). ¹³C-NMR (DMSO-d₆, 100 MHz) &: see Table I.

Compound 7 (cynaroside)

Pale yellowish powder from MeOH, mp. 259-260°C, FeCl₃, Mg/HCl, Zn/HCl, Molisch test: positive. ¹H-NMR (DMSO-d₆, 400 MHz) δ : 5.06 (1H, d, J =7.2 Hz, anomeric), 6.44 (1H, d, J = 2.1 Hz, H-6), 6.71 (1H, s, H-3), 6.78 (1H, d, J = 2.1 Hz, H-8), 6.89 (1H, d, J = 8.4 Hz, H-5'), 7.41 (1H, dd, J = 2.1 and 8.4 Hz, H-6'), 7.45 (1H, d, J = 2.1 Hz, H-2'). ¹³C-NMR (DMSO-d₆, 100 MHZ) δ : see Table I.

Compound 8 (3-O-α-L-rhamnosyl-7-O-β-D-glucosyl kaempferol)

White needles from MeOH-H₂O, mp. 256-258°C, FeCl₃, Mg/HCl, Zn/HCl, Molisch test: positive. IR ν_{max}^{KBr} cm⁻¹: 3500-3100 (broad, -OH), 1650 (α , β unsaturated ketone), 1602, 1510, 1494 (aromatic C= C), 1450, 1210, 1181, 1100-1000 (glycosidic linkgae).

Carbon No.	1"	2 <i>^{<i>a</i>}</i>	3	4	5	6	7	8	9	Aab	Bab	
2	146.8	146.9	157.3	156.4	157.2	156.4	164.9	157.7	156.8	147.9	156.8	
3	135.6	135.6	134.3	133.2	134.2	133.4	103.1	134.5	133.5	136.0	133.8	
4	175.9	175.7	177.8	177.4	177.7	177.4	181.8	177.9	177.6	176.1	177.6	
5	160.7	160.7	161.4	161.2	161.3	161.3	161.1	160.9	160.9	160.5	160.9	
6	98.2	98.2	98.8	98.7	98.6	98.7	99 .5	99.3	99.3	99.2	99.4	
7	163.9	163.9	164.3	164.2	164.2	164.4	162.9	162.9	162.8	162.9	162.8	
8	93.5	93,4	93.8	93.6	93.5	93.6	94.7	94.6	94.4	94.8	94.5	
9	156.2	156.2	156.6	156.2	156.4	156.2	156.9	156.1	156.0	156.0	156.0	
10	103.1	103.0	104.2	104.0	104.0	103.9	105.3	105.8	105.7	105.0	105.8	
ľ	121.7	122.0	120.7	120.9	121.0	121.6	121.3	120.3	120.8	121.7	120.9	
2'	129.5	115.3	130.6	130.8	115.4	115.3	113.5	130.6	131.0	129.6	130.7	
3'	115.4	145.0	115.5	115.1	145.1	144.8	145.7	115.4	115.1	115.6	115.0	
4'	159.2	147.6	160.0	159.9	148.4	148.5	149.8	160.1	160.1	159.4	160.0	
5'	115.4	115.6	115.5	115.1	115.6	116.2	115.9	115.4	115.1	115.6	115.0	
6'	129.5	120.0	130.6	130.8	120.7	121.2	119.1	130.6	131.0	129.6	130.7	
3-Rha		12010										
1			101.8		101.8			101.8				
2			70.6*		70.0*			70.0*				
3			70.2*		70.3*			70.2*				
4			713		71.2			71.1				
5			70.6*		70.5*			70.6*				
6			17.5		17.4			174				
3-Glc			11.5		• / • •			17.4				
1				101.0		100.9			100.7			
2				74.2		74.1			74.2			
3				76.4		76.5			76.4			
4				69.9		69.9			69.9			
5				77.4		77.6			77.5			
6				60.9		61.0			60.8			
7-Glc												
1							99.9	99.9	99.7	100.5		
2							73.0	73.1	73.1	73,4		
3							76.3	76.4	76.4	76.7		
4							69.2	69.6	69.6	70.1		
5							77.1	77.2	77.1	77.3		
6							60.6	60.6	60.6	61.25		

Table I. ¹³C-NMR spectral data of compound 1-9 and related compounds in DMSO-d₆

*Values with the same symbol may be interchanged in the vertical column "data taken from ref. 7. ^bA: kaempferol 7---glucoside, B: kaempferol 3-O-glucosyl-7-O-rhamnoside.

UV $\lambda_{max}^{\text{MeOH}}$ nm (log ε): 232 (sh. 4.42), 267 (4.54), 320 NM (4.31), 346 (4.38), $\lambda_{max}^{\text{MeOH}+\text{NaOMe}}$ nm (log ε): 248 (4.46), Hz (272 (4.46), 385 (4.49), $\lambda_{max}^{\text{MeOH}+\text{AlCl}_3}$ nm (log ε): 230 (1H (4.47), 276 (4.59), 304 (4.25), 354 (4.43), 400 (4.38), $\lambda_{max}^{\text{MeOH}+\text{AlCl}_3+\text{HCl}}$ nm (log ε): 228 (4.49), 276 (4.56), 302 Hz (4.27), 345 (4.40), 396 (4.28), $\lambda_{max}^{\text{MeOH}+\text{NaOAc}}$ nm (log ε): 268 (4.54), 320 (sh. 4.23), 351 (4.36), $\lambda_{max}^{\text{MeOH}+\text{NaOAc}+\text{H}_3\text{BO}_3}$ FAI nm (log ε): 267 (4.58), 318 (sh., 4.36), 346 (4.43). ¹H-----40].

NMR (DMSO-d₆, 400 MHz) δ : 0.82 (3H, d, J=5.6 Hz, rha-CH₃), 5.06 (1H, d, J=7.2 Hz, anomeric), 5.34 (1H, d, J=1.5 Hz, anomeric), 6.46 (1H, d, J=2 Hz, H-6), 6.76 (1H, d, J=2 Hz, H-8), 6.93 (2H, d, J=8.9 Hz, H-3' and 5'), 7.79 (2H, d, J=8.9 Hz, H-2' and 6'). ¹³C-NMR (DMSO-d₆, 100 MHz) δ : see Table I. FABMS (m/z, %): 617 [(M+Na)⁺, 21], 595 [(M+H)⁺, 40].

Compound 9 (3,7-di-glucosyl kaempferol)

Yellowish needles from MeOH, mp. 147-148°C, FeCl₃, Mg/HCl, Zn/HCl, Molisch test: postive. IR v_{max}^{KBr} cm⁻¹: 3500-3100 (broad, -OH), 1650 (α , β -unsaturated ketone), 1604 (aromatic C=C), 1356, 1170, 1100-1000 (glycoside). ¹H-NMR (DMSO-d₆, 300 MHz) δ : 5.07 (1H, d, *J*=7.0 Hz, anomeric), 5.47 (1H, d, *J*=7.0 Hz, anomeric), 6.44 (1H, d, *J*=1.8 Hz, H-6), 6.78 (1H, d, *J*=1.8 Hz, H-8), 6.89 (2H, d, *J*=8.8 Hz, H-3' and 5'), 8.06 (2H, d, *J*=8.8 Hz, H-2' and 6'). ¹³C-NMR (DMSO-d₆, 75.5 MHz) δ : see Table I.

Acid hydrolysis of 3,4,5,6,7,8 and 9

Forty mg of each compound was refluxed with 5%-H₂SO₄ (50 ml) for 3 hrs. After cooling, the reaction mixture was filtered. The aglycone was crystallized from MeOH to give kaempferol from **3,4,8** and **9**, quercetin from **5** and **6** and luteolin from **7** which were confirmed by direct comparisons with authentic samples (TLC, mmp, and UV). The filtrate was neutralized with BaCO₃, filtered and concentrated *in vacuo*. L-rhamnose from **3** and **5**, D-glucose from **4**, **6**, **7** and **9**, L-rhamnose and D-glucose from **8** were detected by TLC.

Enzymatic hydrolysis of 8

Thirty mg of **8** was incubated with β -glucosidase for 1 hr. The reaction mixture was filtered and the filtrate was partitioned, concentrated *in vacuo* and crystallized from MeOH-H₂O to give afzelin as yellow needles, mp. 234-236°C. It was confirmed by direct comparisons with compound **3** (TLC, mmp, and UV). The water layer was concentrated *in vacuo*. D-glucose was identified by TLC.

Enzymatic hydrolysis of 9

Thirty mg of **9** was incubated with β -glucosidase for 1 hr. The reaction mixture was filtered and the filtrate was partitioned, concentrated *in vacuo* and crystallized from MeOH to give astragalin as yellow needles, mp. 230-233°C. It was confirmed by direct comparisons with compound **8** (TLC, mmp, UV). The water layer was concentrated *in vacuo*. D-glucose was identified by TLC.

RESULTS AND DISCUSSION

Silica gel column chromatography of the ethyl

acetate and *n*-BuOH soluble portions of the MeOH extract yielded nine compounds (1-9) in the order of increasing polarity. Compounds 1, 2 and 4-7 were readily elucidated as kaempferol, quercetin, astragalin, quercitrin, isoquercitrin and cynaroside, respectively by comparison of reported spectroscopic data²⁻⁵⁾ and finally confirmed by comparison with authentic samples.

Compounds 3, 8 and 9 showed positive results in Molisch tests besides flavonoid color reactions and showed absorption bands for glycoside linkages (1,000-1,100 cm⁻¹) in their IR spectra. On acid hydrolysis yielded all compounds gave kaempferol as the aglycone and L-rhamnose from 3, L-rhamnose and D-glucose from 8 and D-glucose from 9 as the sugar. The ¹H-NMR spectrum of 3 showed only one anomeric proton signal indicating the presence of one mole of L-rhamnose in 3. The glycosidic position at C-3 was determined by the UV maxima at 350-360 nm. This was further confirmed by the inspection of ¹³C-NMR spectrum (see Table I). The configuration and conformation of sugar moiety was determined by the J value of the anomeric proton signal (see Experimental). Thus, the structure of 3 was elucidated as kaempferol 3-O-a-L-rhamnopyranoside (afzelin). The ¹H-NMR spectra of 8 and 9 showed two anomeric proton signal, indicating the presence of two mole of sugar in each compound. The band 2 in the UV spectra of each compound was not affected by an addition of NaOAc, indicating that 7-hydroxy group must be glycosylated⁶⁾. Additionally, enzymatic treatment of 8 with β -glucosidase gave a product which was identified by UV and ¹H-NMR as compound 3. These results indicated the linkage of L-rhamnose to the 3-O-position and D-glucose at the 7-O-position in 8. In the same way, enzymatic treatment of 9 with β -glucosidase gave a product which was identified as compound 4. The linkage of each D-glucose to the 3- and 7-O-position in 9 was also indicated. These were further confirmed by the inspection of the ¹³C-NMR spectra (see Table I). Glycosylation with L-rhamnose at C-3 appeared to have a more marked effect on the C-3 signal (0.7-1.3 ppm) than with other sugars and this difference has a diagnostic value⁷⁾. As shown in Table I, the signal of 8 was deshielded when compared with 9. Thus, the structures of 8 and 9 were elucidated as 3-O-a-L-rhamnosyl-7-O-D-glucosyl kaempferol and 3,7-di-O-B-D-

glucosyl kaempferol, respectively.

ACKNOWLEDGEMENT

This paper was supported by a research grant (90-0500-3) from KOSEF.

LITERATURE CITED

- Kim, J. B.: Illustrated Natural drugs encyclopedia (color edition), Vol. 2, Nam San Dang, Seoul, p. 447, 1984.
- Choi, J. S., Woo, W. S., Young, H. S. and Park, J. H.: Phytochemical study on *Prunus davidiana*. *Arch. Pharm. Res.*, 13, 374 (1990).
- 3. Choi, J. S., Young, H. S. and Kim, B. W.: Hypoglycemic and hypolipemic effects of *Ixeris den*-

tata in diabetic rats. Arch. Pharm. Res., 13, 269 (1990).

- Choi, J. S., Young, H. S., Park, J. C., Choi, J. H. and Woo, W. S.: Flavonoids from the leaves of *Rhododendron brachycarpum. Arch. Pharm. Res.*, 9, 233 (1986).
- 5. Young, H. S., Park, J. C., Park, H. J., Lee, J. H. and Choi, J. S.: Phenolic compounds of the leaves of *Eucommia ulmoides*. *Arch. Pharm. Res.*, 14 (in press).
- Mabry, T. J., Markham, K. R. and Thomas, M. B.: The systematic identification of flavonoids, Springer-Verlag, N. Y. 1970.
- Agrawal, P. K. and Rastogi, R. P.: ¹³C-NMR spectroscopy of flavonoids. *Hetercycles*, 16, 2181 (1981).