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Summary. — Relativistic theory of construecting nonrotating harmonic
reference systems (RS) is developed. The theory enables one to produce the
celestial RS for solar-system dynamics neglecting the gravitational field of
the Galaxy. Particular attention is focused on the barycentric RS (BRS) with
the origin at the solar-system barycentre and the geocentric RS (GRS) with
the origin at the geocentre. It is assumed therewith that the velocities of
bodies are small as compared with the light velocity and the gravitational
field is weak everywhere. The specific RS and the gravitational field are
described by the metric tensor to be found by Newtonian approximations
from the Einstein field equations with given boundary conditions. The BRS
coordinates cover all the solar-system space. The GRS coordinates are
initially restricted in space by the orbit of the Moon. The relationship
between BRS and GRS is established by the asymptotic matching technique.
The explicit transformation formulae permit to prolonge the GRS coordi-
nates beyond the lunar orbit to cover actually all the solar-system space. The
GRS equations of the Earth satellite motion have been deduced. The
relativistic right-hand members of these equations contain Schwarzschild,
Lense-Thirring and quadrupole terrestrial perturbations as well as tidal
perturbations due to the Sun, the Moon and the major planets. The equations
are derived by two different techniques. The first one implies the application
of the geodesic principle to the GRS metric. The second one is based on the
transformation of the BRS satellite equations of motion into the GRS
equations. Both techniques result in the same final expressions.

PACS 04.20 ~ General relativity.

63



64 V. A. BRUMBERG and S. M. KOPEJKIN
1. - Introduction.

Until recently in the relativistic treatment of the Earth satellite motion one
took into account as usual only the Schwarzschild and Lense-Thirring
perturbations caused by the spherically symmetrical component of the
gravitational field of the Earth and its axial rotation, respectively. These
perturbations are presented for a variety of satellite orbits for example in (). At
present, consideration should be given to the more refined relativistic effects due
to the Earth oblateness (®) and the influence of the Sun and the Moon.

In investigating the solar and lunar action in the framework of the general
relativity theory (GRT) the choice of the reference system (RS) becomes of
particular importance. Equations of motion of the solar-system bodies in the
barycentric RS (BRS) and barycentric metric of the total solar system
gravitationa] field being well known (**), the BRS equations of the Earth satellite
motion may be formulated without any difficulties. Subtracting the BRS
equations of motion of the Earth one gets the equations of the satellite motion in
terms of the relative (formally geocentric) coordinates being actually the
differences of the BRS coordinates of the satellite and the Earth. Such equations
have been employed for example in (**). The advantage of these equations is that
both the satellite coordinates and the coordinates of the external disturbing
bodies are expressed as a function of the same argument, the barycentric
dynamical time (TDB). But the main relativistic solar terms occurring in the
right-hand members of these equations are of the order e~ ¢ 2GMq/R ~107°
with respect to the principal Newtonian geopotential term proportional to
GMg/r? (R and r being the Earth heliocentric distance and the satellite
geocentric distance, respectively).

The relativistic perturbations of the order ¢ are due to the terms depending on
the Earth orbital BRS velocity as well as on the external mass gravitational
potentials and their first derivatives. These perturbations have nothing to do
with dynamies of the satellite geocentric motion. They are caused by the «bad»
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(conflicting with the principle of equivalence) choice of the formally geocentric
coordinates in the curved space-time and are fictitious as giving no contribution
to the actual evaluation of the satellite geocentric distance and velocity. This is
due to the fact that the equations of the light propagation in the formally
geocentric coordinates also contain large relativistic terms of the order e
cancelling out the corresponding terms of the equations of the satellite motion.
The appearance of the fictitious relativistic perturbations makes the discussion
of satellite observations more complicated and may deteriorate the accuracy of
the measurable parameters of the Earth gravitational field.

The adequate description of the satellite geocentric motion is achieved in the
«good» geocentric RS (GRS). Its origin moves also along the world line of the
centre of mass of the Earth but the relativistic influence of the external masses
(Sun, Moon, planets) manifests itself in the appropriate equations of motion only
in form of the tidal terms proportional to the second derivatives of the
gravitational-field potentials. In other words, the construction of the «good»
GRS should be compatible with the principle of equivalence.

Ashby and Bertotti(?) were the first to underline the merits of the «good»
GRS for the representation of the satellite motion. Satellite dynamical perturba-
tions in this RS enable one to evaluate immediately the correct order of
magnitude of the actually measurable effects facilitating the comparison of
theoretical and observational data. This was explicitly demonstrated in(*) for
the Moon and in (") for Earth satellites.

In the subsequent paper Ashby and Bertotti(*®) (see also (®)) succeeded to
construct a «good» GRS introducing the generalized Fermi normal coordinates
for the vicinity of the massive self-gravitating Earth. Along with the advantages
this approach does not deprive of shortcomings. First of all, this concerns the use
of the background space-time metric not representing the solution of the
Einstein field equations. Among other things the technique of the generalized
Fermi normal coordinates seems to be elaborated so far only for the spherically
symmetrical nonrotating masses. The application of this technique to the real
Earth whose rotation and oblateness cannot be ignored in the astronomical
practice remains not so clear. This approach is discussed also in (***).
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Another approach to construct a «good» RS has been proposed in (**). This
approach is based on using 1) post-Newtonian approximations (*'+**#), 2) multiple
expansion formalism for the gravitational fields (*¥), 8) asymptotic matching
technique for the gravitational-field potentials (**#%),

Post-Newtonian approximations (PNA) and multipole formalism are em-
ployed by us for solving the Einstein equations and constructing BRS and a
«good» GRS. The transformation formulae relating these RS are deduced by
means of the asymptotic matching technique. Our approach may be directly used
in many actual celestial mechanics and astrometry problems dealing with weak
gravitating and slow moving bodies possessing arbitrary shape, internal
structure and velocity distribution.

The aim of the present paper is to derive the relativistic equations of the
satellite motion in the «good» nonrotating harmonic GRS. The principles of
constructing such GRS were exposed by us in(**). The list of designations is
given in sect. 2. Section 3 deals with the statement of the problem and the
methods used for solving the Einstein equations in harmonic coordinates.
Construction of GRS within accuracy needed for the problem in question is
performed in sect. 4. The solar-system BRS metric is established in sect. 5.
Matching the BRS and GRS metric tensor components is accomplished in sect. 6.
The Earth satellite equations of motion are derived in sect. 7 by applying the
geodesic principle to the GRS metric. Another approach to obtain the same
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equations of motion is exposed in sect. 8. This approach involves the transform-
ation of the BRS equations of motion into the GRS equations using the matching
relations of sect. 6.

The GRS satellite equations of motion obtained here were briefly outlined
earlier in (¥).

2. — Designations.

Greek indices «, 8, ... take values from 0 to 3, Latin indices i, k, ... run values
from 1 to 3. Capital Latin letters A, B, ... specify the solar-system bodies. Each
repeated index implies summation over appropriate values.

The BRS coordinates are denoted as x*= (ct, x%). The GRS coordinates are
w* = (cu, w?). The triplets of spatial components will be denoted as x = (', 2 x?)
or w= (w', w?, w3, &, is the Kronecker symbol; »,, = »** is the Minkowski tensor
(oo =1, %o = 0, ng = — 8a); 9.4 is the metric tensor of the curved space-time with
g =det(g,s); ean is the antisymmetric Levi-Civita symbol (ei23 = + 1); G is the
gravitational constant; ¢ is the light velocity. Greek indices of the tensor
components are raised and lowered with the metric tensor g,;. In expanding
tensor quantities in series in powers of small parameters the Greek and Latin
indices of any term of the series are raised and lowered with n,, and &,
respectively.

The functions depending only on the GRS coordinates will be marked by ".
Sometimes, to avoid misunderstanding the GRS indices will be also supplied
with this symbol.

Comma after the sign of a function with the subsequent Greek or Latin index
designates the partial derivative with respect to the corresponding variable.
Comma followed by the zero index denotes the partial derivative with respect to
the time coordinate (without factor ¢!). The dot denotes the total derivative
with respect to the time coordinate of the corresponding RS. Thus, unless
otherwise specified, the differentiation is meant to be related with the
coordinates occurring in the expression of a function in question. For example,
for any function f(f,x) in BRS one has

ﬁzzif" f:1= af f,OE%.ft‘y fEf,0+xkf:k

~out
The similar relations are valid for any funection §(u, w) in GRS

g.= 3¢ g og og § o
ow" 7 aw!’ 77w’

$&
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In what follows we shall often have to do with the functions and their
derivatives defined along the world line of the geocentre xk (£). We shall assume
for such functions that the spatial coordinates of the geocentre are always
substituted after performing differentiation.

3. - Problem statement and methods of constructing BRS and GRS.

Assuming that the action of the gravitational field of the Galaxy on dynamics
of the solar-system bodies may be ignored we shall consider the solar system as
isolated. In the problem in question an Earth satellite may be regarded as a test
body moving in the space-time on the geodesic line.

The matter of the attracting masses will be described by means of the energy-
momentum tensor of the perfect fluid

3.1) T+ = [o(c® + 1) + plu~u’ — pg**

with ¢, p, IT and u* being respectively mass density, pressure, internal energy
specific density and four-velocity of the fluid element. The first three quantities
are scalars. The pressure and the specific energy are related with the mass
density by the equation of state and the first law of thermodynamics.

Reference system and gravitational field are simultaneously described in
GRT by the metric tensor g,, to be found as the solution of the Einstein field
equations. Owing to the Bianchi identities one may impose on the metric tensor
components four arbitrary coordinate conditions. We suggest to adopt the
harmonic (de Donder) conditions

3.2) (V=997 ,=0.

These conditions do not fix RS in a unique manner. There remains the
arbitrariness of not reducing to the group of Poincaré transformations. In
particular, the spatial axes of the harmonic RS may rotate with an arbitrary (but
sufficiently small) angular velocity (¥) and its origin may move along an arbitrary
timelike world line possessing the small first curvature (acceleration) (**'*%).

The harmonic RS may be uniquely fixed by choosing 1) the world line of the
RS origin, 2) the rotation velocity of the spatial axes, 3) the canonical form of the
metric tensor (*#%), The specific realization of this procedure is performed in the
present paper.

The gravitational field may be conveniently described in terms of the
variables y*# = 5** — \/——g ¢**. Then the Einstein equations in harmonic coordi-
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nates take the well-known form ()
(3.3) oy =1i_§G(_ DT+ 159 + oo

(3_4) xa,ﬁ'w/ = ,}/1,5 Yw . ,}/154 Y,Bv ,

where t*# is the Landau-Lifshitz pseudotensor.

The Earth is assumed to have in GRS the stationary rigid-body rotation with
the angular velocity &k. Its external gravitational field is described by the
multipole moments characterizing the nonsphericity deviations of its shape and
the internal distribution of matter. The Sun, the Moon and the planets will be
regarded as the spherically symmetrical nonrotating bodies in heliocentric,
selenocentric and planetocentric RS, respectively. These RS may be constructed
just as GRS.

Denote the total mass of the solar-system bodies as M, the mass of any planet
B as My, its mean radius as Ly, its characteristic heliocentric distance as Rg, the
minimal separation of body B from its nearest-neighbouring body as Dg and its
BRS velocity as vg. The problem under consideration involves the small
parameters as follows: 1) ¢ ~wvp/c << 1, the slowness of the orbital motion; 2)
n~(c2GM/Rp)"*<«< 1, the weakness of the gravitational field everywhere
outside the bodies; 3) np ~ (¢"2GMy/Lg)"? < 1, the weakness of the gravitational
field inside the bodies; 4) &g ~ Lp/Dg <« 1, the quasi-point structure of any body;
5) ag~1/300, the Earth oblateness. The virial relation implies that ¢~x». It
should be noted that » and v satisfy the relation » ~ »p s (M/Mg)"? (Dg/Rp)".
Besides this, one has &g Ly < ¢ for the Earth and vg<< ¢, vg being the satellite
GRS velocity.

The metric tensor g,, may be found by solving egs. (3.3) with the supplemen-
tary boundary conditions on y* enabling to specify the harmonic RS (**%). We are
particularly interested in two systems, BRS and GRS.

The absence of the spatial axis rotation of these RS is meant here in
dynamical sense involving that there are no Coriolis and centrifugal forces of
inertia in the equations of motion of test particles in these RS (**). For BRS
describing the isolated solar system the dynamical and kinematical rotations are

() L. D. LANDAU and E. M. LIrsHITZ: The Classical Theory of Fields (Pergamon Press,
Oxford, 1971).

(*) J. KoVALEVSKY and I. I. MUELLER: in Reference Coordinate Systems for Earth
Dynamics, edited by E. M. GAPOSCHKIN and B. KOLACZEK (Reidel, Dordrecht, 1981), p.
375.

(*) J. KOVALEVSKY: Bull. Astron. Obs. R. Belg., 10, 87 (1985).
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equivalent and BRS is nonrotating in kinematical sense as well. Remind (**) that
celestial RS is called kinematically nonrotating if its spatial axes preserve
constant directions toward the external distant astronomical objects considered
as fixed by definition.

In general case, dynamieal and kinematical rotations of RS are not equivalent.
An illustrative example is furnished by GRS. GRS is attached to the Earth that
cannot be regarded as isolated from the gravitational action of Sun, Moon and
planets. Hence, away from the Earth the space-time does not pass into the
asymptotic flat space. This results in rotation (relativistic precession) of the GRS
spatial axes with respect to the BRS axes related with the «fixed» stars. But the
GRS equations of satellite motion do not contain Coriolis and centrifugal forces of
inertia caused by the relativistic precession. This means that GRS is nonrotating
in dynamical sense. The explicit evidences of this fact will be given in sect. 7
and 8.

In the problem in question BRS (ct, x) is constructed by the post-Newtonian
approximations in the near zone of the solar system. The near zone is restricted
by the domain whose radius does not exceed the minimal length of the
gravitational waves radiated by the solar system. According to our assumptions
this minimal length belongs to the gravitational waves generated by the Earth-
Moon system. Proceeding from this it is easy to evaluate the near-zone radius as
exceeding the radius of the Pluto orbit by about 100 times.

The BRS metric tensor is determined from the Einstein equations (3.3)
with the energy-momentum tensor of all solar-system bodies. Solving eqs. (3.3)
is achieved by iterations relative to small parameters e, », np with the com-
plementary boundary condition presecribing to match the functions y**(t,x)
on the near-zone boundary with the outgoing solar system gravitational
radiation. The BRS metric tensor is invariant under Lorentz transformations
permitting to consider BRS as the generalization of the inertial RS of
Newtonian mechanics.

GRS (cu, w) is constructed in the vicinity of the world line of the geocentre. It
covers the spatial domain surrounding the Earth and lying inside the lunar orbit.
The spatial sizes of GRS are confined so far to this limit. This is necessary for
matching BRS and GRS to deduce the transformations between them. As will be
demonstrated below the spatial GRS axes may be actually prolonged beyond the
Pluto orbit. The functions $**(u, w) are determined in GRS from egs. (3.3) by
post-Newtonian approximations and multipole formalism for the external
gravitational-field expansions. The right-hand members of egs. (3.3) include now
only the energy-momentum tensor due to the Earth. The iterations are
performed therewith with respect to the smali parameters /Dy, ng, n and ¢. The
boundary condition to be imposed on #*# (#, w) in GRS demands that away from
the geocentre these functions be matched with the functions representing the
tidal gravitational action of Sun, Moon and planets. In this sense GRS
generalizes the quasi-inertial RS of Newtonian mechanics.
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4. — Geocentric reference system.

The GRS metric tensor has the form (%)

4.1 ds® = §,, (u, w) dw*dw®,

4.2) Goo (4, w)=1+ C_Zg)oo (u, w) + 6_4(%00 (u, w) +0(c™®),
4.3) Goi (U, w) = C‘Sg)m +0(c™),

4.4) O (U, w) =~ 8+ ¢2 g)”‘ +0(c™)

with

4.5) G oo, w) = — 205 (u, w) — 2Q B w' —
@)
—3QW ww* — 5Quw wr w™ + 0,
(4.6) Ga (U, w) =238 (u, w),
2) (2)
4.7 G i (u, w) = 4T (U, w) + dey,, CE w™w™ + 0F?),
@)

4.8) G 00 (u, w) = 2U% (u, w) + 2Ug (u, w) QB w' +
)

+ 605w, w) QP wiw* + O(Ux %,

A * !
4.9) Us(w, w)=G f%‘:’%)_‘dswuro%),
(E)
A * ! .
(4.10) Uhw,w)=G | %W(u, w)d*w'

Jp*(u, w) = p(u, w)u'w, w)\V -4,
(4.11) 1 _

; dw’ .
Vl(u, w> = = Cikm (J)Ifcg wm,

du

where the quantities @™, Q%, Q&) , C% are functions of the time « on the world
line of the GRS origin.
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Along with remainder terms indicated explicitly in (4.2)-(4.9) we have
neglected 1) in goo(u, w) the quadric terms with respect to @, Q%, @&, ...
to the time derivatives of the first order as well as the linear terms with the tlme
derivatives of the second order, 2) in §o(u,w) the terms with the time
derivatives of @, Q%, Q% ,... resulting from the fulfilment of harmonic
conditions (3.2). This neglection is justified here because our aim is to derive the
equations of satellite motion taking into account the influence of the external
masses only in linear approximation with respect to the spatial coordinates of the
satellite.

The potentials Uy, Uk oceurring in expressions (4.5)-(4.10) characterize the
Earth own gravitational field of electric and magnetic type, respectively. They
result from solving the inhomogeneous equations (3.3) with the right-hand
members including the energy-momentum tensor to the Earth alone.

The functions Q¥, QE, QE),, C'D,... of expressions (4.5)-(4.8) depend only on
the time « and are determined by solving the homogeneous equations (3.3). The
function Q¥ is characteristic of the first curvature of the world line of the GRS
origin and is numerically equal to the acceleration of the GRS origin with respect
to the RS freely falling (Q; = 0) in the gravitational field of the external masses.
The functions QF, Q%, C%, ... are referred to as the external multipole
moments. They are symmetric and trace-free with respect to any pair of indices
and behave as tensors under linear transformations of the spatial coordinates.
The functions QF, Q%).,... and C%,... characterize respectively the
gravielectric and gravimagnetic tidal field caused by Sun, Moon and planets. The
explicit expressions for the external multipole moments will be given in sect. 6.

Outside the Earth the potentials Uz and U} are expanded in GRS in series of
the multipole harmonics of the geopotential

~ . L3
4.12) Ug(u, w) = GMg - — &y + Aiwiw +O0|ag—
P 2 8 P2 78

A m L3
4.13) Ui(u, w) = Geyjp ok T2 + o<aE7§)
r r

with 7 = (w*w*)"2. The (constant) rest mass of the Earth My and its moments of
inertia are defined by the relations

(4.14) M= [, wh)d?w’ + 0Gr3),

(E)

4.15) = [, wywiw dw' +063).

(E)
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Relativistic corrections due to the own gravitational field, pressure and
spec1ﬁc energy of the Earth are not included in the definitions of potential Uy,
mass My and moments of inertia I# since their contribution is negligibly small
and does not affect the results of satellite observations. In fact, satellite laser
observations being among the most high-precision ones enable to determine the
geocentric gravitational constant GMy within the relative accuracy of 1077
whereas the relativistic corrections to the Newtonian value of GMy are of the
order O(n%)~ 1072,

The GRS coordinates of the centre of mass of the Earth wi(u) are defined by
the formula

A

(4.16) Mew

III
o~

j o, ) w' A’ + O(n3) .

(E)

By the construction of GRS the following relations are valid for any moment
of the time u

“4.17) Mywi=Ii=0,

(4.18)

f (o, w') v, w') AP’ + O(p%) = 0
(E)

This means the coincidence of the world lines of the GRS origin (w’= 0) and
the centre of mass of the Earth. In virtue of relations (4.17), (4.18) the dipole
terms do not occur in expressions (4.12), (4.13).

The conditions I =0 and P =0 for any moment of time may be fulfilled
provided that the second derivatives of wi(u) vanish identically. As
demonstrated in (**) the condition %} = 0 is fulfilled due to specifically choosing
the acceleration Q™ of the world line of the geocentre:

4.19) QP = S T EmQ® 4 O ag Lg
2 R:|

From this it follows that the centre of mass of the Earth does not move on the
geodesic world line for which identically @;=0

The component g, of the metric tensor contains no term of the type
¢ e Q/wF, Q7 having the dimension of angular velocity. The absence of such
terms implies that the GRS spatial axes are dynamically nonrotating.

To conclude this section it should be noted that 1) the integrals in (4.9), (4.10),
(4.14)-(4.18) are calculated over the Earth volume on the hypersurface of the
constant time u; 2) differentiating the Earth mass and its moments of inertia
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with respect to » yields

(4.20) My =0,

These formulae are used below in differentiating the potentials Ug and U
with respect to the time u.

5. — Solar-system BRS.

The BRS metric tensor may be described as follows (**%):

(5.1) ds® = g,4(t, x) dx*da?,
(5.2) goot,x)=1+c? gon (t,x) +c¢™* g t,x)+ 0(c™,
(56.3) 90i (¢, x) = C“’g ot 0™,

(5.4) g (t, x) =~ &, + 2 g)”‘ +0(c™),
(5.5) qu)oo(t,x)= —2U(t,x),

(5.6) g t,x)=— 28, U(t,x),

5.7 gu {t,x) =4U't, x),

(5.8) g)oo t,x)=—-2U%t,x)—2W({,x),
(5.9) Ult,x) = Uglt,x) + U ¢, x),

(5.10) Uit,x) = Ui(t, x) + Uit x),

(5.11) W (t, x) = Wg(t,x) + W ¢, x),

(5.12)  lam=6 | T: b ‘;? d%’ + O(d),

(E)
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o*(t, x")

(E) | {

(56.13) B, x) = vi(t, x")d3x’

(G.14) W, x) = - %v%; Uslt, x) +

#(t,
+3'UE UE(t X) G fp ( x‘)U(t !)de _%XE,OO(t}x))
(E)
(.15) g, 0)=—G [¢*(t,x)]x —x'|d%’
E)
G.16) ot =olt, DUl OV=g, o=,
G171 TEtx)= GMA,
aze Ta
(6.18) Tit,x)=3S GMAvig,
azE Ta
2 M, M
(5.19) W, x)= E GMAU?\— > > —%—E"‘l > GMy7y 0.
a=E Ta A#E B=A TATaAB A£E

The quantities occurring in (5.17)-(5.19) are 74 = (rk r"% rap = (rkprhp)"%
rk =k — 2k (8); ris = k() — k(). v% is the BRS velocity of the centre of mass of
the Earth. 2% and v% = dx%/dt are respectively BRS coordinates and velocity
components of the body A. M, is the (constant) rest mass of the body A defined
by the relation

(5.20) Ma= [*(t,0)d% + 003

A)

It is to be noted that the integrals of (5.12)-(5.15) and (5.20) are taken over the
volume of the appropriate body on the hypersurface of the constant time ¢ not
coinciding with the hypersurface of the constant time u.

Outside the Earth the functions Uy, Uk, Wg and yz may be presented in the
form

L3
(6.21) Ugt,x)= GME+GI"Z——+—GI ( Sem + Tér T’”)+O<aE pe )
rd

(5.22) B, x) =

GMy vE+ LGIP’;"” — S + %T’“T"z v+
298 r

L3
+G£”ka)ﬁIE _+0<OCE 7' )
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Gl"l”lE U (xE) +

(5.23)  Welt,x) =2 GJLJE 2

3 m N 3 w
5 vE+mGlé (—okm+ﬁo"’“r )v%;—

N o m 1 L2_ LS
+3G€kjnm]E’U]{;IE %_EXE,OO(t;x)+O(°‘E72E_:U>+O<aE'r_§v2E y

1 vrimfs _ L kom L
(5.24) XE(t,x)=—GMEr—§GI§ (akm—;—ér"r >+O<F>

with 7 = (rF )12 k= 2% — 2&(8); 2k and vE = dek/dt being BRS coordinates and
velocity components of the geocentre.

The mass of the Earth and its moments of inertia are defined in BRS by
means of formulae

(5.25) Me= [o5(t,x)d% + 06,
(E)
(5.26) It= [o*t, )7 d% + 0G),
(E)
(5.27) I = j S, x) Tt A + O(nd)

(E)

where the integrals are evaluated over the Earth volume on the hypersurface
t = const.
It is suitable to make here four methodological remarks.

1. In deriving (5.22)-(5.24) we have used the relation
(5.28) Vit x) = vht) + viu, w) + 0(c®) = vi(®) + egm ok r™ + Oc™)

resulting immediately from the BRS to GRS relationship formulae (6.2) and
(6.3).

2. The time ¢t derivatives of the moments of inertia I ¥ are calculated on the
basis of relation

(5.29) T# =0 0L TE + ey 0k L+ O™

which is used, for example, in calculating yg o in (5.23). The second derivatives
of I'# will be ignored. This is in accordance with adopted restriction to ignore
time derivatives in the GRS expression for §o(u, w).

3. The BRS expansion (5.21) of the geopotential Uy contains explicitly the
dipole moment of inertia of the Earth I. The centre of mass of the ]?]arth has
been deﬁ_ned by formula (4.17) making the GRS Earth dipole moment / i vanish.
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Generally speaking, there is no reason to assume the equality of I} and Ii.
Therefore, one may anticipate that If is not equal to zero. In fact, it will be
shown in the next section that I is of the relativistic order of smallness. To be
rigorous, the terms with It should be included in formulae (5.22)-(5.24). But this
would be of no practical importance because the potentials Uf, Wr, xg are used
only in the relativistic members of the equations of motion.

4. The BRS origin moves along the world line of the solar-system
barycentre. This involves the representation of the integral of the centre of mass
in the form (neglecting the angular velocities of the bodies and their moments of
inertia)

ZMsz(ch—zvz levs GMB):o.
A

2 B#a TAB

Just as in GRS the BRS metric tensor contains no term of the type
¢! Q7 * . This means that the BRS spatial axes are nonrotating in dynamical
sense. As pointed out in sect. 3, the absence of dynamical rotation in BRS is
equivalent to the absence of kinematical rotation. This is due to our neglecting
the gravitational field of the Galaxy.

6. — Matching and relationship formulae between BRS and GRS.

6'1. Relationship formulae. — Asymptotic matching of the metric tensors
9.:(t, x) and §,,(u, w) of BRS and GRS is performed in their overlap region by
means of the transformation

du du i du dw’
61 gl 0) = gulu, )32 25+ el WS T 5+
. dw' du aw w*
K _—_+ 1 ’
+ cfolu, w) v B Gulu a o

The transformation from BRS to GRS is looked in the form

(6.2) wu=t—c2[SE)+vhrt]+

+ct [B(t) - %v% vh 7% + BEE) vk 4+ BRm(t) ¥ rm] +O0(c™*r®) + 0(c™),

6.3 wi=ritc? {[%v% vk + Fik(t) + D““(t)] vk + D(t) r"rm} + 0.
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The functions S(), B(t), B¥(t), F*(t) = — F¥(t), D*(¢) = D*(t), B¥(t) = B"X(),
D#"(t) = D™*t) are yet unknown and will be determined later by matching
procedure. This procedure enables also to get the second-order ordinary
differential equations for the functions wx(f), i.e. to determine the BRS
equations of motion of the centre of mass of the Earth.

We shall match the metric tensors expressed by formulae (4.1)-(4.10) and
(5.1)-(5.19). In doing so, the sequence of operations will be as follows:

1) calculating the derivatives du/dx*, dw"ox* and substituting the results
into the right-hand member of relation (6.1);

2) expressing the components §,,(u, w) in terms of the BRS coordinates;

3) expanding the functions U, U?, W in Taylor series in the vicinity of the
point x(%);

4) comparing the coefficients of equal powers of ¢~ and 7* in both sides of
eq. (6.1) and determining the functions ai(t) = dvk/dt, S, B, B*, B*, F*, D¥*,
D™ and the external multipole moments Q%, Q&),, CP, .... The function Q{®

does not result from the matching procedure and is given independently by
(4.19).

6'2. Transformation of the coordinate bases. — The first point of the
matching procedure is equivalent to find the transformation law between the
BRS coordinate base e, = 3/3x* and the GRS base ¢; = 3/dw?* In accordance with
(6.2) and (6.3) one has

(6.4) e,=Ale;
with
(6.5) Ag=%= 1—c S —vi+akrh) + c“‘[-;—(v%g)2 + B — Bfvk + Byt —

—QBhmyppk — %v% akrt—avl ol r’“] +0(c*r®) + 0™,

6.6) Ai= c‘l——agt)l =—clyh+¢? [— (%vi;v’ﬁ; +F#* +D“‘)v’;€; +

+ (%vi; ak +%a§3v’é + F 4 Dik — 2D”“mv{3”> rk+l')”‘"‘r"rm] +0(c™,

6.7 A= iu—=—c‘lv%-'rc‘3(—-%v%v%+3i+23ik?">+O(c‘31'2)+0(0'4),

c—=
ox’

6.8) Ai= g% =8+ (%vﬁ vk + Fik 4 D 4 ZDikmrm) +0(cY).
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Using formulae (6.22), (6.26) and (6.27) given below it is easy to calculate the
determinant of the transformation matrix

det (A) =1+ ¢722[U (xg) + ak 71+ O(c™).

This determinant vanishes at the distance r* ~ ¢¥|ag| ~ 7.5+ 10* cm from the
centre of mass of the Earth. From this it follows that in spite of initial
constructing GRS in the region lying inside the lunar orbit it is possible to
smoothly (without intersecting) prolongate the GRS spatial coordinate axes for a
much larger distance.

6'3. Transformations of potentials. — To accomplish the second step of the
matching procedure it is necessary to find the transformation laws for the
potentials Ug and Ui in converting from GRS to BRS. The potentials Uz and U,
are integral quantities defined on the hypersurface of the constant time u.
Therefore, to find the relevant transformation laws one has to take into account
that the integration in BRS and GRS is performed over the different hypersur-
faces of the constant time coordinate. Thus, the transformation of the integrands
should include the point transformation combined with the Lie transfer from one
hypersurface to another. This transfer is produced along the integral curves of
the vector field of the Earth matter four-velocity.

u =const =¢,

t'=const =c¢]

t =const=c,

T#=0

Fig. 1. — The space-time region in the vicinity of the world tube of the Earth (T'g # 0) is
presented. The GRS and BRS solutions of the Einstein field equations for some fixed
moments of time scales u and ¢ relate respectively to the hypersurfaces u = const = ¢; and
t=const = ¢y #¢,. The hypersurface t’ = const =c}# ¢, is shifted along the time lines
(t,x = const) from the hypersurface t=c, for the coordinate distance Ax’=cAt. The
matching point P for the GRS and BRS metric tensors lies at the intersection of the
hypersurfaces # = ¢, and ¢ =c¢,. It has the BRS coordinates x*(P) = (ct, x) and the GRS
coordinates w*(P) = (cu, w). The point N lying at the intersection of the hypersurfaces
w=c¢, and ¢ = ¢ has the BRS coordinates #*(N)=(ct’,x’) and the GRS coordinates
wiN) = (cu, w’). The point N’ lies at the intersection of the hypersurface t = ¢, and the
emanating from N integral curve of the vector field of the fluid four-velocity . This point
has the BRS coordinates x*(NW’) = (ct, x’). The dashed line denotes the worldline of the
geocentre.
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First of all, let us find the transformation law of the spatial coordinates of any
point of the Earth provided that the matching point P is fixed. Let the GRS and
BRS coordinates of this point be w*(P ) = (cu, w) and x*(P) = (ct, x), respective-
ly. These sets of coordinates are related by transformations (6.2) and (6.3). The
matching point P belongs to both hypersurfaces of the constant time, i.e.
% = const =¢; and t=const = ¢, # ¢, (see fig. 1).

Consider now another point N lying inside the world tube of the Earth body
and belonging to the hypersurface u = ¢;. Let the GRS and BRS coordinates of
N be w*(N) = (cu, w') and x*(N ) = (ct’, x'), respectively. Considered in BRS the
point N lies on the hypersurface ¢’ = const = ¢; which does not coincide with the
hypersurface ¢t =c,.

To determine the coordinate time interval At between the hypersurfaces t = c,
and £ = ¢; we construct through N the integral curve of the vector field u* to be
parametrized by means of the coordinate time ¢. This integral curve intersects
the hypersurface ¢=c¢, at the point N’ with the BRS coordinates x*(N') =
={(ct, x"). The relationship between the GRS and BRS coordinate times at the
point N has the form

(6.9) u=1t —c S )+ vt r¥ 1+ 0(c™).

The analogous relationship at the point P is given by (6.2). Subtracting these
two relations yields the required coordinate time interval between the hypersur-
faces t=c; and t=¢j:

(6.10) At=t —t=c 2ok — x5+ 0(c™).

The relationship of the BRS spatial coordinates of the fluid elements at the
points N and N’ is determined by the formula

(6.11) X't = 2'(t) + v'i(@t) At + O((AD?) = x'(t) + ¢ 2v v k(' — %) + O(c™)

with v'i = da’V/d¢.
The relationship between the BRS spatial coordinates of the geocentre is
established in a similar manner:

(6.12) 2EE) = x&(t) + vi@®) At + O((ALR) = xh(t) + c 2ok vk’ — %) + O(c™).

With the aid of (6.3), (6.11), (6.12) it is easy to obtain the relationship between
the BRS spatial coordinates of the point N’ and the GRS spatial coordinates of
the point N:

(6.13) w'i=9¢"t+c2 K%v% v+ F#+ D“”) p'k 4 Dk r’kr’m] +

+ ¢ 2@ = vR)vEGF — 1F) + O(c™).
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It is to be noted that this relation differs from (6.3) by the complementary
term.

Now one may derive the transformation relating the GRS coordinate distance
between P and N with the BRS coordinate distance between P and N'.
Subtracting (6.13) from (6.3) and using (6.26), (6.27) one obtains

619 o 1 T _lx,\ {1 +e [—;—(v’ﬁn")z — W wE ™ — T (xg) —
- %a’ﬁ;(r’k —rH—af rk}} +0(c™)

with #n*=(x*— 2'*)/|x — x'|. The product of the rest mass density by the
coordinate elementary volume does not change both under the coordinate
transformation and the just considered Lie transfer (**). Hence

(6.15) o*(t, x)d3x = o*(u, w) d*w,
(6.16) w*(@e* d%e) , = u¥e*d*w),=0.

From (6.15), (6.16) it follows that the product o*(u, w)d*w at the point N is
equal to the product ¢*(f,x) d%x at the point N’. Substituting relations (6.14)-
(6.16) into definition (4.9) for the potential Ug results in the transformation law
for the potential

6.17)  Ugu, w) = Ug(t, x) [1 +¢2 (—;—v% — Ulxg) — a’ﬁ;?"‘)] +

+ ¢ Ev’é VB X, ity X) + 0 15, (2, ) — %ai‘:x}a, it, %) — vk Uk(, x)J + 0™,

The transformation law for the potential U% is needed only in the Newtonian
approximation. Its derivation demands again relations (6.14)-(6.16) as well as
formula (5.28) for the transformation of the three-velocity of the element of fluid.
This latter formula may be obtained by taking the total time derivative of both
members of relation (6.13). Proceeding from definition (4.10) of the potential U o
one gets

(6.18) Ui(u, w) = Ui(t, x) — vi Ug(t, x) + O(c™).

It may be noted that the transformation laws for the potentials under Lorentz
transformations were obtained earlier by Will (¥).

6 — Il Nuovo Cimento B.
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Relations (6.13)-(6.16) enable one to derive the transformation laws for the
mass of the Earth and its moments of inertia. One has

(6.19) Mg =My,
(6.20) Ii=—c 2y, okvnlom—c2ak i+ %c‘za% TE+ 0™,
6.21) IF=]jk—¢2 (%vi;'u{;” +Fimy Dim> [lm — 2 (—;—v’ﬁvﬁ” + Frm ka> .

T+ 2L W e LE + erjm I + O 2LE) + O(c™) .

In deriving the equations of satellite motion we shall neglect everywhere the
products of the Earth moments of inertia [# by the terms due to the
gravitational action of the external masses. For example, we shall use actually in
the right-hand member of (6.20) only the first term.

It is of interest that expression (6.21) relating the BRS and GRS moments of
inertia of the Earth involves the coordinates of the matching point P (see
fig. 1). At first sight it might seem strange. Considering that the BRS moments
of inertia are functions of ¢ and the GRS moments of inertia are functions of » and
taking into account that the relationship (6.2) between ¢t and % depends on the
spatial coordinates of the matching point this becomes clear.

Let us describe the matching procedure in detail.

6'4. Matching g« (t,x) and §,{u, w). — This is the first step in the iteration
2

procedure to deter(n)line the unknown coefficients of (6.2), (6.3) and the external
multipole moments. At this step of matching it is possible to determine the
function S (#), the external multipole moments Q®, Q& ... in the Newtonian
approximation and the Newtonian equations of the translatory motion of the

centre of mass of the Earth. One has

6.22) S =505+ T (o),

(6.23) ak®) = U ixx) — QF + 0(c™?,
(6.24) P =1T uwn) + 0,
(6.25) 8= U i) + 0(™).

The function S (£) gives the differential equation relating the BRS time scale
(TDB) and the GRS time scale (TDT) at the geocentre.
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6'5. Matching g(,x) and §,,u, w). — This matching enables one to
@
determine explicitly D* and D*". Using the values (6.24), (6.25) one obtains

(6.26) D*(t) =8y U (xp),
(6.27) Din(t) = %(e}k QE + @l — Sen ).

The function D* describes the gravitational spatial contraction of GRS with
respect to BRS. It should be particularly emphasized that the relationship (6.3)
between GRS and BRS spatial coordinates is presented in the post-Newtonian
approximation by the finite sum of linear and quadric terms.

6'6. Matching g ,(t,x) and §,,u, w). — This matching is performed by using
@
the already known values (6.23), (6.24), (6.26), (6.27). This allows one to ﬁr_ld the
external multipole moments C%® and the coefficients BY, B¥*, F* of
transformations (6.2), (6.3). There results

(6.28) Bit) = 4TU(xp) — 304 U (xg),

(6.29) B™t)=U'xe) + U*i(xe) - %[v% U wxg) + vk U (xe)] +

—

+ =83 [vE U u(xg) — Umu(xp)],

AV

(6.30) Fit)= % [0} U a(xg) — vk U )] — 20T ulxe) — U],

(6.31) Eijk ij = T]—fkm(xE) - %—l_],fim(xE) - é‘vﬁ U,km(xE) +

1
3

i

Due to the smallness of @ the corresponding terms have been ignored in
(6.29)-(6.31).

The function F'* has the physical meaning of the angular velocity of rotation
(relativistic precession) of the GRS spatial axes with respect to the BRS spatial
axes. The first term of this function in the right-hand member of (6.30)
represents the de Sitter geodesic precession, while the second term describes
the gravimagnetic precession caused by the motion of the external masses in
BRS. It should be reminded that the GRS spatial axes are nonrotating in
dynamical sense.
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6'7. Matching g o (¢, x) and §,4u, w). — All previous values are used here to
@

find the function B(f) and the relativistic post-Newtonian corrections to the
equations of motion of the geocentre and to the multipole moments Q%. The
explicit expression for B(¢) is not needed for the subsequent calculatlons. This
expression may be found in (**). The equations of motion of the Earth centre of
mass and the moments Q{ taking into account the relativistic corrections are as
follows:

(6.32) ab®) =T (xg) — QP +c2Gi(t) + Oc™,
(6.33)  G(t)=—4T (xp) U ;(xg) — v5 vk T x(xg) + 03 U ;(xg) —

— 305 T (xg) + 4T () — 40k T (o) + W (xz)

6.30) Q¥ =3U alxg) +c? [ ; FmT p(xe) + ka U in(XE) —
37 U™y (xg) + 3k U axg) — 3 U (xg) U lxg) — g UE Ve U jon(xE)
1 P 1 = 2 =,
- g?’ U im(xg) + 3 W i(xg) + & U (xg) + 3 U'(xg) +
%U W(xp) —agak— é vhdl— %v’ﬁ; dﬁ] +0(c™).

The matching procedure is completed by obtaining these formulae. It is
possible to proceed further and to get the relativistic corrections to the moments
Smy C®, ... but this is unnecessary for the problem in question. The available
relations permit to derive the relativistic equations of the Earth satellite motion
with the accuracy far exceeding the present practical requirements.
To conclude this section it may be noted that the external multipole moments
%y Q% , CF occurring in relations (6.25), (6.31), (6.34) depend on time ¢. In the
expression for the GRS metric tensor (4.5)-(4.8) the same moments depend on
time u. The relationship (6.2) between the time scales ¢ and « for the external
multipole moments should be taken on the world line of the centre of mass of the

Earth x'= x4 ().

7. — Equations of motion of an Earth satellite. Geocentric approach.

An Earth satellite considered as a test body moves on the geodesic world line.
The geocentric approach to derive the satellite equations of motion is to apply
the geodesic principle immediately to the GRS metric.
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Adopting the coordinate time u to parametrize the geodesic line the equations
of geodesic motion will be
(T.1) i+ 21y + 2e D ® + I, sk ™ — e 19 b' —
— 2P ikt — ¢ Y, b ™ b = 0.

Expressing the Christoffel symbols in terms of the metric tensor components
(4.1)-(4.4) and substituting them into (7.1) one has

(1.2)  Wi=—Zgg:+c? [ 500, glk900k+g010+ 9000w+
2 2570 ® 2

+gik,0wk+(goi,k_gok,i)wk+(gik,m ngml)w W+ § ook W w]+0(0_4)-
(2) ®) @ 2) ) )

Substituting the explicit expressions (4.5)-(4.8), (4.12), (4.13), (4.19), (6.25),
(6.31) and (6.34) into eq. (7.2) we obtain the relativistic GRS equations of the
Earth satellite motion in the form

(7.3) W= Fi+ Fi+ Fit Fi+c nziqu;
with

(1.4) Fi=- GgE

(7.5) F§=%§<I’“’°w relfwt = 2ot w)
(7.6)  Fi=T a(xe)w" + %U,ikm(xE) whawm,

(1.7 =Q®= ——Mmllkm km(XE)

(7.8) )=
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G* My

77.6

(1.10) @i=4 (—2i}{5k — 3]k wk + IE whw w)+

—+

Do jeo
ﬁ)IQ

= (" ”)< ki + 21 gk — fé‘mw"wmwi)+

5

+6%u’ﬂw ( I e qpm — 2 g + I’""w w w)
7

A GM
(7.11) ¢i=_4TE iwleg) w* +2G LT

U jmxp)w*w™w?,

(7.12) i =w*[— 40 0™ U pu(xcp) + W™ 0™ U g(xg) + 4™ T by(cg) —
— 4™ U (x5) — 405 60" T g(xg) + Q020" T (x6) + 28, 40 0b™ — 2d 0],

(7.13)  @i=w [F"‘ T i) + F7 T ) — 402 T "ot) +
+ ZUE alxE) — ZU(JCE) Uzk(xE) - l?)E vE Ukm(xE) _'UE vE ,im(xE) +
+ W,ik(xE) + 3ikﬁ(x1«:) + Z_Ufk(x}s) + 2Tjk1 (xg) —Bakaf —vhdk — vk dﬁ] )

The physical meaning of the separate terms is as follows: F'} is the spherically
symmetrical component of the Newtonian attraction of the Earth; F'} is the
Newtonian perturbation due to the quadrupole harmonics of the geopotential; F'
is the Newtonian tidal perturbation of the gravielectric type due to the Sun, the
Moon and the planets; F§ is the Newtonian perturbation resulting from the term
Q" which is included in the § g, (u, w) and expressed according to formula (4.19)

(note that although F is of 1% )ewtonian origin its physical meaning is clearly and
unambiguously formulated in the relativistic language as deviation of the
worldline of the geocentre from the geodesic line); @i is the relativistic
Schwarzschild perturbation due to the spherically symmetrical component of the
Earth gravitational field; ¢} is the relativistic Lense-Thirring gravimagnetic
perturbation caused by the Earth rotation; @} is the relativistic Earth
quadrupole perturbation generated by the Earth quadrupole moments; @} is the
relativistic perturbation caused by the nonlinear coupling of the Earth attraction
and the gravielectric tidal field of Sun, Moon and planets; @} is the relativistic
gravimagnetic tidal perturbation due to the external masses; @} is the relativistic
correction to the force Fi.

It should be particularly noted that the derived equations of the satellite
motion contain no Coriolis or centrifugal terms. This results from the principles
of constructing GRS as the dynamically nonrotating RS. From this it follows that
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the present laser and Doppler satellite observations cannot give any information
concerning the magnitude of the GRS relativistic precession with respect to
BRS. In principle this is possible since the relativistic precession F'* enters into
the expression of ¢§. But the influence of such terms on the satellite orbital
motion is negligibly small. Basically, the GRS dynamical perturbations of the
satellite orbit enable one to evaluate only thé magnitude of the classical
precession of the satellite orbital plane caused by the Earth oblateness and the
Newtonian tidal action of the external masses. Thus the magnitude of the
relativistic precession of the satellite orbit and of the GRS spatial axes with
respect to BRS may be directly derived from observations by subtracting from
the total precession of the satellite orbit in BRS the classical precession
determined by satellite laser observations. In application to the Moon this
technique has been used for experimentally determining the value of the
geodesic precession (*7).

From methodological point of view it is useful to derive the GRS satellite
equations of motion (7.83)-(7.13) in another manner, i.e. by transforming the
equations of the geodesic motion from BRS to GRS.

8. — Equations of motion of an Earth satellite. Barycentric approach.

81. BRS equations of satellite motion in relative (formally geocentric)
coordinates. — In distinction to the geocentric approach the barycentrie approach
implies first to derive the BRS equations and then to transform them into the
GRS equations using the relationship (6.2), (6.3) and the transformations of the
Earth moments of inertia (6.19)-(6.21). This approach is of interest enabling to
gain clear insight into the procedure of eliminating from the BRS satellite
equations large unobservable terms caused by the inadequate choice of RS
(«bad» RS for describing the satellite geocentric motion).

The BRS equations of the geodesic motion are identical with egs. (7.1), (7.2)
replacing the derivatives dwi/du by dx¥dt and the components J.:(u, w) by
9.5(t, x). Thus, the BRS equations of motion of an Earth satellite have the form

8.1) #=U,;+c2G'+ 0™,
(8.2) G'=—-4UU,;—d'd" U, +a*&* U~ 36U +4U' ~ 4" U*+ W,.

The first step of calculations is to change in these expressions from the BRS
spatial coordinates to the relative (formally geocentric) coordinates (t,7%) by
means of the formulae

(8.3) =t — xh(®).

() B. BErToTTI, I. CIUFOLINI and P. L. BENDER: Phys. Rev. Lett., 58, 1062 (1987).
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Then the potentials U, U, W are expanded in series in powers of ' in the
vicinity of the point x§(f). Using eqs. (6.32), (6.33) for the acceleration of the
geocentre a} = X% one obtains

84) r=Ug,+Q"+ U,ik(xE) r*+ ﬁ,ikm(xE) rrrm 4

DO | =t

+ ¢ G - GH+ 0 +0(c™).
Within the required accuracy the function G' — G' has the form
8.5) G'=G'=—-4UgUg,—3Ugdi — Ug,a*di + Uy, #F &% + 4T —
—4U%; 8" + Wy, —4Ux U (xg) — 4Uy,; U (xg) — 3T o(xg) 7' —
—4U W(xg)(@F @t — vk vi) + U ;(xg) (@ % — vE) + 4T (xg) 7* — 4T (xg) 7 +
+[—~4Ue U alxp) — 4Ux, U 4(xg) — 4T (x0) U ) — 4T ;(xe) T i) +
+ W () — 8T 0uxe) &° — 4T 1) 3™ & + T yoog) &7 5™ +
+ 4T o (x5) + 4T Yloen) &7 — 4T "5 () &™) 7% — 20 ; T o) 71
To express explicitly this function one may use expansions (5.21)-(5.24) for
Ug, Uk, Wg and expressions (5.17)-(5.19) for U, U', W. The most cumbersome

procedure therewith is to differentiate the functions Wi and W. The appropriate
derivatives are

. . M —
(8.6) WE,i———<—ai§+i2a’ﬁ;rkW)+G—3E{[U(xE)—Zv%+
r P
Bk kN2 | i ok ki G o 7wk Kok _ O 7 kom ki
+7(7‘ VE T —VET" Vg +3_5’UE IET+2IE’V —FIE rrrmrt) +
7
%vﬁv’ﬁ;([émrk+21é‘mrm—%lﬁ””rmr”'rk)+
r 7

10

v’évﬁ"([{f’"ri+ 21 fEpm ——Zlﬁ”rmr"ri> -
r

15 G ; ; 7 ;

——= = (R (I gmri+ 2 ErT = —Tgm et +
r

]E':4€kjnv§]1én+ Eijnvﬁnlﬁnn*—Z’c'kjnlf:m(?)ﬁ""ka+Uén7'k”'l+ g rmr) —
r

3 ; 3 15 ' ,
—;Eakjnlénrkymvﬁ"—Fsijnlém”?”mvé""'ﬁ&kmlﬁ”"? rretvg |,
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@7 Wake)= X

ife rha

GMa [l 5 GMo o+ Lo+ =2 Grgavi? |2+
B#A VaB 2 2r%a

+5 (T'EAOLA + rhaak) —vivk ‘|‘—(7”EA?)A +rEa vV +
rha

M
+’3—7'EA7"EA|:ZUA > G B—%T?}“AOLKL ot (TEA?)A)2:|}-

Tk B-A TAB

Substituting expressions (5.17), (5.18), (5.21), (5.22), (8.6), (8.7) into (8.5)
results in

®.8 G'-G'=3 G+ g
n=1
with
89  ¢i= GIV;’E (4%14 — Rk 4 4WW> ,
r

8.1 gi= G%E {[21""1)’{; +vE+ Zirz (rkv’ﬁ;)z} ri+ 'r"v’f:W} ,

(811) ¢2=4 w{g[E ',:Eijn<5\km_%7"k7"m>—
r

8 Nk 0G i
_Ekjn(aim_ﬁrlfrm ’rk_gﬁakjnw%TllénnT ’I"m,

8.12) ¢

%W'Q

oo

i 3
(1)%3 I:EijnUE Imn——zskjn/UE Imn Ept 4
T
5
T—(?" vE)(— skaE r -—s”nIE ph + sk]nlﬁ”"r Pyt

e
8.13) gh=4=

= (— 2I oyl =3I v + %1{%%%1’) +
r

+3 G Gy (1t + 2Lk — S Ly 4
2 b r

+6 %W'f""(—lé"‘r"— 21 fer ok +%Ié‘mrkrmr">,
7
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8.14) gi=- 3%1}’1231'"" (Iﬁ”mri+ 2I grpm ——%Iﬁ””rmr”ri> -
r r

_§Q (Ikk’l' + 21k — Ig’"‘rmr"ri)—’r
2 5 r?
+§§51“'v{f; (—Iﬁ"mr"—215’"7'”‘+-551é’mrmr”1"‘)+
27 r
+%% <I""Lr +2IFrm —-—IET r'r)+
r
145 G(’I" )2<—Iénm’l"i—2Iém7’m+%1§m7"m’im7‘i>,

r A+E T%A TEA TEA

(8.15) ¢i=2GME > GMA[ri—iTEATEAT + (TkT’If]A)2T1};

. GMyg .~ GM
®16) gi=5"Er Ty +1 TE< E+2MaE),

B1T) b =[—4U ju(xe)F + V) 7" — 3dE(H + vE) — U p(xe)F + vE) v E +
+ T axp)™ + o)™ + v ) + AU 4 cg) — 4T ™x) ™ + v ) +

+ 4Ufkm(x13) 7"+ W,ik(xE) —4U (xg) U,ik(xE) —4ajak]rt,

8.18) ~g5=4T(xg) ™ — 4T (xg) ¥ + a b7 + 27 vh) ~
— ak(@r i+ 47 o + k) — 8T (xp) 7.

The relativistic terms of the function (8.8) consist of ten groups.

The first group ¢} (8.9) depending only on the Earth mass Mg represents the
Schwarzschild terms due to the spherically symmetrical component of the
gravitational field of the Earth.

The second group ¢} (8.10) depends on My and the velocity of the geocentre
vg. These terms arise from the BRS orbital motion of the Earth. For close
satellites of the Earth these terms are the most significant. But being of
kinematical origin these terms are expected to disappear in converting to GRS.

The terms ¢} (8.11) depending on the angular velocity &k are the Lense-
Thirring terms generated by the axial rotation of the Earth.

The BRS orbital motion of the Earth leads to the spin-orbital terms g} (8.12)
depending on &% and v§. These terms should disappear in converting to GRS.
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The second-order moments of inertia of the Earth are responsible for two
groups of quadrupole terms. The terms ¢} (8.13) depend only on I# and the
terms g} (8.14) depend both on I and v§ . By analogy with ¢i and ¢} it should be
expected that the terms g vanish in the GRS equations.

The terms ¢} (8.15) depending on masses My and M, describe the physically
meaningful nonlinear coupling of the gravitational fields of the Earth and the
external masses.

The terms g} (8.16) depend on the superposition of the Earth mass Mg and the
external mass potential U (xg) with its first derivatives U ,(xg). These terms
have no physical meaning and stem from the inadequate choice of RS.
Converting to GRS should annul these terms.

The terms ¢} (8.17) being proportional to the satellite coordinates and the
second derivatives of the external mass potentials describe the tidal
perturbations due to the Sun, the Moon and the planets. In converting to GRS
these terms may change a little but their form will retain.

Of particular interest are the terms gi (8.18) depending on the first
derivatives of the external mass potentials and the satellite velocity components
7. These terms contain explicitly the Coriolis force caused by the geodesic
precession of the GRS spatial axes with respect to BRS. Due to this precession
the perigee and the node of any satellite of the Earth including the Moon move
with respect to the BRS spatial axes at a rate of 1.91" per century (). In fact, the
terms gi may be rewritten explicitly as follows:

. GM, . . | _
819) gi= 3 M40k —vi) rka it — 2kl — o) +
A+E TEA

+AriaE — vE) 7+ 2rEa vE 7+ rEa vE P — i FEFE - Ak 7R R

where the first two terms may be presented in the vector form as

G20 g= 5 T (31 x a X rpa)] + (a ) Fa + Gipa D rea + )
A#E TEa
The second and the third terms here determine the perturbations depending
on the orbital elements of the satellite. The first term in form of the double
vector product gives the Coriolis terms describing the effect of geodesic
precession. Being dependent on the first derivatives of the potentials U and U’
the terms g§ will disappear in converting to GRS.

82. Transformation of the BRS satellite equations of motion to GRS. ~ For
the barycentric approach it is sufficient to use only the terms O(c™2) in the time
transformation (6.2). For the geocentric approach this transformation was
required completely including O(c™*) terms. Among other things this implies that
in the barycentric approach one needs to know only the components (4.5)-(4.7) of
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the GRS metrie tensor which is sufficient to establish transformations (6.2), (6.3)
within the required accuracy. Hence, the barycentric approach to derive the
GRS satellite equations is in a sense more economical than the geocentric
approach.

The derivation of the GRS satellite equation on the basis of egs. (8.4), (8.8)-
(8.18) involves three steps: 1) converting the acceleration #* in the left-hand side
of eq. (8.4) to the acceleration d%w¥du? by means of transformations (6.2), (6.3),
2) changing in egs. (8.4), (8.8)-(8.18) from the spatial relative coordinates r* to
the GRS spatial coordinates w* by means of (6.3), 3) transforming the Earth
mass and its moments of inertia from BRS to GRS according to formulae (6.19)-
(6.21).

The first step encounters no difficulties. Differentiating twice expressions
(6.2), (6.3) with respect to ¢t and substituting the results into relation

8.21) dw'_1d (wh)_w i,
w dt\ u?

with dot denoting the differentiation relative to t one obtains

(8.22) (3;”}2 =7+ c-Z[Z(S + vk w* + akwh) W'+
u

d

+(%v’ﬁ;dﬁ+a’ﬁa%+lvi;d’ﬁ+ﬁ”" + D+ 4D*ap )w + Dmapk w’"]

o

Vi vk + F 4 D 4 ok gt + zpikmwm>wk + (8 + 20k bt + dkw") b +
+@hak+vkak +2F%+2D% +2D%" ™)t +
2

At the second step it is necessary to transform the Newtonian right—hand
member of eq. (8.4) involving the potential Ug(t, x). Denoting

LS
(8.23) Us(t, w) = “s T +GIES w? 2A3G1km<~akm+ 3 whw >+O<aE fj)

the expression (5.21) for Ug(t, x) may be rewritten in the form
8.24) Uglt,x)=Ugt,w)—c2

Oc™).

QUx(t, w
-[(%v’{;vé"+F"m+D"’")wm+D’"""wmw ]———aE( )

The potential Ug(?, w) contains the BRS mass and moments of inertia of the



RELATIVISTIC REFERENCE SYSTEMS AND MOTION OF TEST BODIES ETC. 93

Earth and for this reason differs from the potential U, =(u, w). Differentiating this
relation with respect to the spatial coordinates

8.25
(8.28) 3’ du  ox' dw*  ax’

and substituting into eq. (8.4) one obtains

(8 26) 7 U,ikm(xE) w" w™+

oUR(t —
= ‘—U;‘EU‘;E) +QF + T ylocg) w* +

1
2
+¢AG - GH—c? [(%v’ﬁv{;" + Fhm D’"")wm + D’""”w”‘w"] .

— — , - QUg(t, w
+ U alxg) + U s(xg) w]:| —c® ’Uﬁ—i(—‘) .

. 32 Ug(t, w)
ou

dw!dw*

The last step to derive the GRS satellite equations of motion is to transform
the Earth mass and its moments of inertia occurring in expression (8.23) for
Ug(t, w). Using (6.19)-(6.21) we obtain

8.27) Ugt,w)= ﬁE(u, w) + c‘z%fé"" [% (v{;" -

nj 3
+ epjn OF W <— vE +%v§gwswm) —=Fwkw”|.
7 ?

Now the difference of the first and the last terms entering into eq. (8.26)
will be

;, OUst, w) _
P B Y o

(8.28) o

c2v

oUst, w)
dw’

q - 3 P 5 .
=Ug;+c¢ Z—QI{;"" 2| —ppwi—vhw™— SvEwt + SvkwFwmw' |vE +
SR P 7

i N 3 nj N 5
+€kjnw%<—°ik+ﬁwzwk VE ﬁskmwﬁvﬁws oikwm+é‘imw"—;§wlw"w”’ .

Combining expressions (8.22), (8.26), (8.28) one obtains the GRS satellite
equations of motion in the form

d2w’

8.29
(8.29) G

= UEz +QP + U,ik(xE) wk + —tj,ikm(xE) wFw™ +

DO =

+¢720 4+ 0(F) + 0(c™),
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where the relativistic right-hand member is determined by

(8.30) @'=Gi— G +2S + vkt +akwh) [UE + T ) ™ +
% mn(XE) W™ W ] + (—;—vgv’ﬁ + Fi*+ D% + vkt + 2D”’°wf> .

(g + T omxe) w™] + (S + 2ak bk + dhwh) b’ + whak + vhak +2F %+

+2D% + 2 D%t + (Lok b+ akak + Svkdk + F¥ o+ D%+
2 2

+ 4D’f’""u'ﬂ”) wk + Dikmapk g™ — [(%v’ﬁ;vi;"+ Fhm D’"") w™ +

ﬁ)lca

4 Dkmngym oy, ][UE o+ Ulk(xE)] % (—vglwi_vﬁwm_&‘m?)’éwk-i-

5 .
+%v’ﬁ;w"w’”w )vE +38= G skmwivasI (é‘ikw"‘+ Sm W —-ﬁwlwkwm> +
7

+}%Skm(b%véniénn( lk+'§w7ﬂ)
r

This expression enables one to see the contribution of each term of
transformations (6.2), (6.3) into the right-hand member of the GRS satellite
equations. Substituting (6.22), (6.26), (6.27) and (6.30) into this expression one
has

(8.31) Pi=G—G'= 3 gi+ Apk,
n=1

where the functions g% are determined by relations (8.10), (8.12), (8.14), (8.16),
(8.18) and

(8.32) Api= [Zd{;"u';maik + T (o) du + 0b b + alak — vl +
+ 3k’ — 20k w* — 2T (e) + 2 T % () — %v’ﬁ; 02T onlxe) +
]_ R
+ ‘2"% V2 U jmlxg) + v} U alxg) + 208 0™ U alxg) +

R T ) + T ) + T ) + 2T () T ) [+ 06,
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Comparing (8.31) and (8.8) we see that all the terms g% (n=1,...,5) cancel out
confirming the reasoning of subsect. 8'1. As a result the relativistic right-hand
member of the GRS satellite equations takes the simple form

5 6
(8.33) =73 ol +Api=3 @,
n=1 n=1
with
(834) ED},L':@;?L (n=1}2)3’4)’

(8.35) 0L+ Bh=gl+ Agh= [4wmv{;”Uik(xE) — 4 T xe) —
— 4™ vk T ) + 400™ U (k) + 245 90™ 8y, — 2d 50* — 40" ' U g +
+ 2™ ™ U g(xg) + F " U p(p) + F™ T 4(xp) + U (xg) 8 —
—3abak — 2T (o0) T wlotn) + W alxe) + 2 Tes) + 2 T (xe) —

L - — 1 . —
—vEdp —vhdE — g U"p(xg) — S vi v U,km(xE)—

2

Lok T+ 2vZEU1«k<xE’>] W+ O(F?).

Thus, we have obtained again eqs. (7.3) with the values (7.4)-(7.13). It
remains to give @} and &} in explicit manner, i.e.

A GM o
8.36) di= 3 —Swhl|—6imwE v+
A#E TEa

- g — o) — ™| 8 + 610k — v -
TEa
6 2 L gy MY oy

- FraarBs W — v + S rharEAE —v W
Tha THa

— B Rk — v + i
"'EA

2

12 3
__TEATEAW w’ +——7'EA7'EA7/U wr
7Ea TEA
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. GM
@30 #i= 3 Zohut{| —riap + S - 308 oDz - oD +
A+E TEA
3 6 9 GMg+2My)
+ PRV — S~ A B v D) + s PRV P+ —————
TEa TEA 2r§a TEA
+ 3 RGMB(—+1)] St ST BrbaF™ + Ty ™) 4 805 — 00k — v))
B#AE YA  TEB r8a
+ 3 1 m 3 k ,ym k ,ym m ok k ,ym
ETEATEA ——Z-’Z)E’UE +?)E'UA +27)E VA— VAU, +
A
+ 6 1 k m m m 3 3 i m 7 m
—TEaTEAWE — v E — ) + ——rEarEa 5 VEVE tvpvs +
TEa TEa

[k 2 3.k i 3. i
 TEATEA(PEAVR) _ETEAQ/Z_ET%AGA'—

+ 2080y —viAv,{") -
TEA

- 3 .
s TEaThaTBa 0L ———G (Mg +3My) rea s —

2r§a TEA
rk, opk k
; TEA TER
- 37'}31; Z GMB + 3 + —~ .
B#AE 7‘EA”"AB TEaTEB  TEB

The sum of #i and &} results in (8.35).

It may be noted that assuming the Earth to be an oblate spheroid rotating
with the constant angular velocity & around the polar axis and adopting the
instant equatorial RS w!=2x, w*=y, w?®=2 one has

(8.38) f=fz= C, Q=GA-0),

(8.39) ok=0k=0, o¥=o.

A and C are the principal moments of inertia of the Earth, @ is proportional to
the Earth oblateness. Denoting by s = (0,0, 1) the unit vector along the polar
axis the expressions for F'i, F}, &}, @} take a simpler form

(8.40) p,=29[1 [2 (1 —5Ti)w+sz

,’A.S
(8.41) F,=— %(GME)‘I Qerad U s(xe),

(8.42) ¢2=§Ca[wxs+%(wxw)],

1';3
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2\ GM 2
(8.43) @:%{{4(—%9?—2) G +§<1—5f2>w2]w+
7 ) F 7

2

7 2
+3<—4—G—££§+w2>zs—G[<1—%)(ww)*—%é]w}-

9. - Conclusion.

This paper has pursued two objectives, 7.e. 1) to construct the harmonic,
dynamically nonrotating reference system for any body of the solar system and
2) to derive the equations of motion of test particles in the vicinity of the given
body using this RS. To be specific, the elaborated technique is applied to the
Earth and its satellites. The main results of the paper are the GRS metric (4.1)-
(4.8) with the transformation laws (6.2), (6.3) to the BRS coordinates and
eqs. (7.3) or (8.29) for the Earth satellite motion. Needless to say, for practical
purposes the Newtonian perturbation i due to the nonsphericity of the Earth
should be taken more accurately. The Newtonian perturbation Fi defined by
(7.7) or (8.41) is of particular interest. This perturbing acceleration does not
depend on satellite orbit and is of the order Fs~GMoL}ag/ Rt ~38.7- 107 cm/s®.
For LAGEOS the relativistic accelerations ¢2®% (n=1, ..., 6) range by the order
from 1.0-10""em/s® (n=1) to 1.7-107“em/s? (n=4).

The methods considered above can be applied to derive the relativistic
equations of motion of the Moon or a satellite of any planet. '

%) ok 3k

The authors are indebted to Prof. B. Bertotti for reading and improving the
manuseript.

® RIASSUNTO (%)

Si sviluppa una teoria relativistica per costruire un sistema di riferimento armonico non
rotante RS. La teoria permette di produrre I'RS celeste per la dinamica del sistema solare
trascurando il campo gravitazionale della galassia. Si presta una particolare attenzione
all’'RS baricentrico (BRS) con lorigine nel baricentro del sistema solare e all'RS
geocentrico (GRS) con Porigine nel geocentro. Si presume con cio che le velocita dei corpi
siano ridotte rispetto alla velocita della luce e il campo gravitazionale sia debole dovunque.
L'RS specifico e il campo gravitazionale sono descritti dal tensore metrico che si trova
mediante approssimazioni newtoniane dalle equazioni del campo di Einstein con date
condizioni di confine. Le coordinate BRS coprono tutto lo spazio del sistema solare. Le
coordinate GRS sono inizialmente limitate nello spazio dallorbita della Luna. Si
determina la relazione tra BRS e GRS con la tecnica di adattamento asintotico. Le
formule di trasformazione esplicite permettono di prolungare le coordinate GRS oltre

"7 — Il Nuovo Cimento B.
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Porbita lunare per coprire addirittura tutto lo spazio del sistema solare. Sono state
derivate le equazioni GRS del moto del satellite della Terra. I membri destri relativistici
di queste equazioni contengono perturbazioni terrestri di Schwarzschild, Lense-Thirring
e del quadrupolo, nonché perturbazioni di marea dovute al Sole, alla Luna e ai pianeti
maggiori. Sono dedotte le equazioni con due diverse tecniche. La prima implica
Papplicazione del principio geodesico alla metrica GRS. La seconda & basata sulla
trasformazione delle equazioni di moto del satellite BRS in equazioni GRS. Entrambe le
tecniche risultano nelle stesse espressioni finali.

(*) Traduzione a cura della Redazione.

PenaTHBHCTCKHE CHCTEMBI O0TCYETA U JABHDKCHHE llpOGHLlX TEJ B OKPeCTHOCTH 3emun.

Pe3ztome (*). — PaspuBaeTcs peNsATHBHCTCKAs TEOpUs WIS  KOHCTPYUPORAHMS
HEBPAIAIOLIMXC TAPMOHMUYECKUX CHCTEM OTcdera. IIpemnoxeHHas TeopHs MO3BOISAET
NONMYUTE HeGeCHYF0 CHCTEMy OTCYeTa Ui CONHEYHOW CHCTEMbI, MpeHeOperas
rpaBUTAlMOHHBIM ToNieM ['anmaktaxu. Ocoboe BHUMaHHE yhedaseTcs OapHIEHTPUYECKOH
CHCTEME OTCYeTa C HAyajoM B OGapuueHTpe COMHEYHOH CHCTEMBl M IEOIEHTPHUYECKOM
CHCTEMe OTCYETa C Ha4vanoM B reolieHTpe. [Ipenmonaraercs, 4To CKOPOCTH TeN MANEL IO
CPaBHEHHIO CO CKOPOCTBIO CBETa M MPBAUTALMOHHOE T0JIe sBNsieTcs cabhiv. CrienuanpHas
CHCTEMA OTCYETa M CPABHTALMOHHOE IIOJI€ OMHCBIBAFOTCS C IOMOIIBI0 METPHYECKOTO
TEH30pa M NOMYYAIOTCA ¢ NOMOIIbIO HBIOTOHOBBIX NPUCIMKEHHH U3 YpaBHEHMA 07
OiiHmiTefiHa ¢ 3aJaHHBIMM IpaHMYHBIME ycnoBusME. KoopamHaThl OapHIIEHTPHYECKOM
CHCTEMBI OTCYETAa TOKPHIBAIOT BCE IMPOCTPAHCTBO COJHEYHOH CHCTeMBI. KoopmuHaThI
reONeHTPHYIECKO CHCTEMBI OTCYETA NEPBOHAYAILHO OTPAHHYEHbI B IPOCTPAHCTBE OPGHTOM
Jytsl. YcTaHaBAMBAETCA CBA3b MEXIY GapHIIeHTPHYECKON M TeOLUEHTPUYECKOA CHCTEMAMHU
OTCYeTa,  HCHONB3ys  TEXHWKY  aCHMIOTOTHYECKOro  coriacoBammsi.  Popmynsl
npeobpa3oBaHMsl MO3BOJSIIOT NPOJIOHTHPOBATh KOOPHHHATBI IeOlEHTPUYECKOH CHCTEMBI
OTCYETA 3a Npenemsl TYHHON OpGHHBLI M MMOKPHITH BCE TIPOCTPAHCTBO COMHEYHOM CHCTEMEI.
BeisonsiTcs ypaBHeHNs! NBMKEHs! CITyTHUKOB 3eM/IM B T€OLEHTPAIECKOH CHCTEME OTCYETA.
PensitMBHCTCKME 9IEHBI B NpaBbIX YacTSX 3THUX YPABHEHHI CONEPXKAT BO3IMYIUCHMS
Ilsapmiminsna, Jlenna-Tuppuura B KBagpyHoONBHBIE 3EMIIHbIe BO3MYIIEHMS, & TaKXe
NPUIMBHBIE BO3MYHIEHMs, oOycroBnennsle ComnieM, JIyHo# B GONbILMMM [AHETAM¥.
YpaBHEHHST BBIBOJATCA C HOMOIIBIO IBYX PasnMyHbIX crmocoGoB. B mepsoMm monxome
IIPUMEHSETCS] TEONE3UYECKUIA IPUHIMI K METPUKE TEOLECHTPHYECKOH CHCTEMBI OTCYETa.
Bropo#t cmoco6 OCHORaH Ha mnpeofpa3oBaHMM YpaBHEHMH JBIXKCHMH CIYTHHKOB B
6apUIIEHTPUIECKON CHCTEME OTCYETA B YPABHEHUs JBUXKCHNS B [€OLEHTPHIECKON CHCTeME
oTcyeTa. OBa MOOXONa MAIOT ONMHAKOBBIN KOHEYHBIN Pe3yIbTar.

(*) Ilepesedeno pedaxyueti.



