A predict-correct projection method for monotone variant variational inequalities

HAN Qiaoming¹ and HE Bingsheng²

1. Institute of Applied Mathematics. Chinese Academy of Sciences, Beijing 100080, China; 2. Department of Mathematics, Nanjing University, Nanjing 210093, China

Abstract A predict-correct projection method is presented for solving monotone variant variational inequalities, which could exploit the advantages and overcome the difficulties of both explicit and implicit projection methods.

Keywords: variant variational inequality, explicit projection method, implicit projection method, predict-correct projection **method.**

SOME nonlinear programming problems can be translated **in** to a class of variant variational inequali-

ties: Find a u^* such that

$$
F(u^*) \in \Omega, \ (v - F(u^*))^{\mathrm{T}} u^* \geqslant 0, \ \forall v \in \Omega,
$$
 (1)

where $\Omega \subseteq \mathbb{R}^n$ is a closed convex set and F is a continuous mapping from \mathbb{R}^n into itself. The existence results on such problems have been investigated recently by Pang and $Yao^[1]$. Throughout this note we assume that the solution set of (1) denoted by Ω^* is nonempty and the projection on Ω is simple to carry out. The Euclidean norm in this note will be denoted by $\|\cdot\|$.

It is easy to prove that the variant variational inequality (1) is equivalent to the projection equation: $F(u) = P_0[F(u) - \beta u]$ with $\beta > 0$, i.e. to find a zero point of the continuous nonsmooth function:

$$
e(u, \beta) := \frac{1}{\beta}(F(u) - P_a[F(u) - \beta u]),
$$

where $P_{\Omega}[\cdot]$ denotes the orthogonal projection on Ω .

For an arbitrary start point u^0 , we denote $\Omega^1 = \{u \in \mathbb{R}^n \mid ||u - u^*|| \le ||u^0 - u^*||$, u^* $\in \Omega^*$ and $\Omega^0 = \{u \in \mathbb{R}^n \mid ||u - u^*|| \leq 2 ||u^0 - u^*||, u^* \in \Omega^* \}.$

Definition 1. The function F is said to be Lipschitz continuous on set Ω^0 if there is a constant $L>0$ such that $F(u)-F(v)$ $\leq L \parallel u-v \parallel$ for any $u, v \in \Omega^0$.

Definition 2. The function F is said to be

1) monotone on set Ω^0 if $(u-v)^T(F(u)-F(v)) \ge 0$ for any $u, v \in \Omega^0$;

2) strongly monotone on the set Ω^0 if there exists a constant $\alpha > 0$ such that $(u - v)^T (F(u))$ $-F(v)) \geq \alpha \| u - v \|^{2}$ for any $u, v \in \Omega^{0}$.

There have already been explicit projection method and implicit projection method for solving the nonlinear variant variational inequalities.

1 Explicit projection mdthod $^{1)}$

Given
$$
u^0 \in \mathbb{R}^n
$$
, $\beta > \frac{L^2}{2\alpha}$. For $k = 0, 1, \dots$, if $u^k \notin \Omega^*$,
\n
$$
u^{k+1} = u^k - e(u^k, \beta).
$$
\n(2)

The explicit projection method is simple, but it converges under strong assumptions. If the mapping F is Lipschitz continuous and strongly monotone on Ω^0 , and the stepsize $\beta > \frac{L^2}{2 \pi}$, the explicit method is globally linear convergence.

2 Implicit projection method 2)

Given
$$
u^0 \in \mathbb{R}^n
$$
, $\beta > 0$. For $k = 0, 1$, \cdots , if $u^k \notin \Omega^*$, u^{k+1} solves $G_k(u) = 0$, where

$$
G_k(u) = u + \frac{1}{\beta}F(u) - u^k - \frac{1}{\beta}F(u^k) + e(u^k, \beta).
$$
 (3)

¹⁾ He, B. , A Goldstein's type projection method for a class of variant variational inequalities, to appear in **Journal** *of* **hpu***tational Mathematics.*

²⁾ He, B. , Inexact implicit methods for monotone general variational inequalities, *Technical* Report 95-60, *Faculty of Technical Mathematics and Informatics,* Delft University of Technology, 1995.

BULLETIN

The implicit projection method is globally convergent under mild condition that F is monotone. However, one has to solve a system of nonlinear equations in each iteration.

We consider a predict-correct method, which uses the explicit method (2) to make a prediction :

(P)
$$
u_{(0)}^{k+1} = u^k - e(u^k, \beta),
$$
 (4)

and then uses implicit scheme (3) to make a correction:

(C)
$$
u^{k+1} = u^k + \frac{1}{\beta} F(u^k) - e(u^k, \beta) - \frac{1}{\beta} F(u_{(0)}^{k+1}).
$$
 (5)

Combining formulas (4) and **(S),** we state our algorithm as follows.

3 Predict-Correct projection method.

Give $u^0 \in \mathbb{R}^n$ and $\beta \geq 3L$. For $k=0, 1, \dots$, if $u^k \notin \Omega^*$, $u^{k+1} = u^k - \frac{1}{\beta} d(u^k, \beta),$

where $d(u, \beta) = F(u - e(u, \beta)) - P_a[F(u) - \beta u].$

Theorem 1. Let $u^* \in \Omega^*$, F be Lipschitz continuous and monotone on Ω^0 . Then $(u - u^*)^{\mathrm{T}} d(u, \beta) \geq e(u, \beta)^{\mathrm{T}} d(u, \beta)$

for any $u \in \Omega^1$ and $\beta > L$.

Proof. Setting
$$
v = P_{\Omega}[F(u) - \beta u] \in \Omega
$$
 in (1), we get
\n
$$
(u^*)^T (P_{\Omega}[F(u) - \beta u] - F(u^*)) \ge 0.
$$
\n(6)

It follows from the property of projection on a closed convex set **(see** Appendix B in ref. [2]) that

$$
(F(u) - \beta u - P_{\Omega}[F(u) - \beta u])^{T}(P_{\Omega}[F(u) - \beta u] - F(u^{*})) \geqslant 0,
$$

i. e.

$$
(e(u, \beta) - u)^{\mathrm{T}} (P_{\Omega}[F(u) - \beta(u)] - F(u^*)) \geqslant 0. \tag{7}
$$

Adding (6) and (7), we obtain

$$
(e(u, \beta) - (u - u^*))^T (P_{\alpha}[F(u) - \beta u] - F(u^*)) \geq 0.
$$
 (8)

It follows from $u \in \Omega^1$, lemma 1^{1} , and the Lipschitz continuation and monotone on Ω^0 of F that $||u - e(u, \beta) - u^*||^2 = ||u - e(u, \beta) - (u^* - e(u^*, \beta))||^2$

$$
= \frac{1}{\beta^2} \| F(u) - \beta u - P_{\Omega} [F(u) - \beta u]
$$

- $(F(u^*) - \beta u^* - P_{\Omega} [F(u^*) - \beta u^*]) \|^2$
 $\leq \frac{1}{\beta^2} \| F(u) - F(u^*) - \beta (u - u^*) \|^2$
 $\leq \left(1 + \frac{L^2}{\beta^2}\right) \| u - u^* \|^2,$ (9)

i.e. $u-e(u,\beta)\in\Omega^0$, and that

$$
(u^* - (u - e(u, \beta)))^T (F(u^*) - F(u - e(u, \beta))) \ge 0.
$$
 (10)

Adding (8) and (10) yields

¹⁾ See footnote 1) **on page 1265.**

BULLETIN

$$
(e(u, \beta) - (u - u^*))^T (P_{\alpha}[F(u) - \beta u] - F(u - e(u, \beta))) \ge 0.
$$

Then Theorem 1 is proved. $Q.E.D.$

Theorem 2. If F is Lipschitz continuous and monotone on Ω^0 and $\beta \geq 3L$, the sequence $\{u^k\}$ is generated by the predict-correct method, then

$$
\|u^{k+1}-u^*\|^2\leqslant \|u^k-u^*\|^2-0.22\|e(u^k,\beta)\|^2,
$$

for any $u^* \in \Omega^*$.

Proof. If $u^k \in \Omega^1$, $u^k - e(u^k, \beta) \in \Omega^0$ from (9), F being Lipschitz continuous on Ω^0 , we get

$$
\| d(u^k, \beta) \|^2 = \| F(u^k - e(u^k, \beta)) - F(u^k) + \beta e(u^k, \beta) \|^2
$$

\$\leqslant (L^2 + \beta^2) \| e(u^k, \beta) \|^2\$,

and

$$
e(u^k, \beta)^{\mathrm{T}} \mathrm{d}(u^k, \beta) = e(u^k, \beta)^{\mathrm{T}} (F(u^k - e(u^k, \beta)) - F(u^k) + \beta e(u^k, \beta))
$$

\n
$$
\geq (\beta - L) || e(u^k, \beta) ||^2.
$$

Then it follows from Theorem 1 that

$$
\|u^{k+1} - u^*\|^2 = \|u^k - u^*\|^2 - \frac{2}{\beta}(u^k - u^*)^{\mathrm{T}} \mathrm{d}(u^k, \beta) + \frac{1}{\beta^2} \| \mathrm{d}(u^k, \beta) \|^2
$$

\n
$$
\leq \|u^k - u^*\|^2 - \left(1 - \frac{2L}{\beta} - \frac{L^2}{\beta^2}\right) \| e(u^k, \beta) \|^2
$$

\n
$$
\leq \|u^k - u^*\|^2 - 0.22 \| e(u^k, \beta) \|^2.
$$
 (11)

From $u^0 \in \Omega^1$ and (11), we get $u^1 \in \Omega^1$, and then $u^2 \in \Omega^1 \cdots$. And the theorem is proved. Q.E.D.

Theorem 3. If the assumption of Theorem 2 is satisfied, the predict-correct method is globally convergent.

Proof. From Theorem 2 and Theorem 3 of ref. **[3],** the convergent conclusion is obtained.

Adrnoaledgem#lt This work is supported by the National Natural Science Foundation of China (Grant No. 19671041).

References

- **¹Pang,** J . **S.** . **Ym, J** . **C.** , **On a generabation of a normal map and equation.** *SIAM* **1.** *Gmtrd* **and** *Optimiration* , **1995, 33: 168.**
- 2 **Luenberger, D. G., Introduction to Linear and Nonlinear programming, New York: Addison-Wesley, 1973.**
- **3 He, B., A new method for a claas of linear variational inequalities,** *Mnthmurtical Programming,* **1994,** *66:* **137.**

(*Receiud* **January 16, 1998)**