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Summary. - -  Relativistic theory of constructing nonrotating harmonic 
reference systems (RS) is developed. The theory enables one to produce the 
celestial RS for solar-system dynamics neglecting the gravitational field of 
the Galaxy. Particular attention is focused on the barycentric RS (BRS) with 
the origin at the solar-system barycentre and the geocentric RS (GRS) with 
the origin at the geocentre. It is assumed therewith that the velocities of 
bodies are small as compared with the light velocity and the gravitational 
field is weak everywhere. The specific RS and the gravitational field are 
described by the metric tensor to be found by Newtonian approximations 
from the Einstein field equations with given boundary conditions. The BRS 
coordinates cover all the solar-system space. The GRS coordinates are 
initially restricted in space by the orbit of the Moon. The relationship 
between BRS and GRS is established by the asymptotic matching technique. 
The explicit transformation formulae permit to prolonge the GRS coordi- 
nates beyond the lunar orbit to cover actually all the solar-system space. The 
GRS equations of the Earth satellite motion have been deduced. The 
relativistic right-hand members of these equations contain Schwarzschild, 
Lense-Thirring and quadrupole terrestrial perturbations as well as tidal 
perturbations due to the Sun, the Moon and the major planets. The equations 
are derived by two different techniques. The first one implies the application 
of the geodesic principle to the GRS metric. The second one is based on the 
transformation of the BRS satellite equations of motion into the GRS 
equations. Both techniques result in the same final expressions. 

PACS 04.20 - General relativity. 
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1.  - I n t r o d u c t i o n .  

Until recently in the relativistic treatment of the Earth satellite motion one 
took into account as usual only the Schwarzschild and Lense-Thirring 
perturbations caused by the spherically symmetrical component of the 
gravitational field of the Earth and its axial rotation, respectively. These 
perturbations are presented for a variety of satellite orbits for example in (1). At 
present, consideration should be given to the more refined relativistic effects due 
to the Earth oblateness (2) and the influence of the Sun and the Moon. 

In investigating the solar and lunar action in the framework of the general 
relativity theory (GRT) the choice of the reference system (RS) becomes of 
particular importance. Equations of motion of the solar-system bodies in the 
barycentric RS (BRS) and barycentric metric of the total solar system 
gravitational field being well known (3-5), the BRS equations of the Earth satellite 
motion may be formulated without any difficulties. Subtracting the BRS 
equations of motion of the Earth one gets the equations of the satellite motion in 
terms of the relative (formally geocentric) coordinates being actually the 
differences of the BRS coordinates of the satellite and the Earth. Such equations 
have been employed for example in (,8). The advantage of these equations is that 
both the satellite coordinates and the coordinates of the external disturbing 
bodies are expressed as a function of the same argument, the barycentric 
dynamical time (TDB). But the main relativistic solar terms occurring in the 
right-hand members of these equations are of the order ~-c-2GM| ~ 10 -8 
with respect to the principal Newtonian geopotential term proportional to 
GMe/r 2 (R and r being the Earth heliocentric distance and the satellite 
geocentric distance, respectively). 

The relativistic perturbations of the order ~ are due to the terms depending on 
the Earth orbital BRS velocity as well as on the external mass gravitational 
potentials and their first derivatives. These perturbations have nothing to do 
with dynamics of the satellite geocentric motion. They are caused by the ,~bad- 
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(5) C. M. WILL: Theory and Experiment in Gravitational Physics (Cambridge 
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(1985). 
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(conflicting with the principle of equivalence) choice of the formally geocentric 
coordinates in the curved space-time and are fictitious as giving no contribution 
to the actual evaluation of the satellite geocentric distance and velocity. This is 
due to the fact that the equations of the light propagation in the formally 
geocentric coordinates also contain large relativistic terms of the order 
cancelling out the corresponding terms of the equations of the satellite motion. 
The appearance of the fictitious relativistic perturbations makes the discussion 
of satellite observations more complicated and may deteriorate the accuracy of 
the measurable parameters of the Earth gravitational field. 

The adequate description of the satellite geocentric motion is achieved in the 
((good~> geocentric RS (GRS). Its origin moves also along the world line of the 
centre of mass of the Earth but the relativistic influence of the external masses 
(Sun, Moon, planets) manifests itself in the appropriate equations of motion only 
in form of the tidal terms proportional to the second derivatives of the 
gravitational-field potentials. In other words, the construction of the (,good, 
GRS should be compatible with the principle of equivalence. 

Ashby and Bertotti (9) were the first to underline the merits of the ,(good, 
GRS for the representation of the satellite motion. Satellite dynamical perturba- 
tions in this RS enable one to evaluate immediately the correct order of 
magnitude of the actually measurable effects facilitating the comparison of 
theoretical and observational data. This was explicitly demonstrated in (lO) for 
the Moon and in (11) for Earth satellites. 

In the subsequent paper Ashby and Bertotti(1~) (see also (13)) succeeded to 
construct a (,good>> GRS introducing the generalized Fermi normal coordinates 
for the vicinity of the massive self-gravitating Earth. Along with the advantages 
this approach does not deprive of shortcomings. First of all, this concerns the use 
of the background space-time metric not representing the solution of the 
Einstein field equations. Among other things the technique of the generalized 
Fermi normal coordinates seems to be elaborated so far only for the spherically 
symmetrical nonrotating masses. The application of this technique to the real 
Earth whose rotation and oblateness cannot be ignored in the astronomical 
practice remains not so clear. This approach is discussed also in (14-16). 

(9) N. ASHBY and B. BERTOTTI: Phys. Rev. LeAr., 52, 485 (1984). 
(lo) m. SOFFEL, g .  RUDER and M. SCHNEIDER: Astron. Astrophys., 157, 357 (1986). 
(11) S. Y. ZHU, E. GROTEN, R. S. PAN, H. J. YAN, Z. Y. CHENG, W. Y. ZHU, C. HUANG 
and M. YAO: in The Few Body Problem, No. 96, edited by M. VALTONEN (Kluwer 
Academic Publ., Dordrecht, 1988), p. 207. 
(12) N. ASHBY and B. BERTOTTI: Phys. Rev. D, 34, 2246 (1986). 
(18) W. FUKUSHIMA, M. K. FUJIMOTO, H. KINOSHITA and S. AOKI: in Relativity in 
Celestial Mechanics and Astrometry, edited by J. KOVALEVSKY and V. A. BRUMBERG 
(Reidel, Dordrecht, 1986), p. 145. 
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5 - I1 Nuovo Cimento B. 



66 v . A .  BRUMBERG and S. M. KOPEJKIN 

Another approach to construct a ,(good, RS has been proposed in (15-17). This 
approach is based on using 1) post-Newtonian approximations (3,14,18_~3), 2) multiple 
expansion formalism for the gravitational fields(U-2s), 3) asymptotic matching 
technique for the gravitational-field potentials (14,29.32). 

Post-Newtonian approximations (PNA) and multipole formalism are era- 
ployed by us for solving the Einstein equations and constructing BRS and a 
(,good~) GRS. The transformation formulae relating these RS are deduced by 
means of the asymptotic matching technique. Our approach may be directly used 
in many actual celestial mechanics and astrometry problems dealing with weak 
gravitating and slow moving bodies possessing arbitrary shape, internal 
structure and velocity distribution. 

The aim of the present paper is to derive the relativistic equations of the 
satellite motion in the ,,good, nonrotating harmonic GRS. The principles of 
constructing such GRS were exposed by us in (18,~6). The list of designations is 
given in sect. 2. Section 3 deals with the statement of the problem and the 
methods used for solving the Einstein equations in harmonic coordinates. 
Construction of GRS within accuracy needed for the problem in question is 
performed in sect. 4. The solar-system BRS metric is established in sect. 5. 
Matching the BRS and GRS metric tensor components is accomplished in sect. 6. 
The Earth satellite equations of motion are derived in sect. 7 by applying the 
geodesic principle to the GRS metric. Another approach to obtain the same 
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equations of motion is exposed in sect. 8. This approach involves the transform- 
ation of the BRS equations of motion into the GRS equations using the matching 
relations of sect. 6. 

The GRS satellite equations of motion obtained here were briefly outlined 
earlier in (3~). 

2 .  - D e s i g n a t i o n s .  

Greek indices ~,/~, ... take values from 0 to 3, Latin indices i ,  k ,  . . .  run values 
from 1 to 3. Capital Latin letters A, B, ... specify the solar-system bodies. Each 
repeated index implies summation over appropriate values. 

The BRS coordinates are denoted as x ~= (ct,  x i ) .  The GRS coordinates are 
w ~ = (cu,  w~). The triplets of spatial components will be denoted as x = (x 1, x 2, x ~) 
or w = (w 1, w 2, w~). ~k is the I~onecker symbol; r~z = v~z is the Minkowski tensor 
(rJ00 = 1, v0~ = 0, V~k -- - 3~k); g~ is the metric tensor of the curved space-time with 
g = det (g~.~); ~k~ is the antisymmetric Levi-Civita symbol (~2~ = + 1); G is the 
gravitational constant; c is the light velocity. Greek indices of the tensor 
components are raised and lowered with the metric tensor g~.~. In expanding 
tensor quantities in series in powers of small parameters the Greek and Latin 
indices of any term of the series are raised and lowered with v:~ and ~k, 
respectively. 

The functions depending only on the GRS coordinates will be marked by ^ 
Sometimes, to avoid misunderstanding the GRS indices will be also supplied 
with this symbol. 

Comma after the sign of a function with the subsequent Greek or Latin index 
designates the partial derivative with respect to the corresponding variable. 
Comma followed by the zero index denotes the partial derivative with respect to 
the time coordinate (without factor c-1). The dot denotes the total derivative 
with respect to the time coordinate of the corresponding RS. Thus, unless 
otherwise specified, the differentiation is meant to be related with the 
coordinates occurring in the expression of a function in question. For example, 
for any function f ( t ,  x )  in BRS one has 

ef f,0- }-- f,0 + 
~x ~ ' ax ~ ' ~t '  ' 

The similar relations are valid for any function 8(u ,  w)  in GRS 

a8 D8 8,0 + 
8,~ =- ~ w  ~ , ~ , i -  ~ w  i ,  8,0 =- ~ u  , 

(33) V. A. BRUMBERG and S. M. KOPEJKIN: K i n e m a t i k a  Fiz .  Nebesn.  Tel. (1988), in press. 
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In what follows we shall often have to do with the functions and their 
i t derivatives defined along the world line of the geocentre x E ( )- We shall assume 

for such functions that the spatial coordinates of the geocentre are always 
substituted after performing differentiation. 

3. - Problem statement and methods of constructing BRS and GRS. 

Assuming that the action of the gravitational field of the Galaxy on dynamics 
of the solar-system bodies may be ignored we shall consider the solar system as 
isolated. In the problem in question an Earth satellite may be regarded as a test  
body moving in the space-time on the geodesic line. 

The matter  of the attracting masses will be described by means of the energy- 
momentum tensor of the perfect fluid 

(3.1) T ~ = Lz(c 2 + I I )  + p ] u ~ u  ~ -pg~'~ 

with ~, p, H and u ~ being respectively mass density, pressure, internal energy 
specific density and four-velocity of the fluid element. The first three quantities 
are scalars. The pressure and the specific energy are related with the mass 
density by the equation of state and the first law of thermodynamics. 

Reference system and gravitational field are simultaneously described in 
GRT by the metric tensor g~ to be found as the solution of the Einstein field 
equations. Owing to the Bianchi identities one may impose on the metric tensor 
components four arbitrary coordinate conditions. We suggest to adopt the 
harmonic (de Donder) conditions 

(3.2) (~-L--~g~.~),~ = 0. 

These conditions do not fix RS in a unique manner. There remains the 
arbitrariness of not reducing to the group of Poincar~ transformations. In 
particular, the spatial axes of the harmonic RS may rotate with an arbitrary (but 
sufficiently small) angular velocity (2~) and its origin may move along an arbitrary 
timelike world line possessing the small first curvature (acceleration)(i5,~6,27). 

The harmonic RS may be uniquely fixed by choosing 1) the world line of the 
RS origin, 2) the rotation velocity of the spatial axes, 3) the canonical form of the 
metric tensor (~4,26-~8). The specific realization of this procedure is performed in the 
present paper. 

The gravitational field may be conveniently described in terms of the 
variables ~.~ = v~.~ - ~ / -  gg~ .  Then the Einstein equations in harmonic coordi- 
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nates take the well-known form (~0,34) 

( 3 . 3 )  ,~ ~z _ 16=G 
~ ,~  C 4 

- ~ ( - g ) ( T  ~ + t  ~ ) + ~  , 

(3.4) 

where t ~ is the Landau-Lifshitz pseudotensor. 
The Earth is assumed to have in GRS the stationary rigid-body rotation with 

the angular velocity wE. ^ ~ Its external gravitational field is described by the 
multipole moments characterizing the nonsphericity deviations of its shape and 
the internal distribution of matter. The Sun, the Moon and the planets will be 
regarded as the spherically symmetrical nonrotating bodies in heliocentric, 
selenocentric and planetocentric RS, respectively. These RS may be constructed 
just  as GRS. 

Denote the total mass of the solar-system bodies as M, the mass of any planet 
B as MB, its mean radius as LB, its characteristic heliocentric distance as RB, the 
minimal separation of body B from its nearest-neighbouring body as DB and its 
BRS velocity as vB. The problem under consideration involves the small 
parameters as follows: 1) ~-VB/C << 1, the slowness of the orbital motion; 2) 
v-(c-2GM/RB)I/2<<I, the weakness of the gravitational field everywhere 
outside the bodies; 3) VB ~ (c-2GMB/LB)I/2<< 1, the weakness of the gravitational 
field inside the bodies; 4) ~B ~ LB/DB << 1, the quasi-point structure of any body; 
5) a E -  1/300, the Earth oblateness. The virial relation implies that ~ - v .  It 
should be noted that ~ and VB satisfy the relation v -  VB~B (M/MB)I/2(DB/RB) ~/~. 
Besides this, one has &~LE <<c for the Earth and vs << c, ~s being the satellite 
GRS velocity. 

The metric tensor g~z may be found by solving eqs. (3.3) with the supplemen- 
tary boundary conditions on ~,~ enabling to specify the harmonic RS ('~'~). We are 
particularly interested in two systems, BRS and GRS. 

The absence of the spatial axis rotation of these RS is meant here in 
dynamical sense involving that there are no Coriolis and centrifugal forces of 
inertia in the equations of motion of test particles in these RS (85.36). For  BRS 
describing the isolated solar system the dynamical and kinematical rotations are 

(30 L. D. LANDAU and E. M. LIFSHITZ: The Classical Theory of Fields (Pergamon Press, 
Oxford, 1971). 
(85) j .  KOVALEVSKY and I. I. MUELLER: in Reference Coordinate Systems for Earth 
Dynamics, edited by E. M. GAPOSCHKIN and B. KOLACZEK (Reidel, Dordrecht, 1981), p. 
375. 
(36) j .  KOVALEVSKY: Bull. Astron. Obs. R. Belg., 10, 87 (1985). 
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equivalent and BRS is nonrotating in kinematical sense as well. Remind (35,36) that 
celestial RS is called kinematically nonrotating if its spatial axes preserve 
constant directions toward the external distant astronomical objects considered 
as fixed by definition. 

In general case, dynamical and kinematical rotations of RS are not equivalent. 
An illustrative example is furnished by GRS. GRS is attached to the Earth that 
cannot be regarded as isolated from the gravitational action of Sun, Moon and 
planets. Hence, away from the Earth the space-time does not pass into the 
asymptotic flat space. This results in rotation (relativistic precession) of the GRS 
spatial axes with respect to the BRS axes related with the ,,fixed~ stars. But the 
GRS equations of satellite motion do not contain Coriolis and centrifugal forces of 
inertia caused by the relativistic precession. This means that GRS is nonrotating 
in dynamical sense. The explicit evidences of this fact will be given in sect. 7 
and 8. 

In the problem in question BRS (ct, x) is constructed by the post-Newtonian 
approximations in the near zone of the solar system. The near zone is restricted 
by the domain whose radius does not exceed the minimal length of the 
gravitational waves radiated by the solar system. According to our assumptions 
this minimal length belongs to the gravitational waves generated by the Earth- 
Moon system. Proceeding from this it is easy to evaluate the near-zone radius as 
exceeding the radius of the Pluto orbit by about 100 times. 

The BRS metric tensor is determined from the Einstein equations (3.3) 
with the energy-momentum tensor of all solar-system bodies. Solving eqs. (3.3) 
is achieved by iterations relative to small parameters ~, ~, ~B with the com- 
plementary boundary condition prescribing to match the functions y~(t,x) 
on the near-zone boundary with the outgoing solar system gravitational 
radiation. The BRS metric tensor is invariant under Lorentz transformations 
permitting to consider BRS as the generalization of the inertial RS of 
Newtonian mechanics. 

GRS (cu, w) is constructed in the vicinity of the world line of the geocentre. It 
covers the spatial domain surrounding the Earth and lying inside the lunar orbit. 
The spatial sizes of GRS are confined so far to this limit. This is necessary for 
matching BRS and GRS to deduce the transformations between them. As will be 
demonstrated below the spatial GRS axes may be actually prolonged beyond the 
Pluto orbit. The functions ~Z(u, w) are determined in GRS from eqs. (3.3) by 
post-Newtonian approximations and multipole formalism for the external 
gravitational-field expansions. The right-hand members of eqs. (3.3) include now 
only the energy-momentum tensor due to the Earth. The iterations are 
performed therewith with respect to the small parameters r/DE, ~E, ~ and s. The 
boundary condition to be imposed on ~ (u, w) in GRS demands that away from 
the geocentre these functions be matched with the functions representing the 
tidal gravitational action of Sun, Moon and planets. In this sense GRS 
generalizes the quasi-inertial RS of Newtonian mechanics. 
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4. - Geocent r ic  r e fe rence  system. 

The GRS metric tensor has the form (~,~) 

(4.1) 

(4.2) 

ds 2 = t ~  (u, w) dw ~ dw z , 

g00 (U, W) = 1 + C-2~00 (U, W) -~ c -4g00  (U, W) -~ 0 (C-5)  , 
(2) (4) 

( 4 . 3 )  Ooi (u, w) = c-~ # oi + 0(c-5) , 
(3) 

(4.4) #ik (u, w )  = - ~k + c-2 t~ ~k + O(c  -4) 
(2) 

with 

(4.5) 

71 

oo (u ,  w )  = - 2 U E  (u ,  w )  - 2Q~ E) w i - 
(2) 

_ 3Q(iE)w~wk _ ~'~r~(E)ik,~"i~"k~ ~ . . . . .  + 0(~.4),  

(4.6) 

(4.7) 

(4.8) 

~k (u, w) = ~k ~ oo (u, w), 
(2) (2) 

~ oi(U, w) = 4U~ (u, w )  + 4eikmC(E)nwmwn + 0(~'3), 
(3) 

~ oo (u, w) = 2U~ (u, w) + 2/JE (U, W) Q~E)w~ + 
(4) 

+ 60E(u, w)Q~)w~w~+ o ( ~  ~) ,  

(4.9) UE (u, w) = G f p*(u, w ' )  daw, + O(v~) 
(~  Iw- w'l 

(4.10) 

(4.11) 

i ~ ~*(u, w') d3w, UE(u,w)=G ~ - _  ~ ~i(u, w') , 
( 

I ~*(u, w) = p(u, w) u~ w) V-:-~ , 

vi(U, d w  i ~ k m 
w )  du = ~ikm o) E W 

O(E) Q(~), ~(~) r,(E) are functions of the time u on the world where  the quantities .,~ , ~ k  
line of the GRS origin. 
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Along with remainder terms indicated explicitly in (4.2)-(4.9) we have 
neglected 1) in ~00(u, w) the quadric terms with respect to Q~E), U~k~(E), ~k,~r~(E), ... and 
to the time derivatives of the first order as well as the linear terms with the time 
derivatives of the second order, 2) in p0~(u, w) the terms with the time 
derivatives of Q!E), Q~E), ~(E)ik~, .-- resulting from the fulfilment of harmonic 
conditions (3.2). This neglection is justified here because our aim is to derive the 
equations of satellite motion taking into account the influence of the external 
masses only in linear approximation with respect to the spatial coordinates of the 
satellite. 

The potentials UE, ~ UE occurring in expressions (4.5)-(4.10) characterize the 
Earth own gravitational field of electric and magnetic type, respectively. They 
result from solving the inhomogeneous equations (3.3) with the right-hand 
members including the energy-momentum tensor to the Earth alone. 

The functions Q~E), Q(~), ~(E)i~,~, C(~),... of expressions (4.5)-(4.8) depend only on 
the time u and are determined by solving the homogeneous equations (3.3). The 
function Q!~) is characteristic of the first curvature of the world line of the GRS 
origin and is numerically equal to the acceleration of the GRS origin with respect 
to the RS freely falling (Q~ = 0) in the gravitational field of the external masses. 
The functions r~(E) tQ(E) c(E) ~ k ,  u~k~, ~k,... are referred to as the external multipole 
moments. They are symmetric and trace-free with respect to any pair of indices 
and behave as tensors under linear transformations of the spatial coordinates. 
The functions Q(~), ~(E)ik~, . . . . . .  and C(~ ), characterize respectively the 
gravielectric and gravimagnetic tidal field caused by Sun, Moon and planets. The 
explicit expressions for the external multipole moments will be given in sect. 6. 

Outside the Earth the potentials/JE and ~ U~ are expanded in GRS in series of 
the multipole harmonics of the geopotential 

(4.12) G214E+___l ( 3W~ ) _ [  L ~  OE(U, W) = ---r-- G/s k - 3ik + w k r 2~ ~ § + O~E-~-~-), 

(4.13) UE( , w) = G~i~k co~ IEk~-~- V + 0 ~E-~-~ 

with ~-- (WkWk) 1/2. The (constant) rest mass of the Earth ~/E and its moments of 
inertia are defined by the relations 

(4.14) /I~E = f~*(U, w')d~w' + O(r~), 
(E) 

(4.15) f~k _ fp*(u, w')w'iw'kd3w' + 0 ( ~ ) .  
(E) 
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Relativistic corrections due to the own gravitational field, pressure and 
specific energy of the Earth are not included in the definitions of potential UE, 
mass/1;/E and moments of inertia i{  k since their contribution is negligibly small 
and does not affect the results of satellite observations. In fact, satellite laser 
observations being among the most high-precision ones enable to determine the 
geocentric gravitational constant GME within the relative accuracy of 10 -7 
whereas the relativistic corrections to the Newtonian value of G/14E are of the 
order O(v~) ~ 10 -9. 

The GRS coordinates of the centre of mass of the Earth WE(U) are defined by 
the formula 

(4.16) M~WE-- E = ,o*(U, w')w'~d3w ' + O(V~). 
(E) 

By the construction of GRS the following relations are valid for any moment 
of the time u 

(4.17) 214E i - -~ i  WE~-IE=O, 

(4.18) ~/ o" i - ~ f E wE -=--E = ~*(u, w')v'~(u, w')d3w ' + O(v~) = O. 
(E) 

This means the coincidence of the world lines of the GRS origin (wi= O) and 
the centre of mass of the Earth. In virtue of relations (4.17), (4.18) the dipole 
terms do not occur in expressions (4.12), (4.13). 

The conditions i~ = 0 and / ~  = 0 for any moment of time may be fulfilled 
provided that the second derivatives of wE(u) vanish identically. As 
demonstrated in (15,16) the condition ~)~ = 0 is fulfilled due to specifically choosing 
the acceleration Q~E) of the world line of the geocentre: 

(4.19) 

From this it follows that the centre of mass of the Earth does not move on the 
geodesic world line for which identically Qi = 0. 

The component ~00i of the metric tensor contains no term of the type 
c -1 ~ijk~Jw k, ~J having the dimension of angular velocity. The absence of such 
terms implies that the GRS spatial axes are dynamically nonrotating. 

To conclude this section it should be noted that 1) the integrals in (4.9), (4.10), 
(4.14)-(4.18) are calculated over the Earth volume on the hypersurface of the 
constant time u; 2) differentiating the Earth mass and its moments of inertia 
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wi th  r e s p e c t  to u yie lds  

(4.20) ME = 0,  

(4.21) 

V. A. B R U M B E R G  and S. M. K O P E J K I N  

~ k = $ i j m f o ~ k ~ _  [_ ^ i  ~im Skjm (O'E E �9 

T h e s e  fo rmu lae  a re  used  be low in d i f fe ren t i a t ing  the  po ten t ia l s  UE and UE ~ 
wi th  r e s p e c t  to the  t ime  u. 

5.  - S o l a r - s y s t e m  B R S .  

The  B R S  me t r i c  t e n s o r  m a y  be  desc r ibed  as follows (18,3,5), 

(5.1) ds 2 = g~(t ,  x)  dx  ~ dx ~ , 

(5.2) goo (t, x)  = 1 + c -2 g oo (t, x) + c -4 g oo (t, x)  + 0(c-5) ,  
(2) (4) 

(5.3) goi(t, x)  -- c-3 g~  + 0(c-5) ,  
(3) 

(5.4) g~k (t, x) = - ~k + c -2 g ik + O(c-4),  
(2) 

(5.5) goo(t ,x)  = - 2U  ( t , x )  , 
(2) 

(5.6) g ik (t, x)  ~ - 2~ik U (t, x ) ,  
(2) 

(5.7) g ~ (t, x)  -~- 4u i ( t ,  x ) ,  
(3) 

(5.8) g oo (t, x) -- - 2U2(t, x)  - 2W (t, x ) ,  
(4) 

(5.9) U ( t , x )  = UE(t ,x)  + U ( t , x ) ,  

(5.10) Ui(t, x)  = i UE(t, x)  + -Ui(t, x ) ,  

(5.11) 

(5.12) 

W ( t ,  x)  = WE(t, x)  + W (t, x ) ,  

~ p*( t ,x ' )  ,3 , 
V E ( t , x ) ~ - a (  ~ - - - ~ a  x + 0 ( ~ ) ,  
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(5.13) 

(5.14) 

~*(t, ( X r ) 
i _ vi(t,x,)d3x , UE(t, x) - G ! 

3 2 WE(t, x) = - ~vE UE(t, x) + 

j - -  1 t +3v~ UE(i t, x) - G (  ~*(t'X') u (t,x')dax' --~ZE,oo( x,i 

(5.15) z E ( t , x ) = - G  f *(t,x')lx-x'ld*x ', 
(E) 

(5.16) 
dx i p*(t,x) = p(t,x)u~ ~fL--g , v i -  
dt ' 

(5.17) U ( t , x ) =  E GM-----A, 
A~E rA 

(5.18) 
GMA 

V (t,x) ; --CA 

- -  3 A~E GMA 2 G 2 M A M B  1 
(5.19) W ( t , x ) = ~  --~A v A -  A~EZ ~Z rArAB + 2 A~Z GiArA.oo. 

[.~k ~k ' l l /2 .  [~k  ~ k  ~1/2. The quantities occurring in (5.17)-(5.19) are rA = ~-A-AJ , rAB = ~--AB'ABJ , 
r~ = x k - XkA(t); r~B = x~(t) -- x~(t), v~ is the BRS velocity of the centre of mass of 
the Earth. x~ and v~ = dx~/dt are respectively BRS coordinates and velocity 
components of the body A. MA is the (constant) rest mass of the body A defined 
by the relation 

(5.20) MA = f~*(t, x) d3x + O(v~). 
(A) 

It is to be noted that the integrals of (5.12)-(5.15) and (5.20) are taken over the 
volume of the appropriate body on the hypersurface of the constant time t not 
coinciding with the hypersurface of the constant time u. 

Outside the Earth the functions UE, Uk, WE and ;~E may be presented in the 
form 

GME 
(5.21) UE(t, x) = 

GME 
(5.22) UE(t, x) = 

+ GIE-~krk+~GI~m(--~k.,+-~rkr'~)+~k~E-~- ~ 

v~+ l-!-GI~'~(--~k,~ +-~rkr")  v~ ~ 

Coi i k~r  .~ ,~[ L ~  7+ k ET), 
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(5.23) 

(5.24) 

WE(t' x) = 32 GME v~ + 4~ GI ~ ( -  ~m + 3rk  r~) v~ - GME V (xE) r 

l r~Tk~[~ )+ ~ r~] 

with r = ( r k r k ) l ~ 2 ;  r k = x k - x~(t); x~ and v~ = dx~/dt being BRS coordinates and 
velocity components of the geocentre. 

The mass of the Earth and its moments of inertia are defined in BRS by 
means of formulae 

(5.25) ME-- f,o*(t, x) d~x + O(r~), 
(E) 

T -f (5.26) E -- ~*(t, X) r id3x + 0 (~) ,  
(E) 

(5.27) I~k = ] E ~*(t, x) r irk d~x + O(v~), 
(E) 

where the integrals are evaluated over the Earth volume on the hypersurface 
t = const. 

It is suitable to make here four methodological remarks. 

1. In deriving (5.22)-(5.24) we have used the relation 

(5.28) vi(t, x) -~ vE(t) + re(u, w) + O(c -2) = v~(t) + sik~o~ r~ + O(c -2) 

resulting immediately from the BRS to GRS relationship formulae (6.2) and 
(6.3). 

2. The time t derivatives of the moments of inertia I~ k are calculated on the 
basis of relation 

(5.29) ^ " " i m  ]~k = s~jmo)~i~., + skjm~IE + O(C -2) 

which is used, for example, in calculating XE,0o in (5.23). The second derivatives 
of I~ k will be ignored. This is in accordance with adopted restriction to ignore 
time derivatives in the GRS expression for O00(u, w). 

3. The BRS expansion (5.21) of the geopotential UE contains explicitly the 
dipole moment of inertia of the Earth IL. The centre of mass of the Earth has 
been defined by formula (4.17) making the GRS Earth dipole moment i t  vanish. 
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Generally speaking, there is no reason to assume the equality of I~ and I~. 
Therefore, one may anticipate that I~ is not equal to zero. In fact, it will be 
shown in the next section that I~ is of the relativistic order of smallness. To be 
rigorous, the terms with I~ should be included in formulae (5.22)-(5.24). But this 
would be of no practical importance because the potentials U~, W~, XE are used 
only in the relativistic members of the equations of motion. 

4. The BRS origin moves along the world line of the solar-system 
barycentre. This involves the representation of the integral of the centre of mass 
in the form (neglecting the angular velocities of the bodies and their moments of 
inertia) 

. 1 -2 2 1 -2 ~ GMB'~ 
x 1 +  c - c ) --  o . 

Just  as in GRS the BRS metric tensor contains no term of the type 
c -~ %kt)Jxk.  This means that the BRS spatial axes are nonrotating in dynamical 
sense. As pointed out in sect. 3, the absence of dynamical rotation in BRS is 
equivalent to the absence of kinematical rotation. This is due to our neglecting 
the gravitational field of the Galaxy. 

6. - Matching and relationship formulae between BRS and GRS. 

6"1. Relationship formulae.  - A s y m p t o t i c  matching of the metric tensors 
g~(t, x) and O~z(u, w) of BRS and GRS is performed in their overlap region by 
means of the transformation 

(6.1) g~(t,x)=c2~oo(U,W) 3u 3u +cpo~(u,w)~:~ ~w~ ~- 
3x ~ ~x ~ 3x ~ 

3w ~ 3u 3w ~ 3w k 
+ c ~ ( u ,  w) ~x ~ ~x~ ~ ~ ( u ,  w) ~x ~ ~x~ " 

The transformation from BRS to GRS is looked in the form 

(6.2) 

(6.3) 

u = t - c -2 [S(t) + v~ r k] + 

[ 1 2 krk+Bk( t ) rk+Bkm( t ) rkrm]  +0(c-4r3)+0(c-5) '  + c -4 B(t)---~VEVE 

-2[[1 i k 1 } W i= r~+ c I[-~vE vE + g~k(t) + D~k(t) r k + Dikm(t)r kr "~ + O(c-4). 
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The functions S(t), B(t), Bk(t), Fik(t) = -Fki(t),  Dik(t) = Dki(t), Bk~(t) = B"k(t), 
D~km(t) =Dimk(t) are yet unknown and will be determined later by matching 
procedure. This procedure enables also to get the second-order ordinary 

xE(t), i.e. to determine the BRS differential equations for the functions 
equations of motion of the centre of mass of the Earth. 

We shall match the metric tensors expressed by formulae (4.1)-(4.10) and 
(5.1)-(5.19). In doing so, the sequence of operations will be as follows: 

1) calculating the derivatives ~u/~x ~, ~w~/~x ~ and substituting the results 
into the right-hand member of relation (6.1); 

2) expressing the components O.~(u, w) in terms of the BRS coordinates; 

3) expanding the functions U, U ~, W in Taylor series in the vicinity of the 
point x~(t); 

4) comparing the coefficients of equal powers of c -~ and r k in both sides of 
t B ~'~, F ~, D ~, eq. (6.1) and determining the functions a~(t) = dv~/d , S, B, B ~, 

D ~" and the external multipole moments Q(~), ~r~(s)~,,, C(~), .... The function QI ~) 
does not result from the matching procedure and is given independently by 
(4.19). 

6"2. Transformation of  the coordinate bases. - The first point of the 
matching procedure is equivalent to find the transformation law between the 
BRS coordinate base e~ -- 3/3x ~ and the GRS base e~ = 3/3w ~. In accordance with 
(6.2) and (6.3) one has 

(6.4) e, = A~e~ 

with 

(6.5) A60 au [1 ,  2,z /~krk = l -- c-~(~ -- v~ + a~ rk) + C-4 [-~W~ + [~ -- Bk v~ + 

1 z k k ~mvmvkrk]_{_ - - 2 B k ~ v ~ r k - - ~ V E a E r - - ~ E  E E J O(c-4rZ)+O(c-~), 

(6.6) Aio=C -1 3wi=-c-lv~+c-SI-( l  i ) 3t ~VEV~ + Fik + D ik V~ + 

{1 i k 1 i k Fik+lOik or~ikmvm~rk_ {- ] 

a U = _ c _ l v ~ + c _ 3 (  1 2 i + B  i+2B~kr k) (6.7) A~ = c ~x i - ~VE VE 

(6.8) 

+ O(c-~), 

+ O(c  -3 r 2) + 0(c-4), 

A~ ~ wi c-el1 i k ) k = ~ X k = ~ k +  ~ V E V ~ + F i k + D i k + 2 D i k ~ n r  m + O(c-4). 
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Using formulae (6.22), (6.26) and (6.27) given below it is easy to calculate the 
de terminant  of the t ransformation matr ix  

A ~ d e t ( z )  = 1 + c-22[U (xE) + a ~ r  k] + 0(c-4). 

This de terminant  vanishes at the distance r* ~ C2/laEI ~ 7.5.102~ cm from the 
centre  of mass of the Ear th .  F rom this it follows that  in spite of initial 
construct ing GRS in the region lying inside the lunar orbit  it is possible to 
smoothly (without intersecting) prolongate the GRS spatial coordinate axes for a 

much larger  distance. 

6"3. T r a n s f o r m a t i o n s  o f  po t en t i a l s ,  - T o  accomplish the second step of the 
matching procedure  it is necessary to find the t ransformation laws for the 

UE potentials (J~ and ~ i UE in convert ing from GRS to BRS. The potentials 0E and ~ 
are integral  quantit ies defined on the hypersurface  of the constant t ime u. 
Therefore ,  to find the re levant  t ransformation laws one has to take into account 
tha t  the integrat ion in BRS and GRS is performed over  the different hypersur-  
faces of the constant t ime coordinate. Thus, the t ransformation of the integrands 
should include the point t ransformation combined with the Lie t ransfe r  from one 
hypersurface  to another.  This t ransfer  is produced along the integral  curves of 

the vector  field of the Ea r th  ma t t e r  four-velocity. 

x 

�9 ! I~u=const=C 1 
~ t'=const = c~ 

At A ~  
t = const = C 2 

T#~=0 TE~ =#0 I T~V=0 

(TE Fig. I. - The space-time region in the vicinity of the world tube of the Earth ~" 0) is 
presented. The GRS and BRS solutions of the Einstein field equations for some fixed 
moments of time scales u and t relate respectively to the hypersurfaces u = const = cl and 
t = const = c2 :~ cl. The hypersurface t' = const --- c~ r c2 is shifted along the time lines 
( t , x = c o n s t )  from the hypersurface t=c2  for the coordinate distance Ax ~ cat. The 
matching point P for the GRS and BRS metric tensors lies at the intersection of the 
hypersurfaces u - c~ and t = c2. It has the BRS coordinates x~(P) = (ct, x) and the GRS 
coordinates w : ( P )  = (cu, w). The point N lying at the intersection of the hypersurfaces 
U=Cl and t' =c~ has the BRS coordinates x ~ ( N ) = ( c t ' , x  ') and the GRS coordinates 
w : ( N )  = .(cu, w').  The point N '  lies at the intersection of the hypersurface t = c2 and the 
emanating from N integral curve of the vector field of the fluid four-velocity u ~. This point 
has the BRS coordinates x : (N  ') = (ct, x') .  The dashed line denotes the worldline of the 
geocentre. 
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Firs t  of all, let us find the transformation law of the spatial coordinates of a n y  
point of the Ear th  provided that  the matching point P is fixed. Let  the GRS and 
BRS coordinates of this point be w ~ ( P  ) = (cu,  w)  and x ~(P ) = (ct,  x ) ,  respective- 
ly. These sets of coordinates are related by transformations (6.2) and (6.3). The 
matching point P belongs to both hypersurfaces of the constant time, i .e .  

u = const = c, and t = const = c2 r cl (see fig. 1). 
Consider now another point N lying inside the world tube of the Ear th  body 

and belonging to the hypersurface u = c,. Le t  the GRS and BRS coordinates of 
N be w ~ ( N )  = (cu,  w ' )  and x : ( N )  = (ct ' ,  x ' ) ,  respectively. Considered in BRS the 
point N lies on the hypersurface t' = const = c'2 which does not coincide with the 
hypersurface t = c2. 

To determine the coordinate t ime interval At between the hypersurfaces t = c2 
and t = c~ we construct through N the integral curve of the vector field u ~ to be 
parametrized by means of the coordinate time t. This integral curve intersects 
the hypersurface t = c2 at the point N '  with the BRS coordinates x ~ ( N  ') = 

= (ct ,  x ' ) .  The relationship between the GRS and BRS coordinate t imes at the 
point N has the form 

(6.9) u = t , _ c - 2 [ S ( t , ) +  k , ,k vE(t ) r ] + 0(c-4). 

The analogous relationship at the point P is given by (6.2). Subtracting these 
two relations yields the required coordinate time interval between the hypersur- 
faces t = c2 and t = c~: 

(6.10) At  = t '  - t = c - 2 v ~ ( t ) ( x  'k - x k) + 0(c-4). 

The relationship of the BRS spatial coordinates of the fluid elements at the 
points N and N '  is determined by the formula 

(6.11) x ' i ( t  ') = x ' i ( t )  + v ' i ( t )  At  + O((At) 2) = x ' i ( t )  + c - 2 v ' i v ~ ( x  'k - x k) + O(c -4) 

with v '~ = dx'~/dt.  

The relationship between the BRS spatial coordinates of the geocentre is 
established in a similar manner: 

(6.12) i , i v ~ k-X,k xE( t  ) = At  O((At)  2) = xL( t )  + c - 2 v ~ v E ~  x E ( t ) +  E(t) + - x  k ) + O ( c - 4 ) .  

With the aid of (6.3), (6.11), (6.12) it is easy to obtain the relationship between 
the BRS spatial coordinates of the point N '  and the GRS spatial coordinates of 
the point N: 

c-2[/1 i k F i k +  _ _  ) + D i k m r ' k r ' m J  + (6.13) W ' ~ = r ' ~ +  J[-~VE VE + D ik r 'k 

+ c-2(v 'i - v ~ ) v ~ ( r  'k - r k) § 0 ( c - 4 ) .  
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It is to be noted that this relation differs from (6.3) by the complementary 
term. 

Now one may derive the transformation relating the GRS coordinate distance 
between P and N with the BRS coordinate distance between P and N'. 
Subtracting (6.13) from (6.3) and using (6.26), (6.27) one obtains 

(6.14) 1 [x_lx,[(  _21-1, k k,2 ~ - - ~ =  l + c  [g(VEn ) - ( v ' k n k ) ( v ~ n m ) - U ( X E )  - 

l a ~ ( r ' k - - r k ) - a ~ r k ] } + O ( c  -4) 
2 

with nk=(Xk--X 'k) / IX--X '  I. The product of the rest mass density by the 
coordinate elementary volume does not change both under the coordinate 
transformation and the just considered Lie transfer(~). Hence 

(6.15) p*(t,x)dax =~*(u ,w)d3w,  

(6.16) u~(: * d3x),~ = u~(~ * d3w),~ = 0. 

From (6.15), (6.16) it follows that the product p*(u, w)d3w at the point N is 
equal to the product ~*(t,x)dSx at the point N ' .  Substituting relations (6.14)- 
(6.16) into definition (4.9) for the potential 0~ results in the transformation law 
for the potential 

211 k ~ . 1 k "t 1 + c- t~vE vE ZE, k~(~, X) + V~Z~,o~(t, X) -- -~a~zE, k t ,  X) -- V~ U~(t, x) + 0(c~4). 

The transformation law for the potential ~ UE is needed only in the Newtonian 
approximation. Its derivation demands again relations (6.14)-(6.16) as well as 
formula (5.28) for the transformation of the three-velocity of the element of fluid. 
This latter formula may be obtained by taking the total time derivative of both 

UE members of relation (6.13). Proceeding from definition (4.10) of the potential ~ 
one gets 

(6.18) i ~ UE(t, x) + O(c -2) = UE(t, x) - vE UE(u, w) 

It may be noted that the transformation laws for the potentials under Lorentz 
transformations were obtained earlier by Will (4). 

6 - II  N u o v o  Cimento  B. 
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Relations (6.13)-(6.16) enable one to derive the transformation laws for the 
mass of the Earth and its moments of inertia. One has 

(6.19) ME =/14E, 

(6.20) I i - ~-~ ^ko .n~mn__c-2a~ f i k+•  E.E E - - ~  ~ik.~coE~E ~i ~kk+O(c-4), 

(6.21) i ~ k = i ~ k _ - 2 [ 1  ~ m.  D~m) i ~ m _ _ - 2 / 1  k m c [-~VEVE +Fire+ -- + F  k" �9 c [2VEVE + D  k'~) 

. iE~im + -2 ^ j  n n ^kin ^ira O ( c - Z L ~ )  + 0(c-4). c O~E(VEW )(SijmI E + ekj,~I E ) + 

In deriving the equations of satellite motion we shall neglect everywhere the 
products of the Earth moments of inertia f~kE by the terms due to the 
gravitational action of the external masses. For example, we shall use actually in 
the right-hand member of (6.20) only the first term. 

It is of interest that expression (6.21) relating the BRS and GRS moments of 
inertia of the Earth involves the coordinates of the matching point P (see 
fig. 1). At first sight it might seem strange. Considering that the BRS moments 
of inertia are functions of t and the GRS moments of inertia are functions of u and 
taking into account that the relationship (6.2) between t and u depends on the 
spatial coordinates of the matching point this becomes clear. 

Let  us describe the matching procedure in detail. 

6"4. Matching  g oo (t, x) and ~ ( u ,  w). - This is the first step in the iteration 
(2) 

procedure to determine the unknown coefficients of (6.2), (6.3) and the external 
multipole moments. At this step of matching it is possible to determine the 
function S (t), the external multipole moments Q(~), ~r~(E)~km, .-- in the Newtonian 
approximation and the Newtonian equations of the translatory motion of the 
centre of mass of the Earth. One has 

(6.22) 1 2 m 
~(t)  = ~ v E  + U(xE) ,  

(6.23) a~(t) = F~(xE) - Q~E) + O(c-~) , 

_ _  

(6.24) Q(/E) = 3 U,ik(XE) + 0(C-2), 

(6.25) Q(E) = ~5 ~ ikm(xE) + 0(C-2)" ikm 

The function S (t) gives the differential equation relating the BRS time scale 
(TDB) and the GRS time scale (TDT) at the geocentre. 
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6"5. Matching  g~k(t,x) and #~(u,w). - This matching enables one to 
(2) 

determine explicitly D ik and D ~km. Using the values (6.24), (6,25) one obtains 

(6.26) Dik(t) = ~ik U (xE), 

(6.27) 1 ~ m Dikm(t) = - ~  ikaE + ~i,~akE -- ~kma~). 

The function D ik describes the gravitational spatial contraction of GRS with 
respect to BRS. It should be particularly emphasized that the relationship (6.3) 
between GRS and BRS spatial coordinates is presented in the post-Newtonian 
approximation by the finite sum of linear and quadric terms. 

6"6. Matching  goi(t, x) and #~(u, w). - This matching is performed by using 
(3) 

the already known values (6.23), (6.24), (6.26), (6.27). This allows one to find the 
~,(E) and the coefficients B ~, B ik, F~k of external multipole moments ~k  

transformations (6.2), (6.3). There results 

(6.28) Bi(t) = 4Ui(XE) -- 3V/~ U (XE), 

( 6 . 2 9 )  Bik(t) --- U~k(XE) + Uk,~(XE) -- ~ [V~ F,k(XE) + V~ U,i(XE)] + 

+ ~ k t V E  Um~ E~-- U%(XE)], 

(6.30) i - -  7 f'ik(t) = ~ [vE U,k(XE) -- V~ F i(XE)] -- 2[F~k(XE) -- Uk, i(XE)], 

(6.31) 1-- i  1--k 1 i - -  x ~sk c~m = -~ U,kAxE) - -~ U ,~m(xE) - -~vE u,km( E) + 

1 k - -  1~ -k 1~ -i 
, - ~ k m  a E  �9 + -~VE U im(XE) + ~ m  aE - -  

Due to the smallness of QI E) the corresponding terms have been ignored in 
(6.29)-(6.31). 

The function Fik has the physical meaning of the angular velocity of rotation 
(relativistic precession) of the GRS spatial axes with respect to the BRS spatial 
axes. The first term of this function in the right-hand member of (6.30) 
represents the de Sitter geodesic precession, while the second term describes 
the gravimagnetic precession caused by the motion of the external masses in 
BRS. It should be reminded that the GRS spatial axes are nonrotating in 
dynamical sense. 
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6"7. M a t c h i n g  g oo (t, x )  a n d  t ~ ( u ,  w).  - All previous values are used here to 
(4) 

find the function /} (t) and the relativistic post-Newtonian corrections to the 
equations of motion of the geocentre and to the multipole moments u~(e). The 
explicit expression for B (t) is not needed for the subsequent calculations. This 
expression may be found in C~). The equations of motion of the Earth centre of 
mass and the moments Q(~) taking into account the relativistic corrections are as 
follows: 

(6.32) a~(t)  = U, i (xE)  - QIE) + c-2G~(t)  + 0 ( c - 4 ) ,  

(6.33) -Gi(t) 4 U  (Xn) V i(XE) i k - -  = -- , -- VEVE U k(XE) +V~-U~(XE) - 

-- 3V~ ~ (XE) + 4~(XE) -- 4V~ Fk~ (XE) + W,~ (XE), 

1 - ~  1 i ~ - -  
(6.34) Q~) = -5 ,~k(XE) + C-2 [[3--F U,km(XE) + -SF1 km--U~(XE) -- 

4 m ~ .  ~ 2 2 - -  2 - -  1 ~ i - ~  ~ " - -svE u ,~xE~ + -~vE U~k(XE) -- -5 U (xE) -F,AxE) - -~vE vE (Jk~XEJ 

1 m k - -  , , 1 - -  1 ~  "" 2 - - i  
- - ~ v E  vE U,~m~xE) +.5 W AxE) +-5 ~k U (xE) +-5 U,k(XE) + 

+ 2 ~ k ,  , i k 1 i d ~ 1 k . i ]  
- ~ U , i ( X E ) - - a E a E - - - ~ V  E - - - ~ V E a E ] " ~ - O ( c - 4 ) .  

The matching procedure is completed by obtaining these formulae. It is 
possible to proceed further and to get the relativistic corrections to the moments 
Q(E) ~(E) but this is unnecessary for the problem in question. The available ikm ~ ~J ik ~ . . .  

relations permit to derive the relativistic equations of the Earth satellite motion 
with the accuracy far exceeding the present practical requirements. 

To conclude this section it may be noted that the external multipole moments 
Q(~) ruE) ~(E) occurring in relations (6.25), (6.31), (6.34) depend on time t. In the ik ~ ~ ikm ~ ~ ik 

expression for the GRS metric tensor (4.5)-(4.8) the same moments depend on 
time u. The relationship (6.2) between the time scales t and u for the external 
multipole moments should be taken on the world line of the centre of mass of the 
Earth x ~ = xE(t) .  

7. - E q u a t i o n s  o f  m o t i o n  o f  an  E a r t h  sate l l i te .  G e o c e n t r i c  a p p r o a c h .  

An Earth satellite considered as a test body moves on the geodesic world line. 
The geocentric approach to derive the satellite equations of motion is to apply 
the geodesic principle immediately to the GRS metric. 
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Adopting the coordinate time u to parametrize the geodesic line the equations 
of geodesic motion will be 

(7.1) /~i + c~i,~o + 2 c / . ~  + / ~ i ~ m _  c/~OoW~ - 

_ ~ o ~ _  c - ~ i ~ o ~ , ~ =  o.  

Expressing the Christoffel symbols in terms of the metric tensor components 
(4.1)-(4.4) and substituting them into (7.1) one has 

(7.2) /~i= 1^ -2[ 1^ 1~ ~ 1~ .i - ~ o o ~  + c L- ~)oo,~-  ~g~goo,~ + ~ , o  + ~goo, oW + 
(2) (2) (2) (3) (2) 

, ~ goo, k w  ~v i + O(c -4) "-[-gik, O?~)k-'~-(gOi, k--gOki) 7fOl~-~- ik, m - - - ~ g k m i | W  W ~ "k 
(2) (3) (3) (2) ' ] (2) 

Substituting the explicit expressions (4.5)-(4.8), (4.12), (4.13), (4.19), (6.25), 
(6.31) and (6.34) into eq. (7.2) we obtain the relativistic GRS equations of the 
Ear th  satellite motion in the form 

6 

(7.3) /~ = F~ + F~ + F~ + F~ + c -2 E O~ 
n = l  

with 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

F i  ~ = G M E  w~ ' 

) Fi=~-~ W~+21~kWk-- i~'~WkWmW i 

F ~  = U,ik(XE) W k + -~ CJ,ikm(XE) W W , 

F ~ = Q I  E ) =  1 . ~ _ l i k , ~ - ~  , , 
- -  ~ IV1 E E U , i k m(XE)  , 

0 ~ = - - ~ [ [ 4  ~ _ , k , k  W i + 4 W k ~ V k y V i  , 
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(7.10) 

(7.11) 

~ - G~ ~ / ~ ) 
~ - 4 - - 2 ; - - I - 2 i ~ k w ~ - 3 i ~ w ~  + ~r~w~w;~w~ + 

r \ 

�9 G M ~  - F  ~ G M ~  - -  
�9 ~ = - 4  ~ ,ik(XE)W + 2 - - ' ~ - U , k m ( X E ) W ~ w m w i ,  

(7.12) ~ = w k [ -  4~bi~V'<O,km(XE) + ~Vm~bm-O, ik(XE) + 4~b~ikm(XE) -- 

(7.13) 

- 4 ~  m U % ( x E )  - i . m - -  . .~ . m 4vE w U, km(XE) + 4 v ~ b ~  U,ik(xE) + 2~ikaE W -- 2d~bk], 

__4vm.Yy m (~ ~)i6 = Wk r im-~,km(XE) + Fkm-U, im(XE) E ~ ,ik',.'*EJ + 

- -  1 i m "-~-; . , 1 k m "*-~ . , + 2v~: U,ik(xE) -- 2U(xE)  F,ik(XE) -- ~VEVE U,km(XE) -- ~VEVE U,imtXE) + 

+ - -  ~ '" i d~_VEaE1 .  W,ik(XE) +tik U (xE) + 2~k(XE) + 2~k,~ (XE) -- 3a~ a~ - VE k "~ 
J 

The physical meaning of the separate terms is as follows: F~ is the spherically 
symmetrical component of the Newtonian attraction of the Earth; F~ is the 
Newtonian perturbation due to the quadrupole harmonics of the geopotential; F~ 
is the Newtonian tidal perturbation of the gravielectric type due to the Sun, the 
Moon and the planets; F~ is the Newtonian perturbation resulting from the term 
Q~E) which is included in the 0 00 (u, w) and expressed according to formula (4.19) 

(note that although F~ is of Newtonian origin its physical meaning is clearly and 
unambiguously formulated in the relativistic language as deviation of the 
worldline of the geocentre from the geodesic line); ~ is the relativistic 
Schwarzschild perturbation due to the spherically symmetrical component of the 
Earth gravitational field; ~ is the relativistic Lense-Thirring gravimaguetic 
perturbation caused by the Earth rotation; ~ is the relativistic Earth 
quadrupole perturbation generated by the Earth quadrupole moments; ~ is the 
relativistic perturbation caused by the nonlinear coupling of the Earth attraction 
and the gravielectric tidal field of Sun, Moon and planets; ~ is the relativistic 
gravimagnetic tidal perturbation due to the external masses; ~ is the relativistic 
correction to the force F~. 

It should be particularly noted that the derived equations of the satellite 
motion contain no Coriolis or centrifugal terms. This results from the principles 
of constructing GRS as the dynamically nonrotating RS. From this it follows that 
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the present laser and Doppler satellite observations cannot give any information 
concerning the magnitude of the GRS relativistic precession with respect to 
BRS. In principle this is possible since the relativistic precession F ik enters into 
the expression of ~ .  But the influence of such terms on the satellite orbital 
motion is negligibly small. Basically, the GRS dynamical perturbations of the 
satellite orbit enable one to evaluate only the magnitude of the classical 
precession of the satellite orbital plane caused by the Earth oblateness and the 
Newtonian tidal action of the external masses. Thus the magnitude of the 
relativistic precession of the satellite orbit and of the GRS spatial axes with 
respect to BRS may be directly derived from observations by subtracting from 
the total precession of the satellite orbit in BRS the classical precession 
determined by satellite laser observations. In application to the Moon this 
technique has been used for experimentally determining the value of the 
geodesic precession (37). 

From methodological point of view it is useful to derive the GRS satellite 
equations of motion (7.3)-(7.13) in another manner, i.e. by transforming the 
equations of the geodesic motion from BRS to GRS. 

8. - E q u a t i o n s  o f  m o t i o n  o f  an  E a r t h  sate l l i te .  B a r y c e n t r i c  approach .  

8"1. BRS equat ions  o f  satell i te m o t i o n  in  relat ive  ( f o rma l l y  geocentric)  

coordinates .  - In distinction to the geocentric approach the barycentric approach 
implies first to derive the BRS equations and then to transform them into the 
GRS equations using the relationship (6.2), (6.3) and the transformations of the 
Earth moments of inertia (6.19)-(6,21). This approach is of interest enabling to 
gain clear insight into the procedure of eliminating from the BRS satellite 
equations large unobservable terms caused by the inadequate choice of RS 
(~,bad, RS for describing the satellite geocentric motion). 

The BRS equations of the geodesic motion are identical with eqs. (7.1), (7.2) 
replacing the derivatives dw~/du by dx~/dt and the components ~z(u, w) by 
g~(t ,  x).  Thus, the BRS equations of motion of an Earth satellite have the form 

(8.1) iii = U,~ + c -2 G ~ + 0(c-4) ,  

(8.2) G'~ = -- 4 U  U, i -- 2i 2k U, k + &k &k U, i-- 3&i ~ + 4U~ -- 42k Uk, i + W,i.  

The first step of calculations is to change in these expressions from the BRS 
spatial coordinates to the relative (formally geocentric) coordinates (t, r ~) by 
means of the formulae 

(8.3) r i = x ~ -  x~( t ) .  

(37) B. BERTOTTI, I. CIUFOLINI and P. L. BENDER: Phys. Rev. Left., 58, 1062 (1987). 
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Then the potentials U, U ~, W are expanded in series in powers of r ~ in the 
vicinity of the point x~(t). Using eqs. (6.32), (6.33) for the acceleration of the 
geocentre a ~ -  "-i - x ~  one obtains 

(8.4) ~:~ U~, i+  Q I ~) + Ui~(XE) r ~ 1 - -  r ~r TM = + -~ U,~.~(x~) + 

+ c-~(Gi _ ~ i )  + O(r ~) + 0(c-4). 

Within the required accuracy the function G ~-  G-~ has the form 

(8.5) G ~ - - G ~ =  - 4 U ~ U ~ , ~ - 3 U ~ 2 ~ _  U~,~2~2~+ U~,~2~2~ + 4 ~ _  

-- 4U[,~Jc k + WE,i -- 4UE U,i(XE) -- 4UE,iU (XE) -- 3U 0(XE) ~ i -- 

_ _ 4 U k ( X E ) ( ; ~ k ; ~ i _ _ v k ~ i ~  - -  , - -  , E~EJ + U,i(XE)(2k2 k -  V~) + 4Uik(XE)§ k 4Uk, i(XE)§ ~ + 

+ [-- 4UE U,i~(XE) -- 4UE,i U ~(XE) -- 4U (XE)-U,i~(XE) -- 4Ui(XE)F,~(XE) + 

-~- W, i k (Xn)  --  3 U,0k(XE) ;~i _ 4-~,km(XE) 2 m  ~Ci "4- V,ik(XE) 2 TM 2 TM + 

+ 4 U~ok (XE) + 4F~k~(XE) &~ -- 4F'~,~ (XE) 2 m] r k - 2UE,iU,k,~(XE)r-- k r m. 

To express explicitly this function one may use expansions (5.21)-(5.24) for 
UE, U~, WE and expressions (5.17)-(5.19) for U,  U~, W. The most cumbersome 
procedure therewith is to differentiate the functions WE and W. The appropriate 
derivatives are 

(8.6) W E ' i - 2  r - E+ a ~ r k r  i + - - - ~  U(xE) - -2v~+  

+ 2 ~ ( r k v ~ ) 2 1 r ~ - - v ~ r k v ~ } + 3 G v ~ ( I k E k r ~ + 2 I ~ k r k - - ~ I ~ r k r ' ~ r ~ ) +  

 I nrmrn  ) -~ -~VEVE[IE  r + 2 I ~ m r  m -  + 

3 G k m/Tkm i + -~ -~VEVE [~E r + 2I~krm--  lO I~nrmr'~ri~--  
r 2 ] 

1 5 ~ ( r k v ~ ) 2 ( i ~ r ~  + i m m  ~ ") 2IE r -- I ~ n r ~ r ~ r  ~ + 4 

--k G ~JE[ k in ~ ..... iron 3 imn[vi r k r  m + v ~ r k r ~  + 4 v ~ r m r i ) _  - -  4 e k j n V E I E  -[- ijn~E E ---'~ kjn E k E 

3 Tin k 3 Ikn k . . . .  15Sk:ni~nrkr~r~,rSv~ 1 ---~$kjnlS r r m v ~  ~ . . . .  r2  ~2n E r r vE -t- r4  j [ ,  
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- -  GM~ ~[ GMB 2v~ + lr~%a~ + 3 / ~ ,m  v m , ~ 2 ] ~  .~ - 
(8.7) W ~(XE) = E r ~  r ~  2 2 r ~  ' A ~ E  - -  A - -  - -  - -  k ~ E A  A ) J ik 

+ l ( r ~  ai~ + r ~  a~) - v ~ v ~ + 3-~-(r~ vi~ + r ~  v~)(r~ v ~) + 
2 rE~ 

. 3 ~ k [ GMB 1 . . . .  5 " m v m\2 ]] -- rEAaA - - ~ t r E A  AJ |~ .  ~- ~--~--rE~rEA [2v~ E 2 
r E A  B §  rAB E r E A  JJ 

Substituting expressions (5.17), (5.18), (5.21), (5.22), (8.6), (8.7) into (8.5) 
results in 

5 

(8.8) G~ - U~ = E (~ ,  + g~,) 
n=l  

with 

(8.9) 

(8.10) 

(8.11) 

i GME/ GME i .k 4r k§247 ~ 1 = ~  4 r r - r  § 

g~=-G~--~[[2§247 } , 

_~kj~/~m_3r~r.~h]§ r2 ]j _ ~ _ ~ e k j n ~ O %  ^ ~  . i l E . ~ , r k r  m 

(8.12) g~>-- ~6E [ m I . . . .  3skjnv~ni{Jnrkri + [ ~i jn  V E E ~r 

+_~(r~v~)(_ , ~  k ,knrk+5~k<~i~nrkr,~r~)l 
~ k j n l E  r - ~ i j n l E  r 2  j 

(8.13) ~- ' -4  G2M-----s ~ 2I~kr i -  3I~kr k +-~I~'~rkrmr i) + 

3 -~(§247 +~ 

- -  x E i - -  ~ x  E 1 + I~mrkrmr n , 
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(8.14) 

(8.15) 

(8.16) 

g~= _ 3_~V~§ i+ 2iiEmr m ) ~E r - - ~ I ~ r m r ~ r  i - 

2 r 5rE ( I~kr~ + 2IEkrk -- + 

. 3 G . i  ~[ ~E " -~ ) - ~ - ~ r  VE[--~mm~k--2l~mrm§ I~nrmrnrk + 

+~3 G v ~ v ~ ( I ~ m r i  + 2 I ~ r m -  lO I~rmrnr i~  ~ ] 

- -  ~ E  ~ 
+--~ (r~v~) x --IE r i ~  I f f~rmr~r i 

�9 GMA[ 6 i 3 J ~4 = 2 GME Z - -  r i -  ~ r E A  r~A rk + ~ (rkr~A) 2ri 
r A~E r~A EA r2r~A ' 

1 ~ (  ~ + 9  aM), g~=5  ri-U(XE)+-~ --aE - - r i r  k 

(8.17) v ~§ 3d~(§ i _ , ~ 5 = [ - - 4 U ,  km(XE)( § ~- E] -- E )  -Ukm(XE)(§ ~- 

+ U ik(XE)(§ TM + v~)(§ ~ + v~) + 4 U Ik(xE) -- 4 Um~k(XE)(§ m + V~) + 

+ 4~ikm(XE) § + W,ik(XE) -- 4U (XE) U ik(XE) -- 4a i ~ k 1 r k , , E ( ~ E J  

(8.18) -*g~ = 4U~k(xE)§ _ 4~k (XE)§ + a~(§ § + 2§ VkE) - 

-- a~(4§ § i + 4§ + § -- 3 ~  (XE) § ~ . 

The relativistic terms of the function (8.8) consist of ten groups. 
The first group ~ (8.9) depending only on the Earth mass ME represents t h e  

Schwarzschild terms due to the spherically symmetrical component of the 
gravitational field of the Earth. 

The second group g~ (8.10) depends on ME and the velocity of the geocentre 
v~. These terms arise from the BRS orbital motion of the Earth. For close 
satellites of the Earth these terms are the most significant. But being of 
kinematical origin these terms are expected to disappear in converting to GRS. 

The terms ?~ (8.11) depending on the angular velocity ^i toe are the Lense- 
Thirring terms generated by the axial rotation of the Earth. 

The BRS orbital motion of the Earth leads to the spin-orbital terms g~ (8.12) 
depending on &~ and v~. These terms should disappear in converting to GRS. 
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The second-order moments of inertia of the Earth are responsible for two 
groups of quadrupole terms. The terms ~ (8.13) depend only on I~ k and the 
terms g~ (8.14) depend both on I~ k and v~. By analogy with g~ and g~ it should be 
expected that the terms g~ vanish in the GRS equations. 

The terms ~ (8.15) depending on masses ME and MA describe the physically 
meaningful nonlinear coupling of the gravitational fields of the Earth and the 
external masses. 

The terms g~ (8.16) depend on the superposition of the Earth mass ME and the 
external mass potential U(xE) with its first derivatives U,k(xE). These terms 
have no physical meaning and stem from the inadequate choice of RS. 
Converting to GRS should annul these terms. 

The terms ~ (8.17) being proportional to the satellite coordinates and the 
second derivatives of the external mass potentials describe the tidal 
perturbations due to the Sun, the Moon and the planets. In converting to GRS 
these terms may change a little but their form will retain. 

Of particular interest are the terms g~ (8.18) depending on the first 
derivatives of the external mass potentials and the satellite velocity components 
§ These terms contain explicitly the Coriolis force caused by the geodesic 
precession of the GRS spatial axes with respect to BRS. Due to this precession 
the perigee and the node of any satellite of the Earth including the Moon move 
with respect to the BRS spatial axes at a rate of 1.91" per century C). In fact, the 
terms g~ may be rewritten explicitly as follows: 

(8.19) g~= ~ [4(v~- i k "k 2r i ~ok_V~)§ + VA)rEAr -- EAt, U E 
A#E rEA 

k k + 4rEA(VE -- V~)~i+ 2r~a v[  ~k + r k vk § r~A ~k ~k + 4r~A ~k § EA A - -  

where the first two terms may be presented in the vector form as 

(8.20) gs = A~E ~ GMAr~____ff {3[# • (#EA • rEA)] + (rEA #) #EA + (#EA #) rEA + -. �9 } �9 

The second and the third terms here determine the perturbations depending 
on the orbital elements of the satellite. The first term in form of the double 
vector product gives the Coriolis terms describing the effect of geodesic 
precession. Being dependent on the first derivatives of the potentials U and -U i 
the terms g~ will disappear in converting to GRS. 

8"2. Transformation of the BRS satellite equations of motion to GRS. - For 
the barycentric approach it is sufficient to use only the terms O(c -2) in the time 
transformation (6.2). For the geocentric approach this transformation was 
required completely including O(c -4) terms. Among other things this implies that 
in the barycentric approach one needs to know only the components (4.5)-(4.7) of 



92 V. A. BRUMBERG and s. M. KOPEJKIN 

the GRS metric tensor which is sufficient to establish transformations (6.2), (6.3) 
within the required accuracy. Hence, the barycentric approach to derive the 
GRS satellite equations is in a sense more economical than the geocentric 
approach. 

The derivation of the GRS satellite equation on the basis of eqs. (8.4), (8.8)- 
(8.18) involves three steps: 1) converting the acceleration ~:~ in the left-hand side 
of eq. (8.4) to the acceleration dew~/du 2 by means of transformations (6.2), (6.3), 
2) changing in eqs. (8.4), (8.8)-(8.18) from the spatial relative coordinates r k to 
the GRS spatial coordinates w k by means of (6.3), 3) transforming the Earth 
mass and its moments of inertia from BRS to GRS according to formulae (6.19)- 
(6.21). 

The first step encounters no difficulties. Differentiating twice expressions 
(6.2), (6.3) with respect to t and substituting the results into relation 

d2w i l d(~vi~ ~;i ~vi 
(8.21) du2 - ~  dtk ~ ] = - ~  - ~  

with dot denoting the differentiation relative to t one obtains 

(8.22) d 2wi _ ~:i + c-212(S + v~b k + a~wk)i~ ~ + 
du 2 [ 

/1 i k Dik ) ~VEvE+F~k+ +v~b~+2D~k~w ~ idk+('S+2a~bk+d~wk)~b~+ 

[ v k  a i ~ i a k + 2Elk 2 D i k  " [ -k  S E "{'- ~/E E -{- + 2Dikm~b'9 ~bk+ 

/1 k .i k i + lv~d~+~ik+Dik+4Dik, ,~ ,Awk+bik~wkwml +[gvEaE+aEaE 2 ) J 

At the second step it is necessary to transform the Newtonian right-hand 
member of eq. (8.4) involving the potential UE(t, X). Denoting 

( (8.23) UE(t, w) = GME + GIE-~ GI ~ . . . .  ~k~ + wkwm "q- L2~O~E T ]  

the expression (5.21) for UE(t,x) may be rewritten in the form 

(8.24) UE(t, x )  = UE ( t ,  w )  - c - 2 .  

. [ (1  k +Fkm+Dkm) 1 -2 vEv~ W,~ + Dkm~wmw, ~ DUE(t, W) 
~ w  k 

+ O(c-4). 

The potential UE(t, w) contains the BRS mass and moments of inertia of the 
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Ear th  and for this reason differs from the potential UE(U, W). Differentiating this 
relation with respect to the spatial coordinates 

~UE(t, x) ~UE(t, x) 3u ~UE(t, x) 3w k 
(8.25) - § 

ax ~ ~u 3x ~ ~w k ax ~ 

and substi tut ing into eq. (8.4) one obtains 

(8.26) ~:i = 
DUE(t,w) QIE) 1 - -  + -~ U,ik~(XE) W k W ~ aw ~ + + ~,~k(X~)W k + 

1 
. I ~ u ~ ( t ,  f f )  - _ ;] 

[ ~w i 3w k ~ U,ik(XE) + U,~k(XE) W j  -- C -2 V~ 3 UE(t,3u w) 

The last step to derive the GRS satellite equations of motion is to t ransform 
the Ear th  mass and its moments of inertia occurring in expression (8.23) for 
UE(t, w). Using (6.19)-(6.21) we obtain 

(8.27) c-2G imnV1 [ m 3 k k m ~ n ~(t,  ~ ) :  O~(u, ~)+ ~ ~ L~tV~ - T v ~  w )v~ + 

Now the difference of the first and the last terms entering into eq. (8.26) 
will be 

(8.28) DUE(t, w) c_2v ~ DUE(t,w) _ 
3w ~ 3u 

~ VEi"bc-2Gl~n[23"~r2(- -v~wi- -v~wm--~imVkWk'~-52vkwk '"mwi~ 'n  ' r ~v )UE-~- 

"~-$kjn~O~(--~ik~-~wiwk) VEn'~k jn~O~VEWS(~ikWm~-~imWk--~wiwkwm)]"  

Combining expressions (8.22), (8.26), (8.28) one obtains the GRS satellite 
equations of motion in the form 

d2w i _  OEi_t_Q~E)+-- k 1 - -  kwm (8.29) du 2 , U ik(XE) W + ~ U ikm(XE) W + 

+ c-2r 0(~ 3) + 0(c-4), 
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where the relativistic right-hand member is determined by 

(8.30) ~i=  G~---Gi + 2(S + vk ~)k + ak wk) [ ~fE,i +-U,ir~(XE) Wm + 

_~__~U,imn(XE) m ~ 1 / 1  i k +Fik 2DiJkw j) w j +\~v~v~ + D ~ + v ~ +  �9 

�9 + ( V E a E  V E  

. /1 k .i 1 i " k + ~ , i k + ~ i k +  + 2/)  ~ + 2 D ~  ~) ~ .  [~v~ aE + a l  a~ + ~vE aE 

] - -  3 iff~ _ V ~ W ~ _ V ~ W m _ ~ m V  E + + D~m~wmw n [/JE,i~ + U,i~(XE)] + -~ 

- ~  VE ~ 

G ^ ~  r n ~ ' m n / ~ ,  . .~3wiwk I 

This expression enables one to see the contribution of each term of 
transformations (6.2), (6.3) into the right-hand member of the GRS satellite 
equations. Substituting (6.22), (6.26), (6.27) and (6.30) into this expression one 
has 

5 
(8.31) ~i_. G i -~i ~ i i 

- -  -- gn + A~5, 
n=i 

where the functions g~ are determined by relations (8.10), (8.12), (8.14), (8.16), 
(8.18) and 

�9 [ .- 
I __ �9 m " m ~ ~ t~ E t h E  - -  V E  aE + (8.32) A~5 2aE W ~ik + U (Xs)tik + 2V~d~ + . i  . k  k "i 

+ 3 d ~  i -  2d~b  k - 2-~Ik(XE) + 2"~k,~(XE) -- ~VEVE1 k .~-~U,im(XE)" ~ + 

1 i m - -  + -~VEVE U,km(XE) + v~U,  ik(XE) + 2 V ~ V  "~ U ik(XE) + 

+ V~ n ~b i U,~(XE) + F ~m-U,im(xE) + F ~'~ U,k~(XE) + 2 ~ (XE)U,ik(XE) 1 W k + O(~2). 
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Compar ing  (8.31) and (8.8) we see tha t  all the t e rms  g~ ( n = l ,  ..., 5) cancel out 
confirming the reasoning of subsect.  8" 1. As a resul t  the relativist ic r ight-hand 

m e m b e r  of the GRS satellite equations takes  the simple form 

6 
(8.33) ~ =  ~ + A ~  ---- 2 ~ 

n=l n=l 

with 

(8.34) ~ni _-- p~i ( n = l ,  2, 3, 4) ,  

(8.35) ~ + ~ = ~ + A ~  ( " ' ~ v ~ - -  - �9 " = 4w E U,ik(Xn) 4(VmUmik(XE) 

" ~7~ i - 4w VE U,km(XE) + 4~  "* Ui~m(X~) + 2 d ~ w  " ~ - 2d~ ~ - 4w'~wi U,~.~(x~) + 

+ ~ v ~ m U , ~ ( X ~ )  + F~-U,~m(X~) + F~'~Ui,~(x~) + U (x~) ~ - 

i k - 3aE aE -- 2 U (XE) U,i~(X~) + W,~(XE) + 2 U~(x~) + 2 U~,i(x~) - 

- -  l i  ~ ( x "  --V~ aE'i --VEi d ~ - - 4 v ~ U ~ , i k ( X E ) - - ~ V E V E  ~km~, EJ-- 

1 k~m F ~x ~+2v~-Uik(XEi]w k + O @  2) - - ~ V E  UE ,imk E] , j " 

Thus, we have obtained again eqs. (7.3) with 
remains  to give ~ and ~ in explicit manner ,  i.e, 

(8.36) 

the values (7.4)-(7.13). I t  

~ i =  2 GM-----SAwk~[-6zb~(v~-vZ) + 

+ 6-~-~ ~" EA'~A~E~ ~ . . . .  V ~ ) _ ~ v ~ m ]  ,r + 6#;k(V~ -- Vk) - 

6 .kr~ m "~ rEA(VE -- V ~) ~V m -- r~AW EArEA(VE--V~9+ rEAr~A k 

12 ~k r ~ lv~ v~)~bm+4~b%bk_ 
~2 A / E A  EAk E - -  

12 o~k . . . . .  ; .... . ,~  3 r i k �9 �9 
r 2 A r E A ~ E A ~  ~j -t-~rEA E A r E A W m W  m j  
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GMAwk~[ - + 3  r a  m (8.37) ~ =  ~.~Z r-~Eh [[ rE~ha~ ~rEAaA--3(Vff--V;)(V~--V29+ 

3 , m m \ 2  6 ~ m m \ ~  n n \  + ~ [rEA V~ ) -- ~ [rEA V ~ )[rEA VA) + (r~A V ~n)~ + G (ME + 2 MA) 
EA r E A  r E A  

+ 

+ R G M B ( 1  +2__2_ll~ik+ 3_~_r~A(r~AFim+r~AF~)+3(V~ i k - VA)(V~ -- VA) 
~*A,~ \rAS rEB]J rEA 

3 i m [ 3 k ~ k 2omok o~vm~ +-~  \ -'-VEV~+ ~E~A--~A A ) +  

6 3 k ~ / 3 i m~o.io m 
EAkVE A ]k E +r_~  rEArk t . . . .  VmVvm_v~)+~rEArEA~_~VEVE E~A + 

EA EA \ 

~ 15  i k . . . .  2 3 k i 3 i k +2~EmViA-- v ~ v ~ )  - ~.4 rEArEA(rEAVA) --~rEAaA--~rEAa'~-- 
~rEA 

3 k ~ ~ 3_3_ G 
- 2r~A rEArEArEAaA -- r~A (ME + 3iA)r~Ar~A-- 

r k 2r~A r~B~  
r i B,A, E G M B ( ~ + - - +  . - 3  EA 2 \rEArAB r~ArEB 

The sum of ~ and ~ results in (8.35). 
I t  may be noted that  assuming the Ear th  to be an oblate spheroid rotat ing 

with the constant angular velocity ~5 around the polar axis and adopting the 
instant  equatorial RS w 1= x, w 2= y, w a= z one has 

( 8 . 3 8 )  ] ~ 1  = i ~ 2  = 1 i E  33 = A - 1 ~C,  ~C,  Q = G ( A - C ) ,  

(8.39) &~ = &~ = 0, &~ = ~.  

A and C are the principal moments of inertia of the Earth ,  Q is proportional to 
the Ear th  oblateness. Denoting by s = (0, 0, 1) the unit vector along the polar 
axis the expressions for F~, F~, ~ ,  r take a simpler form 

(8.40) F i = ~ - 5 1 1 ( 1 - 5 z 2 ~ w + z s  1 ~2 ] 

(8.41) F~ = - 2 (G/~E)-I Q grad U,~(xE), 

(8.42) 2G �9 
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(8.43) 0 3 = ~  - 2 + 9 ~ - i ) - - - ~ + ~  1 ~2] ] w  

9. - Conclusion. 

This paper has pursued two objectives, i .e .  1) to construct the harmonic, 
dynamically nonrotating reference system for any body of the solar system and 
2) to derive the equations of motion of test particles in the vicinity of the given 
body using this RS. To be specific, the elaborated technique is applied to the 
Earth and its satellites. The main results of the paper are the GRS metric (4.1)- 
(4.8) with the transformation laws (6.2), (6.3) to the BRS coordinates and 
eqs. (7.3) or (8.29) for the Earth satellite motion. Needless to say, for practical 
purposes the Newtonian perturbation F~ due to the nonsphericity of the Earth 
should be taken more accurately. The Newtonian perturbation F~ defined by 
(7.7) or (8.41) is of particular interest. This perturbing acceleration does not 
depend on satellite orbit and is of the order F i3 ~ GM~vl| ~ E / R  4 ~ 3.7.10 -12 cm/s 2. 
For LAGE O S the relativistic accelerations c -2 ~ ( n =  1, ..., 6) range by the order 
from 1.0-10-Tcm/s 2 (n=l)  to 1.7.10-14cm/s 2 (n=4). 

The methods considered above can be applied to derive the relativistic 
equations of motion of the Moon or a satellite of any planet. 

The authors are indebted to Prof. B. Bertotti for reading and improving the 
manuscript. 

�9 RIASSUNTO (*) 

Si sviluppa una teoria relativistica per costruire un sistema di riferimento armonico non 
rotante RS. La teoria permette di produrre I'RS celeste per la dinamica del sistema solare 
trascurando il campo gravitazionale della galassia. Si presta una particolare attenzione 
all'RS baricentrico (BRS) con l'origine nel baricentro del sistema solare e all'RS 
geocentrico (GRS) con l'origine nel geocentro. Si presume con cib che le velocit~ dei corpi 
siano ridotte rispetto alla velocit~ della luce e il campo gravitazionale sia debole dovunque. 
L'RS specifico e il campo gravitazionale sono descritti dal tensore metrico che si trova 
mediante approssimazioni newtoniane dalle equazioni del campo di Einstein con date 
condizioni di confine. Le coordinate BRS coprono tutto lo spazio del sistema solare. Le 
coordinate GRS sono inizialmente limitate nello spazio dall'orbita della Luna. Si 
determina la relazione tra BRS e GRS con la tecnica di adattamento asintotico. Le 
formule di trasformazione esplicite permettono di prolungare le coordinate GRS oltre 

7 - I1 N u o v o  C imen to  B.  
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l 'orbi ta  lunare  per  eoprire addi r i t tu ra  tu t to  lo spazio del s is tema solare. Sono s ta te  
de r iva te  le equazioni GRS del moto del satel l i te  della Terra.  I membr i  dest r i  relat ivis t ici  
di ques te  equazioni contengono per turbazioni  t e r r e s t r i  di Schwarzschild,  Lense -Th i r r ing  
e del quadrupolo,  nonch6 per turbazioni  di marea  dovute  al Sole, alla Luna  e ai pianet i  
maggiori .  Sono dedot te  le equazioni con due diverse  tecniche. La pr ima implica 
l 'applicazione del principio geodesico alla met r ica  GRS. La  seconda ~ basa ta  sulla 
t rasformazione  delle equazioni d i  moto del satel l i te  B R S  in equazioni GRS. E n t r a m b e  le 
tecniche r isul tano nelle s tesse  espressioni  finali. 

(*) Traduzione a cura della Redazione.  

Pe.~I~ITXBXCTCKrie CriCTeMbl OTCqeTa  il ~Bri)KeHrie llpO6HblX Tea ~: oKpeCTHOCTEI 3eM3Iri. 

PealoMe (*). - -  Pa3BriBaeTc~ pe~TrIBrICTCKa~ Teoprm ~ I n g  KOnCTpyHpoBanmq 
neBpamaIomnxca rapMonnyecr, six CI4CTeM OTCqeTa. Hpeano)KeHriaa Teopna gO3BOn~ieT 
rlOYI~/riTb I~e6ecx~ym CriCTeMy OTCqeTa JIn~l conneqItOf! CriCTeMt, I, npeHe6peraa 
rpaBnTatmomtbiM noneM FadlaKTrlKri. Oco6oe  BHnManrie y~len~eTc~ 6apnue~TpnqecKofi 
CriCTeMe OTCqeTa C n a ~ a a o u  B 6apnt~eHrpe conneqHofi CriCTeMbI ri reoi~enTpnqecKofi 
CnCTeMe OTCqeTa c naqa~oM B reoKenTpe. HpeanonaraeTca,  qTO CKOpOCTri Ten Manbt rio 
cpaBHenriIO CO cKopocTJ,~O CBeTa tI rpBariTatmoHHuoe none nBJifleTc~t cna6h~M. Cnettrrian~HHa~ 
CHCTeMa OTCqeTa n rpaBriTaUriOnHOe none OririCbtBaIOTCn C gOMOt~b~O MeTpnqeeKoro 
TeHaopa ri noayqaroTc~t c noMomt, ro riblOTO~OBblX npri6nrixeHri~ ~3 ypaaHeHri~I noaa  
~)fiHmweI~Ha C 3aJIaHribIM~ rpaHn~m,iMn yCnOBr~Mn. Koop~im~aw~,I 6aprn~eHwpriqeCKOff 
CriCTeMbl owcqeTa noKpslsaiow Bce npocTpaHCTBO COaHeqriofi CriCTeMbt. Koop~rinaTsI 
reo~eriTpriqecKofi CriCTeM~,I OTCqeTa nepBonaqan~,ao orpanriqensl  B ripocTpariCTBe op6r~ro~ 
J/ym, t. Ycwariasnrmaewc~ cs~3~, M e ~ y  6apr~tleriTpnqecKo~ ri reo~eHwpriqecKo~I CriCWeMaMn 
OTCqewa, ricnom,3ya Texrl~Ky acI, IMriWOTt4qecKoro cornacoBang~a, qbOpMynbt 
npeo6pa3oBarin~ no3~oa~iOT npoaoHrripoBaTS KOOpannaTb~ reoaenwpnqecKofi CriCTeM~,~ 
OTCqewa 3a npeaen~,! nynao~I op6rim, i n HOKpblT~, Bce npocTpariCTBO conHeaHHofi CriCTeM~,I. 
BbIBO~$ITCg ypaBHeriY61 ~BrihKeHllfl criyTHnKOB 3eMnri B reolleriTpttqecKoff CriCTeMe 0TCqeTa. 
Pen~ITriBriCTCKrie qneribI B ripaB~LX qaCT~IX 3TriX ypaBrieHrift co/Ieph'gaT BO3MyI~eritL~ 
l l lBap~mnns~a,  JIemla-TrippnHra n KBa~lpyn0lIbH~te 3eMIritbIe no3MyII~engdl, a TaK~e 
llpl~t4nH~e BO3MyI~eI4tLr o6ycnoByleriHl~e Coytnl4eM, ~yHO~ H 6onr~InI4Mn rinarieTaMH. 
YpaBneririJ~ BblBO~$1TCH C nOMOIl~/alO ~ByX pa3nriqHblX CnOCO6OB. B nepBoM rio~xo~Ie 
ripriMeI~eTcn reo/xeanqecKHff npnHn;rin K MeTpriKe reouenTpriqecKo~I CriCTeM~ OTCqeTa. 
BTOpO~ cnoco6 ocr~o~aH ria nnpeo6pa3o~anriri ypam~emn~ ~r i~eHr i~  cnyrririXOB ~ 
6april~enwpriqecKoI~I CriCWeMe OTCqeTa B ypaBHettri:~l JIBl,I:hKeHri~ B reoI~eHTpllqeCKOI~I CriCTeMe 
OTCtleTa. O6a  no~xo~a ~aIOT OJIHHaKOBbII~ KOHegHbll~ pe3y~IbTaT. 

(*) Hepeeec)erto peikatct4uefi. 


