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S u m m a r y .  - -  I t  is shown that  the divergent parts of the second-order 
radiative corrections to the axial vector coupling constant (in neutron 
It-decay) do not satisfy universality, 

Severed ~mthors h~ve re( 'eutly s tudied  tile lowest -order  r~dia t ive  correc- 

t ions to pion ~-dec:~y. In p~rt icul~r BJoR1;~:~ ~ (~) showed theft a t  zero m o m e n t u m  

tr~nsfer to  the  leptons  the  (log~rithmie~dly) d ive rgen t  purr  of the  correc t ion 
to the  i sovector  weak-coup l ing  cons t an t  is de t e rmined  by  the  eqmd- t ime  com- 

m u t ~ t i o n  relnt ions of the  vec to r  cur rent .  Subsequen t ly  ABERU, NORTON ~nd 

1) toys  (") c la imed theft the  to tn l  rndi~t ive correc t ion  to  G r is un infinite con- 

s t lmt  i ndependen t  of the  s t rong iater:~ctions. H o w e v e r  J o I ~ S o ~ ,  L o w  ,~nd 

SUURA (3), ~nd i n d e p e n d e n t l y  CAreen0,  MAIANI und PREPAI~ATA (4), po in t ed  

ou t  t h a t  these ~uthoI's h~d neglec ted  the  con t r ibu t ion  of the  ~xi~l cu r ren t  und 

t h a t  when  this con t r ibu t ion  is inc luded the  rad ia t ive  correc t ion  tu rns  ou t  to 
be mode l -dependent .  

I n  this  no te  we consider  the  rad ia t ive  correc t ions  to  G r and  G~ in neu t ron  

~-decay,  ~ssuming ~ world in which the  axial  cu r ren t  is conserved  and  the  p ion 

(i) j .  l). BJO[CKE~: Phys. Rev.. 1484 1467 (1966); Current algebra at small distances, 
S.L.A.C. preprint (19(i7). 

(2) E. S. ABEICS. R. ]~. NORTON and 1). A. [)ICl~s: Phys. Rev. Lett., 18, 676 (1967). 
(a) K. JOItNSON, |,'. ],:. LOW ~nd tI. SUU~A: Phys. I~cv. Lett., 18, 1224 (1967). 
(4) N. (~ABIBBO, l~. MAIA~I and G. I)R],;PARA'rA: Phys. Lett., 25 B, 31, 30, 132 (1967). 
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mass is zero (s). The correction to (7 v is of course the infinite constant  given by  

ABERS et al. plus a model-dependent term which is finite in certain models 

like the algebra of fields (e). (This of course is well known.) However  for the 

corrections to G~ we find in addition to the infinite constant  of ABERS et at., 
a model-dependent  term which does not  seem to be finite in any known model. 

Now al though we work in a world with zero-mass pions this s t ructure-dependent  

divergence must  also be present in the real world (m~ :/= 0) since it would be 

very  surprising indeed if there were a singularity at  zero pion mass (7). Thus 

we conclude tha t  the radiative corrections to the axial vector coupling constant  

are nonuniversal.  Finally we note tha t  our conclusion is independent  of the 
assumption of a local interaction by  following SIZH~ (s) and working with an 

intermediate  vector  bosom 

The three diagrams which give the radiative corrections to ~-decay' are 

given in Fig. 1. The contr ibution of Fig. la) may  be wri t ten as 

(1) M~)_ --ie~G I f d4k ,g~ 
%/~ u~7~(1 § ~5)u~2 (27~) 4 k ~ i~ T~(p ,  p + s, k, e) , 

e e 

,~ ,~/ \p 

a) b) c) 

Fig. 1. 

(s) A conserved axial current of course cannot exist in a theory in which there is 
neither chiral symmetry nor a massless pseudoscalar particle. Since we do not use 
chiral SU2• symmetry (which is badly broken in nature) we must assume the 
existence of zero-mass pions which play the role of Goldstone bosons. In our case thus 
the axial current takes the form 

82 

where F~(0)=gA and e-----p~--px. (See S. MANDELSTAM: Berkeley preprint 12167, 
The relations between PCA C, axial charge-communication relations and conspiracy theory). 
Note that this matrix element does not hav~ an infinity at e----0, for between states 
at rest 

and (p[A~o(O)l,/V "} = O. However the matrix element does have a discontinuity at e-~ 0. 
(a) I am indebted to Prof. S. B. TRE~MhN for emphasizing this point to me. 
(7) T. D. LE~, S. W~TSB]~RG and B. ZUMINO: Phys. ~ev. Zett., 18, 1029 (1967). 
(s) A. STRLT~: Phys. Rev. TJett., 19, 877 (1967). 
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where 

('2) T ~(p, p t- ~', k, q) : i Jd4xd4yexp[ i ( k  t- q - - e ) x - -  iky] . 

�9 (P(p)lT(j~(x)j~ + A*~(O)IN( p + e)) - -  M~,,~(p, p + e, #, q) 

and is i l lustrated in Fig. 2. (~ is the m o m e n t u m  t ransfer  to the  
leptons.) When subs t i tu ted  in (1) the  t e rm M , ~  gives a 

t e rm  analogous to the usuul mass counter  t e rms  in ordinary 

q u a n t u m  elect rodynamics  ('). Thus it  cancels the nucleon- 

pole t e rm at  q----s which occurs in the  first t e rm  on the  
r igh t -hand  side of eq. (2). ~qow we have,  using the usual cur- 

r en t - commuta t ion  relat ions (,o), 

/ /  

Fig. 2. 

(3) 

where 

~T q , ~ ( p , p + e , k , q ) = T , , ( p , p + e , k + q - - s ) § 2 4 7  

§ T~,,(p, p § s, k, q ) - -q~M,~ , ,  

(4) 
s 

T (p, p -4 c, #) Id[xe'~'(P(p)lT{j~'(x) = (~,,(o) ~ a,~(o))}lN(p + ~)) 7'"~ 

J 

und 

(5) 
s 

2'~,.(p, p ~ ~, k, q) =Jd4xd4y  exp [i(# + q- -  s ) x - -  iky]. 

"(P(P) T(2~"(x))~ ~ Vx(0) § ~A~(O))IN(p F e ) ) .  

/ /  1111 I11 
i 

'~ f /  p p 

O) b) c) 

Fig. 3. 

(9) Se(~ for example A. SIRL1N: Lectures given at Iuternationale Universitdtswoeheu 
]iir Kernphysik, Schladming. 

(10) We assume that the ,%hwinger terms are C-numbers. (This is of course true 
in the model of the algebra of fields.) 
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As observed before T ~  does not contain ~ny singularities at q----e and 
the same is true of Tr M ~ .  Also since we assume a world with zero- 
muss pions und ~n axi~l current which is conserved (to zeroth order in ~) 
the l~tter term is of 0(~t). Hence we have, neglecting these terms, differentiating 
with respect to q, and putting q----e, 

(6) T, . . (p ,  p4 -e , k , s )= .~ -Ty  T . , ( p , p + e , k ) - - e ' _ ~ = -  " ~ ( p , p + s , k , q )  . 

For convenience let us now define 

f d4 k l~(p,  p 4- e, q) = k2 + i.~ T~.~(p, p + e, k, q), 

so that  we have from (6) 

f d4 k ~ e~ ~ q)q., (6a) I~(p,  p 4- e, e) -~ k2 4- i l  ~k~ T~.(p, p 4- e, k) -- ~ Fa(p, p 4- ~, . 

a) 
Fig. 4. 

i 
I / t  
i 
i 

/% 

:Now because of the presence of the pion- 
pole terms i n / ~  the second term on the 
right-hand side has terms which are of 
zeroth order in e. Now the pion-pole term 
in T,~ coming from diagram' 4a) may 
be written as 

q ~  

],~ ~ M~.(p, p 4- e, q, k), 

where 

M..(p,  p 4- e, q, k) ----fdx exp [i(k 4- q--e)x]<lV(p)u(q)lT(j,~(x)~.(O))lN( p + e)) 

and thus its contribution to F .  may be written 

(7) q~ fd'k /,~ -~ ~ -  M.~(p, p + e, q, k) = Fl~(p)vsu(p 4- e) 4- F ~ ( p ) % u ( p  4- e) , 

where F~ and F2 are functions of the invariants formed from p, e and q. The 
contribution to T~(q) of the pole term in diagram 4b) is 

(s) 2 3 kl f dxdy exp [i(k + q -- e)x -- iky]<~(e)lT(j.(x), Jr(Y), A~(0))[0> = 

= u~52U Gl(e~, q~, e'q)e~ + G2(e~, q~, e.q)q~ (say). 
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Hence  we have  f r o m  (7) and  (8) 

(9) ~q~, 

-t /=ffibc, F2-b O(e) (in the  rest  f r ame  of the  nuc leons) .  

bTow, t a k i n g  the  l imi t  e - ~  0 is an  ambiguous  p rocedure  as we observed  in 

foo tno t e  (~) for the  case of the  ze ro th -order  (in e) m a t r i x  

e lement  of the  axial  current �9 However ,  since in this m a t r i x  j) ~ 

e l emen t  if we t ake  the  l imi t  e - +  0 by  first fixing e~ = 0 ~ - ~ ; J -  

we get  r id  of the  i nduced  pseudosca la r  t e r m  jus t  as in the  

real  case (m= =# 0) a t  zero m o m e n t u m  t rans fe r  this  t e r m  ', 

vanishes.  Thus  it  is reasonable  to  expec t  t h a t  we are , 

closest  to  the  real  s i tua t ion  at  zero m o m e n t u m  t rans fe r  if 2L we define the  l imi t  e - +  0 for  the  a - th  c o m p o n e n t  of a n y  

m a t r i x  e lement  be tween  nucleons  by  first f ixing s~ = 0. 

Thus  wi th  this  defini t ion of arc  l imi t  we have  f r o m  Fig. 5. 

(7) and  (9) 

(10) f ddk h m  1 ~(p, p -5 e, e) 

A: 

Hence  we h a v c  f r o m  eqs. (1) and  (10) in l imi t  of zero m o m e n t u m  t ransfer  to  
the  leptons  

( I ] )  M ( ~ ) - - i e ' G  :l[fd'k 1 
- -  - ~ / ~  ~ ' r~( l  + 75)u~ 72 (e:~) 4 k 2 + i2 ~k~ T~t'(p' p' k) + 

+/~u757~u-F2(O) = - V f  [ J ( 2 ~ ) '  ( ~ i - ~  u"(P'P'k)+gfl~' (~ 

where  we have  p u t  /~/gaF2 = F and  l~ = U~(1 + y~)y~,U~. 
W e  note  t h a t  a l t h o u g h  in a wor ld  wi th  zero-mass  pions T(p, p+e, k) has 

a pole at  e = 0 due  to  the  d i a g ra m  i l lus t ra ted  in Fig.  5, the  residue a t  this  

pole is an  even func t ion  of k (~) and  hence  the  in tegra l  in eq. (11) is well defined. 

(ll) If mn ~ 0 the pole term in Fig. 4 is of the form (in tile rest frame of the nucleon) 

(~.~)/~'~fd~xeik~<~(~) T(?~(x), A~(0))10>. As ~-.0 fd~x~<~(~)T(jT'(x), A(O))IO > does 
not tend to zero unless we assume ehiral synimetry. Hence this diagram blows up at 
e = 0 .  However since as e-+0 the integral in the residue is of the form E(k~)gt,~+ 
+ G(k2)k~k~ it is an even function of k and hence that  part  of T m which is odd in k 
does not blow up at e =  0. 
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F o r  d iagram lb) we have  in the  l imit  e - +  0 

~ ( ~  - - i e ~ G (  d4k 1 ~7"7 .k7~(1  --  7~)U~T~,~,(p, 
(12) 

~=~'" - V~  J (2~), k~ + i ~  k ~ + i),  p ,  k)  , 

using the  re la t ion  

we m a y  rewri te  this 

_ ie~G 
M{b)  

dlv = 
f d4k 1 (2:t) 4 (k 2 -~ i),) 2 ~[k~,T~e~e -- 7~,Ti, ok ~ -- 7"kTm, -- 

- i% ~ T ~ ] ( 1  § y~)u~. 

N o w  f rom cur ren t  a lgebra  we have  the  resul ts  

(k + e)~,T~,e(p, p § e, k) = <pl(V~(o) § A*q(O)]p § e> (12a) 

and  

(12b) l%T~,r p .L ~, k) =-- (p!(V~(O) ~- At,(O)(!p 4- ~ , 

so t h a t  we finally have  for  M (b) div 

(13) ~A(b) 

= _ ieS2M(~ d*k . ~ ~/' d~k ~o 7.k(1 --  ~4)u; 
(2zt)'(k 2 4- i)~)2 '-- ~e ~ J O ~ '  (k 2 + i2)2 T~,~,(p, p, k) + 

[" d 4 k ie~,~, T~,q k~ 
-: ie2Gu~y~ (1 + 75)u;J (.-~), (k 2 § it)2 ' 

where  the  ze ro th-order  (in e) ma t r i x  e lement  

(14)  M ~~ G, _ 

N o t e  t h a t  t he  r emarks  m a d e  earlier a b o u t  the  pole t e r m  in T~ app ly  here as 

well and  t h a t  the  l imi t  ~--> 0 was  also t aken  in the  di rect ion specified earlier. 

F o r  d i ag ram lo) we have  

ie: o f d4k 
(15) M ~ c ) = -  M ( ) I  . . . . .  

2 J(2~),(k~ + iI)~ '  
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so t ha t  we finally have  for the  to ta l  divergent  corrections, adding (11), (13) 

and (15), 

d~ k stao~1t, ok,~k~ _~ 
(16) M<") '~ M(~ & M(r = ZMo + ie2Gl~, (2y~) 4 (k ~+i~)~ 

where 

3 . / "  d4k 
Z -= --  :~ze~J (2~)4(k2 + i~)2 ~nd l~ = ~r + ys)y~,u~ 

is the lepton current .  

Now let us separa te  the corrections to the vector  ((;v) and axial  (G~) par ts .  
5~ow f rom crossing and isospin s y m m e t r y  the tensor  pa r t  of T,~ (i.e. the 

pa r t  containing isovector  current) which is odd in k, is symmet r i c  i n / t  and 
and hence does not  contr ibute  to the second t e rm on the r ight -hand side of (16). 

Hence the fac tor  mul t ip lying l~ in this t e rm is a vector  and thus gives a cor- 
rection only to G V. 

Thus the corrections to G v are 

~f d~k s~aqc, T~+k~ 

and the corrections to G a are 

(18) ie~M~(Z ~ F ( 0 ) ) ,  

w h e r e  

, F M o = G v 1 ay~ u "rod Mo ~ = (~  l~ u?5 ?~ u .  

Now the convergence or divergence of the second t e rm in (17) depends on the  

space-space commuta tors .  In the algebra of fields for instance this t e rm  is 
convergent  and the to ta l  divergent  correction to G V is given by  Z. Models (a) 

have  also been proposed in which the space-space commuta to r s  are such t h a t  
the divergence in the second t e rm  cancels the divergence in the first {i.e. Z) 
so as to make  the  corrections to G v finite. 

In  the corrections to G~ (18) the convergence or divergence of F(0) is deter- 
mined by  the behaviour  of M ~  (see eq. (7)) for large k. Following BJORKEN 
we have  for ko -+ ic~  with  k = 0 

M~,~, -+ d3x(N(p)~(q)l[[H , j ,(x, 0], j . (0)JlN(p + e)} 
0 d 

(where H is the to ta l  Hami l ton ian  of the system) and since the coefficient 

of 1/k~ does not  vanish in any  model we conclude t ha t  _F(0) is a logar i thmical ly  

divergent  s t ruc ture-dependent  constant .  Hence  the rad ia t ive  corrections to  
the axial-vector  coupling constant  do not  satisfy universal i ty.  
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~ o w  following SIRLIS~ (s) let us look at  the radiat ive corrections under  the 
assumption tha t  the weak interact ion is mediated by  a vector  boson (W). 
We consider the three diagrams of Fig. 3. For  the first diagram we have es- 
sentially the same expression as (31) with iG/~-2---> g~ cos O/M ~, where go is the 
coupling constant  of the W-boson to the leptons and M is its mass. 

Thus we have 

09) 
M(a) --e2g~cosO ( d4k uey.k(1--y5)u~ 

(correct  of course to zeroth order in momentum transfer  to leptons). 
The expression for diagram b) is 

[ ( d 4 k  
M (b) = -- e~g cos 0 [ j i2~i~ (k ~ 

T~,~(p, p, k) ( k~k~'] 
§ i)2(k 2 -- M 2 + i) g~ §  

~.k 
�9 u ~  ~ 7~(1 - 7~)u~ 

(correct again to zeroth order in the momentum transfer  to the leptons). 
Since from arguments given in ref. (~/ Tt,,(P, P, k),~ O(1/ko) for large ko the 

only divergent  contr ibution to M (b) comes from the k~ k~ te rm in the boson 
propagator .  Hence we have using the relation 

k" T ~,,(p, p, k) = (p(p)[( V~(O) + A*,(0))~V(p)}, 

obta ined  from current  algebra (with of course ~A----0 and m~ = 0) 

( 2 o )  = - ieM'~ d4k 1 1 
(2~p k ~ + i 2  k ~ -  M ~ + i 2 '  

where M (~ is the zeroth-order mat r ix  element. 
Again to zeroth order in momentum transfer  the contr ibut ion from dia- 

gram 4c) is 

i ( c )  _ _ _  
g~e 2 c o s 0 (  d 4k 

J M~ (2~) 4 

1 T,,(p, p, k) ( k~k~ .  
k~ + iZ ~ =  ~ - - i ~  -- g~ + ~-!  

�9 (k~'g~ -- g~k~)uo~(1 -- ~5)u;. 
Using eq. (7) this reduces to 

(21) i `~)- g~e2e~176 f d4k uey 'k( l  -- ~s)u~ T~(p, p, k ) -  
- M~ (2~), (k~ ~ - ~ - -  ~ ,  + i~) 

ie~ M(O)A ~ d4k 1 
J (2~), (k~ + i~) (k~-- i ~  + i~) ' 
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H e n c e  we have  f r o m  (12), (13) and  (14) 

M -(a) _~ M ~ M(~) f d4k ] 
=" "" + ie2 m '~  (2~) 4 (k ~ + i2)(k ~ -  M ~ + i2) --  

--  .q~e" c o s 0 f  d4k ~ok(1 --  ys)u~T~ 
(k 2 _( i).)i(k~ _ ~ / i +  i2) --  ie2M(a~ 

Now the  second t e r m  of course is convergen t .  Hence  the  d ive rgen t  p a r t  is the  

same as theft ob t a ined  by  SlnL[N (~) excep t  for  the  l~st t e r m  which  is the  

s t r u c t u r e - d e p e n d e n t  inf ini ty  which  we discussed before.  This means  t h a t  

a l t h o u g h  the  d ive rgen t  pa r t s  of the  correc t ions  to  G v and  G w (the ~-decay  con- 

st~nt)  ~re the  same, the  correct ions  to  Ga differ b y  a s t r uc tu r e -dependen t  

d ivergence  so t h a t  these correct ions  are nonunivers~l .  

I a m  indeb ted  to  Dr.  P.  V. LANDSHOPF for  several  helpful  discussions and  

for  read ing  the  m a n u s c r i p t  and  to  Prof .  S. B. TREIMAN for  several  va luab le  

discussions. I um also gra te fu l  to  the  C o m m o n w e a l t h  Univers i t ies  Commiss ion  

for  the  award  of ~ scholarship.  

02) There are of course other diagrains giving corrections to this decay (see ref. (7)) 
but  these are independent of the strong interactions and in the limit of zero momentum 
transfer are the same in ~-decay and ~-decay. 

R I A S S U N T O  (*) 

Si dimostra ehe lc parti divergenti delle eorrezioni per irraggiamento del secondo 
ordine alla costante di accoppiamento vettoriale assiale (nel decadimento ~ del neutrone) 
non soddisfano l'universalit~. 

(*) T r a d u z i o n e  a eura della R e d a z i o n e .  

Pa~Hauuonume nonpanKx K He~TpOHHOMy ~-paena~y. 

PeamMe (*). - -  lqoKa3bIBaeTcfl, HTO pacxo~mttHecfl qaCTH pa~HatirIortru, ix nonpaBoK 
BTOpOro nopa)~Ka K aKcrlanbHO-BeKTOpHOi~ KOHCTaaTe can3H (B He~TpOHHOM f3-pacna~e) 
ue yZIOBYIeTBOp~[OT yHHBepcaYlbHOCTH. 

(') HepeseOeno pec)atcque& 


