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The Einstein theory of general relativity rests on the group of general co-ordinate 
transformations (or general covarianee group) 

(1) x~ =/dx~, x2,  z3 ,  x~) , 

where /,(x) are arbitrary functions of the co-ordinates xl, x 2, x~, x~ = ict. The general 
covariance group is all infinite-parameter group. The aim of the present paper is to 
call at tention to the simple and remarkable fact that  the action of the general 
covariance group can be reduced to alternating actions of its two finite-parameter 
subgroups: the special linear group SLR, R and the conformal group Cls. Both the 
linear and conformal groups act on the same manifold, that  of co-ordinates, but these 
groups do not commute with each other. Below we prove that  the algebra of the general 
covariance group (1) turns out to be the closure of algebras of the linear and conformal 
groups, i.e. that  any generator of (1) is representable as some linear combination of 
repeated commutators of generators of S/q.  R and Cir. In this way, the transformation 
properties (invariance, in particular) of any quanti ty trader the action of the intinite- 
dimensional general covai'iance group are determined by its transformation properties 
under that  of the essentially simpler finite-dimensional groups SLR, n and C1~. Some 
perspectives of this new approach to the general covariance group will be sketched 
in the concluding remarks. 

Now we proceed to prove thc main statement. To that end wc expand the func- 
tions ],(x) (l) into infmitc series in powers of co-ordinatcs. Coefficients of the series 
serve as parameters of the general eovafiance group, and its generators can be written 
as follows : 

17 n l , n l , n l , n  I �9 n 1 11. ~ I  n l  (2) L k = - - z x l  x,,'xs x4 Ok (n ~ nl + n2 + n3 + nR, Ok ~ / ~ x k ) .  

The group SLR. n is formed by all linear transformations x~ = a~x~ with the deter- 
minant  equal to unity, and its generators ale 

(3) 
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A set of gonerators of the conformal group C~, as is known, consists of those of four- 
dimensional rotations (also entering into (3) as a sul)algebra), translations Pi ,  dilata- 
tions D and special conformal transformations K~: 

(da) P ,  = - -  iO~ , 

(4b) D -- - -  i(xO) , 

(4c) K~ = --  i ( xZOi- -  2xi(x0)) . 

Consider the closure of the linear- and couformal-group algebras, i.e. such minimal 
algebra which would contain all commutators of the generators (3) and (4) and their 
linear combinations. We will prove that this algebra coincides with that  of the general 
covariance group (2), i.e. the following theorem is valid: 

A n y  generator o/ the general eovariance group '~L~ ''"'-''q'€176 in representable as some 
l inear  combinat ion o] the commutators  o] generators o] the special l inear and con]ormal 
groups.  

The proof is carried out by mathematical inducf, ion. The translation generators 
(4a) give all generators "Li," with n = 0. The generators of SLd. n together with those 
of dilatations (4b) constitute the algebra Ld, n with generators 

(5) R,~ =- -- ix ,01,  

and give all "L~' wiCh n ~ 1. Generators of the special conformal transformations g~ 
(4c) are quadratic in x. Let us show that  all generators "Li, with n-= 2 are contained 
in the closing algebra. Consider the commutator of the dilatation along the m-th axis 
R,~,, with K~, m=~ p, 

(6) [ R  . . . . . .  K ~ ]  2 - -  2 x  m O~ . 

So, we have the generator --  ix',, ~,,. Further, 

(~') [ R ~ , , ,  - -  i x ~  o~] = - -  ' ~ , ,  ~ ~ + x~ ~,, . 

Comparing eqs. (6) and (6') with K m (4c) itself we conclude that  tile closing algebra 
includes the generators --ix,,z~0~ ( m ~ p )  and -.ix2,~ ~ .... "~s well. Finally, the generator 
--ix,~x,,O~ ( m C n C p )  arises from the commutator 

(6") [R,,~, - -  i x , x~  e~] = - -  Xr~ x ,  0~. 

Hence, all the generators "Lg" with n =  2 arc exhausted. Commuting the generators 
quadrat ic  in x with each other, we alrive at those cubic in x: 

(7a) 

(7b) 

[-- ix~,, 0. , - -  ix~ 0,, l . . . .  2x~ x .  0,~ , 

[ - - ix .~x .O. , - - ia;2 .  O . ] -  - x . , x ~ O . ,  

i.e. we have found the generators - ix2, ,x , ,O, ,  - ix , , ,x~O~ ( m e  n). The commutator of 
the latter genen~tor wich R,m (5) is the following: 



V. I. OGIF.V~'.TSKY 

and wi th  (7a) taken  into account  we obta in  the  genera to r  of fur ther  impor tance  

/sb) - ~ .  a . .  

Other  genera tors  of th i rd  powcr  in x will  not  be required for our proof by induct ion.  
We have  shown above  tha t  the  theorem holds for n = 0, 1, 2. Suppose tha t  thc  one 
is val id  for sortie n,  i.e. all genera tors  "L~. ' '" ' '%'~,  can be represented  as l incar combina-  
t ions  of r epea ted  c o m m u t a t o r s  of the  genera tors  of l inear  and conformal  groups. P rovo  
t h a t  then  the  theorem will  be val id  for n +  1, as well .  

All  the  d i f ferent ia t ion  indices k of ~L~ ' '" ' '"~'" '  are  on the  same status,  so it suffices 
to consider  k = l .  Then,  if n ~ # 0 ,  n ~ # 3 ,  

i 11=I rlt,lls,nl ,'r14 (9) L ~  - 
n a - -  3 

Consider now the  cases n~-- 0 and  n t - -  3. In these cascs, if a t  leas t  one ot n2, n3, n 4 
is larger  than  zero, for ins tance  n 2 >  0, then  we have  

i 
(10) .+1 . . . .  

n x - -  1 

n nl ,Tt2- l ,n~,n 4 
- - -  [--  ixix~ al, L1 ]. 

Final ly ,  for n I = 3, n 2 =  n z = n 4--  0 the  corresponding genera tor  is given by (8). So, 
the  theorem is proven.  

One can see the  va l id i ty  of th is  theorem for spaces of any dimension,  the genera tors  
of the  general  covar iance  group being representable  as l inear  combinat ions  of repea ted  
c o m m u t a t o r s  of genera tors  of the  corresponding special  l inear  and conformal  groups.  

Elsewhere  we will show t h a t  the  Eins te in  equat ions  of general  re la t iv i ty  follow f rom 
the  invar iance  under  the  conformal  and  l inear  groups,  and  this  is quite  na tura l  wi th in  
the  f ramework of the  approach  developed.  In deep analogy with  the  fact  t ha t  pious 
are  connec ted  with  nonl inear  real izat ions  of the  dynamica l  chiral  S U 2 • S U, s y m m e t r y  
(see, e.g., ref. (~)), g r av i ty  field proves  to be connected  wi th  common nonlinear  realiza- 
t ions of the  dynamica l  conformal  and affinc symmetr ies  ('). 

Note  also, t ha t  the  prese.nted approach raises hopes tha t  md ta ry  representa t ions  
for the  inf ini te-dimensional  a lgebra of the  general  covar iance  group can be const ructed .  

The  au thor  thanks  s incerely F. A. Bv.~Ezi~', A. B. B o m s o v ,  D. V. VOLKOV and  
V. TYBOR for useful discussions. 
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