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The generalization of public key cryptosystem FAPKC4
TAO Renji and CHEN Shihua

Laboratory for Computer Science , Institute of Software, Chinese Academy of Sciences , Beijing 100080, China

Abstract FAPKC4, a public key cryptosystem based on automata theory, is generalized so that
component automata of compound automata in user’s public key would not be restricted to mem-

ory finite automata. The generalized FAPKC4 can be used in encryption and implementing digital
signatures as well.
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DiFFIE and Hellman!'! introduced the concept of public key cryptosystems. Many concrete schemes have
been proposed and have witnessed important applications in the area of information security. Among the
others, there are several public key cryptosystems based on finite automata theory, such as FAPKCO'%,
FAPKC1 and FAPKC2P!, FAPKC93", FAPKC3™!, and FAPKC4[®). A user’s public key of the above
FAPKCs consists of a compound of two memory finite automata with some invertibility and initial states. On
the other hand, in ref. [6], we research into the invertibility theory for general finite automata of which
states consist of finite input history, finite output history and finite “inner state” history. Those theories
laid a foundation for generalizing FAPKC so that component automata of compound automata in user’s pub-

lic key are such general finite automata. In ref.[7], we have made such generalization for FAPKC3. In
this note, we generalize FAPKC4.

1 Theoretical foundation

Let M={X,Y,S*'x X", &, A) be a finite automaton defined by
Ay asCim p)s x(i = 1)y omyai = 1))y 2(0) = ¥(i),
§({s(i), = ,s(i~p), x(i=1), = ,x(i-r)), x(i))
=(s(i+ 1), ,sCi+1=p), (i), ,x(i+1=1r)), (1)

where
y(i) = f(s(i),oysCi = p), x(i),e,x(i = r)),
sCi+1) = g(s(i),,s(i - p), (i), ,x(i ~ r)). (2)
Let M* ={Y, X, X xS*"'x ¥, 8" ,1") be a finite automaton defined by
At (ai= 1), w (o= r),sCi) ey s(i= p)uy (i = 1),y (G- ), y(0)) = x(d),
8" ({x(i = 1),y w(i = r)ys(i)yr,sCim p)ay(i = 1), yCi = 7)), (i)
={x(i), o w(i+ 1 =), s(i 1), s L= p)yy(i), o, y(i+1=12)), (3)
where
x(i) =f2 (x(i = 1), x(i = r),s(i), = ,sCi = p)y y(i),e,y(i = 7)),
sCi+1) =g(s(Ci),ys(i=p)y x(i), o x(i - 1)). (4)
Let M' ={Z,Y, Y x W*'x Z" &, A’) be a finite automaton defined by
M yG =), yGo= k), w(i) e w(i = n), 2(i = 1), =,z(i = h)), 2(i)) = y(i),
O (Uy(i =),y (i = k), w(i) o w(i - n), 2(i = 1), =+,z2(i = h)), 2(i))
={y(i), i+ 1= k), w(i+ 1), w(i+1=n), 2z(i),,z2(i + 1 - h)), (5)
where
y(i) = oy = 1), y(i = k) w(i), o, w(i = n), 2(i),,z2(i = h)),
w(i+1) = ¢CyCi = D,y = k)y w(i) o, w(i - n), 2(i),,z(i = R)). (6)
Let M'* ={Y,Z,Z"x W' x Y *% &%, 2'"") be a finite automaton defined by

1) Gao Xiang, Finite automaton public key cryptosystems and digital signatures analysis, design and implementation, Dis-
sertation (in Chinese) , Tnstitute of Software, Chinese. Academy of Sciences, Beijing, 1994.

784 Chinese Science Bulletin  Vol.44 No.9 May 1999



PAPERS

AT =D,z = k), w() o w(io = n), y(i = 1), e,y - = k),
y(l)) = Z(i)y
& (Kz(i = 1), z2(i = k), w(i),,w(i-n), y(i-1), -, y(i = ¢’ = k)), y(i))
=(z(i), >, zCi+ 1= h), w(li+ 1), ~,wli+1-n), y(),,y(i+1 -2 -k)),
(7)

where
z(1) =gD:r(z(i -, 20 - R), w(i) o, w(i = n), y(i), o,y (i - 2 - k),
w(i+1) =¢g(y(i-7 =1), -,y -7 - k), w(i),,w(i-n),
z2(i),,2(i - h)). (8)
Let C'(M,M' ") be the compound finite automaton of M and M'” , that is, C'(M, M' ") =
(X,Z,Z"x Wrrlx ST rksprl xm v her 57 Q") , where
A({z(i = 1), ,2(i = h), w(i), ~~,w(i-n), s(i),,s(i=7 -k -p),
x(i =1),,2(i-7 -k -=1r)), 2(i))
=2(i)8"({z(i = 1), ,2(i = k), w(i), =, w(i-n), s(i),,s(i-7 -k=-p),
x(i-1),,x(i-t =k -7r)), z(i))
={(z(i),,z2(i+ 1 =h), w(i+1), -, w(i+1—-n),
sCi+1),ys(i+l =2 —k-p), x(i),,2(i+1 -7 - k-1r)),
and
2(i) = ¢ (2(i = 1)y, 2(i = h), w(@), o w(i = n), f(s(i),,s(i - p),
x(i), o x(i= 1)), f(sCi -7 — k), ,s(i -7 -k -p),
(i - = k), ,x(i -7 -k -1r))),
w(i+1) =¢g(f(si -7 -1, s -7 -1=-p), x(i-2 - 1),,x(i -7 -1-171)),
e fsGi= ' = k)yys(i - -k =p), a(i=7 = k)i,
¥(i -1t =k-=r)),w(i),,w(i-n), z(: =1),,2(i = h)),
s(i+1) =g(s(i), o ysCi=p), (i), ,xa(i-r)). (9)
We use P ina(M", M) to denote the following condition: for any state
so = (x(=1),,5(=1r),s(0),,s(=p),y(= 1), ,y(= 1))
of M, the state
so = (s(0),,s(=p),x(=1),,x(=r))
of M matches sy with delay 7.
We use Py, (M, M'") to denote the following condition: for any state
so= (y(= 1), y(= k), w(0),,w(-n), z(- 1), ,2(= R))
of M’ and any z(0), (1), € Z, if
y(0)y (1) = A" (s, 2(0)z(1)---),
then
2(0)z(1) = A7 (s, y()y(z" + 1)),
where ,
s o= (z2(= 1), z2(= k), w(0),,w(=n), y(' = 1), ,y(=k)).
Theorem 1. Assume that P, ;,.(M", M) and P, .. (M, M"" ) hold. Given any state
. so = Cy(= 1), y(= k), w(0),,w(-n),z(- 1), ,z2(- h))
of M’ and any state
shy = a(=k -1, a(~k-r), s(=k),,s(=k-p), y(= kb =1),,y(-k = 7))
of M™, let
(i) =f1(x(i = 1), x(i - r), s(i),,s(i = p), y(i),,y(i - 7)),
sCi+1) = g(s(i),,sCi=p)y a(i), o, x(i = 1)),
==k, -1, (10)

Denote
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so = (x(= 1), 0(=r),s(0),,s(=p), y(= 1), ,y(= 2)).
For any z(0), z(1), ---€ Z, if

A (sg s A (s, 2(0)2(1)+)) = x(0)x(1)- (1)
and
" ={z2(= 1), ,z2(- ), w(0), -, wl(=n), s(t + '), ,s{c - k - r),
w{r+7 =1),,a(c -k -1r)),
then
A(s", st + o )x(z+ 2 + 1)) = 2(0)2(1) -+, (12)
where

sCi+1) = g(s(i),rysCi=p)yx(i),yan(i=r)), i =0, - ,c+ ¢ -1. (13)
Proof. Assume that (11) holds. Denote
A (shy, 2(0)z2(1)) = y(0)y(1)---. (14)
Then we have
A" (sg ,y(0)y (1)) = x(0)x(1)---. (15)
From (10),
8 (sl y(= k) y(-1)) = s¢,
AN, y(= k) y(=1)) (= k)x(-1).
Using (15), it follows that
A (s, y(= k) y (= 1Dy (0)y (1))
From (10} and (13),
sCi+ 1) =g(s(i), ~,sCi = p), (i), 2(i - 1)),
i=-k, ", 1,0, r + 7 ~1. a7
Since Py,in(M ™, M) holds, from (16), there exist y"(0),-**,y" (7 - 1) such that
ACs gy (= k), x(~ 1)x(0)x(1)-")
=5"(0) 5" (z = Dy(~ k) y(- Dy(0)y(1)-, (18)
where s _, =<{s( - k), ,s(- k-p), x(-k-1),,x(~-k- r)). From the definition of M,
using (17), it follows that
y(i - t) = f(s(i), =,sCi = p), x(i),,a(i =~ 1)),
i=7-hk, Tt +7 -1, (19)

1

x(= k) x(-1)x(0)x(1) . (16)

and

S(s_g, (= kY x(zc+ 7 -1)) = sy p» (20)
where 5., . = (s(z + ),y s+ 7 ~p)y a(c+7 =1),,x(r+7 -r)). From (18) and
(20), we have

Alsprs 2(r + )x(r + " + 1)) = y(")y( + 1)+, (21)
On the other hand, since Psig,out(M, , M’ ") holds, from (14), we have
AT,y (2 y (e + 1)) = 2(0)2(1) e, (22)

where 5" ={z( = 1), ,z2(- k), w(0), ,w(-n),y(z' =1),,y(=k)). Since (19) holds,
from Theorem 1 in ref. [7], the state s" of C' (M, M’) and the state {s., ., s’ * ) of C(M, M'*)
are equivalent. From (21) and (22), it immediately follows that
A" x(z + o )a(c + o+ 1)) = 2(0)2(1) . Q. E.D.
We use P ion( M, M ") to denote the following condition: for any state

so = (s(0), - s(=p),x(= 1), ,x(~r))

of M and any x(0), x(1), € X, if
y(0)y (1) = A(sq,2(0)x (1)),

then

2(0)x(1) = A" (s;, y(o)y(z + 1)),

where
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sy = {x(=1),,x(=r), s(0),,s(- p), y(z = 1),-,y(0)).
We use P ou(M' ", M) to denote the following condition: for any state
so" = (z(= 1), ,2(= h),w(0),,w(=n), y(= 1), ,y(= 7' = k))
of M'" and any y(0), y(1), €V, if
2(0)z(1)-+ = A" " (", y(0)y(1)+),

then
y(0)y(1)- = 2’ (s, z(c)z2(2" + 1)),
where
s'o o= (y(= 1), 9(= k), w(d), -, w(z’ = n), 2(z" = 1),,2(z" = h)),
and
w(i+1) = g(y(i =7 =1),,9(i = = k), w(i),,w(i-n), 2(i),,2(i - h)),

i=0,,7" - 1. (23)
Theorem 2. Assume that P, i (o(M,M") and P, u(M' ™, M') hold. For any state
sy =(z(= 1), 2(- k), w(0),,w(-n), s(0),,s(~ 7" - k-p), x(-1),
csxl(=2 -k -1))
of C'(M, M'") and any x(0), x(1), € X, if

A" (s, x(0)x (1)) = 2(0)z(1)-- (24)
and
y(0)y(1) = A" (s, 2(z")2(z" + 1)), (25)
then we have
A(sl, y(e) y(r + 1)) = x(0)x (1), (26)

where
s =(x(=1),,5(= 1), s(0),,s(= p), y(r = 1),-,5(0)),
st =y (= 1), ,y(= k), w(z' ), ,w(c’ = n), z(z' = 1), ,2(c" = h)),
w(1),-*,w(z’') are computed by (23), and
y(i) = f(s(i),rysCi=p), x(i),x(i=r)), i ==¢ -k, , - 1. (27)
Proof. Denote
so =(s(0),-,s(=p)xa(=1),,x(~r)),
st ={z(= 1), ,z2(= R), w0, ,w(~n), y(= 1), ,y(= 2" - k)).
Since (27) holds, from Theorem 1 in ref. [7], the state s’y of C' (M, M’ " ) and the state {sq, so" ) of
C(M, M' ") are equivalent. For any x(0), x(1),'**€ X, suppose that (24) and (25) hold. Denot-
ing

A(sg, 2(0)x (1)) = y(0)y (1), (28)
since s’ and (sg, s ) are equivalent, from (24), we have
AT (sht, y(0)y (1)) = 2(0)z(1) . (29)

Since P, ou(M' ", M') holds, from (29), we have
5(0)5/(1) = A (sh, 2(c)z(e + 1)),
From (25), it follows that
y(0)y (1) = y(0)y (1),

Thus (28) yields

A(sg,x(0)x (1)) = y(0)y(1)---. (30)
Since P in(M,M" ) holds, from (30), we obtain (26). Q.E.D.

Corollary 1. In case of n = ~ 1, replacing (27) by
y(i) = f(s(i),ysCi—-p), 2(i), o, x(i=-r)), i ==k, -, -1,

the theorem still holds.
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2 Basic algorithm

According to results in the previous section, the public key cryptosystem FAPKC4 may be extended.
In this system, each user has a pair of keys in which one is public to all users and the other is secret.

Take alphabets X and Z as the column vector spaces over GF(q) with dimensions ! and m, re-
spectively .

To construct a public key cryptosystem, choose a common ¢ and [, and take m = | for the sake of
digital signature. In other words, all users use the same alphabet to communicate with each other.

Generating a public key and a secret key for a user, say 4, is as follows.

(i ) Construct a finite automaton M = (X, Y, "' x X", §,A) defined by (1) and (2) and a
finite automaton M " = (Y, X, X" x "' x ¥, 8", 2" ) defined by (3) and (4), satisfying condi-
tions P, ina( M, M") and Py, i, (M, M),

(ii ) Construct a finite automaton M’ = (Z, Y, Y x W'*'x Z*, 8", A') defined by (5) and (6)
and a finite automaton M’ * ={Y,Z,Z" x W"*' x Y"**, & ", A2’ ") defined by (7) and (8), satis-
fying conditions P ou(M' ", M') and Py oM, M'").

(iii ) Construct the finite automaton C' (M, M'* ) = (X, Z, Z' x W**!' x S +k*p+!
Xrkrr 87, 2") from M and M’ ° .

(V) Choose arbitrary state

se = (z(= 1), 2(= h), w(0), -, w(- n), s(0),,
(ot = k=-p), x(=1),~,x(-7 -k -1r))
of C'(M, M'™).
Compute
y(i) = f(s(i)y ~oysCi=p), x(i),yx(i=1r)), i ==7" = k,, - 1.
Denote shy . q= {y(=1),*,y( -2 - k)>.
Choose arbitrary state
syo= (y(= 1), 5 (= k), w(0),,w(=n), z(= 1), ,z(~ h))
of M'. Choose arbitrary state
s = x(=k =), x(=k=r)s(=k), ,s(=k=p), y(=k =1),,5(- k- 1))
of M” and compute
(i) =f7 (x(i = D, x(i = r), 50i), 50 = p)uy(i), e y(i = 7)),
sCi+ 1) =g(s(i),rysCi- p)y 2(i), e, 2(i - 7)),
1= - k,"‘, -1.

Denote

s; = (a(= 1), ,x2(- 1), 5(0),,5(= p), y(= 1),y (= o))

1]

Denote
Sy =C2(= 1), ,2(= h)),
" ed,e = w(0), - ,w( = n); 5(0),+,s (- max(p,p + k- 1)),
s =2 (= 1), x(~ max(r,r + k- 7))).
(V) The public key of the user 4 is
C(M, M "), 5%, s"uss Smedivs Sines T+ T
The secret key of the user A is
M, M, i 5,5, ,t, 1.

Encryption.  Any user, say B, wants to send to the user A a plaintext x(0) x(1)--x(b) in
secret. B first suffixes any 7 + 7’ digits, say 2(b +1)--x(b + v + '), to the plaintext. Then using
A’s public key B computes the ciphertext z(0)--z(b + v + 7') as follows:

2(0)z(1)z2(b+ v+ ') = A"(s", x(0)x(1)-2(b+ 7+ 7)),

Decryption . From the ciphertext z(0)++z(b + = + £’ ), A can retrieve the plaintext using his (her)

secret key as follows. First using M', s, 4 in his (her) secret key and s”, in his (her) public key, 4
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compules

y(O)y (1) y(b 4+ 7) = 2'(s", z2(c)z( + Dez(b+ 7+ 1')),
where

s o= (y(= 1), (= k), w(z’),,w(c’ = n), 2(z' =1),,2(c" - h)),
w(1),-,w(z’) are computed by
w(i+1) = ¢(y(i -7 =1, ,9(i - 7" = k), w(i),,w(i-n), 2(i), ~--,2(i - h)),
i =0,,7 -1.
Then using M * in his (her) secret key and s”, in his (her) public key, from Theorem 2, A retrieves the
plaintext:
2(0)x (1) x(b) = 2" (s, y()y(z + 1)y(b + 7)),

where

se = (a(= 1), x(=r),5(0),,5(= p)y y(z = 1),-,5(0)).

Signing . The user A to sign a message z(0)---z(b), first suffixes any 7 + ¢’ digits, say z(b +
1), =+,2(b + v+ '), to the message. Then using his (her) secret key M', M", s, s, , computes
the signature x(0)x(1)-*x(b+ r + ') as follows:

AT (s, A (s, 2(0)z(1) o z(b+ v+ 7)) = x(0)x(1)x(b+ T+ 7).

Validation . Any user, say B, can verify the validity of the signature x(0)x (1) x(b+ r + ')
for 2(0)*++z(b) as follows. Using C'(M, M’ ") and "y, ,s S'ned.vs Sm,. in A’s public key, B first
computes

s(i+1) = g(s(i),,s(i-p)ya(i), = ,x(i-r)), i =0, ,c+7 -1,
then computes
A(s", x(r+ " )a(c+ 7 +)x(b+t+7))
which would coincide with the message z(0)**z(b) from Theorem 1, where
s ={z(=1),,2(= h),w(0), -, w(=n), sCe + '), ,s(r - k - ),
x(e 4+t =1),,x(c -k -r)).

Remark 1. Randomness of signing for special selection of parameters.

In case of k =0, 55 in Theorem 1 is arbitrarily given. It follows that y (= 1),*,y (= 7) in s, in
the signing process may be arbitrarily chosen. In this case, we may replace s, in secret key by sq,, , =
(x(=1), 2 (= 1)), speas =<s(0),+,5(=p)).

In case of k=0 and g(s(0),*,s(-p),2(0),-=*,x( - r)) does not depend on x( — r + 7 -
1),+,2(=r), (13) in Theorem 1 does not depend on x( — r+ 7 = 1),***, x( - r) which are arbi-
trarily given. It follows that y( - 1),>-,y(-7) and x( - r+ 7 -1),>*,2( - r) in s, in the signing
process may be arbitrarily chosen. In this case, we may replace s in secret key by so, . = {x( - 1),
2= r+ 7)), Smea,s =(s(0),,5(=p)).

In case of k=0 and g(s(0), *,s(-p),x(0),-=-,x( - r)) does not depend on s( -~ p + 7 -
1),,s(~p), (13) in Theorem 1 does not depend on s( - p+c—-1),**,s( - p) which are arbi-
trarily given. It follows that y ( = 1), ,y(-7) and s(=p+7-1),*,s( = p) in s, in the signing
process may be arbitrarily chosen. In this case, we may replace s, in secret key by sq.., = (x( = 1),
o x (= 1)), Smea,e=(s(0),,5(-p+1)).

In case of k=0 and g(s(0),**,s(-=p),x(0).,x(-r)) does not depend on x( -~ r + 7 -
1), ,2(-r)and s(~p+7-1),,5(-p), (13) in Theorem 1 does not depend on x( - r + =
-1), ., 2(=-r),s(-p+7-1), ==+, s( - p) which are arbitrarily given. It follows that 5( -1),
oy(=7),x(=r+z-1),,2(-r)and s(-p+7-1),,s(-p) in's, in the signing pro-
cess may be arbitrarily chosen. In this case, we may replace s in secret key by 5o, , = {x( =1),,x
(-r+7)), Smed.s = (5(0),,s( - p+ ).

Remark 2. Randomness of encryption for special selection of parameters.

( To be continued on page 790)
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NOTES

( Continued from page 789)

In case of n= -1, from Corollary 1 of Theorem 2, components z( - ¢’ = h - 1), +,z( - h),

s(=k-p-1D),,s(-t -k-p)ya(=-k=-r-1),-,2x( =t = k-r) of s, are arbitrarily giv-
en. It follows that components z( ~ ' = h-1),,z2(-h),s(-k—-p=1),,s( -7 -k -p),
x(-k-r-1),,2( -7 —k~-r) of 5"y in the encryption process may be arbitrarily chosen. In this
case, we may replace s”, in public key by s/, . =(z(=1),,z2( = h + 7)), shug, = (s(=1),",

sC=k=p). 8. ={x( =1, x(~k=-r)).
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