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Spherically symmetric solutions with heat flow in general relativity 
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Abstract. Some new solutions of shear-free imperfect fired spheres wtth heat flux m the 
ra&al &rectlon are obtained They have isotropic pressure and could be the generahzatlons 
of earher solutions of Nanal and of Banerjee and Banerjl for perfect flutd wqhout &sslpatlon. 
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1. Introduction 

It is interesting to investigate the problem of gravitational collapse of stars with 
dissipation in the form of radial heat flow in the sense that it gives'a more general 
picture of the collapse problem that what is described in a simple a&abatic fluid. 
Such models were proposed by Bergmann (1981) and later generalized by Modak 
(1984). The problem of matching the interior solutions with the exterior Vaidya 
(Vaidya 1953) metric representing a radial unpolarized radiation flux was studied by 
Santos (1985), as well as by de Oliveria etal  (1986). 

In the present paper we present some new interior solutions for an isotropic 
spherically symmetric dissipative fluid with heat flow in the radial direction which is 
an extension of the previous perfect fluid solutions of Buchdahl (1964), Nariai (1967) 
and Banerjee and Banerji (1976) to include the heat flow terms in the energy momentum 
tensor. The condition of fit at the boundary in one of the simple cases discussed. The 
density, pressure and heat flux terms are also calculated in this particular class of 
solutions. In other cases these expressions are rather complicated and definite 
conclusions cannot be derived without suitable assumptions. 

2. Einstein's fixed equations and their solutions 

We start with the well-known isotropic form of the spherically symmetric metric 

dS 2 = A 2 dt 2 - B2(dr 2 -I- r 2 d02 + r 2 sin 2 0 d~b2), (1) 

where A, B are functions of r and t. The energy momentum tensor for a fluid with 
heat flux is expressed m the standard form as 

T~ = (p + p)v~v~ - p ~  + q~'v~ + v~'q~, (2) 
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where qU represents the heat flow vector which is orthogonal to the velocity vector 
v ~. In the present spherically symmetric case the radial component q~ is nonvanishing. 
In comoving coordinates we have v u = 6~,A-1 and in Einstein's field equations the 
isotropy of pressure leads to the following equation (see Bergmann 1981) 

Axx + 2(Fx/F)Ax - (F,,x/F)A = O, (3) 

where F is written for B-1 and x for r 2. For adiabatic motion, that is when there is 
no heat flux, the solutions must satisfy another field equation G~ = 0 and this combined 
with (3) yields the perfect fluid solutions. The solutions of equation (3) for which 
G~ 4:0 allow heat flux through the fluid and were previously obtained by others as 
mentioned in w These solutions may be astrophysically interesting and more such 
solutions are worth investigating. 

One of the groups of solutions is obtained by imposing simplifying assumptions 
regarding A and F in (3). Some such solutions are as follows: 

O) Bergmann solution: 

A = A(t), which results in Fx~ = 0 and yields without any loss of generality 

R(t) 
A = I ,  B = l + ~ ( t ) r  2' (4) 

~(t) being an arbitrary function of time. 

(ii) Modak solution: 

Fxx = 0, so that one gets the solutions in the form 

( _ It) RI,) 
A =  I q l + ((t)r2 ] ' B =  l + ~(t)r ~ "  (5) 

This solution is conformally fiat and is the most general conformally flat solution of 
the above type for the metric (1). A special case of (5) was given by Maiti (1982) with 
~(t)=constant. 

(iii) The assumption Ax~ = 0 ylelds the solutions 

R(t) 
A = [1 +r B =  [1 + ~(t)r2] 3' (6) 

where ~ and R are arbitrary functions of time. 

(iv) Another class of solutions for the metric (1) representing fluid with heat flux m 
the radial direction is obtained by generalizing the perfect fluid solutions of Nariai 
and of Banerjee and Banerji. 

These solutions are completely new. The metric chosen in this case is in the form 
originally given by Buchdahl (1964) for his static solutions. These are 

A = (1 -f)/(1 + f), B = S(t)(l +f)z. (7) 
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The function f is assumed to be the form f =  [R(r).K(t).] suggested originally by 
Nariai. The isotropy of the pressure then demands that R and K must satisfy the 
following equation 

2R3R"K 4 _  2RR"K 2 + 6R'2K 2 _ 6R2R'2K 4_~ - -  
2RR 'K  2 2R3R'K 4 

- - = 0 .  (8) 
r r 

It is easy to show that the above equation is satisfied if we have the following simple 
equation satisfied 

(R"/R') - (3R'/R) - (l/r) = 0. (9) 

The dash sign stands for the derivative with respect to r. The solutions of (9) will 
satisfy (8). Equation (9) with R' r 0 yields the solutions, in view of (7) as follows 

A = (Tz 1/2 - 1) B = (Tz1/2 + 1)2 , (10) 
(Tz 1/2 "1- 1)' Txz 

where z = 1 + ar z, a being an arbitrary constant, T(t )= K - 1  and 7'1 is another 
arbitrary function of time. In the special case 7"1 = T we get Nariai's inhomogeneous 
perfect fluid solution, otherwise when T~ ~ T there is heat flux. We calculate the 
pressure, density and heat flux for a simple case where T~ = 1. These are 

4a 4z 1/2 
8 n P = x 5  Y y3 [ ~ ' X Y - 4 j ' 2 z ~ / 2  + 2T(F2z], (11) 

8rip = (12a/X 5) + (12 ~F2z/ y 2), (12) 

8nqlB = _ (4~rzl/2 ar/X 2 rE), (13) 

where we have written X = (Tz  1/2 + 1) and Y = (Tz 1/2 - 1). The contraction takes 
place for ~r < 0. The constant a is chosen to he positive in order that p remains 
positive even when ~r _- 0 at the turning point. One can refer to the matching conditions 
at the boundary where the interior metric can fit with the exterior radiating Vaidya 
metric. Here the interior spacetime V- of the system is represented by a nonadiabatic 
spherically symmetric shear-free collapsing fluid undergoing d!ssipation in the form 
of a radial heat flow. While the fluid collapses it produces unpolarized ra&ation and 
hence the exterior space-time V + of the sphere is described by the Vaidya metric. 
We have therefore in the interior the metric (I), but the exterior is represented by the 
Vaidya metric 

dS2 = ( 1 - 2 ~ ( V ) ) d v 2 - 2 d v d f + r 2 ( d O 2 + s i n 2 O d ~ p 2 ) ,  

where m, the total energy of the system, is a function of the retarded time v. The 
intrinsic metric to the hyper-surface Y, as a part of their boundaries is given by 

dS 2 = g,~ d~' d~ J = dz 2 - A/(z)(d02 + sin / 0 d~b2). 

The conditions of fit need the continuity of the first and second fundamental forms 
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at the boundary hypersurface (Santos 1985) which in turn lead to a relation 

(p + Bql)z = O, 

where the subscript Z indicates the value at the boundary surface r = rz. 
It is evident from the above boundary condition that the pressures does not vanish 

at the boundary as long as there is a heat flux across it. The interior matches with 
the Schwarzschild's exterior solution only in the absence of the heat flow. In the 
present case the exterior is the Vaidya metric which includes a time-dependent mass 
function re(v). This function, however, decreases with time as the energy flows across 
the boundary in the radial direction. 

The behaviour of the sphere now depends on the choice of the function T(t). 
Consider the instant 7" = 0, when the pressure-heat flux relation at the boundary 
mentioned above reduces in view of (11) and (13), to 

~P = a Yr./(X6Z~/2). (14) 

Since.the relatmn (14) corresponds to the situation T = 0, which means a turning 
point in the motion of the sphere, we get a maximum or a minimum to the dimension 
according as T < 0 or T > 0. Again we note that for T < 0 the constant a turns out 
to be negative and as a result the density p can attain only negative magnitude at 
this turning point, which however, does not give a physically realistic model. So for 
a reasonable model one should choose the function T in such a way that it must 
possess the property T > 0 at the moment 7" = 0 (if it has at all a turning point). It 
can, therefore, represent only a minimum putting a lower limit to the dimension of 
a contracting sphere. One further notes that apart from a singularity of the type X = 0, 
there may be another kind of singularity given by 

Y = 0 that is Tz  ~/2 = 1. 

The other classes of solutions of equation (3) we wish to present, are the direct 
generalizations of the perfect fluid solutions given previously by Nariai and Banerjee 
and Banerji. In the first case the solutions of (3) are 

T z  1/2 - ct (Tzl/2 + ~)2 
A -  Tzl/2 + , B -  Tz  (15) 

In the second case the appropriate solutions are given by 

1 T 2 z 
B = ~ ( z + b / T )  2, (16) 

A - T (z + a /T ) '  z ~ 

where in both cases z = 1 + ~/(t) r 2, with r/(t) an arbitrary function of time and b, a 
are constants. Putting r/(t)= constant one gets back Nariai's perfect fluid solution 
from (15) and that of Banerjee and Banerji from (16). We have not investigated in 
detail the scalars like pressure and density which we hope'to do in a subsequent paper. 
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