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ABSTRACT 

A simple example is given of a non WCG space whose dual is a WCG space 
with an unconditional basis. It is proved that if X* is WCG and X is a 
subspace of a WCG space then Xitself is WCG. 

1. Introduction 

A Banach space X is said to be weakly compactly generated (WCG in short) 

if  there is a weakly compact subset K in X which generates X, that is, X is the 

closed linear span of K. In a survey paper on WCG spaces I-8] (written in 1967) 

the second-named author raised several problems concerning this class of spaces. 

Among these problems there were the following permanence questions. 

1. Assume that X is a subspace of a WCG space. Is X itself WCG? 

2. Assume that X* is WCG. Is X also WCG? 

Problem 1 was recently answered negatively by H. P. Rosenthal [11]. In this 

paper we give a simple example which answers Problem 2 negatively, and show 

that a positive result can be obtained by combining both questions. We prove 

that a space X whose dual is WCG and which is a subspace of a WCG space is 

itself WCG. 

The example mentioned above is presented in Section 2. It was obtained while 

studying the question of extending a WCG space by a WCG space, that is, by 

considering those spaces X such that X = Y with Y and X/Y both WCG. The 

example (denoted by U), besides answering Problem 2, has other properties 
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which are of some interest. For example, U* is w* separable without U being 

isomorphic to a subspace of m = lo~. This seems to be the first example in the 

literature of a space having this property. We would like to point out that a 

little after we found the example U, a different negative solution to Problem 2 

was found. It turned out (refer to [9]) that the James tree Jo 13] has the property 
l * *  I (iv) that all its even conjugates (that is, Jo, ,~o ,~o , "") are WCG while its odd 

conjugates (J~,J***, ...) are not WCG. This counterexample to Problem 2 is, 

however, more complicated than the space U given here and fails to have some 

of the additional interesting properties of U. 

Section 3 is devoted to the proof of the positive result mentioned above. The 

proof uses the technique of long sequences of projections which is a common tool 

in the study of WCG spaces, as well as the recent theorem on the factorization of 

weakly compact operators I-2]. Special cases of this result were proved earlier by 

John and Zizler [6]. (They showed, for example, that if X* and X** are both 

WCG the same is true for X.) 

2. Extending WCG spaces by WCG spaces 

In 18] it has already been observed that if X D Y with Y and X / Y  WCG then 

in general X need not be WCG. Here we want to investigate this situation a 

little further. Before we proceed we recall the following fact concerning WCG 

spaces which was proved in [8]: every WCG space is generated by a set which 

is in its weak topology homeomorphic to the one point compactification of a 

discrete set. 

There are two special classes of spaces which are trivially WCG" separable 

spaces and reflexive spaces. These classes play a special role for the question in 

which we are interested. 

PROPOSITtON 1. Let X D Y be Banach spaces such that Y is reflexive. Then 

X is WCG if and only i f X / Y  is WCG. 

PROOF. Since every quotient space of a WCG space is trivially again WCG the 

only / fpar t  is evident. To prove the if part let {xr}r~r be a set which spans X / Y  

so that II II < 1for every ? and so that {xr}r~r is in its w topology homeomorphic 

to the one point compactification of a discrete set (with zero corresponding to the 

point at infinity). Let T: X - ,  X / Y  denote the quotient map and J:  X--, X** the 

canonical embedding. Pick for every ? ~F  an x r ~X so that Tx r = ~r and 

II x ll < 1. The set K -- (xr}, ,r  u { y ~  Y: Ilyll -< 1} is w compact and generates 



Vol. 17, 1974 BANACH SPACES 221 

X. Indeed, let {Jx~} be anet  of elements in {Jx~}~r  converging w* to some 

x**sX**. Since {Tx~.} tends weakly to zero we obtain that T** x** = 0. It 

follows that x**s  kerT** = JY, by the reflexivity of Y. Hence x** e JK and 

thus JK is w* closed; that is, K is w compact. That K generates X follows from 

the following observation. Let x* sX*  be such that x*(K) = 0. Then X*lr = 0 

and thus x* = T*~b for some @ ~(X /Y)*. Since @(2~) = @(Tx~) = x*(x~) = 0 

for every ~ s F, we obtain that ~b = 0 and hence x* = 0. 

PROPOSITION 2. Let X D Y be Banach spaces with X /Y  separable. Then X 

is WCG if and only if Y is WCG. 

PROOF. Assume that Yis WCG and let K be a w compact subset of Y which 

generates Y. Let {xn}n~176 be a sequence in X tending in norm to zero so that 

{Txn}~= 1 spans X / Y ( T :  X ~ X / Y  is the quotient map). It is trivial to verify that 
X oo K W { n}~ = 1 u {0} is a w compact set in X which generates X. 

Assume, conversely, that X is WCG. Let {xy}~r be a set, homeomorphic in 

its w topology to the one point compaetification of a discrete set, which generates 

X. Since X / Y  is separable there is a subset F o of F with F ~ Fo countable so that 

x~ e Y for ~ s Fo. The closed linear span Z of {x~}~ ro is WCG and Y/Z is 

separable. By the first part of the proof it follows that Y is WCG. 

As Example 1 below shows, the roles of the reflexive and separable spaces in 

Propositions 1 and 2 cannot be interchanged. Before presenting this example we 

state another general proposition concerning WCG extensions of WCG spaces. 

PROPOSITION 3. Let X ~ Y  be Banach spaces with Y separable and X /Y 

WCG. Then the following three assertions are equivalent: 

(i) X is WCG; 

(ii) X is a subspace of a WCG space; 

(iii) there is a WCG space Z containing Y and a bounded linear operator 

S: X ~ Z whose restriction to Y is the identity. 

PROOF. Trivially (i):~ (ii):~ (iii) so we have only to show that (iii)~-(i). Since 

whenever Z ~ Y with Z WCG and Y separable there is a separable W so that 

Z D W D Y and W is complemented in Z (see [1]), there is no loss of generality 

to assume in (iii) that Z is separable. Let T: X ~ X / Y  be the quotient map. It is 

easily checked that ~: x ~ (Sx, Tx) is an isomorphism from X into Z @ X/Y.  

Moreover, since Z is separable, ( Z @ X / Y ) / z X  is separable and hence by 

Proposition 2, zX (and thus X) is WCG. 
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EXAMPLE 1. There exists a Banach space U having the following properties: 

(a) U has a subspace V isometric to Co so that U /V is isometric to 12(F) (where 

F is a set of the cardinality of the continuum); 

(b) U* is w* separable and thus U is not WCG; 

(c) U* is isomorphic to 11 @ 12(F ) and thus is a WCG space with an un- 

conditional basis; 

(d) U is not isomorphic to a subspace of l~; the same is true for every non- 

separable subspace of U; 

(e) U has an equivalent Frdchet di~'erentiable norm. 

PROOF. Let {Nr}r~r be a collection of infinite subsets of the integers so that 

Nrl n Nr2 is finite for 71 r 72 and so that F has the cardinality of the continuum. 

For each ? e F let er  be the element in loo which is the characteristic function of 

the set Nr. Let Uo be the algebraic linear span in l~ of V u {r ? e F} where 

V = Co is the space of sequences tending to zero. We norm Uo by 

k k k 
, ~ a , , r  = m a x ( l l , ~ l a , , r  (,=~la,,I 2) ) ,  

where I1 is the usual sup norm in too, y e  V, and r, ~ rj  if i r j .  It is easily 

seen that Ill 111 is a well-defined norm (observe that the at, are determined by 

x = y + ~,k= 1 a~,r , since at, = limx(n) as n tends to infinity on N~,). On V, Ill Ill 
obviously coincides with II I1~" Let U be the completion of U o with respect to 

III I11. We check now that U has all the desired properties. 

(a) By definition, 

a, ,r  + y > la, ,[  2 
i -  i=1 

for every y ~ V. On the other hand given (a~,}k= 1 it is possible to find a y e  V so that 

I maxla l 
i= oo l<-t~_k 

and thus 

I ( 112) + y =< a~, . 
i = I  1= 

(b) It is easily checked that U is a linear subspace of the space of all vectors z 

in l~ such that for every ~ e F ,  z~ = lim{z(n), n--* oo on Nr} exists and 

III z III = max(l[ z [I ~, (Z~,r l  z~ 12) ~) < o0. Thus the coordinate functionals z ~ z(n), 

n = 1,2, ..., form a total set of functionals in U* (that is, z(n) = 0, all n =~ z = 0 
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and this in turn implies that U* is w* separable. Since U is nonseparable and 

every w compact subset of U is separable we infer that U is not WCG. 

(c) Clearly U*/V J- is isometric to 11. Since 11 has the lifting property, 

U* ,~ V • ~ 11 ~ 12(F) (~ 11. 

In order to verify (d) and (e) it is convenient to use the explicit natural embedding 

JU of U in U** = l~o @/2(F). It is easily seen that JU is the closed linear span of 

the vectors of the form (y, 0), y ~ Co = loo, and the vectors (~br, er), y e F where 

~br e l~o is the characteristic function of N~ and e r is the yth unit vector in/2(F). 

(d) Let X be a non-separable subspace of U and assume first that X (considered 

as a subspace of JU) contains all the vectors of the form (y,0) with y~co. Let 

= (y~, z i ) be a sequence of norm 1 functionals in 11 @/2(F) = U*. Let Fo 

be the countable subset of F which is the union of the supports of {zi }~=1. 

Let k be an integer. Since X is non-separable it contains an element of the form 

(Yl,Zl) with Ilzl II = 1 and(Er~rolzl(y)[2) * < k  -2. Let F1 = Fo u {support of 

zl} and choose an element (Y2,Z2)in X with IIz~ll = 1 and ( ~ r ,  lz~(~)l~)~ 
= k-2.  Continuing in this manner k steps we obtain that X contains an element 

( y , z ) w i t h z = ( z l  + z2 + " '+Zk)/x/ksothat  Ilzll ~ 1 - k  -1 _>- ~, (~o~ol ~(~)1~ ~ 
< k -1, and supr~r I z(y)] < k -1. By the description of JU given above it follows 

that there exists a )7 E Co such that II y § YlI~ = max(k-1,  supr~ rl z(y)]) = k-~. 

The element (y +37,z) belongs to X, has norm greater than �89 and for every 

integer i, 

luZ(y + ~,z)l ~ max(ll y + .V[Io~, ~ro I z(~)l~)~) --- k-l" 

Thus X is not isomorphic to a subspace of 1oo. In order to prove the same 

without the assumption that X contains V = Co apply the following observation to 

W = span {X, V}. Assume that W = X are Banach spaces such that X and W/X 

are both isomorphic to subspaces of l~o ; then W is isomorphic to a subspace of 

l~. Indeed, let T: X ~ l~o and S: W/X ~ loo be isomorphisms. Then w ~ (Szw, Tw) 
is an isomorphism from W into l~ = l = @ l |  where z : W ~ W / X  is the 

quotient map and T an extension of T to IV. 

(e) Introduce in U* = 11 ~ /2 (F )  the norm 

co 

II (Y*' z*)ll~ = .=11 y*(")I § x=(nY~J y*(n)l~ § , ~ l  z*(w) I~}~" or , 
\ 

It is easily checked that II rio is an equivalent locally uniformly convex norm in U* 
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(for definition of locally uniformly convex see [8]). By using the explicit representa- 

tion of JU in U** it is easily checked that the unit ball of II Iio is w* closed and 

thus II Iio is a dual to a norm in U. This norm in U must be Fr6chet differentiable 

REMARK 1. By Propositions 3 and parts (a), (b) and (e) above, we infer 

in particular that a smooth Banach space need not be isomorphic to a subspace 

of a WCG space. This answers negatively problem 9 in [8]. 

REMARK 2. The fact that U* has an unconditional basis is of interest in 

connection with some recent results of the first named author and H. P. Rosenthal 

(cf. [11]) caaz~rairtg W,7,"3 sptz~s which have an unc:~a:litional basis. It is 

shown, for example, in [11] that if X* m Y* with Y WCG and X having an 

unconditional basis, then X is also WCG. Since U*~ (c o @ 12(F))* we see that in 

the result above it is not possible to replace the assumption that X has an un- 

conditional basis by assuming that Y and X* have unconditional bases. 

REMARK 3. As we already mentioned above it was shown in [1] that if X is 

WCG and Y a separable subspace of X then there is a separable Z with X D Z = Y 

such that Z is complemented in X. It is also well known that for non WCG spaces 

X this assertion may fail to be true. For example, l~o has no complemented infinite- 

dimensional and separable subspaces. Pelczynski raised the question whether loo is 

the worst example in the sense that whenever X = Y, with Y separable, there is 

a Z so that X ~ Z ~ Y, Z complemented in X and Z isomorphic to a subspace of 

loo. Example 1 shows that this is not the case. Indeed, if Z is such that U D Z D V 

and Z isomorphic to a subspace of loo then by (d) above Z is separable. By 

Sobczyk's theorem [12] V is complemented in Z. If thus, in addition, Z were to be 

complemented in U, it would follow that U "~ V@ U/V; that is, U ~ Co ~ 12(F), 
and this contadicts (b). 

To conclude this section we consider briefly the space Uo of Example 1 but in 

its natural sup norm induced by l~. 

EXAMPLE 2. There is a compact Hausdorff space K so that the Banach space 

C( K) of all the continuous real-valued functions onK has the followin9 properties: 

(a) C(K) is not a subspace of a WCG space; 

(b) C(K) has an equivalent Frechdt differentiable norm; 

(c) every separable subspace of C(K) is isomorphic to a subspace of c o. 

PROOF. As in Example 1, let Uo be the span of Co and (~br}r~r in l~o. Since U o is 

a subalgebra of loo its completion (after adding the function identically equal to 1) 
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is a C(K) space. Clearly C(K)/V is isomorphic to co(F) where V denotes as above 

the space Co. Assertions (a) and (c) are evident (for (a) use Proposition 3). It is also 

clear that C(K)* is isomorphic to 11 ~ ll(F) (that is, to ll(F)). The following is a 

norm on 11 @ II(F) which is locally uniformly convex and whose unit ball is w* 

closed: 

I1 (Y*'Z*)tlo = 2 ~ lY*(n) l + X I + y*(n)l 2 + X I 2 
n = l  y e F  n y ~ F  . 

We omit the easy verification (the factor 2 in the expression for II I1o is needed 

for ensuring w* closedness of the unit ball). Thus II 11o induces an equivalent 

norm on C(K) which is Fr6chet differentiable. 

REMARK 4. Example 2 shows that even for C(K) spaces the answer to Problem 

9 of [8] is negative. 

REMARK 5. In [7] it is proved that if 2 < p < oo and if X is a Banach space 

such that every separable subspace of X is isomorphic to a subspace of Ip, then X 

is isomorphic to a subspace of lp(F) for some set F. Example 2 shows that a similar 

result does not hold if Ip is replaced by co. 

3. The main result 

In this section we shall prove the following theorem. 

THEOREM. Let X be a Banach space such that X* is WCG and X is a subspace 

of a WCG space Y. Then X itself is WCG. 

The proof will be by transfinite induction using long sequences of projections. 

We shall actually prove that X has a normalized shrinking Markuschevich basis, 

that is, that there is a biorthogonal family {(xr,f~)}r ~ r for some index set F with 

II II = 1 so that x is the closed linear span of {xr}r~r and X* is the (norm) 

closed linear span of {fr}r ~ r. The set {xr} r ~ r U {0} is thus w compact and spans X 

We should point out however that once it is known that X is WCG, the existence 

of a shrinking Markuschevich basis in X follows from known results of Troyanski 

[-14] and John and Zizler [6] (since X* is by our assumption WCG). 

The following lemma ensures the existence of the projections needed in the 

proof of the theorem. 

LEMMA 1. Let Y be a Banach space generated by a weakly compact 

symmetric and convex set K. Let X be a subspace of Y and let T: X ~ Z be a 

bounded linear operator into a reflexive space Z so that T*: Z* ~ X* is one-to-one 
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and has dense range. Let d l  be a cardinal number and let Yo, Yo, X~, Z o and 

Z'o be subspaces of Y, Y*, X*, Z and Z* respectively each having density character 

no larger than all. Then there are projections P on Y and Q on Z satisfying the 

following: 

(i) PK ~_ K; 

(ii) PX c_ X; 

(iii) PY ~_ Yo, P 'Y* ~- Y~, (PIx)*X* =- X~; 

(iv) TPX = QZ; 

(v) Qz ~_ Zo, Q'z* _ zr 

(vi) T*Q*Z* = (Pix)*X*; 

(vii) dens PY <= J[; 

(viii) dens QZ < .11. 

PROOF. We construct P and Q to be limit points in the weak operator topologies 

of sequences of projections {p.}~o= 1 and {Q.},~= 1 on Y and Z respectively. 

Let Po = Qo = O. We construct inductively for n > 1 the projections P. and 

Q. so that the following hold: 

(a) IIP II--1, 
(b) PnK ~ K ;  

(c) P,X ~ X ; 

* * u Y j ;  (d) P.Y ~ P._ t Y U Yo, P 'Y* ~ Pn- I Y ' 

(e) (P.Ix)*X* ~ T*Q.*_,Z* U X ; ;  

(f) TP, X ~_ Q,,_IZ UZo; 

(g) densP,  Y < d / ;  

(h) II II -- 1; 
(i) Q.Z = TP.X; 

(j) Q'Z* m Q*_I Z* U Z ; ;  

(k) dens Q,Z < .//. 

To see that this is possible, assume that Po,...,P,_I and Qo,'" ,Q,-t  have 

been defined so that all the relevant conditions in (a)-(k) are satisfied. Since the 

density character of the span of Q,_ tZ u Z o is < J/r by (k) and since T has dense 
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range (for T* is assumed to be one-to-one) there is a subspace W of X with 

dens W ___< ~ '  and TWD_ Qn_tZ U Z  o. By an extension of a result of [1] due to 

John and Zizler [5] there is a projection P. on Y satisfying (a), (b), (c). (d), (e), (g) 

and P.X D W and thus also (f). (Observe that w* dens P*_lY* __< dens P ._IY 

< ./g and dens span IT*Q*_ IZ* u XD] < .g). Having chosen P. we construct Q. 

using the reflexivity of Z and the result of [1] so that (h), (i), (j) and (k) hold. 

Since K is weakly compact and since Z is reflexive it follows from (b) and (h) 

that there are subnets { P J  and {Q..} of {P.} and {Q.} respectively so that P..y 

converges weakly for every y in K to Py, say, and Q.z  converges weakly for every 

z ~ Z to a limit Qz. Since K generates Y and l[P. II < 1 for all n we obtain that 

P..y --. Py for every y E Y. Since X is closed, and thus weakly closed in Y, it follows 

that PX m_ X. It is also immediate that P and Q are projections and that (i), (ii), 

(iii), (v), (vii) and (viii) hold. That (iv) holds follows from (f) and (c). Finally (e) 

implies that (PIx)* X* ~_ T*Q*Z* and since, by (iv), (Plx)*T*(1 - Q*) = 0 we 

obtain, using the fact that T* has dense range, that T*Q*Z* = (PIx)*X* which is 

requirement (vi) of the lemma. 

Having proved the lemma we pass to the proof of the theorem itself, Let ~0 be 

the smallest ordinal whose cardinality [ % [ is the density character of X and let 

o) denote, as usual, the first infinite ordinal. For every ordinal, ~, o) < ~ _< %, we 

shall construct a projection S. on X so that: 

(A) S~ Sp = Stain(a,#); 

(B) Stjx ~ S~x as fl ~ ~ for every x ~ X; 

(C) S.o = identity on X; 

(D) dens S,X -<_ I ct[; 

(E) S~ x* --* S* x* as fl~'~ for every x*EX*. 

The precise meaning of (B) is that for every x E X, the function ~ ~ S,x is a 

continuous function from the ordinals {~: co < ~ < %} with their order topology 

into X with its norm topology. In a similar manner (E) should be understood, 

noting that in X* we take again the norm topolooy. 

Once the existence of the projections S, satisfying (A)-(E) is proved, a simple 

transfinite induction shows that X has a normalized shrinking Markuschevich 

basis and thus is WCG. Indeed, by a result of Mackey [-10], this is the case if X is 

separable (that is, % = 09) since X* being WCG must also be separable. Since 

for ~ < ~ o ,  dens ( S ~ + t -  S~)X< [%] there is by the induction hypothesis a 
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normalized shrinking Markuschevich basis {(x~ ~, f~)}r<~ for (S~+t-S~)x. It is 

easily checked that {(x~, (S*+1 * ~ - S~)f~)}~<~;o,_<~<~o is a shrinking Markuschevich 

basis for X. 

Let Y ~ X be the WCG space whose existence is assumed in the statement of 

the theorem and let K be a convex symmetric, weakly compact set which generates 

Y. Since X* is WCG there exists by [2] a reflexive Banach space Z and a one-to- 

one operator T*: Z* ---} X* with dense range. Since Z is reflexive T* (like every 

operator on Z*) is the adjoint of an operator T: X-* Z. With % having the same 

meaning as above, observe that I% [ > dens Z = dens Z*. Let {x~: o < ~ < %} 

and {z*: co < ~ < %} be dense sets in X and Z* respectively. (We assume that 

[ % [ > No since otherwise there is nothing to prove.) We construct now inductively 

norm 1 projections {P~}o<~<~o on Y and {Q~},o-<~<~o on Z so that: 

(1) P~K c_ K; 

(2) x; 

(3) P,+tY=P~YU{x#:o<f l<e~;  

(4) P*+,Y*= P*Y*; 

(5) P#y -~ P~y as fl ~' ~ for every y e Y; 

(6) dens P ,Y =< [~]; 

(7) TP~X = Q,,Z; 

(8) Q +lz = Q z; 

(9) Q~,+tZ* * m Q ' z *  u {z;: r = fl _< e}; 

(10) dens Q~Z < Ictl; 

(11) T*Q=Z* = (P~,lx)*X*; 

(12) Q#z --, Q j  as fl 1' 0~ for each z e Z. 

Suppose that the P# and Q# have been defined for all fl < et so that (1)-(12) 

hold. If  et is not a limit ordinal we apply the lemma, with ~ = l etl, Yo 

= span [P,_,Y W{x~_,}], Yo' = P*-IY*, X~; = (P~-I x)*X*, Zo = Q~_,Z and 

Z~ = span [Q*_tZ* u{z~_l}] ,  to obtain projections e -  P ,  and Q = Q~ on Y 

and Z respectively. Properties (i)-(viii) ensured by the lemma easily imply that 

(1)-(12) are valid. 

Suppose next that ot is a limit ordinal. Since P#K c K for every fl < et we have, 

as in the proof of the lemma, that some subnet of {P#}o,_~#<~ converges in the weak 
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operator topology to a norm 1 projection P~ on Y. Since the ranges of {Pp}o___p<~ 

and {P~}o,~p<~ are both increasing (by (3) and (4)) we obtain in fact that 

ItPP y -  P~Yll-~0 as f l t~  for every y~  Y. Similarly {Qa}o,_a<~ converges in the 

strong operator topology to a projection Q~ on Z. It is clear that (1)-(12) are 

satisfied and this completes the inductive construction of the P~ and Q~. 

Now we simply set S~ = P~lx for o~ ~ ~ < % and S~o = I. It is easily checked 

that (A), (B), (C) and (D) hold. It remains to verify that the crucial condition (E) 

is also satisfied. Let ~ be a limit ordinal. By (12) and the reflexivity of Z it follows 

that Q~z* tends w to Q'z* as f l t~  for every z* sZ*. Since Q~ Q#* = Qmin(p,,#2)we 

deduce from this that If Q~z* - Q'z* II ~ o as fl 1' ~ for every z* e Z*. Thus by (11), 

(P~Ix)*X* = T*O*Z* = T* U O'Z* 
p<a 

T Qt3Z = [,J (P~lx)*X*. 

Since, by (4), (Pplx)*X* is an increasing net of subspaces as fl ~' ~t it follows that 

for every x* e(P, lx)*X*, li(Pplx)*x*- x* [] ~ 0  as fl~'ct. This statement is the 

same as (E) and thus we have completed the proof of the theorem. 

We conclude by mentioning four questions related to the subject of this paper 

whose answers we do not know. 

(1) Assume that X** is WCG. Is X also WCG? James's tree J0 mentioned in 

the introduction shows that X* need not be WCG. 

(2) Assume that X* is WCG. Does X have an equivalent Fr~chet differentiable 

norm? Troyanski proved [13] that X* has an equivalent locally uniformly convex 

norm. John and Zizler [4] observed that if, in addition, X is also WCG then 

Troyanski's construction can be made in such a manner that the unit ball of the 

locally uniformly convex norm in X* is also w* closed and thus it induces an 

equivalent Fr6chet differentiable norm on X. In the two examples we considered 

in Section 2 we could do the same even in cases where X is not WCG. It is however 

unclear whether this can be done in general without any further assumption on X. 

(3) Characterize those compact Hausdorff spaces K for which C(K) admits an 

equivalent Fr6chet differentiable norm. Example 2 seems to indicate that the 

answer may not be simple. 

(4) Let X --, Y be Banach spaces, with Y separable. Does there exist a space Z 

with X = Z = Y, Z complemented in X and the density character of Z is less than 

or equal to that of the continuum? In this connection see Remark 3. 
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