A predict-correct projection method for monotone variant variational inequalities

HAN Qiaoming¹ and HE Bingsheng²

1. Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China; 2. Department of Mathematics, Nanjing University, Nanjing 210093, China

Abstract A predict-correct projection method is presented for solving monotone variant variational inequalities, which could exploit the advantages and overcome the difficulties of both explicit and implicit projection methods.

Keywords: variant variational inequality, explicit projection method, implicit projection method, predict-correct projection method.

SOME nonlinear programming problems can be translated in to a class of variant variational inequali-

ties: Find a u^* such that

$$F(u^*) \in \Omega, \ (v - F(u^*))^{\mathrm{T}}u^* \ge 0, \ \forall v \in \Omega,$$
(1)

where $\Omega \subseteq \mathbb{R}^n$ is a closed convex set and F is a continuous mapping from \mathbb{R}^n into itself. The existence results on such problems have been investigated recently by Pang and Yao^[1]. Throughout this note we assume that the solution set of (1) denoted by Ω^* is nonempty and the projection on Ω is simple to carry out. The Euclidean norm in this note will be denoted by $\|\cdot\|$.

It is easy to prove that the variant variational inequality (1) is equivalent to the projection equation: $F(u) = P_{\Omega}[F(u) - \beta u]$ with $\beta > 0$, i.e. to find a zero point of the continuous nonsmooth function:

$$e(u, \beta) := \frac{1}{\beta}(F(u) - P_{\alpha}[F(u) - \beta u]),$$

where $P_{\Omega}[\cdot]$ denotes the orthogonal projection on Ω .

For an arbitrary start point u^0 , we denote $\Omega^1 = \{ u \in \mathbb{R}^n \mid || u - u^* || \leq || u^0 - u^* ||, u^* \in \Omega^* \}$ and $\Omega^0 = \{ u \in \mathbb{R}^n \mid || u - u^* || \leq 2 || u^0 - u^* ||, u^* \in \Omega^* \}$.

Definition 1. The function F is said to be Lipschitz continuous on set Ω^0 if there is a constant L > 0 such that $F(u) - F(v) \parallel \leq L \parallel u - v \parallel$ for any $u, v \in \Omega^0$.

Definition 2. The function F is said to be

1) monotone on set Ω^0 if $(u-v)^T (F(u)-F(v)) \ge 0$ for any $u, v \in \Omega^0$;

2) strongly monotone on the set Ω^0 if there exists a constant $\alpha > 0$ such that $(u - v)^T (F(u) - F(v)) \ge \alpha || u - v ||^2$ for any $u, v \in \Omega^0$.

There have already been explicit projection method and implicit projection method for solving the nonlinear variant variational inequalities.

1 Explicit projection mdthod¹⁾

Given
$$u^0 \in \mathbb{R}^n$$
, $\beta > \frac{L^2}{2\alpha}$. For $k = 0, 1, \cdots$, if $u^k \notin \Omega^*$,
 $u^{k+1} = u^k - e(u^k, \beta)$. (2)

The explicit projection method is simple, but it converges under strong assumptions. If the mapping F is Lipschitz continuous and strongly monotone on Ω^0 , and the stepsize $\beta > \frac{L^2}{2\alpha}$, the explicit method is globally linear convergence.

2 Implicit projection method²⁾

Given
$$u^0 \in \mathbb{R}^n$$
, $\beta > 0$. For $k = 0, 1, \cdots$, if $u^k \notin \Omega^*$, u^{k+1} solves $G_k(u) = 0$, where

$$G_k(u) = u + \frac{1}{\beta}F(u) - u^k - \frac{1}{\beta}F(u^k) + e(u^k, \beta).$$
(3)

¹⁾ He, B., A Goldstein's type projection method for a class of variant variational inequalities, to appear in Journal of Computational Mathematics.

²⁾ He, B., Inexact implicit methods for monotone general variational inequalities, Technical Report 95-60, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1995.

BULLETIN

The implicit projection method is globally convergent under mild condition that F is monotone. However, one has to solve a system of nonlinear equations in each iteration.

We consider a predict-correct method, which uses the explicit method (2) to make a prediction:

(P)
$$u_{(0)}^{k+1} = u^k - e(u^k, \beta),$$
 (4)

and then uses implicit scheme (3) to make a correction:

(C)
$$u^{k+1} = u^k + \frac{1}{\beta}F(u^k) - e(u^k, \beta) - \frac{1}{\beta}F(u^{k+1}_{(0)}).$$
 (5)

Combining formulas (4) and (5), we state our algorithm as follows.

3 Predict-Correct projection method.

Give $u^0 \in \mathbb{R}^n$ and $\beta \ge 3L$. For $k = 0, 1, \dots, \text{ if } u^k \notin \Omega^*$, $u^{k+1} = u^k - \frac{1}{\beta} d(u^k, \beta),$

where $d(u, \beta) = F(u - e(u, \beta)) - P_{\alpha}[F(u) - \beta u]$.

Theorem 1. Let $u^* \in \Omega^*$, F be Lipschitz continuous and monotone on Ω^0 . Then $(u - u^*)^{\mathrm{T}} \mathrm{d}(u, \beta) \ge e(u, \beta)^{\mathrm{T}} \mathrm{d}(u, \beta)$

for any $u \in \Omega^1$ and $\beta > L$.

Proof. Setting
$$v = P_{\Omega}[F(u) - \beta u] \in \Omega$$
 in (1), we get
 $(u^*)^{\mathrm{T}}(P_{\Omega}[F(u) - \beta u] - F(u^*)) \ge 0.$ (6)

It follows from the property of projection on a closed convex set (see Appendix B in ref. [2]) that

 $(F(u) - \beta u - P_{\Omega}[F(u) - \beta u])^{\mathrm{T}}(P_{\Omega}[F(u) - \beta u] - F(u^*)) \geq 0,$

i.e.

$$(e(u, \beta) - u)^{\mathrm{T}}(P_{\Omega}[F(u) - \beta(u)] - F(u^{*})) \ge 0.$$
(7)

Adding (6) and (7), we obtain

$$(e(u, \beta) - (u - u^*))^{\mathrm{T}}(P_{\Omega}[F(u) - \beta u] - F(u^*)) \ge 0.$$
(8)

It follows from $u \in \Omega^1$, lemma 1¹), and the Lipschitz continuation and monotone on Ω^0 of F that $\| u - e(u, \beta) - u^* \|^2 = \| u - e(u, \beta) - (u^* - e(u^*, \beta)) \|^2$

$$= \frac{1}{\beta^{2}} \| F(u) - \beta u - P_{\Omega}[F(u) - \beta u] - (F(u^{*}) - \beta u^{*} - P_{\Omega}[F(u^{*}) - \beta u^{*}]) \|^{2} \leq \frac{1}{\beta^{2}} \| F(u) - F(u^{*}) - \beta(u - u^{*}) \|^{2} \leq \left(1 + \frac{L^{2}}{\beta^{2}}\right) \| u - u^{*} \|^{2},$$
(9)

i.e. $u - e(u, \beta) \in \Omega^0$, and that

$$(u^* - (u - e(u, \beta)))^{\mathrm{T}}(F(u^*) - F(u - e(u, \beta))) \ge 0.$$
(10)

Adding (8) and (10) yields

¹⁾ See footnote 1) on page 1265.

BULLETIN

Q.E.D.

$$(e(u,\beta)-(u-u^*))^{\mathrm{T}}(P_{\Omega}[F(u)-\beta u]-F(u-e(u,\beta)))\geq 0.$$

Then Theorem 1 is proved.

Theorem 2. If F is Lipschitz continuous and monotone on Ω^0 and $\beta \ge 3L$, the sequence $\{u^k\}$ is generated by the predict-correct method, then

$$|| u^{k+1} - u^* ||^2 \le || u^k - u^* ||^2 - 0.22 || e(u^k, \beta) ||^2,$$

for any $u^* \in \Omega^*$.

Proof. If $u^k \in \Omega^1$, $u^k - e(u^k, \beta) \in \Omega^0$ from (9), F being Lipschitz continuous on Ω^0 , we get

$$\| d(u^{k}, \beta) \|^{2} = \| F(u^{k} - e(u^{k}, \beta)) - F(u^{k}) + \beta e(u^{k}, \beta) \|^{2} \\ \leq (L^{2} + \beta^{2}) \| e(u^{k}, \beta) \|^{2},$$

and

$$e(u^{k},\beta)^{\mathrm{T}}\mathrm{d}(u^{k},\beta) = e(u^{k},\beta)^{\mathrm{T}}(F(u^{k}-e(u^{k},\beta))-F(u^{k})+\beta e(u^{k},\beta))$$
$$\geqslant (\beta-L) \parallel e(u^{k},\beta) \parallel^{2}.$$

Then it follows from Theorem 1 that

$$\| u^{k+1} - u^* \|^2 = \| u^k - u^* \|^2 - \frac{2}{\beta} (u^k - u^*)^T d(u^k, \beta) + \frac{1}{\beta^2} \| d(u^k, \beta) \|^2$$

$$\leq \| u^k - u^* \|^2 - \left(1 - \frac{2L}{\beta} - \frac{L^2}{\beta^2}\right) \| e(u^k, \beta) \|^2$$

$$\leq \| u^k - u^* \|^2 - 0.22 \| e(u^k, \beta) \|^2.$$
(11)

From $u^0 \in \Omega^1$ and (11), we get $u^1 \in \Omega^1$, and then $u^2 \in \Omega^1 \cdots$. And the theorem is proved. Q.E.D.

Theorem 3. If the assumption of Theorem 2 is satisfied, the predict-correct method is globally convergent.

Proof. From Theorem 2 and Theorem 3 of ref. [3], the convergent conclusion is obtained.

Acknowledgement This work is supported by the National Natural Science Foundation of China (Grant No. 19671041).

References

- Pang, J. S., Yao, J. C., On a generalization of a normal map and equation, SIAM J. Control and Optimization, 1995, 33: 168.
- 2 Luenberger, D. G., Introduction to Linear and Nonlinear programming, New York: Addison-Wesley, 1973.
- 3 He, B., A new method for a class of linear variational inequalities, Mathematical Programming, 1994, 66: 137.

(Received January 16, 1998)