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Abstract:  The characteristic cohomology H~ha,.(d)  for an arbitrary set of  free p-form 
gauge fields is explicitly worked out in all form degrees k < n - 1, where n is the space- 
time dimension. It is shown that this cohomology is finite-dimensional and completely 
generated by the forms dual to the field strengths. The gauge invariant characteristic 
cohomology is also computed. The results are extended to interacting p-form gauge 
theories with gauge invariant interactions. Implications for the BRST cohomology are 
mentioned. 

1. Introduct ion  

The characteristic cohomology [ 1 ] plays a central role in the analysis of  any local field 
theory. The easiest way to define this cohomology, which is contained in the so-called 
Vinogradov C-spectral sequence [2, 3, 4], is to start with the familiar notion of con- 
served current. Consider a dynamical theory with field variables r  (i = 1 , . . . ,  M)  and 
Lagrangian E ( r  i, 0 ~ r  0 m..4,k r The field equations read 

Z;i = 0, (1.1) 

with 

~ E  OF_, 0 " OE , ..4,k ( 0 s  
Ci - 8r  i - 0 r  i # ~ )  + . . .  + ( -1 )k0m 0(0m...~kr ). (1.2) 

A (local) conserved current j~' is a vector-density which involves the fields and their 
derivatives up to some finite order and which is conserved modulo the field equations, 
i.e., which fulfills 

cg. j  ~' ,-~ O. (1.3) 
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Here and in the sequel, ~ means "equal when the equations of  motion hold" or, as one 
also says equal "on-shell". Thus, (1.3) is equivalent to 

O,j"  = ; ~ i  + ,~'o~,s + . . .  + ,V~,..~sO#,...~sz:~ (1.4) 

for some )~im...~j, j = 0 , . . . ,  s. A conserved current is said to be trivial if it can be 
written as 

j r  ~ OS#~  (1.5) 

for some local antisymmetric tensor density S "~" = - S  ~ .  The terminology does not 
mean that trivial currents are devoid of  physical interest, but rather, that they are easy 
to construct and that they are trivially conserved. Two conserved currents are said to be 
equivalent if  they differ by a trivial one. The characteristic cohomology in degree n - 1 
is defined to be the quotient space of  equivalence classes of conserved currents. One 
assigns the degree n - I because Eqs. (1.3) and (1.5) can be rewritten as dco ..~ 0 and 
co ~ d~b in terms of the (n - 1)-form co and (n - 2)-form ~b respectively dual to j r  and 
S ~ .  

One defines the characteristic cohomology in degree k (k < n) along exactly the 
same lines, by simply considering other values of  the form degree. So, one says that a 
local k-form co is a cocycle of the characteristic cohomology in degree k if it is weakly 
closed, 

d~ ~ 0; "cocycle condition" (1.6) 

and that it is a coboundary if it is weakly exact, 

co ~ d~p, "coboundary condition," (1.7) 

just as it is done for k = n - 1. For instance, the characteristic cohomology in form 
degree n - 2 is defined, in dual notations, as the quotient space of  equivalence classes 
of  weakly conserved antisymmetric tensors, 

O~S ~ ~ O, S ~ = S I ~ ,  (1.8) 

where two such tensors are regarded as equivalent iff 

S I~u -- S 'l~u ~, O p R  p#u, R pItu = R [p#u] . (1.9) 

We shall denote the characteristic cohomological groups by H~ha,.(d). 
Higher order conservation laws involving antisymmetric tensors of  degree 2 or higher 

are quite interesting in their own right. In particular, conservation laws of the form (1.8), 
involving an antisymmetric tensor S u~ have attracted a great deal of  interest in the past 
[5] as well as recently [6, 7] in the context of  the mechanism of"charge  without charge" 
of  Wheeler [8]. 

But the characteristic cohomology is also important for another reason: it appears as 
an auxiliary cohomology in the calculation of the local BRST cohomology [9]. This local 
BRST cohomology, in turn, is quite useful in the determination of the structure of the 
counterterms [ 10, 11 ] and the anomalies [ 12] in the quantum theory. It plays also a central 
role classically, in constraining the form of the consistent deformations of the action 
[13]. It is by establishing vanishing theorems for the characteristic cohomology that the 
problem of consistent deformations and of  candidate anomalies has been completely 
solved in the cases of  Yang-Mills gauge theories and of gravity [14, 6[. For this reason, 
it is an important question to determine the characteristic cohomological groups for any 
given theory. 
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The purpose of this paper 
a tensor fields Bm.. .~p,  a = 1, 

is to carry out this task for a system of free antisymmetric 
� 9  N, with Lagrangian 

1 
H a - H a d x  t'' . d x U ' o  § = d B  a, (1.11) 

(pa + 1)! m...,,o+, "" 

1 
B a  _ a #1 d x U ~  (1.12) Pa ! Bu~ ...u~a d x  . . . .  

The equations of motion, obtained by varying the fields B~,. . .up, are given by 

O p H  ap#I'''pp~ = 0. (1.13) 

We consider simultaneously antisymmetric tensors of different degrees, but we assume 
1 <_ Pa. We also assume n > Pa + 1 for each a so that the fields B~l...u~a all carry local 
degrees of freedom. Modifications of the Lagrangian by gauge invariant interactions are 
treated at the end of the paper. 

We give complete results for the characteristic cohomology in degree < n - 1, 
that is, we determine all the solutions to the equation O ~ S  ~ ' ' ' ~ ' ~  ~ 0 with s > 0. 
Although we do not solve the characteristic cohomology in degree n - 1, we comment 
on the gauge invariance properties of the conserved currents and provide an infinite 
number of them, generalizing earlier results of the Maxwell case [15, 16, 17] a. The 
results of this paper will be used in [18] to compute the BRST cohomology of free, 
antisymmetric tensor fields. This is a necessary step not only for determining the possible 
consistent interactions that can be added to the free Lagrangian, but also for analyzing 
completely the BRST cohomology in the interacting case. Our results have already been 
used and partly announced in [19] to show the uniqueness of the Freedman-Townsend 
deformation of the gauge symmetries of a system of antisymmetric tensors of degree 2 
in four dimensions. 

Antisymmetric tensor fields - or, as one also says, p-form gauge fields - have been 
much studied in the past [20, 21, 22, 23, 24] and are crucial ingredients of string theory 
and of various supergravity models [25]. The main feature of theories involving p-form 
gauge fields is that their gauge symmetries are r e d u c i b l e .  More precisely, in the present 
case, the Lagrangian (1.10) is invariant under the gauge transformations 

B a --+ B 'a = B a + d A %  (1.14) 

where A a are arbitrary (Pa -- 1)-fOrlTIS. NOW, if A a = de  a, then, the variation of B a 

vanishes identically. Thus, the gauge parameters A a do not all provide independent 
gauge symmetries: the gauge transformations (1.14) are reducible. In the same way, if 

I The determination of all the conserved currents is of course also an interesting question, but it is not sys- 
n 1 tematically pursued here for two reasons. First the characteristic cohomology Hc~h-a,.(d) is infinite-dimensional 

for the free theories considered here and does not appear to be completely known even in the Maxwell case 
in an arbitrary number of dimensions. By contrast, the cohomological groups Hkchar(d), k < n - l, are all 

n l finite-dimensional and can be explicitly computed. Second, the group Hc~a,~(d) plays no role in the analysis of 
the consistent interactions of antisymmetric tensor fields of degree > l, as well as in the analysis of candidate 
anomalies if the antisymmetfic tensor fields all have degree > 2 [18]. 

- 1 H a  HaU,...zpa+,), ( 1 . 1 0 )  
/2 = E (2 (pa+  1)! m...Upa+, 

a 

where the H a 's  are the "field strengths" or "curvatures", 
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e a is equal to dl,~ a, then, it yields a vanishing A a. There is "reducibility of  reducibility" 
unless e a is a zero form. If  ea is not a zero form, the process keeps going until one 
reaches 0-forms. For the theory with Lagrangian (1.10), there are thus P M  -- 1 stages 
of  reducibility of  the gauge transformations (A a is a (Pa - 1)-form), where pM is the 
degree of  the form of highest degree occurring in (1.10) [26, 27, 28, 29]. One says that 
the theory is a reducible gauge theory of  reducibility order P M  --  1. 

General vanishing theorems have been established in [1, 2, 3, 9] showing that the 
characteristic cohomology of  reducible theories of  reducibility order p - 1 vanishes in 
form degree strictly smaller than n p 1. Accordingly, in the case of  p-form gauge 
theories, there can be a priori non-vanishing characteristic cohomology only in form 
degree n - P M  --  1, n --  P M ,  etc., up to form degree n - 1 (conserved currents). In 
the 1-form case, these are the best vanishing theorems one can prove, since a set of  free 
gauge fields A~ has characteristic cohomology both in form degree n - 1 and n - 2 [9]. 
Representatives of  the cohomology classes in form degree n - 2 are given by the duals 
to the field strengths, which are indeed closed on-shell due to Maxwell equations. 

Our main result is that the general vanishing theorems of [1, 2, 3, 9] can be consider- 
ably strengthened when p > 1. For instance, if there is a single p-form gauge field and if 
n - p  - 1 is odd, there is only one non-vanishing group of  the characteristic cohomology 

n--p--1 in degree < n - 1. This is H;har (d), which is one-dimensional. All the other groups 
H ~ h a r ( d )  of the characteristic cohomology with n - p  - 1 < k < n - 1 are zero, even 
though the general theorems of [1, 2, 3, 9] leave open the possibility that they do not 
vanish. As we shall show in [18], it is the presence of these additional zeros that give 
p-form gauge fields and gauge transformations their strong rigidity. 

Besides the standard characteristic cohomology, one may consider the invariant 
characteristic cohomology, in which the local forms w and g, occurring in (1.6) and (1.7) 
are required to be invariant under the gauge transformations (1.14). We also completely 
determine in this paper the invariant characteristic cohomology in form degree < n - 1. 

Our method for computing the characteristic cohomology is based on the reformula- 
tion performed in [9] of  the characteristic cohomology in form degree k in terms of the 
cohomology Hu n_ k ((lid) of  the Koszul-Tate differential (i modulo the spacetime exterior 
derivative d. Here, n is the form degree and n - k is the antighost number. This approach 
is strongly motivated by the BRST construction and appears to be particularly attractive 
and powerful. 

Our paper is organized as follows. In the next section, we formulate precisely our 
main results, which are (i) that the characteristic cohomology H k h a r ( d )  with k < n - 1 

is generated (in the exterior product) by the exterior forms ~ a  dual to the field strengths 
Ha;  these are forms of  degree n - Pa - 1; and (ii) that the invariant characteristic 

k,inv cohomology gchar (d) with k < n - 1 is generated (again in the exterior product) 

by the exterior forms H a and ~ a .  We then review, in Sects. 3 and 4, the definition 
and properties of  the Koszul-Tate complex. Section 5 is of  a more technical nature and 
relates the characteristic cohomology to the cohomology of  the differential (i + d, where 
(i is the Koszul-Tate differential. Section 6 analyses the gauge invariance properties of  
(f-boundaries modulo d. In Sect. 7, we determine the characteristic cohomology for a 
single p-form gauge field. The results are then extended to an arbitrary system of p- 
form gauge fields in Sect. 8. The invariant cohomology is analyzed in Sect. 9. Section 
l0  discusses in detail the cohomological groups H*(51d) ,  which play a key role in the 
calculation of  the local BRST cohomological groups H * ( s ] d ) .  In Sect. 1 l, we show 
that the existence of  representatives expressible in terms of  the H a ' s  does not extend to 
the characteristic cohomology in form degree n - 1, by exhibiting an infinite number 
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of (inequivalent) conserved currents which are not of that form. We show next in Sect. 
12 that the results on the free characteristic cohomology in degree < n - 1 can be 
generalized straightforwardly if one adds to the free Lagrangian (1.10) gauge invariant 
interaction terms that involve the fields B~l...#p~ and their derivatives only through the 
gauge invariant field strength components and their derivatives (which are in general the 
only consistent interactions that one can add). We conclude in Sect. 13 by summarizing 
our results and indicating future lines of research. 

We assume throughout this paper that spacetime is the n-dimensional Minkowski 
space, so that the indices in (1.10) are raised with the inverse ~/~' of the fiat Minkowski 
metric ~v -  However, because of their geometrical character, our results generalize 
straightforwardly to curved backgrounds. 

2. Results 

2.1. Characteristic cohomologyo The equations of motion (1.13) can be rewritten as 

d H  ~ ~ 0 (2.1) 

in terms of the (n - p a  - 1)-forms ~ a  dual to the field strengths. It then follows that any 
polynomial in the H~'s  is closed on-shell and thus defines a cocycle of the characteristic 
cohomology. 

The remarkable feature is that these polynomials are not only inequivalent in co- 
homology, but also completely exhaust the characteristic cohomology in form degree 
strictly smaller than n - 1. Indeed, one has: 

Theorem 2.1. Let ~ be the algebra generated by the -~a's and let V be the subspace 
containing the polynomials in the -H~ 's with no term of form degree exceeding n - 2. 
The subspace V is isomorphic to the characteristic cohomology inform degree < n - 1. 

We stress again that the theorem does not hold in degree n - 1 because there exist 
conserved currents not expressible in terms of the ~a,s .  

Since the form degree is limited by the spacetime dimension n, and since ~ a  has 
form degree n - Pa - 1, which is strictly positive (as explained in the introduction, we 
assume n - pa - 1 > 0 for each a), the algebra 7-/is finite-dimensional. In that algebra, 
the ~ a  with even n - Pa - 1 commute with all the other generators, while the H~ with 
odd n - Pa - 1 are anticommuting objects. 

2.2. Invariant characteristic cohomology. While the cocycles of Theorem 2.1 are all 
gauge invariant, there exists coboundaries of the characteristic cohomology that are 
gauge invariant, i.e., that involve only the field strength components and their derivatives, 
but which cannot, nevertheless, be written as coboundaries of gauge invariant local forms, 
even weakly. Examples are given by the field strengths H a = dB a themselves. For this 
reason, the invariant characteristic cohomology and the characteristic cohomology do not 
coincide. We shall denote by 7-/the finite-dimensional algebra generated by the (Pa + 1)- 
forms H a, and by ,.7 the finite-dimensional algebra generated by the field strengths H a 
and their duals ~ a .  One has 
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Theorem 2.2. Let kV be the subspace o f  J containing the polynomials in the H ~ 's and 

the ~ a  ' s with no term o f  form degree exceeding n - 2. The subspace 14; is isomorphic 
to the invariant characteristic cohomology in form degree < n - 1. 

Our paper is devoted to proving these theorems. 

2.3. Cohomologies in algebra o f  x-independent forms. The previous theorems hold as 
they are formulated in the algebra of local forms that are allowed to have an explicit x- 
dependence. The explicit x-dependence enables one to remove the constant k-forms (k > 
0) from the cohomology, since these are exact, ci, i2...ik dxi' dxi2 �9 �9 dxik = d(ci, ~2...i~ x ~ 
dx ~ . . .  dx  ik). If one restricts one's attention to the algebra of local forms with no explicit 
dependence on the spacetime coordinates, then, one must replace in the above theorems 
the polynomials in the curvatures and their duals with coefficients that are numbers 
by the polynomials in the curvatures and their duals with coefficients that are constant 

exterior forms.  
Note that the constant exterior forms can be alternatively gotten rid of without intro- 

ducing an explicit x-dependence, by imposing Lorentz invariance (there is no Lorentz- 
invariant constant k-form for 0 < k < n). 

3. Koszul-Tate Complex 

The definition of the cocycles of the characteristic cohomology H~h~(d)  involves 
"weak" equations holding only on-shell. It is convenient to replace them by "strong" 
equations holding everywhere in field space, and not just when the equations of mo- 
tion are satisfied. The reason is that the coefficients of the equations of motion in the 
conservation laws are not arbitrary, but are subject to restrictions whose analysis yields 
useful insight on the conservation laws themselves. From this point of view, Eq. (1.4) 
involving the coefficients A im~*j is a more interesting starting point than Eq. ( 1.3). One 
useful way to replace weak equations by strong equations is to introduce the Koszul-Tate 
resolution associated with the equations of motion (1.13). 

The details of the construction of the Koszul-Tate differential 5 can be found in 
[30]. Because the present theory is reducible, we must introduce the following set of 
BV-antifields [31]: 

B'am...#,=, B ' am .- .upa- , , . . . ,  B*~u,, B *~. (3.1) 

The Grassmann parity and the antighost number of the antifietds B *am'f*v~ associated 
with the fields B a are equal to 1. The Grassmann parity and the antighost number I~1...IZpa 

of the other antifields is determined according to the following rule. As one moves from 
one term to the next one to its right in (3.1), the Grassmann parity changes and the 
antighost number increases by one unit. Therefore the parity and the antighost number 
of a given antifield B * a m u p - ,  are respectively j + 1 modulo 2 and j + 1. 

The Koszul-Tate differential acts in the algebra 7) of local exterior forms. By deft- 
nition, a local exterior form co reads 

CO = E CO gi ""t* j d x l X l  " " " d x l X  Y : (3.2) 

where the coefficients cat, l...t,j are smooth functions of the coordinates x u, the fields 
B a the antifields (3.1), and their derivatives up to a finite order. Although this is 
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not strictly necessary, we shall actually assume polynomiality in the fields, the antifields 
and their derivatives, as this is the situation encountered in field theory. 

The Koszul-Tate differential is defined by its action on the fields and the antifields 
as follows: 

5B~,...u~o = O, (3.3) 

5B *am'''upa = OpH apul"''up~', (3.4) 

5B*at~,...t~p~-, = OpB *apm'''up~-', (3.5) 

5B *au' = OpB *apm, (3.6) 

6B a* = OpB *ap. (3.7) 

Furthermore we have, 

5x u = O, 5(dx t~) = O. 

The action of 5 is extended to an arbitrary element in 7 9 by using the rule 

(3.8) 

50~ = 0~6, (3.9) 

and the fact that 5 is an odd derivation which we take here to act from the left, 

5(ab) = (~a)b + (-)C~ (3.10) 

In 3.10, ea is the Grassmann parity of the (homogeneous) element a. These rules make 
5 a differential and one has the following important property [32, 33, 30, 34]: 

Theorem 3.1. Hi(5) = O for i > 0, where i is the antighost number, i.e, the cohomology 
of 5 is empty in antighost number strictly greater than zero. 

One can also show that in degree zero, the cohomology of 5 is the algebra of "on- 
shell functions" [32, 33, 30, 34]. Thus, the Koszul-Tate complex provides a resolution 
of that algebra. For the reader unaware of the BRST developments, one may view this 
property as the motivation for the definitions (3.3) through (3.7). 

One has a similar theorem for the cohomology of the exterior derivative d (for which 
we also take a left action, d(ab) = (da)b + (-)C~ 

Theorem 3.2. The cohomology of d in the algebra of local forms is given by, 

H~ "~ R, 

Hk(d) = O f o r k  5~ O, k 4 n, 

Hn(d) "~ space of equivalence classes of local forms, 

(3.11) 
(3.12) 
(3.13) 

where k is the form degree and n the spacetime dimension. In (3.13), two local forms 
are said to be equivalent if and only if they have identical Euler-Lagrange derivatives 
with respect to all the fields and the antifields. 
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Proof This theorem is known as the algebraic Poincar6 Lemma. For various proofs, see 
[2, 35, 36, 37]. It should be mentioned that the theorem holds as such because we allow 
for an explicit x-dependence of the local exterior forms (3.2). If the local forms had no 
explicit x-dependence, then (3.12) would have to be amended as 

Hk(d)  ~ {constant forms} for k ~/0, k ~ n, (3.14) 

where the constant forms are by definition the local exterior forms (3.2) with constant 
coefficients. We shall denote in the sequel the algebra of constant forms by A* and 
the subspace of constants forms of degree k by A k. The following formulation of the 
Poincar~ lemma is also useful. [] 

Theorem 3.3. Let a be a local, closed k-form ( k < n)  that vanishes when the fields and 
the antifields are set equal to zero. Then, a is d-exact. 

Proof The condition that a vanishes when the fields and the antifields are set equal to 
zero eliminates the constants. 

This form of the Poincar6 lemma holds in both the algebras of x-dependent and 
x-independent local exterior forms. [] 

4, Characteristic Cohomology and Koszul-Tate Complex 

Our analysis of the characteristic cohomology relies upon the isomorphism established 
in [9] between H~ha~(d) and the cohomology H*(d[d) of 3 modulo d. The cohomology 
H#(rld)  in form degree k and antighost number i is obtained by solving in the algebra 

of local exterior forms the equation, 

6a ki + dbik_-~ = 0, (4.1) 

and by identifying solutions which differ by &exact and d-exact terms, i.e, 

k Ik k k-1  
+ oni-+l + drn i . ai ~,o ai -_ ai (4.2) 

One has 

Theorem 4.1. 

Hkh~r(d) ~ H~_h(~ld), 0 < k < n, (4.3) 

H~ ~ H~(6[d), (4.4) 
R 

0 ~ H~+k(61d), k > 0. (4.5) 

Proof  Although the proof is standard and can be found in [37, 9], we shall repeat it 
explicitly here because it involves ingredients which will be needed below. Let c~ be a 
class of H)har(d) (k < n) and let a0 k be a representative of c~, c~ = [a0k]. One has 

6a k+' + da~ = 0 (4.6) 

for some a~ +1 since any antifield-independent form that is zero on-shell can be written 
as the ~ of something. By acting with d on this equation, one finds that da k§ is &closed 
and thus, by Theorem 3.1, that it is &exact, 6a k+2 + da k+l = 0 for some a k+2. One can 
repeat the procedure until one reaches degree n, the last term a~_~ fulfilling 
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5a~_ k + dan_ l_  = O, (4.7) 

and, of course, dan_ k = 0 (it is a n-form). For future reference we collect all the terms 
appearing in this tower of  equations as 

a k _ n n - 1  -4- al  k+l 
-- a n _  k + a n _ l _  k + . . .  + a k. (4.8) 

Equation (4.7) shows that an k is a cocycle of  the cohomology of 6 modulo d, in 
form-degree n and antighost number n - k. Now, given the cohomological class a of  
H~ha,.(d), it is easy to see, using again Theorem 3.1, that the corresponding element 
a n _ k  is well-defined in H~_k(JId) .  Consequently, the above procedure defines an non- 

ambiguous map m from H)har(d) to H~_k(Jld) .  
This map is surjective. Indeed, let an_ k be a cocycle of  Hg_k(Jld). By acting with 

d on Eq. (4.7) and using the second form of the Poincar6 lemma (Theorem 3.3), one 
finds that ann-l-k- 1 is also J-closed modulo d. Repeating the procedure all the way down 

to antighost number zero, one sees that there exists a cocycle a0 k of  the characteristic 
cohomology such that m([a0 k]) = [a n_k ]" 

The map m is not quite injective, however, because of  the constants. Assume that 
a0 k is mapped on zero. This means that the corresponding an_ k is trivial in Hn_k(JId),  

i.e., an_ k n  = Jbn_k+ln  + ~'4bn-ln-k" Using the Poincar6 lemma (in the second form) one then 
finds successively that a n - I  . . .  up to a~ +1 n -k -1  are all trivial. The last term a0 k fulfills 

da~ + Jdb~ = 0 and thus, by the Poincar6 lemma (Theorem 3.2), a0 k = Jb~ + db~ -1 + c k. 
In the algebra of  x-dependent local forms, the constant k-form c k is present only if 
k = 0. This establishes (4�9 and (4�9 That H,~(J[d) vanishes for ra > n is proved in 
[34]. [] 

The proof  of  the theorem shows also that (4.3) holds as such because one allows for 
an explicit x-dependence of the local forms. Otherwise, one must take into account the 
constant forms c k which appear in the analysis of  injectivity and which are no longer 
exact even when k > 0, so that (4.3) becomes 

k 
H~ha"(d) ~ H~_k(J[d),  (4.9) 

A k - 

while (4.4) and (4.5) remain unchanged. 

5. Characterist ic  Cohomology  and C o h o m o l o g y  of  .4 = 6 + d 

It is convenient to rewrite the Koszul-Tate differential in form notations�9 Denoting the 
duals with an overline to avoid confusion with the antifield *-notation, and redefining 
the antifields by appropriate multiplicative constants, one finds that Eqs. (3.4) through 
(3.7) become simply 

I ~ r  a 

~B 1 + d H  a = O, 

6B 2 + d B  I = 0, 

~Bp,~+ 1 + d B p ~  = O. 

(5.1) 



1 4 6  M .  H e n n e a u x ,  B .  K n a e p e n ,  C .  S c h o m b l o n d  

- - $ a  - ~ " -  E l * a / y . |  . I[~p ~-I j . . T h e f o r m B j  dual to the antisymmetrlc tensor aenslty D "" ~ - (j = 1, . , p a + l )  
has (i) form degree equal to n - pa - 1 + j ;  and (ii) antighost number equal to j .  Since 
B*~U~...t,,~+,-j has Grassmann parity j and since the product of  (n - Pa - 1 + j )  dx 's  

has Grassmann parity n - p~ - 1 + j ,  each B ; a  has same Grassmann parity n - Pa - 1 

(modulo 2), irrespective o f j .  This is the same parity as that of  the n - p~ - 1-form H "  
dual to the field strengths. 

Equation (5.1) can be rewritten as 

A/7/a = 0 (5.2) 

with 

and 

A = ~ + d  (5.3) 

pa+l 

~ ( 5 . 4 )  

j = l  

The parity of  the exterior form/~a is equal to n - p a  - 1. The regrouping of physical fields 
with ghost-like variables is quite standard in BRST theory [38]. Expressions similar (but 
not identical) to (5.4) have appeared in the analysis of  the Freedman-Townsend model 
and of string field theory [39, 40], as well as in the context of topological models [41, 42]. 
Note that for a one-form, expression (5.4) reduces to Ey. (9.8) of  [14]. Quite generally, 
it should be noted that the dual ~ a  to the field strength H a is the term of lowest form 
degree in/7/% It is also the term of lowest antighost number, namely, zero. At the other 

end, the term of  highest form degree i n / J ~  is B;~+I, which has form degree n and 
antighost number p~ + 1. If  we call the difference between the form degree and the 
antighost number the "A-degree", all the terms present in the expansion of  H a have the 
same A-degree, namely n - pa - 1. 

The differential A = ~ + d enables one to reformulate the characteristic cohomology 
as the cohomology of A. Indeed one has 

Theorem 5.1. The cohomology o f  A is isomorphic to the characteristic cohomology, 

H k ( A )  ~_ Hkhar(d), 0 < k < n (5.5) 

where k in Hk (  A )  is the A-degree, and in Hkchar(d) is the form degree. 

Proof. Let ao k (k < n) be a cocycle of  the characteristic cohomology. Construct a k as in 
the proof of  Theorem 4. l, formula (4.8). The form a k is easily seen to be a cocycle of A, 
Aa  k = 0, and furthermore, to be uniquely defined in cohomology given the class of a0 k. 
We leave it to the reader to check that the map so defined is both injective and surjective. 
This proves the theorem for k < n. For k = n, the isomorphism of  H ~ ( A )  and H~,~ (d )  

is even more direct (da~ = 0 is equivalent to Aa~ = 0 and a~ = db~-1 +Sb~ is equivalent 

to a~ = A(b~ ~-1 + b~)). [] 

Our discussion has also established the following useful rule: the term of lowest 
form degree in a A-cocycle a is a cocycle of  the characteristic cohomology. Its form 
degree is equal to the A-degree k of  a. For a = [ ta ,  this reproduces the rule discussed 
above Theorem 5.1. Similarly, the term of highest form degree in a has always form 
degree equal to n if a is not a A-coboundary (up to a constant), and defines an element 
of  g ~  k(Sld). 
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Because A is a derivation, its cocycles form an algebra. Therefore, any polynomial in 
t h e / ~  is also a A-cocycle. Since the form degree is limited by the spacetime dimension 
n, and since the term ~ a  with minimum form degree in Ha  has form degree n - p~ - 1, 
which is strictly positive, the algebra generated by the/_)a is finite-dimensional. We shall 
show below that these A-cocycles are not exact and that any cocycle of form degree 
< n - 1 is a polynomial in the ~ a  modulo trivial terms. According to the isomorphism 
expressed by Theorem 5.1, this is equivalent to proving Theorem 2.1. 

Remarks. (i) The A-cocycle associated with a conserved current contains only two 
terms, 

a = a~ + a~ -1, (5.6) 

n-1 is the dual to the conserved current in question. The product of such a A- where a 0 
cocycle with a A-cocycle of A-degree k has A-degree n - 1 + k and therefore vanishes 
unless k = 0 or 1. 
(ii) It will be useful below to introduce another degree N as follows. One assigns N-  
degree 0 to the undifferentiated fields and N-degree 1 to all the antifields irrespective 
of their antighost number. One then extends the N-degree to the differentiated variables 
according to the rule N(Ou~) = N(~)  + 1. Thus, N counts the number of derivatives 
and of antifields. Explicitly, 

N = Z Na (5.7) 
a 

with 

Na = ~-~ [(IJl ~-~ OjB~ O-~  +(IJl+ l) ~ Od~*~aOj~a], (5.8) 
J i J i 

where (i) the sum over J is a sum over all possible derivatives including the zeroth order 
one; (ii) IJI is the differential order of the derivative Oj (i.e., ]JI = k for 0m...uk); (iii) 
the sum over i stands for the sum over the independent components of Ba; and (iv) the 
sum over c~ is a sum over the independent components of all the antifields appearing in 
the tower associated with B ~ (but there is no sum over the p-form species a in (5.8)). 
The differential 5 increases N by one unit. The differentials d and A have in addition an 
inhomogeneous piece not changing the N-degree, namely dx~'(Oe~pUc~t/OxU), where 
O~pu~it/Ox ~ sees only the explicit xU-dependence. The forms/1~ have N-degree equal 
to one. 

6. Acyclicity and Gauge Invariance 

6.1. Preliminary results. Under the gauge transformations (1.14) of the p-form gauge 
fields, the field strengths and their derivatives are gauge invariant. These are the only 
invariant objects that can be formed out of the "potentials" B a and their deriva- 

Idl " " ~ P a  

rives. We shall denote by ZSmaU the algebra of local exterior forms with coefficients 
wm...t,J that depend only on the field strength components and their derivatives (and 
possibly x~). The algebras 7-/, 7-/and f f  respectively generated by the (pa + 1)-forms 
H a, (n - Pa - 1)-forms H~ and ( H  a, H~) are subalgebras of ~-'Small. Since the field 
equations are gauge invariant and since d maps Zsm~u on ZSmatt, one can consider 
the cohomological problem (1.6), (1.7) in the algebra ZSmaU. This defines the invariant 

* i n v  characteristic cohomology H c ~ r  (d). 
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It is natural to decree that the antifields and their derivatives are also invariant. This 
can be more fully justified within the BRST context, using the property that the gauge 
transformations are abelian, but here, it can simply be taken as a useful, consistent 
postulate. With these conventions, the differentials 6, d and A map the algebra Z of 
invariant polynomials in the field strength components, the antifield components and 
their derivatives on itself. Clearly, Zs,~au C Z. The invariant cohomologies H*'inv(z~) 
and H~'inv(51d) are defined by considering only local exterior forms that belong to Z. 

In order to analyze the invariant characteristic cohomology and to prove the non- 
triviality of the cocycles listed in Theorem 2.1, we shall need some preliminary results 
on the invariant cohomologies of the Koszul-Tate differential 6 and of d. 

The variables generating the algebra T' of local forms are, together with x ~' and dx  ~, 

B a l ,  t...I,~,~ , OpBat~, . . . , ~ , = ,  �9 �9 �9 , B *ap' . . . , p = _ m ,  OpB*al~l . . . ,p~ - ~ ,  . . . , B ' a ,  O p B  *a ' . . . .  

These variables can be conveniently split into two subsets. The first subset of genera- 
tors will be collectively denoted by the letter X- They are given by the field strengths 
(Ham ...u,=+, ) and their derivatives, the antifields and their derivatives. The field strengths 
and their derivatives are not independent, since they are constrained by the identity 
d H  ~ = 0 and its differential consequences, but this is not a difficulty for the consider- 
ations of this section. The X'S are invariant under the gauge transformations and they 
generate the algebra 27 of invariant polynomials. In order to generate the full algebra 

we need to add to the X'S some extra variables that will be collectively denoted g'. 
The ~ ' s  contain the field components B a~*l'''**,~ and their appropriate derivatives not 
present in the X'S. The explicit form of the ~P's is not needed here. All we need to know 
is that the ~ ' s  are algebraically independent from the X's and that, in conjunction with 
the X'S, they generate 5 D. 

Theorem 6.1. Let a be a polynomial in the X: a = a(x). I f  a = 5b, then we can choose 
b such that b = b(x). In particular, 

H~nv(5) ~- O fo r  j > 0. (6.1) 

Proof We can decompose b into two parts: b = b + ~, with b = b(x) = b(~ = 0) 

and ~ = ~ , ~  R m ( x ) S m ( ~ ) ,  where Sm(k~) contains at least one ~P. Because 6~P = 0, 

we have, 5(b + b) = 5-b(x) + ~ , ~  5Rm(X)Sm(~) .  Furthermore if M = M(X) ,  then 
6M(x)  = (SM)(x). We thus get, 

a(x  ) = (Sb)(x) + ~ ( ~ R m ) ( X ) S m ( k ~ ) .  
m 

The above equation has to be satisfied for all the values of the ~P's and in particular for 
= 0. This means that a(x)  = (Sb)(x) = ~b(x). [] 

Theorem 6.2. Let ~ k  be the subspace ofform degree k o f  the finite dimensional algebra 
7-I o f  polynomials in the curvature (Pa + 1)-forms H a, TI = Gk T-I k. One has 

k , i n v  H~ (d) = 0, k < n, j > 0 (6.2) 

and 
k , i n v  H~ (d) = 7-/k, k < n. (6.3) 
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Thus, in particular, i f  a = a(x) with da = O, antighost a > 0 and deg a < n, then a = db 
with b = b(x). And if  a has antighost number zero, then a = P ( H  a) + db, where P ( H  a) 
is a polynomial in the curvature forms and where b c ZSmaU. 

Proof The theorem has been proved in [36, 43] for 1-forms. It can be extended straight- 
forwardly to the case of p-forms of  odd degree. The even degree case is slightly different 
because the curvatures (p + D-forms H a are then anticommuting. It is fully treated in 
Appendix A. I f  the local forms are not taken to be explicitly x-dependent,  Eq. (6.3) must  
be replaced by 

k , i n v  
H 0 (d) = (A | H)  k. (6.4) 

[] 

6.2. Gauge invariant 6-boundaries modulo d. We assume in this section that the anti- 
symmetric tensors B a have all the same degree p. This covers, in particular, the 
case of  a single p-form. 

Theorem 6.3. (Valid when the B a 's have all the same form degree p). Let a~ = 
aq(X) E Z be an invariant local n-form o f  antighost number q > O. I f  aq is 5-exact 

n n n - - 1  modulo d, aq = 5Pq+t + dpq , then one can assume that #q+t and # q - t  only depend 

on the X'S, i.e., are invariant (#qn+t and pq-1 C Z). 

Proof The proof  goes along exactly the same lines as the proof  of  a similar statement 
made in [14] (Theorem 6. l)  for 1-form gauge fields. Accordingly, it  will not be repeated 
here 2 . [] 

Remark. The theorem does not hold if  the forms have various formdegrees  (see Theorem 
10.1 below). 

7. Characteristic Cohomology for a Single p-Form Gauge Field 

Our strategy for computing the characteristic cohomology is as follows. First, we com- 
pute H,~(~ld) (cocycle condition, coboundary condition) for a single p-form. We then 
use the isomorphism theorems to infer H'hat(d) .  Finally, we solve the case of  a system 
involving an arbitrary (but finite) number of  p-forms of  various form degrees. 

7.1. General theorems. Before we compute H~.(61 d) for a single abelian p-form gauge 
field B m ..up, we will recall some general results which will be needed in the sequel. 
These theorems hold for an arbitrary linear theory of  reducibili ty order p - 1. 

Theorem 7.1. For a linear gauge theory o f  reducibility order p-1, one has, 

H~(~ld)  =0,  j > p +  1. (7.1) 

2 We shall just mention a minor point that has been overlooked in the proof of Theorem 6.1 of [14], namely, 
that when p = 1 in Eq. (6.4) of [14], the form Z ~ need not vanish (in the notations of [14]). However, this 
does not invalidate the fact that one can replace Z ~. X~, etc. by invariant polynomials as the recurrence used 
in the proof of [14] and the absence of invariant cohomology for d in form degree one indicate. This is just 
what is needed for establishing the theorem. 
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Proof See [9], Theorem 9.1. See also [1, 2, 3]. [] 

Theorem 7.1 is particularly useful because it limits the number of potentially non- 
vanishing cohomologies. The calculation of  the characteristic cohomology is further 
simplified by the following theorem: 

Theorem 7.2. Any solution of  ~a + Opb p = 0 that is at least bilinear in the antifields is 
necessarily trivial. 

Proof See [9], Theorem 11.2. [] 

Both theorems hold whether the local forms are assumed to have an explicit x- 
dependence or not. 

7.2. Cocycles of  H~+ 1 (3[d). We have just seen that the first potentially non-vanishing 
cohomological group is Hp+l(3ld). We show in this section that this group is one- 
dimensional and provide explicit representatives. We systematically use the dual nota- 
tions involving divergences of antisymmetric tensor densities. 

Theorem 7.3. H~+~(81d) is one-dimensional. One can take as representatives of the 
cohomological classes a = kB*, where B* is the last antifield, of  antighost number 
p + 1 and where k is a number. 

Proof Any polynomial of  antighost number p + 1 can be written a = f B *  + fPOp13* + 
. . .  + #, where f does not involve the antifields and where # is at least bilinear in the 
antifields. By adding a divergence to a, one can remove the derivatives of  B*, i.e., one 
can assume fP = fo~ . . . . .  0. The cocycle condition da + Opb p = 0 implies then 
- O p f  B*P + ~iz + Op(b p + f B *o) = O. By taking the Euter-Lagrange derivative of this 
equation with respect to B *p, one gets 

p 5LP 
- O p f + ~ ( ( - 1 )  ~-2-~)  = 0. (7.2) 

This shows that f is a cocycle of  the characteristic cohomology in degree zero since 
d(anything of  antighost number one) m 0. Furthermore, if f is trivial in H~ then 
a can be redefined so as to be at least bilinear in the antifields and thus is also trivial in 
the cohomology of  d modulo d. Now, the isomorphism of H~ with H~(~[d) 
implies f = k + ~g with k a constant (Hn~(3td) = 0 because n > p + 1). As we pointed 
out, the second term can be removed by adding a trivial term, so we may assume f = k. 
Writing a = kB* + #, we see that p has to be a solution of  d# + Opb ~p = 0 by itself and is 
therefore trivial by Theorem 7.2. So Hp+ 1 (dl d) can indeed be represented by a = kB*. 

In form notations, this is just the n-form kB;+ l . Note that the calculations are true both 
in the x-dependent and x-independent cases. 

To complete the proof of the theorem, it remains to show that the cocycles a = L'B*, 
which belong to the invariant algebra 27 and which contain the undifferentiated antifields, 
are non-trivial. I f  they were trivial, one would have according to Theorem 6.3, that 
B;+I = (Su + dv for some u, v also in 2-. But this is impossible, because both 3 and 

d bring in one derivative of the invariant generators X while B;+l  does not contain 
derivatives of  X. [This derivative counting argument is direct if u and v do not involve 
explicitly the spacetime coordinates x ~. If  they do, one must expand u, v and the equation 
B;+i = c~u + dv according to the number of  derivatives of  the fields in order to reach 
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the conclusion. Explicitly, one sets u = uo + . . .  + uk,  v = vo + . . .  + vk,  where k 
counts the number of derivatives of  the H~,,...u~§ and of  the antifields. The condition 

-Bp+1 = 5u + dv implies in degree k + 1 in the derivatives that 5Uk + d'vk = 0, where 
d' does not differentiate with respect to the explicit dependence on x t'. This relation 
implies in turn that uk is 5-trivial modulo d'  since there is no cohomology in antighost 
number p + 2. Thus, one can remove uk by adding trivial terms. Repeating the argument 
for uk -  1, and then for Uk-2, etc., leads to the desired conclusion.] [] 

7.3. Cocycles o f  H~(51d) with i < p. We now solve the cocycle condition for the 
remaining degrees. First we prove 

Theorem 7.4. Let K be the greatest integer such that n - K ( n  - p - 1) > 1. The 
cohomological groups H~(Sld) (j  > 1) vanish unless j = n - k (n  - p - 1), k = 
1 , 2 , . . . ,  K.  Furthermore, for  those values o f  j ,  Hy(Sld) is at most  one-dimensional. 

Proof  We already know that Hn(5ld)  is zero for j > p + 1 and that H~+l(51d ) is one- 
dimensional. Assume thus that the theorem has been proved for all 3 s strtctly greater 
than J < p + 1 and let us extend it to J .  In a manner analogous to what we did in the 
proof of  Theorem 7.3, we can assume that the cocycles of n~(51d) take the form 

f~l...~p§ J B * ~ ~ §  +/z, (7.3) 

where f.,...up+,_j does not involve the antifields and defines an element of  H p ~ I S ( d ) .  
Furthermore, if f.,....p+~_ j is trivial, then the cocycle (7.3) is also trivial. Now, using the 

isomorphism Hv~s J (d) ~- H~_ v_ ~+g (51d) (p+ 1 - J > 0), we see that f is trivial unless 
j '  = n - p -  1 +.J, which is strictly greater than J and is of the form j '  = n - k ( n - p -  1 ). In 
this case, H~  is at most one-dimensional. Since J = j ' -  ( n - p -  1) = n -  (k+ 1 ) ( n - p -  1) 
is of the required form, the property extends to J .  This proves the theorem. [] 

Because we explicitly used the isomorphism HP~h~d(d) ~ n~n_p_~+j(5ld), which 
holds only if the local forms are allowed to involve explicitly the coordinates x~', the 
theorem must be amended for x-independent local forms. This will be done in Sect. 7.5. 

Theorem 7.4 goes beyond the vanishing theorems of  [1, 2, 3, 9] since it sets further 
cohomological groups equal to zero, in antighost number smaller than p + 1. This is 
done by viewing the cohomological group H~(51d) as a subset of  H~_v_l+~(51d) at a 
higher value of  the antighost number, through the form (7.3) of  the cocycle and the 
isomorphism between H P ~ i ( d )  and Hn_p_l+i(5ld). In that manner, the known zeros 
at values of  the ghost number greater than p + 1 are "propagated" down to values of  the 
ghost number smaller than p + 1. 

To proceed with the analysis, we have to consider two cases: 

(i) Case I: n - p - 1 is even. 
(ii) Case II: n - p - 1 is odd. 

We start with the simplest case, namely, Case I. In that case, / : / is  a commuting object 
and we can consider its various powers (/~)k, k = 1 , 2 , . . . ,  K with K as in Theorem 7.4. 
These powers have A-degree k(n  - p -  1). By Theorem 5.1, the term of form degree n in 
(/:/)k defines a cocycle of  H,~_ k(n-p-  1)(SId), which is non-trivial as the same invariance 

argument used in the previous subsection indicates. Thus, H~_ k(n-p-~)(5ld), which we 
know is at most one-dimensional, is actually exactly one-dimensional and one may take 
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as representative the term of  form degree n in ( ~ ) k .  This settles the case when n - p  - 1 
is even. 

In the case when n - p -  1 is odd, t7t is an anticommuting object and its powers (/7/)k, 
k > 0 all vanish unless k = 1. We want to show that H2_  k(n--p- 1)(~1 d) similarly vanishes 

unless k = 1. To that end, it is enough to prove that H.'~_2(~_p_l)(Sld) = H~p+2_,~(~ld) = 
0 as the proof  of  Theorem 7.4 indicates (we assume, as before, that 2p + 2 - n > 1 
since we only investigate here the cohomological  groups H~(3ld)  with i > 1). Now, as 
we have seen, the most general cocycle in H~p+2_,~(61d) may be assumed to take the 
form a = fl~p+2...l~,~B *"p§ + It, where # is at least quadratic in the antifields and 

H "  p--1 where fu~+2...~.~ does not involve the antifields and defines an element  of ~h~ (d). 
But r r n - P - I  ~ h = ~  (d) _~ Hff+l(~ld) is one-dimensional and one may take as representative 

of  H~h~P~-l(d) the dual k % , . . . # H  m'''"~§ of the field strength. This means that a is 
necessarily of  the form, 

a = k ~ # l . ,  . ~ n  H # I  4s Bg<#P+2 "" lLn "~ ]~3 (7.4) 

and the question to be answered is: for which value of k can one adjust # in (7.4) so that 

kem...un Hm'"u,+' aB*U~§ t*'~ + @ + Opb ~ = 0? (7.5) 

In (7.5), # does not contain B *~,+2'''"~ and is at least quadratic in the antifields. Without 
loss of generality, we can assume that it is exactly quadratic in the antifields and that it 
does not contain derivatives, since ~ and 0 are both linear and bring in one derivative. 
[That p can be assumed to be quadratic is obvious. That it can also be assumed not 
to contain the derivatives of  the antifields is a little bit less obvious since we allow for 
explicit  x-dependence,  but can be easily checked by expanding p and b p according to 
the number of  derivatives of  the variables and using the triviality of  the cohomology of  

modulo d in the space of  local forms that are at least quadratic in the fields and the 
antifields.] Thus, we can write 

R ~ r  "" " U p  j ~ * ~ p + l  -" . P n  
/.L = O'p, 1 . . . # n ~ ( 1 )  ~ ( 2 p + l - - n )  + / A t  

where # '  involves neither B ( ~ . ~ : ~  n nor B(*~.+l ' ' ~ n  We have explicit ly indicated the 
t P  - t P  --  ' . . . .  

antighost number in parentheses m order to keep track of  it. Inserting this form of/* in 
(7.5) one finds that cr m . ~ ,  is equal to ket, 1...~. if 2p + 1 - n > 1 (if  2p + l - n = l ,  

�9 �9 * n �9 up.-.. R*up-~...un etc f r o m p ,  so see below). One can then successwely ehmlnate B(2p_,~ ) , --(ep-,~-1) ' " 

that the question ult imately boils down to: is 

~[~*fLl .. , p j  ,~ j ~ * P j + I  . - -p2j  
]s162 .. "P23 ~ ( p + l  - - j )  " ~ ( p + l  - - j )  

(n even = 2 j )  or 
,g r ~ * / ~ l  .. ./z3+l r r~*/~3+2..-/~2j+l 

IE/zj . . . /z2j+l D ( p _ j )  OD(p+l_j)  

(n odd = 23 + 1) &exact  modulo d, i.e., o f  the form cSv + OpeV, where v does not involve 
the antifields B* for s > p + 1 - j (n even) or s > p - j (n odd)? That the answer to this 
question is negative unless k = 0 and a accordingly trivial, which is the desired result, is 
easily seen by trying to construct explicit ly v. We treat for definiteness the case n even 
(n = 2j) .  One has 

/ /  _-- /~/z 1 /j,2j R * # l ' " / z J  R */z3+1' ' ' /~23 
--- ~ ( p + l - - j )  ~ ( p + l - - j )  
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where )~/Zl ...t`2j is antisymmetric (respectively symmetric) for the exchange of  (/Z 1 . . .  ~ j )  

with (#j+l -. �9 #2j) i f j  is even (respectively odd) (the j - fo rm B~p+l-j) is odd by assump- 

tion and this can happen only if the components ~(p+l-j)n*mm are odd for j even, or even 
for j odd). From the equation 

]g,: /:~*/*1 ...t`4 .g j~*t`a+1 ...t`a.j 
~,/Z1"',[~23 ~(p+l-- j )  ~ ( p + l - - j )  = ~b' + OpCP~ 

one gets 

(7.6) 

~ * ~ l . . . t ` j ~  jET~*Pt`34-1"*t`2j =2At`, 1,2jB * t ` l " ' ' t `~  /:~*pt`j+l...t`2j +OqpCp" (7.7) 
ket`l ...t`23 ~(p+l-- j )  ~P~(p- - j )  ... (p+l--j) ~P~(,p--j)  

r~*u, ...m yields Taking the Euler-Lagrange derivative of  this equation with respect to - (p+l - j )  
next 

~' ' t ` l . .  "t`23 ] ~P~(p- - j )  = O~ 

which implies k%l...mj = 2Am...mj. This contradicts the symmetry properties of  
At,,...m~, unless k = 0, as we wanted to prove. 

7.4. Characteristic Cohomology. By means of  the isomorphism theorem of  section 4, 
our results on H2(51d) can be translated in terms of the characteristic cohomology as 
follows: 

(i) If  n - p - 1 is odd, the only non-vanishing group of the characteristic cohomology 
n--p--1 in form degree < n - 1 is Hchar (d), which is one-dimensional. All the other 

groups vanish. One may take as representatives for H~h-~- l (d)  the cocycles k H .  
Similarly, the only non-vanishing group Hi(A) with j < n - 1 is H ' ~ - P - a ( A )  
with representatives k/7/and the only non-vanishing group H~(5]d) with i > 1 is 

H~+ 1 (61d) with representatives kB~+ 1. 
(ii) If  n - p - 1 is even, there is further cohomology. The degrees in which there is 

non-trivial cohomology are multiples of  n - p - 1 (considering again values of the 
form degree strictly smaller than n - 1). Thus, there is characteristic cohomology 
only in degrees n - p - 1, 2(n - p - 1), 3(n - p - 1), etc. The corresponding groups 
are one-dimensional and one may take as representatives kH, k(-H) z, k(H)  3, etc. 
There is also non-vanishing ALcohomology for the same values of  the A-degree, 
with representative cocycles given by k H ,  k( / ] )  2, k ( / ] )  3, etc. By expanding these 
cocycles according to the form degree and keeping the terms of  form degree n, one 
gets representatives for the only non-vanishing groups n~(51d) ( with i > 1), which 
are respectively Hp+ 1 (S I d), Hp+ l_(n_p_ 1), Hp+1-2(n-p-I) ,  etc. 

An immediate consequence of our analysis is the following useful theorem: 

Theo rem 7.5. If the polynomial Pk( H) of form degree k < n in the curvature (p + 1)- 
form H is &exact modulo d in the invariant algebra Z, then pa( H) = O. 

Proof The theorem is straightforward in the algebra of x-independent local forms, as a 
direct derivative counting argument shows. To prove it when an explicit x-dependence is 
allowed, one proceeds as follows. I fpk(H)  = 5akl +da~ -1 where al k and a0 k - l  E Z, then 

k+l day +rak2 +~ = 0 for some invariant a 2 . Using the results on the cohomology of  5 modulo 
d that we have just established, this implies that a~ differs from the component of  form 
degree k and antighost number 1 of  a polynomial Q ( / t )  by a term of the form 5p + da, 
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where p and cr are both invariant. But then, 5a~ has the form d ([Q(/7/)]ok-' + &r), which 

implies pk  (H) = d ( - [Q(H)]0 k-  1 _ 5a + a0 k-  ~), i.e., pk  (H) = d(invariant). According 

to the theorem on the invariant cohomology of d, this can occur only if P k ( H )  = O. 
[] 

7.5. Characteristic cohomology in the algebra of  x-independent local forms. Let us 
denote ([/)m by Pm (ra = 0 , . . . ,  K). We have just shown (i) that the most general 
cocycles of the A-cohomology are given, up to trivial terms, by the linear combinations 
AmPm with Am real or complex numbers; and (ii) that if AmPm is b-exact, then the 
Am are all zero. In establishing these results, we allowed for an explicit x-dependence 
of the local forms (see comments after the proof of Theorem 7.4). How are our results 
affected if we work exclusively with local forms with no explicit x-dependence? 

In the above analysis, it is in calculating the cocycles that arise in antighost number 
< p + 1 that we used the x-dependence of the local forms, through the isomorphism 
H P +  I - J ( ,4~ c h a r  ~ l  ~-  Hn-p-l+j(rSld) �9 If the local exterior forms are not allowed to depend 
explicitly on x, one must take the constant k-forms (k > 0) into account. The derivation 
goes otherwise unchanged and one finds that the cohomology of A in the space of x- 
independent local forms is given by the polynomials in the P,~ with coefficients A~,~ that 
are constant forms, Am = Am(dx). In addition, if AmP,~ is b-exact, then, A,m P ~  = 0 for 
each m. One cannot infer from this equation that Am vanishes, because it is an exterior 
form. One can simply assert that the components of A~ of form degree n - m(n - p -  1) 
or lower are zero (when multiplied by Pro, the other components of Am yields forms of 
degree > n that identically vanish, no matter what these other components are). 

It will be also useful in the sequel to know the cohomology of A t, where A t is the 
part of A that acts only on the fields and antifields, and not on the explicit x-dependence. 
One has A = A'  + dx, where dx =- O~PliCit/Ox~ sees only the explicit x-dependence. 
By the above result, the cohomology of A t is clearly given by the polynomials in the 
Pm with coefficients Am that are now arbitrary spacetime forms, Am = Am(X, dx). 

8. Characteristic Cohomology in the General Case 

To compute the cohomology H~(Sld) for an arbitrary set of p-forms, one proceeds along 
the lines of the Kunneth theorem. Let us illustrate explicitly the procedure for two fields 
B~I ...~p, and B 2  .--~2 . One may split the differential A as a sum of terms with definite 

No-degrees, 
A = z~ 1 -I- A 2 "1- d x (8.1) 

(see (5.8)). In (8.1), dx leaves both N1 and Na unchanged. By contrast, Al increases Nl 
by one unit without changing N2, while A2 increases Na by one unit without changing 
N1. The differential Al acts only on the fields B 1 and its associated antifields ("fields and 
antifields of the first set"), whereas the differential A2 acts only on the fields B 2 and its 
associated antifields ("fields and antifields of the second set"). Note that A1 + A2 = A'. 

Let a be a cocycle of A with b-degree < n -  1. Expand a according to the Nl-degree, 

a = ao + a l  + a 2  + . . .  + am, N l (a j )  = j. (8.2) 

The equation Aa = 0 implies Alam = 0 for the term a,,~ of highest Nl-degree. 
Our analysis of the At-cohomology for a single p-form yields then am = c,~(/:/1) k + 
Al(something), where cm involves only the fields and antifields of the second set, as 
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well as dx  ~ and possibly x u. There can be no conserved current in am since we assume 
the A-degree of  a - and thus of each aj - to be strictly smaller than n - 1. Now, the exact 
term in am can be absorbed by adding to am a A-exact term, through a redefinition of  
am-1 .  Once this is done, one finds that the next equation for am and am-1 following 
f rom/1a  = 0 reads 

[(/12 + dx)cm](ffI1) k + Alam-1 = 0. (8.3) 

But we have seen that Am(H1) k cannot be exact unless it is zero, and thus this last 
equation implies both 

[(A2 + dx)cm](/~l) k = 0 (8.4) 

and 

~11am-1 = O. (8.5) 

Since (~1)k has independent form components in degrees k ( n - p -  1), k ( n - p -  1)+ 1 
up to degree n, we infer from (8.4) that the form components of  (/12 + dx)cm of degrees 
0 up to degree n - k ( n  - p - 1) are zero. If  we expand Cm itself according to the form 
degree, c,,~ = ~ c~,  this gives the equations 

~eim +dcim -1 = O, i = 1 , . . . , n -  k ( n - p -  1), (8.6) 

and 

~c ~ = 0. (8.7) 

Our analysis of  the relationship between the Zl-cohomology and the cohomology of  
modulo d indicates then that one can redefine the terms of  form degree > n - k ( n - p -  1) 
of Cm in such a way that Acre = 0. This does not affect the product C m ( f t l )  k. We shall 
assume that the (irrelevant) higher order terms in Cm have been chosen in that manner. 
With that choice, cm is given, up to trivial terms that can be reabsorbed, by )~m(/12) t, 
with )~,,~ a number, so that am = Am(/7/2)t(H1) k is a /1-cocycle  by itself. One next 
repeats successively the analysis for am-1 ,  am-2  to reach the desired conclusion that a 
may indeed be assumed to be a polynomial in the ~a , s ,  as claimed above. 

The non-triviality of  the polynomials in the/~ra,s is also easy to prove. If  p(/7/) = Ap, 
with p = Po + Pl + . . .  + Pro, N l ( p k )  = k ,  then one gets at Nl-degree m + 1 the condition 
( P ( H ) ),~ + I = A I Pro, which implies ( P ( H ) )m + I = 0 and A 1 pro. = O,  since no polynomial 
in /~ l  is Al-trivial, except zero. It follows that P m =  u(/7/1) m up to trivial terms that 
play no role, where u is a function of  the variables of  the second set as well as of x u and 
dx  ~. The equation of  order m implies then (P(H))m = ((A2 + dx)u) ( [ t l )m + A l P m -  1. 

The non-triviality of the polynomials in t7/1 in Avcohomology  yields next A l p , ~ _ l  = 0 
and (P(/q))m = ((/12 + dx)u ) ( f11 )  m. Since the coefficient of  (/7/1)m in (P(-f-1))m is a 

polynomial in/it2, which cannot be (//2 + dx)-exact, one gets in fact (P(H))m = 0 and 
(/12 + dx)u  = 0. It follows that Pm fulfills ~1Pro = 0 and can be dropped. The analysis 
goes on in the same way at the lower values of the /11-degree, until one reaches the 
desired conclusion that the exact polynomial P(/~)  indeed vanishes. 

In view of  the isomorphism between the characteristic cohomology and H* (A), this 
completes the proof of  Theorem 2.1 in the case of  two p-forms. The case of  more p-forms 
is treated similarly and left to the reader. 
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9. Invariant Characteristic Cohomology 

9.1. Isomorphism theorems for the invariant cohomologies. To compute the invariant 
characteristic cohomology, we proceed as follows. First, we establish isomorphism the- 

k, i~ n # ~  Hk#~(A) .  orems between H~h~ (d), Hn_ k (5ld) and Then, we compute Hk'~n~(A) 
for a single p-form. Finally, we extend the calculation to an arbitrary systems of p-forms. 

Theorem 9.1. 
k,inv 

Hchar (d) n,inv ~k ~-- H~_ k (~ld), 0 _< k < n, (9.1) 

0 ~ H~;~(5ld) ,  k > 0. (9.2) 

Theorem 9.2. The invariant cohomology of A is isomorphic to the invariant charac- 
teristic cohomology, 

k,inv Hk'inv(z~) "~ Hchar (d), 0 < k < n. (9.3) 

Proof First we prove (9.1). To that end we observe that the map m introduced in the 
k inv n inv demonstration of Theorem 4.1 maps Hc~a~ (d) on H~'_ k ((~ Id). Indeed, in the expansion 

(4.8) for a, all the terms can be assumed to be invariant on account of Theorem 6.1. The 
surjectivity of m is also direct, provided that the polynomials in the curvature P(H)  are 
not trivial in H*(fild), which is certainly the case if there is a single p-form (Theorem 
7.5). We shall thus use Theorem 9.1 first only in the case of a single p-form. We shall 
then prove that Theorem 7.5 extends to an arbitrary syste m of forms of various form 
degrees, so that the proof of Theorem 9.1 will be completed. 

To compute the kernel of m, consider an element a0 k E Z such that the corresponding 
n,inv a~_ k is trivial in Hn_ k (5[d). Then, again as in the proof of Theorem 4.1, one finds 

that all the terms in the expansion (4.8) are trivial, except perhaps a0 k, which fulfills 
da k + 6db~ = 0, where b k E 2" is the k-form appearing in the equation expressing the 
triviality of a~ +1, a~ +l = db~ +Sbk2 +l. This implies d(a~ - 6b~) = 0, and thus, by Theorem 
6.2, a k = P + db~ - l  + 5b~ with P E 7-/k and b~ -1 E Z. This proves (9.1), since P is 
not trivial in H*(5[d) (Theorem 7.5). [Again, we are entitled to use this fact only for a 
single p-form until we have proved the non-triviality of P in the general case.] 

The proof of (9.2) is a direct consequence of Theorem 6.1 and parallels step by step 
the proof of a similar statement demonstrated for 1-forms in [14] (Lemma 6.1). It will 
not be repeated here. Finally, the proof of Theorem 9.2 amounts to observing that the 
map m ~ that sends [a0 k] on [a] (Eq. (4.8)) is indeed well defined in cohomology, and is 
injective as well as surjective (independently of whether P(H)  is trivial in the invariant 
cohomology of 3 modulo d). 

Note that if the forms do not depend explicitly on x, one must replace (9.1) by 

k ir~v d 

(A | 7-t) k - H~:-k (~ld). [] (9.4) 

9.2. Case of a single p-form gauge field. Theorem 6.3 enables one to compute also 
the invariant characteristic cohomology for a single p-form gauge field. Indeed, this 

n,inv d theorem implies that H~_ k ( 5 ] )  and H~_k(51d ) actually coincide since the cocycles of 
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H n -  k (~ld) are invariant and the coboundary conditions are equivalent. The isomorphism 
of Theorem 9.1 shows then that the invariant characteristic cohomology for a single p- 
form gauge field in form degree < n - 1 is isomorphic to the subspace__ of form degree 
< n - 1 of the direct sum 7-/G 7-/. Since the product H A H has form degree n, 
which exceeds n - 1, this is the same as the subspace W of Theorem 2.2. The invariant 
characteristic cohomology in form degree k < n - 1 is thus given by (7"t | ~)k ,  i.e., by 
the invariant polynomials in the curvature H and its dual H with form degree < n - 1. 
Similarly, by the isomorphism of Theorem 9.2, the invariant cohomology H k #n~(A) of 
A is given by the polynomials in t7/and H with A-degree smaller than n - 1. 

9.3. Invariant cohomology o f  A in the general case. The invariant A-cohomology for an 
arbitrary system of p-form gauge fields follows again from a straightforward application 
of the Kunneth formula and is thus given by the polynomials in the ~ a , s  and H a's with 
b-degree smaller than n - 1. The explicit proof of this statement works as in the non- 
invariant case (for that matter, it is actually more convenient to use as degrees not N1 
and N2, but rather, degrees counting the number of derivatives of the invariant variables 
X's. These degrees have the advantage that the cohomology is entirely in degree zero). 
In particular, none of the polynomials in the 9 a , s  and H a's is trivial. 

The isomorphism of Theorem 9.2 implies next that the invariant characteristic CO- 
nk,inv homology char (d) (k < n - l) is given by the polynomials in the curvatures H a 

and their duals ~ a ,  restricted to form degree smaller than n - 1. Among these, those 
that involve the curvatures H ~ are weakly exact, but not invariantly so. The property 
of Theorem 7.5 thus extends as announced to an arbitrary system of dynamical gauge 
forms of various form degrees. 

Because the forms have now different form degrees, one may have elements in 
k,inv Hchar (d) (k < n - l) that involve both the curvatures and their duals. For instance, if 

B 1 is a 2-form and B 2 is a 4-form, the cocycle H 1 A ~ 2  is a (n -- 2)-form. It is trivial 
H k inv in k H~h~(d) ,  but not in ~ (d). 

10. Invariant Cohomology of 6 mod d 

n,inv The easiest way to work out explicitly H~_ k (~]d) in the general case is to use the 
above isomorphism theorems, which we are now entitled to do. Thus, one starts from 
H k #  '~" (A) and one works out the component of form degree n in the associated cocycles. 

Because one has elements in H k # n v ( A )  that involve simultaneously both the curva- 
n,inv d ture and its A-invariant dual/~, the property that H~_ k (~1) and H,~_k(~ld ) coincide 

may no longer hold. In the previous example, one would find that H(~vB *(2)~,  which 
has antighost number two, is a ~-cocycle modulo d, but it cannot be written invariantly 

n#nv 
so. An important case where the isomorphism H~_ k (~ld) ~ H~_k(~ld)  (k > l) does 
hold, however, is when the forms have all the same degrees. 

To write down the generalization of Theorem 6.3 in the case of p-forms of different 
degrees, let P ( H  ~, ~ a )  be a polynomial in the curvatures (Pa + 1)-forms H a and their 
A-invariant duals/7/% One has A P  = 0. We shall be interested in polynomials of A- 
degree < n that are of degree > 0 in both H a and ~ a .  The condition that P be of degree 
> 0 in H ~ implies that it is trivial (but not invariantly so), while the condition that it be 
of degree > 0 i n / / a  guarantees that when expanded according to the antighost number, 
P has non-vanishing components of antighost number > 0, 
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n 

P = ~_~[P]~-k" (10.1) 
j=k 

From A P  = 0, one has 8 [P]~-k  + d[p]n--~-I = O. 

There is no polynomial in H a and/Qa with the required properties if all the anti- 
symmetric tensors B a have the same form degree (Pa = P for all a 's)  since the /*l--->pa 
product H a l l  b has necessarily A-degree n. When there are tensors of different form 
degrees, one can construct, however, polynomials P with the given features. 

The analysis of  the previous subsection implies straightforwardly. 

Theorem 10.1. Let aq = aq (X) E I be an invariant local n-form o f  antighost number 
n n--1 q > O. I fa~ is 5-exact modulo d, aq = 5#qnl + dlZq , then one has 

n 'n + d # ~ - I  (10.2) aq = [P]q  + al~q+ 1 

for  some polynomial P ( H  ~, [ I  ~) o f  degree at least one in H a and at least one in [1 a, 
and where #'qn 1 and # ~  -1 can be assumed to depend only on the X 's, i.e., to be invarianr 
In particular, i f  all the p-form gauge fields have the same form degree, [P];~ is absent 
and one has 

' ' ~ - I  n = alZqn+l + d #  (10 .3 )  aq 

where one can assume that #'qn+l and lzq  -~ are invariant (p'qn+l and p ~ - I  E Z). 

11. R e m a r k s  on Conserved Currents  

That the characteristic cohomology is finite-dimensional and entirely generated by the 
duals ~ a , s  to the field strengths holds only in form degree k < n - 1. This property is 
not true in form degree equal to n - 1, where there are conserved currents that cannot 

be expressed in terms of  the forms H a ,  even up to trivial terms. 
An infinite number of  conserved currents that cannot be expressible in terms of the 

forms ~ a  are given by 

T~s163  1 . . .  O~ ~ /~ l  . . .  ~ T  = L ( 1 H ~ p l  pp,oq O~sHlj ~I'''pB 
- 2  p! . . . . . .  ,fll...~r 

1 H* H *p2''pn-v-1 ) 
(n - p - 2)!--~P2""Pn-P-I"~'"a~ ~ ,3,...~,-" 

These quantities are easily checked to be conserved 

T t* = 0 vvq ...c~/51 . . .3r,# 

(11.1) 

(11.2) 

and generalize the conserved currents given in [15, 16, 17] for free electromagnetism. 
They are symmetric for the exchange of  # and u and are duality invafiant in the critical 
dimension n = 2p + 2, where the field strength and its dual have the same form degree 
p + 1. In this critical dimension, there are further conserved currents which generalize 
the "zilches", 

Zt~Ucq...c~fll...3s = H~Zal...ap,cq...~ H,V ,~1 ' " ~  
~1 ...O'p 

_ H . # a l  ...ap,cq ..... H~ , .... p ,/~1 ...~, (11.3) 
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Let us prove that the conserved currents (11.1) which contain an even total number 
of derivatives are not trivial in the space of  z-independent local forms. To avoid cumber- 
some notations we will only look at the currents with no/~ indices. One may reexpress 
(11.1) in terms of  the field strengths as 

1 
TI*~, ,~ , . . . ,~  _ ( H n`~, . . . .  p,al...OZm HUal ,~ + H~*o~...O~, H ~' ,,~, . . . . .  ) 

2 p !  " ~ ~1 . . . .  

1 
- - H  H ~' "''~ '~ . . . . .  (11.4) 

+rf*~2(p+ 1)! ~ .... ~§ 

If one takes the divergence of this expression one gets, 

Tt*~'~' . . . . .  ,t* = 5 K ~ " ~ ' " " ~ ,  (11.5) 

where K ~ . . . . .  differs from k H % ~ . . . ~ , ,  ,'~I'"'~'"B*~I"'~, by a divergence. It is easy to 
see that T ~/jO/1 *~ is trivial if and only if H%~ .... p ,~ ' ' '~m B * " ' " ' ~  is trivial. So the 

question is: can we write, 

H ~, ,,~, . . . . .  B . a , . . . o - p  = 6 M U a l  . . . . .  + O p N P U a l  ...a,~ (11.6) 
(9" 1 . . . O p  

for some M ~ l ' ' ' ~m  and N puc~ . . . . .  .9 Without loss of  generality, one can assume that 
M and N have the Lorentz transformation properties indicated by their indices (the 
parts of  M and N transforming in other representations would cancel by themselves). 
Moreover, by Theorem 6.3, one can also assume that M and N are gauge invariant, i.e., 
belong to I .  I f  one takes into account all the symmetries of the left-hand side and use 
the identity d H  = 0, the problem reduces to the determination of  the constant c in, 

H u o . , . . . a v , a  , . . . . . .  B *al' ' 'crp = 5(cH~,,~,  . . . .  p-~(~,,~2 . . . . .  ) B*~' .... "-~) 

+ O p N ~ , ~ l . . . e , m  + terms that vanish on-shell. (11.7) 

If  one takes the Euler-Lagrange derivative of  this equation with respect to B *~'' '~p one 
gets, 

p+l H (11.8) HmTl...c~p,oq...o~m ~ ( - - )  C v[~l...~p-ll(m,~=.-.~,,)l~l' 

where the right-hand side is symmetrized in c q . . .  c ~  and antisyinmetrized in al .. �9 
ap. The symmetry properties of the two sides of  this equation are not compatible unless 
c = 0. This proves that T #v~l . . . . .  (with m even) is not trivial in the algebra of x-  
independent local forms. It then follows, by a mere counting of  derivative argument, 
that the T u " ~ ' ' ' " "  define independent cohomological classes and cannot be expressed 
as polynomials in the undifferentiated dual to the field strengths H with coefficients that 
are constant forms. 

The fact that the conserved currents are not always expressible in terms of  the forms 
~ a  makes the validity of  this property for higher order conservation laws more striking. 
In that respect, it should be indicated that the computation of  the characteristic coho- 
mology in the algebra generated by the H a  is clearly a trivial question. The non-trivial 
issue is to demonstrate that this computation does not miss other cohomological classes 
in degree k < n - 1. 

Finally, we point out that the conserved currents can all be redefined so as to be strictly 
gauge-invariant, apart from a few of  them whose complete list can be systematically 
determined for each given system of  p-forms. This point will be fully established in 
[ 18], and extends to higher degree antisymmetric tensors a property established in [44] 
for one-forms (see also [45] in this context). 



160 M. Henneaux, B. Knaepen, C. Schomblond 

12. Introduction of Gauge Invariant Interactions 

The analysis of the characteristic cohomology proceeds in the same fashion if one adds 
to the Lagrangian (1.10) interactions that involve higher dimensionality gauge invariant 
terms. As we shall show in [18], these are in general the only consistent interactions. 
These interactions may increase the derivative order of the field equations. The resulting 
theories should be regarded as effective theories and can be handled through a systematic 
perturbation expansion [46]. 

The new equations of motion read 

OuE ~m''m'''~'p" = 0, (12.1) 

where/2 am'la2"''"pa are the Euler-Lagrange derivatives of the Lagrangian with respect 
to the field strengths (by gauge invariance, E involves only the field strength components 
and their derivatives). These equations can be rewritten as 

d~  a ~ 0, (12.2) 

where Z a is the (n - pa - l)-form dual to the Euler-Lagrange derivatives. 
The Euler-Lagrange equations obey the same Noether identities as in the free case, 

so that the Koszul-Tate differential takes the same form, with H~ replaced everywhere 
by Z ~. It then follows that 

p+l 
--g,(z 

E~ = Z~ + Z Bj (12.3) 
j=l 

fulfills 
AZ~ a = 0. (12.4) 

This implies, in turn, that any polynomial in the s is A-closed. It is also clear that any 
polynomial in the Z a is weakly d-closed. By making the regularity assumptions on the 
higher order terms in the Lagrangian explained in [9], one easily verifies that these are 
the only cocycles in form degree < n -  1, and that they are non-trivial. The characteristic 
cohomology of the free theory possesses therefore some amount of"robustness" since it 
survives deformations. By contrast, the infinite number of non-trivial conserved currents 
is not expected to survive interactions (even gauge-invariant ones). 

[In certain dimensions, one may add Chern-Simons terms to the Lagrangian. These 
interactions are not strictly gauge invariant, but only gauge-invariant up to a surface term. 
The equations of motion still take the form d(something) ~ 0, but now, that "something" 
is not gauge invariant. Accordingly, with such interactions, some of the cocycles of the 
characteristic cohomology are no longer gauge invariant. These cocycles are removed 
from the invariant cohomology, but the discussion proceeds otherwise almost unchanged 
and is left to the reader.] 

13. Summary of Results and Conclusions 

In this paper, we have completely worked out the characteristic cohomology//~ha,.(d) 
in form degree k < n - 1 for an arbitrary collection of free, antisymmetric tensor 
theories. We have shown in particular that the cohomological groups H~ha,.(d) are 
finite-dimensional and take a simple form, in sharp contrast with H~h~l~(d), which is 
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infinite-dimensional and appears to be quite complex. Thus, even though one is dealing 
with free theories, which have an infinite number of conserved local currents, the exis- 
tence of higher degree local conservation laws is quite constrained. For instance, in ten 
dimensions, there is one and only one (non-trivial) higher degree conservation law for 
a single 2-, 3-, 4-, 6-, or 8-form gauge field, in respective form degrees 7, 6, 5, 3 and 
1. It is d H  ~ O. For a 5-form, there are two higher degree conservation laws, namely 
d H  ~ 0 and d(H) 2 ~ 0, in form deg_ rees 4 and 8. For a 7-form, there are four higher 
degree conservation laws, namely d H  ~ 0, d ( n )  2 ~ 0, d(n )  3 ~ 0 and d(H) 4 ~ 0, in 
form degrees 2, 4, 6 and 8. 

Our results provide at the same time the complete list of the isomorphic groups 
Hk(A),  as well as of H~_k(51d). We have also worked out the invariant characteristic 
cohomology, which is central in the investigation of the BRST cohomology since it 
controls the antifield dependence of BRST cohomological classes [14]. 

An interesting feature of the characteristic cohomology in form degree < n - 1 is 
its "robustness" to the introduction of gauge invariant interactions, in contrast to the 
conserved currents. 

As we pointed out in the introduction, the characteristic cohomology is interesting 
for its own sake since it provides higher degree local conservation laws. But it is also 
useful in the analysis of the BRST cohomology. The consequences of our study will 
be fully investigated in a forthcoming paper [18], where consistent interactions and 
anomalies will be studied (see [47] for the 2-form case in this context). In particular, it 
will be pointed out how rigid the gauge symmetries are. We will also apply our results 
to compute the BRST cohomology of the coupled Yang-Mills-two-form system, where 
the field strength of the 2-form is modified by the addition of the Chem-Simons 3-form 
of the Yang-Mills field [48]. This computation will use both the present results and the 
analysis of [50, 36, 49, 14]. 
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A. Proof of Theorem 6.2 

To prove Theorem 6.2, it is convenient to follow the lines of the BRST formalism. In that 
approach, gauge invariance is controlled by the so-called longitudinal exterior derivative 
operator "7, which acts on the fields and further variables called ghosts. The construction 
of "7 can be found in [31, 30]. For simplicity, we consider throughout this appendix the 
case of a single p-form; the general case is covered by means of the Kunneth formula. 
The important point here is the reducibility of the gauge transformations. Because of 
this, we need to introduce p ghost fields: 

Cm...~p_l,. . .  , Cm...~p_j,. . .  , C. (A.1) 

These ghosts carry a degree called the pure ghost number. The pure ghost number of 
Cm...t~p_ , is equal to 1 and increases by one unit up to p as one moves from the left to 
the right of (A. 1). The action of '7 on the fields and the ghosts is given by, 

"TB = dC1, (A.2) 

"7C1 = dC2, (A.3) 
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"TCp_ 1 = dVp,  (A.4)  

"TCp = 0, (A.5) 

"7(anti f ield) = 0. (A.6) 

In the above equations, Cj is the p - j form whose components a r e  C~l ...l~p_j. For p 
even, Cp is a commuting object. 

One extends '7 such that it is a differential that acts from the left and anticommutes 
with d. 

The motivation behind the above definition is essentially contained in the following 
theorem: 

Theorem A.1. The cohomology of'7 is given by, 

H('7) = Z | Cp, (A.7) 

where Cp is the algebra generated by the last, undifferentiated ghost Cp. In particular, 
in antighost and pure ghost numbers equal to zero, one can take as representatives of 
the cohomological class the gauge invariant functions, i.e, the functions which depend 
solely on the field strengths and their derivatives. [It is in that sense that the differential 
"7 incorporates gauge invariance.] 

The proof of  this theorem follows the lines given in [43], by redefining the genera- 
tors of  the algebra so that "7 takes the standard form 'Txi = Yi, 'Tyi = 0, 'Tz~ = 0 in 
terms of  the new generators xi, yi, z~. The paired variables xi, Yi disappear from the 
cohomology, which is entirely generated by the unpaired variables z,~. In the present 
case, one easily convinces oneself that the generators of Z | Cp are precisely of  the 
z~-type, while the other generators come in pairs. The derivatives of  the last ghost Cp 
are paired with the symmetrized derivatives of  the next-to-last ghost Cp_lu, the other 
derivatives of  the next-to-last ghost Cp_lu which may be expressed as derivatives of  the 
"curvatures" 0uCp_ 1~ - O~Cp_ l u, are paired with the derivatives of  the previous ghost 
Oat .... k C(p-2),u~ involving a symmetrization, say on cq and #, etc. The details present 
no difficulty and are left to the reader. 

According to the theorem, any solution of the equation "Ta = 0 can be written, 

a = E c~z(x)CZ + "Tb. (A.8) 
l 

Furthermore, if a is 7-exact, then one has c~t ~ 0 since the various powers of  C are 
linearly independent. 

The previous theorem holds independently of  whether p is even or odd. We now 
assume that p is even, so that the curvature (p + 1)-form H is anticommuting and the 
last ghost Cp is commuting, and prove Theorem 6.2 in that case (the case when p is odd 
parallels the 1-form case and so need not be treated here). 

Assume that da~) k = 0 with a 0 a polynomial in the field strengths and their derivatives. 
By the Poincar6 lemma we have a~ = da~ -1, but there is no guarantee that a0 k-  1 is also 
in 7?s,~au. Acting with "7 on this equation we get, again using the Poincar6 lemma, 
"Tako -1 + da~ -2 = 0. One can thus construct a tower of equations which take the form, 
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a~ = da k - l ,  (A.9) 

"ya~ - l  +dak1-2 = O, (A.IO) 

"yakq-l-q - k - 2 - q  
+aaq+ 1 = O, (A.11) 

k--2-q  
'yaq+ 1 = 0. (A.12) 

Let r = k - 2 - q a n d  q + 1 = m .  I f  m = pl then the last equation of  the tower implies, 

r Cpl (A.13) am = P + "Yam-1, 

with P C 2-s,~,al. 
If m ~ pl then we simply have arm = "ya~_ 1- In that case, an allowed redefinition of  

the tower allows one to suppose that the tower stops earlier with "ya m,r = 0 and m'  = pl. 
An allowed redefinition of  the tower simply adds to a0 k a term of  the form dbko- 1, where 

b0 k -  1 is gauge invariant. 
So from now, we shall assume that indeed m = pl. If  we substitute (A.13) in (A.11) 

we get, 
t ~§ 1Cp-lCtp - ' )  + CZpdP = 0 (A.14) "y~am_ 1 + 

(the trivial term ' y a ~ _  1 is absorbed in an allowed redefinition of  the tower). Since the 
action of  d is well  defined in ~small this implies d P  = O. The form degree of  P is strictly 
smaller than the form degree of  a0 k, so let us make the recurrence hypothesis that the 
theorem holds for P .  Because we treat the case p even, H is odd and P = d H  + c + dQ, 
where c and c I are constants and Q E ZsmaU. We thus have, 

a r =cClp +c'CZpH +dQelp. (A.15) 

The last two terms in (A. 15) are trivial. For the first one we have, 

Then we note that, 

dBCZp = d(QCZp) - "y(QtCp_,c~). 

1 

(A.16) 

- l+--~ (d( E Ci, Ci2""Ci~. ,)  (A.17) 
i l  +. ..+il+l=pl 

0_<i I _<p,. . .  ,0_<i/+ 1 _<p 

--'Y( E C{, Ci2... Cil+l)). ( A . 1 8 )  

il+...+il+l=Pl--I 
0 < i  1 < p , . . .  ,0__<i,§ 1 __<p 

To prove the above identity one sets Co = B and Cp+l - 0 since the ghost of  highest 
pureghost is Cp. One also uses the fact that 'yCi -- dCi§ 

f cC~. Let us now prove This shows that we only need to consider the bottom a m 
that if  I > 1 then c = O. We can write, 

pl a o = c ~ Ci, C~:.. .  Ci,. 
il+...+il=Pl 

0 < i  I < p , . . . , 0 < i , +  1 _<P 

It is easy to show that for p(l  - 1) + 1 < k < pl we have, 

(A.19) 
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il+...*il=te 
o~_zl~_p,...,O~_il~_p 

This implies that, 

aP(l-1) = (- - )Pc  
p 

il+...+il=k--1 
o<~ 1 _<p,... ,0<_~/<p 

Ci, Ci: �9 �9 Ci~). (A.20) 

1-1 

i l  +. ..+il=p(l--1) 
O--<il ~--P,- '-,0~ i /+l  <--P 

where Q E 2-~m~lz. If  we substitute this in .~,~p(Z-1)-I + daP(Z_l) = 0 we get, I ~ p + l  

(-1)PcIHCtp -1 +dOClp -t  +~((-)Pc Z CilCi2""Ciz 
zl+...+il=P(l--1) 1 

0 < i  l <_p,... ,O~iz+ l _<P 

+Q(l - l )Cp_lCIp  -2  + r = O. 

The above equation implies, 

(A.21) 

(A.22) 

dQ + (-1)PcIH = 0. (A.23) 

Because the form degree of H is strictly smaller than the form degree of  a0 k, the above 
recurrence hypothesis tells us that this equation is impossible unless c = 0. 

To show that c = 0 we had to lift the bottom a~ 1 p + 1 times. This is only possible 
when the tower has p + 1 steps, which is the case when I > 1. If  I = 1 then the bottom is 

ato = cCp. This bottom can be lifted to the top of  the tower and yields a0 p+I = c H  + dN, 
N E Zsmau. 

To validate the recurrence hypothesis we observe that if a0 k is of form degree 0 then 
necessarily a0 ~ = k. 

This ends the proof of the theorem and shows that forp even we have a = e+ctH+dN, 
N E Zsmal l ,  as desired. 
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