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SUMMARY 

In this paper the likelihood function is considered to be the primary source of the objecti- 
vity of a Bayesian method. The necessity of using the expected behavior of the likelihood 
function for the choice of the prior distribution is emphasized. Numerical examples, inclu- 
ding seasonal adjustment of time series, are given to illustrate the practical utility of the 
common-sense approach to Bayesian statistics proposed in this paper. 
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1. INTRODUCTION 
The view that the Bayesian approach to statistical inference is useful, 

practically as well as conceptually, is now widely accepted. Nevertheless we 
must also accept the fact that there still remain some conceptual confusions 
about the Bayes procedure. Although m~tny strong impetuses for the use of 
the procedure came from the subjective theory of probability, it seems that the 
confusions are also caused by the subjective interpretation of the procedure. 

By looking through the works on the Bayes procedure by subjectivists, it 
quickly becomes clear that there is not much discussion of the concept of like- 
lihood. The subjective theory of probability is used only to justify the use of 
the prior distribution of the parameters of a data distribution. It is almost tri- 
vial to see that no practically useful Bayes procedure is defined without the use 
of the likelihood function, while the likelihood function can be defined 
without the prior distribution. Thus the data distribution represents the basic 
part of our prior information and the Bayes procedure gives only one specific 
way of utilizing the information supplied by data through the likelihood func- 
tion. 

From this point of view there is nothing special about the choice of prior 
distributions to differentiate it from the design of ordinary statistical procedu- 
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res such as the choice of the sampling procedure in a sample survey and the 
choice of the spectrum window in the spectrum analysis of a time series. 

In this paper we first discuss some conceptual confusions with the Bayes 
procedure which we believe to be due to the subjective interpretation of the 
procedure. We argue that it is necessary to recognize the limitation of the sub- 
jective theory and put more emphasis on the concept of likelihood. We take 
the position of regarding the Bayes procedure as one possible way of utilizing 
the information provided by the likelihood function. Once such an attitude to- 
wards the Bayes procedure is accepted we can freely develop Bayesian models 
simply by representing a particular preference of the parameters by a prior 
distribution. The goodness of the prior distribution can then be checked by 
evaluating expected performances of the corresponding Bayes procedure in 
various conceivable situations. 

We demonstrate the use of this type of approach by developing a general 
Bayesian model for the analysis of linear relations between variables. The mo- 
del contains as special cases the basic models of those estimation procedures 
such as the Stein estimator, ridge regression, Shiller's distributes lag estimator 
and O'Hagan's localized regression. Numerical examples are given to illustra- 
te the practical utility of some quasi-Bayesian procedures developed for these 
models and for a more conventional model of polynomial regression. The re- 
sult of application to the seasonal adjustment of time series seems particularly 
interesting as the model contains twice as many parameters as the number of 
the observations. 

2. CONCEPTUAL DIFFICULTIES OF THE SUBJECTIVE APPROACH 

Significant impetus for the advancement of Bayesian statistics has come 
from the side of the subjective theory of probability. This is natural as every 
statistical procedure may be viewed as a formulation of the psychological pro- 
cess of information processing and evaluation by a skilful researcher. In spite 
of the significant contribution of the subjective theory of probability to clarif- 
ying the nature of the psychological aspect of this process, several conceptual 
difficulties remain with the theory. Here we discuss some difficulties, which 
we believe to be misconceptions, related to the Bayes procedure and clear the 
way for the development of practically useful Bayesian methods. 

2.1. Rationality and Savage's axiom 

It is sometimes said that a rational person must behave as if he has a cle- 
arly defined system of subjective probabilities of uncertain events. This is of- 
ten ascribed to Savage (1954) who developed a theory of personal probability 
by axiomatizing the preference behavior of a person under uncertainty. Un- 
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fortunately the very first postulate P1 of Savage, which assumes the linear or- 
dering of the preference, excludes the real difficulty of preference. This can be 
explained by the following simple example. 

Consider a young boy who wants to choose a girl as his wife. His prefe- 
rence is based on the three characteristics, H, I and L. Here H stands for he- 
alth, I for intelligence and L for looks. Each characteristic is ranked by the 
numbers 1, 2, and 3, with higher number denoting higher rank. The difference 
of ranks by I is marginal and the difference by 2 means a significant differen- 
ce. Denote by R i = (Hi, Ii, Li) the vector of the ranks of the characteristics of 
the i th girl. Being uncertain about the relative importance of these characteris- 
tics in his future life, he ignores the marginal differences and pays attention 
only to the significant differences. Thus his preference is defined by the follo- 
wing scheme: 

R i <_ Rj ,  i.e., the jth girl is preferred to the i th girl, 

iff C, <_ Cj for the characteristic C 

for which I C~ - C,I is maximum. 

Now he has three girl friends (i = 1, 2, 3) whose Ri's are defined by R1 = (1, 
2, 3), Rz = (3, 1, 2) and R3 = (2, 3, 1), respectively. Obviously it holds that 

R1 -< R2, R 2 - R a  and R3-<Rx, 

which shows that his natural preference scheme does not satisfy the postulate 
P1 of Savage. 

It is the difficulty of this type of preference that make us feel the need of 
a horoscope or some other help in making the decision in a real life situation. 
Since Savage's system excludes the possibility of this type of difficulty, the 
corresponding theory of personal probability cannot tell how we should treat 
the difficulty. The exact characterization of Savage's theory is then a theory 
of one particular aspect of preference and there is no compelling reason to de- 
mand that a rational person's preference should be represented by a single sys- 
tem of subjective probability. Wolfowitz (1962) presents a pertinent discus- 
sion of this point. Thus to justify the use of a system of personal probability 
one must prove its adequacy by some means. Certainly the proof cannot be 
found within the particular system of personal probability itself. 

2.2. The role o f  parameters in a Bayesian modeling 

The subjective theory of probability of De Finetti demands that the pro- 
bability distribution or the expectations of the uncertain events of interest 

10 



146 

should completely be specified (de Finetti, 1974b, p. 87). If we accept this de- 
mand and decide to use the Bayes procedure, all we have to do is to compute 
p(y  Ix), the probability of  an event y conditional on a given set of data x. The 
theory only asserts that the necessary probability distribution should be there 
and does not consider the special role played by the parameters in constructing 
a statistical model or the probability distribution. De Finetti (1974a, p. 125) 
even rejects the concept of a parameter as metaphysical, unless it is a deci- 
dable event. 

That the concept of parameter cannot be eliminated is shown by the 
simple example of  the binomial experiment where the probability of occurence 
of  a head in a coin tossing is considered. The concept of independent trials 
with a fixed probability of head is unacceptable by the subjective theory of 
probability of de Finetti and the solution is sought in the concept of exchange- 
ability (de Finetti, 1975, pp. 211-218). The difficulty is caused by the fact that 
the probability of a head, which must be decided, plays the role of a parame- 
ter that is not actually decidable (Akaike, 1979b). 

We may use the theory of probability to develop some understanding of 
what we psychologically expect of the parameters of a statistical model. Con- 
sider a random variable x and the observations xu x2 . . . .  of some related 
events. We expect that a parameter 0 exhausts the information about x to be 
gained through the observations x u x2... The probabilistic expression of this 
expectation is given by 

p(xlO, xl, x2 . . . .  ) = p(xl 0), (2.1) 

where p(x[zl, z2 . . . .  ) denotes the distribution of x conditional on zl, zz . . . . .  To 
allow this type of  discussion we must consider 0 as a random variable as is ad- 
vocated by Kudo (1973). The formula (2.1) then gives a very natural characte- 
rization of the parameters as a condensed representation of the information 
contained in the observations, i.e., once 0 is known no further observations 
can improve our predictions on x. Thus we want to know the value of 0. Ac- 
tually de Finetti's discussion of the exchangeable distribution of the binomial 
experiment has given a proof of the existence of such a variable. 

Although the above characterization of a parameter is interesting, in the 
statistical model building for inference the order of reasoning is reserved. The 
prior information first suggests what type of parameterization of the data 
distribution p(x[ 0) should be used. The prior distribution 7r( 0 ), if at all speci- 
fied, represents only a part of the prior information. To take the parameters 
as something prespecified and assume that the prior distribution can or should 
be determined independently of the data distribution constitutes a serious mis- 
conception about the inferencial use of the Bayes procedure. 
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2.3. Likelihood principle and the Bayes procedure 
It has often been claimed that the likelihood principle, which demands 

that the statistical inference should be identical if the likelihood function is 
identical, is a direct consequence of  the Bayesian approach; see, for example, 
Savage (1962, p. 17). In the example of  coin tossing, if we denote the probabi- 
lity of  head by 0 and assume the independence and homogeneity of  the tos- 
sings, we have 

p(xlo)  = c o~(1 - o) "-x 

as the likelihood of  0 when x heads appeared in n tossings. It is argued that 
there is no difference in the inference through the Bayes procedure if the 
above likelihood is obtained as the result of  n tosses, with n predetermined, or 
as the result of  tossing continued until x heads appeared, with x 
predetermined. 

This seemingly innocuous argument is against the principle of  rationality 
of the subjective theory of  probability which suggests that the choice of  a 
statistical decision be based on its expected utility. The expected behavior of  
the likelihood function p(x[ O) is certainly different for the two schemes of  the 
coin tossing and it is irrational to adopt one and the same prior distribution 
~-(0), irrespectively of  the expected difference of  the statistical behavior of  the 
likelihood functions. 

To clarify the nature of  the confusion by a concrete example, consider 
the use of  the posterior distribution 

C 0x(1 -9) nx ~r(0) 

as an estimate of  the probability distribution of  the result y of  the next toss, 
where y = I for head and 0 otherwise. The predictive distributions are defined 
as the averages o f  the data distribution p(ylO) with respect to the posterior 
distributions of  0. These will be denoted by p(y  Ix) and p(y I n) to indicate that 
x and n are the realizations of  the random variables, respectively. They are 
defined by 

p r y  I , )  = C IA 0x+Y( 1 - O) n+ l-x-YTr(O) dO, 

whe re ,  stands for either x or n. When the " t r u e "  value of  0 is 00 the goodness 
o f p ( y l , )  as an estimate of  the true distribution p(ylOo) = 0~ (1 - 0o) l'y can be 
measured by the entropy of  p(y[Oo) with respect to p(ylx) or p(y[n) which is 
defined by 
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B ~o(. 10o), p( .  I,)} 

i i l, 0o, = v :  p(ylOo) log 
" . 0  P(YI*) P(YI*) 

'l *) 

The larger the entropy the better is the approximation of  p ( . I . )  to p(.10o). 
Before we observe x or n we evaluate E .  B[p(. [0o), p(. [.)] for some possible 
values of 0o, where E ,  denotes the expectation with respect to the distribution 
of �9 defined with 0 = 0o. We have 

Ex B[P(.IOo), P(.[x)] 

log ~p(y Ix) I.C~ 0: (1-0o)"'* :   :omiOo) ::o 

and 

En B{p(.lOo), p(.ln)} 

= ~=op(y[Oo)~:=~ logtPO'ln)t,.aCx.tO~(1-Oo)"". 
(p(y]Oo)} 

Obviously we have no reason to expect that these two quantities will take one 
and the same value and, at least for that matter, there is no reason for us to 
assume one and the same prior distribution v(0) for both cases. 

3. LIKELIHOOD AS THE SOURCE OF OBJECTIVITY 
The discussion in the preceding section illustrates both the subjective and 

objective elements in the Bayesian approach to statistical inference. It is 
subjective because a statistical inference procedure is designed to satisfy a 
subjectively chosen objective. The choice of the data distribution is 
particularly subjective and the prior distribution reflects the object of the 
inference which is often expressed in the form of a psychological expectation. 

What is then objective with the procedure ? The objectivity stems from 
the dependence on the data which is a production of the outside world. This 
objectivity is fed into the Bayes procedure through the likelihood function. 
Since B lpo(.), p(.lO)} = E x log p(x[O) - E x log po(X), we can see that, ignoring 
the additive constant E x log po (x), the log likelihood log p(x]O) is a natural 
estimate of the entropy of po(.) with respect to p(. 10). Here E x denotes the 
expectation with respect to the distribution po(.) of x. Thus the likelihood 
p(x[0) represents an objective measure of the goodness, as measured by x, of 
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p(. 10) as an approximation to po(,). This fact forms the basis of the practical 
utility of the Bayes procedure even for the family ho(.10)l which is chosen 
subjectively and does not contain the true distribution of x. 

The likelihood function p(x[O) is the basic device for the extraction or 
condensation of the information supplied by the data x. The role of the prior 
distribution a-(0) is to aid further condensation of the information supplied by 
the likelihood function p(xlO) through the introduction of some particular 
preference of the parameters. By evaluating the expected entropy of the true 
distribution with respect to the predictive distribution specified by a posterior 
distribution we can extend the concepts of bias and variance to the posterior 
distribution (Akaike, 1978a). If we try to keep a balance between the bias and 
variance, we cannot ignore the influence of the statistical behavior of the 
likelihood function on the choice of our prior distribution. Some of the 
conflicts between the conventional and Bayesian statistics are caused by 
ignoring the possible dependence of the choice of the prior distribution, or 
even the choice of the basic data distribution, on the number of available 
observations which influences the behaviour of the likelihood function; see, 
for example, Lindley (1957), Schwarz (1978) and Akaike (1978b). 

4. A G E N E R A L  BAYESIAN M O D E L I N G  F O R  L I N E A R  P R O B L E M S  

In this section we demonstrate the practical utility of the point of view 
discussed in the preceding section through the discussion of a general Bayesian 
model for the analysis of linear problems. The basic idea here may be 
characterized as the common-sense approach to Bayesian statistics. 

Consider the analysis of the linear relation between the vector of 
observations y = [y(l) .... ,y (N)]' and the vectors of the independent variables 
x, = [x; 0), x, (2) .... x, (N)]' (i = 1,2,..,r), where ' denotes transposition. The 
method of least squares leads to the minimization of 

N K 2 
L (a)  = ~ . ~  [y  tJ) - r.  a , x ,  t J ) ]  �9 (4.1) 

We know, when K is large compared with N or when the matrix X = 
[xl, xz ..... xK] is ill-conditioned the least squares estimates behave badly. To 
control this we introduce some preference on the values of the parameters and 
try to minimize 

L (a) + # II a -  a0 I[ zR (4.2) 

where a0 denotes a particular vector of parameters [a01, aoz ..... a0x]', 
J] ]lZR the norm defined by a positive definite matrix R, and # a positive 
constant. The use of this type of constrained least squares for the solution of 
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an ill-posed problem is wellknown; see, for example, Tihonov (1965). 

The difficulty with the application of this method of constrained least 

squares is in the choice of the value of #. To solve this we transform the 

problem into the maximization of 

e(a)  = exp {-  0 /2o  ~) [L(a) + z l [ a -  a0HZ~]], 

where temporar i ly  a z is assumed to be known.  Since we have 

e(a) = exp [ - O/z~ z) L(a)] exp [ -  (kt/2<r z) Ila-aollZR 1, 

we can see that the solut ion o f  the constra ined least squares p rob lem is now 
given as the mean o f  the posterior  distr ibution def ined by the data  distr ibution 

f (yloZ,a) = (1/27r)u/z(1/a) N exp [ - (1/2a ~) L(a)],  (4.3) 

and the prior  distr ibution 

7r ( a i d )  = (1/271-) K/2 (1/tr) x exp [ -  (42/2o "2) I[ a-ao 1[ z], (4.4) 

where a n = /~. By proper ly  choosing X,  a0 and R, we can get many  practically 
useful models.  Par t icular ly ,  we will res t r ic t 'our  a t tent ion to the case where 

2 .  
1[ a- a 0 [I R is defined by 

[la - a[t2R = IlCo - D a [ [  2, (4 .5)  

where D is a proper ly  chosen matrix,  c o = Dao and I[ v [1 z denotes the sum o f  
squares o f  the components  of  v. In this case the poster ior  mean o f  the vector  
parameter  a is obta ined  by minimizing [Iz ( a ld ) l l  2 o f  the vector  z ( a i d )  
defined by 
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z(ald) = 

a(2) 

y(1) 
y(2) 

�9 . 

�9 ) . 

�9 . 

y(N) -- 

aCo(1) 
ac~ ." ; ]  

aco(L ) a(K) 

(4.6) 

Examples. 
a. S te in  t y p e  s h r u n k e n  e s t i m a t o r  

This is defined by putting L = N, D = X and co = 0, the zero vector. The 
case with K = Nand  x = ,%,~ corresponds to the original problem of  estimation 
of  the mean vector of  a multivariate Gaussian distribution treated by Stein. By 

putting co equal to the vector of  the parameters  obtained f rom some similar 
former observations, we can realize a reasonable use of  the prior information.  

b. R i d g e  regress ion 

This is defined by putting L = K, D = l, cxx and Co = O. 

c.  Shi l ler 's  d i s t r i b u t e d  lag e s t i m a t o r  

Shiller (1973) developed a procedure for the estimation of  a smoothly 
changing impulse response sequence�9 In this case [y(l), y(2) . . . . .  y(N)] is- 
obtained as the time series of  the output  of  a constant linear system under the 

input u(j). X is defined byxi(J)  = u ( j - i +  1) and co = O. 

D is put equal to 

D 1 = 

ot 

-1  1 

- 1  

0 

1 0 

-1  1 
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o r  

D 2 =  

[3 

I -2 1 

1 -2  1 0 

0 

1 -2 1.j 

where a and ~ are properly chosen constants. D1 controls the first order diffe 
fences of  a(/) and D2 the second order differences. 
d. Localized regression o f  O'Hagan. 

O'Hagan (1978) introduced an interesting Bayesian model for the 
estimation of  the locally gradually changing regression of  a time series Y(0 on- 
x(l). Our model corresponding to O'Hagan 's  is given by putting K = N, co = 0 
and 

x(1)  

X = 

x (2) 0 

D is put equal to DI or D 2 of  the above example or 

D 3 = 

7 -2 7 7 

-1 3 -3  1 

-1 3 -3  

x(N) 

-1 3 -3  1 
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One particularly interesting model is obtained by putting x(0 = 1 (i = 1 ,2 , . .  
�9 , N). The number of  parameters in this model is equal to the number of  

observations Y(O. 
e. Locally smooth trend fitt ing 

For a time series y(t), by putting co = 0 and D -- D~X where Dk is as 
given in the preceding examples, we get a model for the fitting of  a smooth 

trend curve. One special choice of  X is given by X -- I ~ .  We will call the 

model defined with X = I~x~v and D = Dk the model of  locally smooth trend 
of  k th order. 

f. Bayesian seasonal adjustment 
We consider the decomposition of  the monthly observations Y(0 for M 

years, where i = 12 m + j (j = 1,2 . . . . .  12, m = 0,1 . . . . .  M-l), into the form 

y(O= Z + S , . + L ,  

where T,. denotes the trend, S, the seasonal and L the irregular component. 

For this problem we put K = 2N (N = 12M) and define a = (T1,T 2 . . . . .  
Ts,SI,S2 . . . . .  SN) and put co = O. 

The matrix X is defined by 

X=N 

< N > ~.. -N 

1 
1 1 

1 1 0 

1 

and D by 
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Dkp = 

' t  
N 

T 
N 

T 
N 

~ - " N ' ~  < N > 

D k " 0 

0 

eI 0 0 0 
fl -fI 0 0 
0 f I  -fI 0 

0 0 f I  -fI 

gl" 0 0 
0 gl" 0 

0 0 gl" 

6-N---) 6-12,,12~. . c 12 

where D~ is one of  those defined in the preceding examples, I = T12x12, 1 '  - -  

(1, 1 . . . . .  1), and e , f ,  g are properly chosen constants. 
A notable characteristic of  this model is that it has twice as many parame- 

ters as the number of  observations. This constitutes a typical many parameters 
problem which cannot be handled by the ordinary unconstrained least squares 
or the method of  maximum likelihood. 

The fundamental problem in applying these models to real data is the 
choice of  the constant d. Assuming that other constants are specified, the 
decision on d is equivalent to the decision on the prior distribution of  a. From 
(4.2) the choice of  d, or #, determines the relative weight of  the additional 
term 1[ a - ao against L(a), the sum of  squares of  the residuals. When ao is 
not exactly equal to the true value of  a, we expect that the bias of  the estimate 
increases as d is increased but the variance decreases. It is natural to try to 
keep a balance between these two factors. To realize this it is necessary not to 
specify d uniquely but use the information supplied by the likelihood function 

o r  L(a). 
In the Bayesian terminology this is to consider d as a hyperparameter 

which has its own prior distribution. Now it is obvious that by considering d 
as a hyperparameter we are trying to use the information supplied by the 
likelihood function for the determination of  d. This observation suggests that 
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a proper choice of the prior distribution to be used in an inferential situation 
can only be realized through the analysis of the statistical characteristics of the 
related likelihood function. The infinite digression of considering the priors of 
priors can only be stopped by the analysis of the expected output at each 
stage, which is determined by the behavior of the likelihood function. 

Incidentally, the present observation shows why the conventional subjec- 
tivist doctrine of assuming the determination of the prior distribution of the 
parameters independently of the related likelihood function was not strictly 
followed by the research workers dealing with real inference problems. This 
point is discussed as the Bayes / Non-Bayes compromise by Good (1965). We 
take here the very flexible attitude towards the Bayes procedure to consider it 
only as one possibility of utilizing the information supplied by the likelihood 
function. Thus we consider that any practically useful statistical procedure 
which utilizes the information supplied by the likelihood function should not 
be rejected only because it is non-Bayesian. It is not the dogmatic exclusion of 
other procedures but the explicit proposal of useful models that proves the ad- 
vantage of the Bayesian approach over the conventional statistics. 

5. NUMERICAL EXAMPLES 

To show that our discussion in the preceding sections is not vacuous, here 
we show some numerical examples. These were obtained by Bayesian mode- 
lings but with the help of some procedures which are not strictly Bayesian. 
The first three examples are concerned with the models discussed in the prece- 
ding section. The last one is an example of polynomial fitting and is included 
to show the feasibility of a Bayesian modeling with the aid of an information 
criterion (AIC) to deal with the difficulty of choosing a prior distribution for a 
multimodel situation where the models are with different number of parame- 
ters. 

For the first three examples the essential statistic used for the determina- 
tion of the parameter d in (4.4) is the likelihood of the model specified by the 
prior distribution. We consider the marginal likelihood of (d,a 2) defined by 

L(d,o 2) = I fO, la~,a) 7r (al d) da, 

wheref(y [ aZ,a) and 7r(a[d) are given by (4.3) and (4.4), respectively. If we as- 
sume (4.5) and put co = 0 we get 

L(d,cs z) = ( l / 2~r )~ '2 (1 /a f  ' exp [ -( 1/2az)  ll z (a .  I d )  ll z] 

�9 ]l ~ D ' D  II t/2 II c F D ' D  + X ' X  11-"2, 
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where [I z(a. I d) II 2 denotes the minimun of II z(al d) I12 with z(ald) defined by 
(4.6). Instead of developing a prior distribution of (d,a 2) we consider the use 
of the procedure which chooses a model with the maximum marginal likeliho- 
od. This is called the method of type II maximum likelihood by Good (1965). 
For a given d, the maximum with respect to a 2 is attained at 

= ( 1 / N )  II z(a, I d) tl 2. 
For the case of practical applications, we consider a finite set of possible va- 
lues (dl, d2 . . . . .  dr) of d and choose the one that maximizes L(d, tr]). Since we 
are familiar with the use of minus twice the log likelihood, we propose to mi- 
nimize 

ABIC = (-2) log L(d, o]) 

= Nlog [ 1/N II z(a. ld) II 2 ] § log [I d2O'O + X ' X  II 

-log II aUD'D II § const, 

where ABIC stands for "a  Bayesian information criterion". When different 
D's  are not considered, the term log l[ arzD'D II may be replaced by 2K log d, 
where Kis the dimension of the vector a.. 

example we demonstrate the practical utility of exp(- ~ AIC) as In the last 
the definition of the likelihood of a model specified by the maximum 
likelihood estimates of the parameters. Here AIC is by definition (Akaike, 
1974) 

AIC = (-2) log (maximum likelihood) + 2 (number of free parameters). 

This definition allows a very practical procedure of developing a Bayesian 
type approach to the situation where several models with different numbers of 
parameters are considered. 

The general definition of ABIC of a model with hyperparameters 
determined by the method of type II maximum likelihood would have been 
ABIC = (-2) log (maximum marginal likelihood) + 2 (number of adjusted 
hyperparameters). In the examples treated in this paper the numbers of the 
adjusted hyperparameters are identical within the models being compared and 
their influence on the maximum marginal likelihoods is ignored. 

Examples 
a. Distributed lag estimation 

We did a simulation with the second example of Shiller (1973, p. 783). 
The result is illustrated in Table 1. This result was obtained by using the model 
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c of  the precedin section with N = 40, K = 20 and D = D 2 with a = ~ = 0. 
Considering that  this is a limiting situation with non-zero o~ and/~, ABIC was 

defined by 

ABIC = N log [ ( l /N)  U z(a ,  Id)II 2] 

+ log [1 aUD'D + X ' X  1[ - 2 g log d, 

and the ABIC was minimized over d = 5.0, 2.5, 1.25, 0.625, 0.3125. the 
values of  the ABIC at these d 's  were -43.4, -51.5, -52.7, -45.0, -30.9, 
respectively. The minimum, -52.7, was attained at d = 1.25 and corresponding 
estimates of  the parameters  are given iri Table 1 along with the theoretical 
values and the least squares estimates. By taking a properly weighted average 
of  the results with different d ' s  we may  get a procedure which has smaller 
sampling variability, but it seems that the present simple procedure is almost 

sufficient for many  practical applications. 

TABLA 1 
Example of distributed lag estimation 

i 1 2 3 4 5 

Theoretical .000 .000 .001 .004 .018 
Bayes -.009 -.003 .004 .009 .017 
Least squares -.010 .021 -.045 .037 .078 

6 7 8 9 10 

Theoretical .054 .130 .242 .352 .399 
Bayes -.051 .134 .242 .345 .395 
Leastsquases -.074 .255 .113 .462 .334 

11 12 13 14 15 

Theor~ical .352 ,242 .130 .054 ,018 
Bayes .362 ,257 ,134 .052 .012 
Leastsquares .359 ,329 ,046 .072 .042 

i 16 17 18 19 20 

Theoretical .004 .001 .000 .000 .000 
Bayes -.001 -.015 .006 .035 -.018 
Least sqliares -.018 -.050 .065 -.008 -.008 

b. Locally smooth trend fitting 
In this example the original data  y(i) (i = 1, 2 . . . . .  30) were generated by 
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the relation 

Y(0 = 4 exp [ - (1/2) (( /-5)/4)  2] +z(t~, 

where z(i)'s are independently and identically distributed as N(0,1). Twelve 
models of  locally smooth trend of k th order defined by the model e of  the 
preceding section with d = 2 s-j ( j = 1, 2 . . . . .  12) were tried with k = 1, 2, 3. 
The constants t~, ~, and 3, of  the Dk's were all put equal to 0.001. The ABIC 
was defined by 

ABIC = Nlog  [ (1/N)]I z(a,ld) II 2] + log II d ~D'D + X ' X  II 

-log II aCD'D II. 

The minimum of  ABIC was attained at k = 1 and d = 2.0. The original data, 
the theoretical trend and some of  the estimated trends are illustrated in Fig. 1. 
In this figure SSDEV stands for the sum of  squares of  deviations of  the 
estimates from the theoretical. It can be seen that the present procedure can 
produce meaningful results even with these rather noisy observations. In the 
figures ID stands for k. 

e. Seasonal adjustment 
In this case the model f was applied to various artificial and real time 

series of  length six years, i.e., N = 72. The constants of  D k in Dkpwere the 
same as in the preceding example and other constants were e = 0.001, f = 1.0 
and g = 10.0. The set of  twelve values of  d used in the preceding example was 
also used here and k = 1, 2, 3 were tried. Results corresponding to the minima 
of  the ABIC's are illustrated in Fig.'s 2--4.  

Fig. 2 shows the result of  application of  the present procedure to an 
artificial series given in Abe, Ito, Maruyama et al (1971, pp. 250-251). The 
result shows a very good reproduction of  the true trend curve which was 
disturbed by a fixed multiplicative seasonality and the addition of  the 
irregular components to produce the observations denoted by original. 

It is remarkable that by this procedure no special treatment is necessary at 
the end of  the series. This point is a significant advantage over the 
conventional procedures which require various ad hoc adjustments at the 
beginning and end of  the series (Shiskin and Eisenpress, 1957). Fig. 3 shows 
the result of  application to the last six years of  the series of the logarithms of  
the number of  airline passengers, given as Series G in Box and Jenkins (1970). 
The result reveals a very reasonable gradual change of  the seasonality. The 
procedure has also been applied to the time series of  labor force given in Table 
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1 of Shiskin and Eisenpress (1957, p.442) and the result is given in Fig. 4. The 
adjusted series is simply defined by y(i) - S i and is compared with the series 
adjusted by the Method II by Shiskin and Eisenpress. 
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d. Polynomial fitting 
By this example we wish to demonstrate that a reasonable definition of 

the likelihood of a model defined by the maximum likelihood estimates of the 
parameters can be given by exp (-(1/2) AIC) (Akaike, 1979a, c). The 
observations Y(0 are identical to those of the example b of this section and the 
polynomials of successively increasing order were fitted up to the 10th order 
by the method of maximum likelihood. Under the assumption of the Gaussian 
distribution, the AIC of the M th order model is defined by 

AIC (M) = N log [ (l/N) S(M) ] + 2M, 

where S(M) denotes the sum of squares of the residuals. Some of the estimated 
regression curves and the values of the AIC are illustrated in Fig. 5. 

We smoothed these regression curves with the weight proportional to exp 
[ - (1/2) AIC (M) ] ~r(M) with ~r(M) oc (M + 1) "1. The result is denoted by 
"Bayes" in the figure. The same type of procedure has been applied to the 
fitting of autoregressive models by Akaike (1979a) where the choice of 7r(M) is 
discussed. 

The present result shows that the procedure is practically useful, although 
its performance depends on the choice of the system of the basic functions or 
the polynomials. Usually this choice produces significant effects at the 
beginning and end of the regression curve. This shows the advantage of the 
models used in the preceding examples b and c over the present model. 
Nevertheless the present result demonstrates the feasibility of a Bayesian 
modeling of a multi-model problem with models defined with different 
number of parameters. 
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6. DISCUSSION 

The numerical results presented in the preceding section suggest the 
possibility of developing further applications of the general linear model to 
problems such as the gradually changing autoregression and the general trend 
analysis of time series. This possibility is pursued in Akaike (1979d). By 
choosing the set of d's properly the type II maximum likelihood method may 
be replaced by a procedure which takes an average of the models with respect 
to the weight proportional to the likelihood of each model. The performance 
of these procedures are controlled by the statistical characteristics of the 
related likelihood functions. One particular possibility is the extension of the 
concept of ignorance prior distribution to the prior distribution of a 
hyperparameter. This is discussed in Akaike (1980). 

The application to seasonal adjustement is particularly interesting as it 
provides an example of the model which cannot be treated by the ordinary 
method of maximum likelihood. This example clearly demonstrates the 
practical utility of the Bayesian approach. It also shows that our present 
procedure may be characterized as a tempered method of maximum 
likelihood. The practical utility of the general linear model stems from the 
understandability and manipulability of the related prior distributions. This 
allows us to make proper judgement on how to temper the likelihood function 
through the choice of the values of the constants within the priors. 

The subjective theory of probability is developed on the basis of our 
psychological reaction to uncertainty. Acordingly the final justification of the 
theory must be sought in the psychological satisfaction it can produce 
throught its application to real problems. It is only the accumulation of 
successful results of application that can really make the Bayesian statistics 
attractive. 

The Bayes procedure provides a natural and systematic way of utilizing 
the information supplied by a likelihood function. The likelihood has a clearly 
defined objective meaning as the measure of the goodness of a model. It is this 
objectivity that provides the basis for the use of the subjective theory of 
probability as a guide in developing statistical procedures. Only this 
objectivity allows us to develop our confidence on the practical utility of the 
Bayes procedure, even when we know that the related model is our subjective 
construction. 
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