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Abstract Using the theory of existence of periodic solutions of Hamiltonian systems, it is shown that many periodic 

solutions of differential delay equations can be yielded from many families of periodic solutions of the coupled generalized 

Hamiltonian systems. Some sufficient conditions on the existence of periodic solutions of differential delay equations are 

obtained. As a corollary of our results, the conjecture of Kaplan-Yorke on the search for periodic solutions for certain 

special classes of scalar differential delay equations is shown to be true when f '  (0) = w > 0. 
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In 1974, Kaplan and ~orke ' ' ]  studied and introduced a new technique for establishing the exis- 

tence of periodic solutions for certain special classes of scalar differential delay equations of the forms 

y ' ( t >  = - f ( y ( t  - 1 ) )  (0 .1)  
and 

y ' ( t )  = - [ f ( y ( t  - 1 ) )  + f ( y ( t  - 2 ) ) l  (0.2) 
when f is an odd function. They have reduced the search for periodic solutions of (0 .1  ) and (0 .2 )  

to a problem of finding periodic solutions of associated ordinary differential systems and obtained some 

precise conditions under which (0 .1  ) and (0 .2)  have nonconstant ~eriodic solutions of period 4 and 

6 ,  respectively (Theorems 1 . 1  and 1 .2  of ref. [ 1 ] ) . When the scalar differential equations contain 

more than two delays, like (0 .3)  below, they made the following conjecture : 

"Consider the differential delay equation 

x ' ( t )  = - [ f ( x ( t  - I ) )  + f ( x ( t  - 2))  + + f ( x ( t  - ( n  - I ) ) ) ] ,  (0.3)  
where f ( 0 )  = 0 ,  f is odd and x f ( x )  >Ofor x+O.  Let X =  ( ~ ~ , x ~ , . . . x , ) ~ a n d  @(x) = ( f ( x l ) ,  

f ( x2) , ... , f ( x,) )T, where the superscript T denotes the transpose. Let A, denote the n x n anti- 

symmetric matrix with all elements being 1 under the diagonal. 

It is readily verified that given any ~eriodic solution x ( t ) of ( 0 . 3 )  with period 2n  , such that 

x ( t ) = - x ( t - n )  for all t , it must satisfy the system of ordinary differential equations 

x f ( t )  = A,@(x), (0 .4 )  

* Project supported by the National Natural Science Foundation of China (Grant No. 19731003) and Science Foundation of 

Yunnan Province. 



958 SCIENCE IN CHINA (Series A) Vol. 42 

where x l ( t )  = x ( t ) ,  x 2 ( t )  = x ( t  - 1) ; - - , xn ( t )  = x ( t  - ( n  - 1 ) ) .  Theorems 1 . 1  and 1 .2  of 

ref. [ 11 show that if n = 2 or n = 3 and f suitably well behaves near 0 and , then the converse is 

also true. Hopefully, such a converse should be true for ( 0 . 3  ) and (0 .4 )  .-. . Unfortunately, we 

have been unable to carry through the details of the proof in this more general settingt. 

The existence of periodic solutions of delay differential equations has also been investigated by 

many authors using different techniques. In 1978, using a different idea from the conjecture of Kaplan 

and ~orke ' "  and some general fixed point principles of nonlinear functional analysis, ~us sbaum[~]  

proved that there exists a periodic solution of ( 0 . 3  ) with period 2 n . Gopalsamy et a1. [31 , have 

shown how to construct the periodic solution of Kaplan-Yorke type for some more general differential 

delay equations with two or three delays. For other related works, the reader may refer to the refer- 

ences cited in refs. [4-61 . However, to our knowledge, the conjecture of Kaplan-Yorke "in this 

more general settingv for (0 .3 )  and ( 0 . 4 )  is still open. 

In this paper, we consider differential delay equations of the form 

which is a bit more general than ( 0  .3  ) , where f is a suitable odd function and ri ( i = 1 ,2 ,  ... , n - 
1) are constant delays. We show that the coupled system ( 0 . 4 )  of ( 0 . 5 )  is actually a classical 

Hamiltonian system (for n = 2 k ) or a generalized Hamiltonian system (for n = 2 k + 1 ) . Using the 

relationship of periodic solutions between (0 .4 )  and (0 .5 )  and the theory of periodic solutions of 

Hamiltonian systems, we derive some interesting results on the existence of many periodic solutions of 

(0 .5 ) .  As a corollary of our results, we show that the conjecture of Kaplan-Yorke is true when the 

condition f ' (0)  = w > 0 holds. 

1 Equivalence on the existence of periodic solutions 

We assume that 

(HI) the function f ( x ) E  C' for x # 0 ,  f (  - x )  = - f ( x ) ,  f ( 0 )  = 0 ,  xf(x)  > O  for x + O  

and 0 < x < a , where a is a constant. 

The function 

H ( X )  = H ( x , , x , , . - . , x , )  = F ( x l )  + F ( x 2 )  + .-. + F(x , )  (1 .1)  

is called a Hamiltonian , where F ( x ) = f ( x ) ds for x E R . Denote @ ( X )  = VH ( X )  in which S: 
V H ( X )  is the gradient of H ( X )  and hence @ ( X )  = V H ( X )  = (f(~~),f(x~),...,f(x,))~and 
system (0.4) can be rewritten as 

where A, is the n x n antisymmetric matrix defined in the previous section. 

It is known from the theory of generalized Hamiltonian ~ ~ s t e m s [ ~ - ~ ]  that when n = 2 k ,  (1.2) is 

a classical 2 k-dimensional Hamiltonian system since ATJ + JAn = 0 ,  where J = (-01 i) is a 2k 

x 2k matrix and I is the k x k identity matrix; that is, A, is a classical Hamiltonian matrix. When 

n = 2 k + 1 , A, is called a structure matrix of system (1  .2 )  and system ( 1 .2) is called a generalized 

Hamiltonian system. In this case, there is an invariant function 
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k 

C ( X )  r C ( ~ , , X ~ , . . . , * , )  = X I  + C ( x p i + 1  - X Z ~ ) .  
i = l  

( 1 . 3 )  

C( X )  is called a Casimir function of ( 1 . 2 )  . The level set defined by C ( X )  = c is called a sym- 

plectic leaf. According to the theory of the generalized Hamiltonian systems ( 1 . 2 )  can be reduced to 

a 2k-dimensional Harniltonian system on the symplectic leaf xl + ( x ~ ~ + ~  - x Z i )  = C .  In fact, 
r = l  

by choosing c = 0, the symplectic leaf is given by xzk+,  = ( xzi  - x 2 i - l )  and on this leaf we 
& = I  

have 

H *  (X)E H *  ( x ~ , x ~ , " ' , X ~ ~ )  

and 

dX = A,, V H '  ( X ) ,  X = ( x , , x , , . - - , x ~ ~ ) ~ .  
d t ( 1 . 5 )  

Clearly, AZk is a 2 k x 2 k Hamiltonian matrix, meaning that ( 1 . 5 )  is also a classical Hamiltonian 

system. Therefore we have 

Proposition 1. For n = 2 k , ( 1 - 2 )  is a classical 2 k-dimensional Hamiltonian system. For 

n = 2 k + 1 , ( 1 . 2 )  can be reduced to ( 1 .5 ) , which is a classical 2 k-dimensional Hamiltonian sys- 

tem. Moreover, if ( ~ ~ ( t ) , " ' , ~ ~ ~ ( t ) )  is aperiodicsolutwn ofperiod P o f  ( 1 . 5 ) ,  then ( x l ( t ) ,  
k 

~ ~ t ) ~ ~ t ) ~ ~ + ( t ) )  i t h x 2 t  = xi=, [ x Z i ( t )  - isaperiodicsolution 

of ( 1 . 2 )  wi thperiodp;  $ ~ ~ ( t ) , . . - , x ~ ~ ( t ) , ~ ~ ~ ~ ~ ( t ) )  zkaperwdicsolutionofperiodpof ( 1 . 2 )  

with x Z k + , ( t 0 )  = C k  i = l  [ x Z i ( t O )  - ~ 2 k - l ( f ~ ) l  for some t o €  R ,  then ( ~ ~ ( f ) , " - r * ~ ~ ( t ) )  i~ a 

periodic solution of ( 1 . 5 )  with period P . 
Definition 1 .  Let G be a compact Lie group of transformations acting on Rn . The mapping @ : 

Rn 4 Rn is called G-equivariant , if for all g E G and X E Rn , @ ( g X )  = g@ ( X )  . A function H : 

Rn- R is called G-invariant function if for all g E G and X € Rn , H ( g X )  = H ( X) . Also, for 

Xo E Rn , the set GXo = { gXo I g E G 1 is called the group G orbit of Xo . 
Now let us consider a map Tn : Rn+ Rn defined by the n x n matrix 

where I n _ 1  is the ( n  - 1) x ( n  - 1 )  identity matrix. 

Lemmal. I f n = 2 k + 1 ,  thendet T 2 k + l =  - 1  and a k o ,  thematrix T Z k + l  can bedecom- 

posed into the product of 2k elementary rotation matrices ( T Z k  + I ) ro t  with 6 = r / 2  and a reflection ma- 
trix as follows : 

T 2 k + l  = ( TZk+l)rot( T2k+l)ref. 
I f n  = 2 k ,  then det T Z k  = 1 and the matrix Tzk  can be decomposed into the product of 2k - 1 

elementary rotation matrices with 6 = ~ / 2 ;  that is , TZk  = ( T2k)rot .  

Lemma 1 means that the action T2k + on Rn is a composition of a reflection ( T2k + )ref and 2 k  
clockwise rotations by 6 = r / 2  on the plane ( E , c z )  , ( E ~ ,  E ~ )  , .-- , ( E ,  - E, )  , respectively. How- 

ever, the action T Z k  on Rn is only a composition of 2k - 1 rotations. 
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Now we define a group as follows: 

G") = I g  I g = T",, s = 1 , 2 , . . . , 2 n / .  

Obviously, G(' )  is a closed subgroup of 0 ( n ) with order 2 n  and ( T,), € SO ( n ) . 
Note that TTJT,, = J. This means that the compact Lie group G") is a generalized symplectic 

action on Rn (see ref. [ 101 ) . We can show that the following proposition holds. 

Proposition 2. Suppose (HI  ) holds. Then thefinction @ ( X )  = AnV H( X )  is a G") -equiv- 

ariant and the Hamiltonian H (  X )  is a G") -invariant function. I f X (  t ) is a nonconstant periodic so- 

lutionof (1 .2 )  w h e n n = 2 k o r  ( 1 . 5 )  w h e n n = 2 k + l  withperiod P,  then f o r a l l g € ~ ( ' ) ,  gX 

( t ) is also a periodic solution of ( 1 .2) with period P . Furthennore , gX( t ) is oscillatory about zero 

in Rn . 
Let X ( t ) be a nonconstant ~eriodic solution of ( 1 . 2 )  (when n = 2 k ) or ( 1  . 5 )  (when n = 2 k 

+ 1 )  with minimal period P. Suppose that there exists some 1 such that 

where 1 G  Z < n and 1mZO (mod 2 n )  for m = 1,2;.*,2n - 1. 

In sec. 2 we will show that the integer 1 is dependent on the spectra of the linearized systems of 

( 1 . 2 )  and ( 1 . 5 )  i f f 1 ( O ) = w > 0 .  

Theorem 1 .  Suppose that condition (H1 ) holds and 

(H2)  system ( 1 . 2 )  (when n = 2 k )  or ( 1 . 5 )  (whenn = 2 k  + 1 )  has aperiodicsolutionX(t) 

= ( x l ( t ) ,  ~ ~ ( t ) , . . . , x , ( t ) ) ~  ofperiod P = 2 n , u ,  satisfying ( 1 . 7 ) ;  
( H3 ) the delays of ( 0 . 5  ) satisfy 

ri = ( i  + 2 n m i ) l P ,  f o r i  = 1,2, . . . ,n  - 1 ,  (1 .8 )  

where mi ( i = 1 , 2 ,  - - -  , n - 1 ) are some nonnegative integers ( not necessarily distinct ) , and 1,  p are 

given by ( Hz ) . Then x ( t ) = x ( t ) is a nonconstant periodic solution of ( 0 . 5  ) with period P = 

2nP.  

Proof. By the conditions of Theorem, we know that, for the periodic solution X(  t ) of period 

P of (1 .2 )  (when n = 2 k )  of ( 1 . 5 )  (when n = 2k + I ) ,  x T ( t )  = T ~ x ~ ( ~  + 1 , ~ ) .  This implies 

x T ( t )  = ( x 2 ( t ) ; . - , x n ( t ) ,  - x , ( t ) ) T  = ( ~ ' ( t  - l,U),'..,X,(t - I , U ) ) ~  = x T ( t  - l p ) .  

Then, using condition ( 1 . 8 )  , we have 

rl 2 m l  nr, 
x 2 ( t )  = x , ( t  - ZP) = - 

1 +  2nml 1 + 2 n m l  = Xl(t  - T I ) ,  

Therefore, it follows from the first equation of system ( 1 .2 )  and Proposition 1 that x ( t ) = xl  ( t ) is 

a nonconstant periodic solution of 0 . 5  with period P = 2 np . 
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2 Periodic solutions of the coupled systems 

We now turn to the existence of periodic solutions of the coupled systems ( 1 . 2 )  (for n = 2 k ) 
and ( 1 . 5 )  (for n = 2 k + 1 ) of (0 .5  ) . We assume that the function f satisfies ( H 1  ) and f ' ( 0 )  = w 

> 0 .  Denote X = ( x ,  , x ,  , ... , X Z ~ ) ~  in this section. It is easy to show the following two lemmas. 

Lemma 2. The coefJicient matrices wAZk and wA4 of the linearized system of ( 1. 2 )  and 
( 1 - 5  ) have respectively the following spectra 

a (A .&)  = { *  iy,  = i t a n G ,  q = 1 , 2 , - . . ,  k } ,  for n = 2k + 1. 
n ( 2 . 2 )  

( 2 k )  T ( I )  ( 2 ) , . - * ,  77 (q2k ) )T  be the eigenvectors of L e t t q = ( ~ ( , ' ) , ~ : ) , , . - , t q  ) a n d ? q = ( ? q  , q g  
i tan[(2q  + l ) . r c / ( 2 n ) ] ,  and i t a n [ ( q x ) / ( 2 n ) ]  respectively. 

i ( j  - 1 ) ( 2 q  + 1 ) ~  
Then = ( - 1)j- 'exp , 77(qj) 

2k 

Lemma 3. There exists a nonsingular matrix B such that, by the transformation YT = B x T ,  
system ( 1 . 2 )  with n = 2k and ( 1 . 5 )  with n = 2k + 1 are transformed into the canonical forms 

d uT 
- = J O E (  Y )  
d t ( 2 . 3 )  

and 

respectively, where Y =  ( y l , y 2 , ~ ~ - , y 2 k ) ,  H ( Y )  = H ( B - ~ Y ~ ) ,  E *  ( Y )  = H *  ( B - ~ Y ~ ) ,  a d  

J = BAZkBT. 

Note that v ? ~ ( Y )  = ( B - ' ) ' V H ( X ) , V  g *  ( Y )  = ( B - ' ) ~ V H *  ( X )  and xT= B - l y T ,  we 

have v ~ ( Y )  = ~ ( B - ' ) ~ B - ' Y ~ +  o ( I  Y I ) ,  v H * ( Y )  = O J ( B - ~ ) ~ M B - ~ Y ~ +  o ( I  Y I ) ,  as 1 YI 
-0, where wM= H,",(O). Let B = ( B - ~ ) ~ B - '  and M = ( B - ~ ) ~ M B - ~ .  By  Lemma 3 ,  B A ~ ~ B ~  

= J .  It follows that BA,,B-' = J ( B - ' ) ~ B - '  = J B and hence a (  J B )  = ~ ( B A ~ ~ B - ' )  = a ( A 2 , )  - 
since similar matrices have the same characteristic equations. Similarly, we know from J M = 

J ( B - ' ) ~ M B - '  = B A ~ ~ B ~ ( B - ' ) ~ I I / I B - '  = B A ~ ~ M B - '  that a ( ~ k )  = ~ ( B A ~ ~ M B - ' )  = a ( A Z k M ) .  

Note that the matrix wA2,M is the linearized matrix of ( 1  . 5 )  at the origin. Thus a ( J M ) = a ( A &  ) . 
We now consider the canonical Hamiltonian system 

which can be written as 

where 0 is k x k zero matrix, I is the k x k identity matrix and H ( z )  = H( x l  , x 2 ,  ... , x k ,  y l ,  y 2 ,  

... , yk ) E H ( x , y ) is independent of t and vanishes together with its first partial derivatives at x = 
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0 ,  y = 0 ;  that i s ,  H ( 0 )  = H,(O) = 0 .  

Lemma 4 ( Lyapunov Center Theorem ) [I1 ' I 2 '  . Suppose that H ( z ) E c2 ( R Z k  , R ) in 

( 2 . 6 )  satisfis 

( i )  H ( 0 )  = 0 ,  V H ( 0 )  = 0 and H" ( 0 )  > 0 ( that is , H" ( 0 )  is positive definite) ; 

( i i )  JET' ( 0 )  has k pairs of purely imaginary simple eigenvalues * iw, , q = 1 , 2 ,  ... , k , such 
that w i / w j  is not an integer for all i + j . 
Then for all E > 0 small enough system ( 2 . 6 )  has k (geometrically) distinct periodic orbits on the 

surface H ( z ) = E . More precisely , the surface H ( z ) = E carries k distinct periodic orbits 2, whose 
€ 9  

periods T , , ,q  tend to 2 n / w q 7  q = 1 , 2 , - - - ,  k ru E,+O. Moreover, Z,,eqdepends in a C1 fashion on E ,  

and lim, -0 11  Zq,. 11  ,-+O, 

where A<, = iwqEq, A = J f i t ) ( O ) .  
By using Theorems 9 . 2 ,  9.5 and Remark 9.6 in ref .  [ 2 ]  , we know 

Lemma 5 .  Suppose that H in ( 2 . 6 )  satisfies ( i )  , ( i i )  of Lemma 4 and ( i i i)  H : RZk+ R 
is invariant under a generalized symplectic action of a compact Lie group G on R ~ ~ .  Then for each T,,, 

q 

< 2 n / w ,  and T,,, sufficiently close to 2 x / w q ,  there exist at least one Gorbit of closed trajectories of 

( 2 . 6 )  with period T,  , , < 2n/ w ,  , which lies on the surface H ( z ) = E for suffiiently small E > 0 .  
v 

This trajectory converges towards the origin as T,  +2x/w,  ( q = 1 , 2 ,  , k ) . 
) E q  

Lemma 6.  Suppose that f '  ( 0 )  = w > 0.  Then for the linearized systems x = wAZRx and x = 

wA;~x of ( 1  . 2 )  and ( 1 . 5 )  , corresponding respectively to the pairs * i Y ,  and + i y ,  of eigenvalue of 

wAzk and wA&, there exist k families of periodic solutions as follows : 

~ : ( t )  = acqeiYlt + q e - i Y f  

= ( aRe f ,  - /3ImE,)cos y,t - ( aImE, + PRe<,) sinyqt (2 .8)  

and 
i y t  - i : ( t )  = ( , iq ' ( t ) , . !q ' ( t )  , . - . 7 z : a ) ( t ) ) T  = a*e q + a7qe-ii.: 

- 
= (aRer], - PIm7,)cosyqt - (a Im7 ,  + PRer],)siny,t, ( 2 . 9 )  

wherea= ( a  + i p ) / 2 ,  q = 0 , 1 , 2 , . . . , k - l  f o r n = 2 k a n d q = 1 , 2 , . . . , k ,  f o r n = 2 k + 1 .  More- 

m e r ,  we have for n = 2 k  

w h e r e T q = 2 n / ~ , ,  1 = 2 k - ( 2 q + 1 ) ;  a n d f o r n = 2 k + l  lettingx:,9!,= Elk=* [ x $ ) ( t ) -  

x ~ ~ ? , ( t ) l ,  t q ( t )  = ( ~ ~ ( t ) , x i ! i ~ ( t ) ) ,  we have 

( 2 k  + 1 )  - 2 q  1 
i t )  = + I 2 (  + 2 ( 2 k  + 1 )  T ; )  = T 2 k + l ~ ; ( t  + % T ; ) ,  ( 2 . 1 1 )  

where T," = 2x/?, ,  1 = ( 2 k  + 1 )  - 2 q .  

Hence Lemmas 5 , 6 ,  Proposition 2 and relation ( 2 . 7 )  can be used to derive the following result. 

Theorem 2.  Suppose that condition ( H1 ) holds and f ' ( 0 )  = w > 0 .  Then system ( 1 . 2 )  
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( ( 1 . 5 )  ) has k distinct G") -orbit families { r 1 of periodic solutions in a neighborhood of the origin 

and each familiy of periodic solutions depends on one parameter E,. Ifeq+O, then the corresponding 

2 x  
0rbit.s tend to the origin and the period T,,. < - , = 0 , 1 , 2 ,  - - -  , k - 1 for n = 2 k  ( TqPEq < zrr/Tq, 

Yo 

tic action T,  , these distinct families { r 1 of ~eriodic solutions keep relations of ( 2 . 1 0 )  and (2 .1  1 ) , 
where X: ( t ) and 2'; ( t ) are G") -orbits of periodic solutions of ( 1 . 2 )  and ( 1 . 5 )  , respectively. 

3 Periodic solution of differential delay equations 

This section is devoted to the study on the existence of periodic solutions of differential delay 

equation ( 0 . 5 )  . For every q defined by Lemma 2 ,  let 

{ 
1 = 2 k  - ( 2 q  + 1 )  o r q  = ( 2 k  - 1 - 1 ) / 2 ,  f o r n  = 2 k ,  
1 = ( 2 k  + 1 )  - 29  or q = ( 2 k  - 1 + 1 ) / 2 ,  for n = 2 k  + 1 .  

( 3 . 1 )  

Theorem 3. Suppose that condition ( H I  ) holds and f ' ( 0 )  = w > 0 .  

( i )  W h e n n ~ j l  ( f o r 2 < j < n / 3 ,  l i s o d d a n d 3 ~ 1 < k ) ,  forarealpsatisfyingTq = 2 n p  
,E l  

< 2 x / y q  ( 2 r / y q )  , and Tq ,  E q  is suf i$nt ly  close to 2 x / y q  ( 2 x / y q  ) , with ri = ( i + 2 n m ; )  lp where 1 

is deJined by ( 3 . 1 ) ,  i . e .  the followingholds: 

( H3 ) there exist nonnegative integers m , m2 , - - -  , m, - ( not necessarily distinct ) such that the 

delays r i ( i =  1 , 2 , - . . , n  - 1 )  of ( 0 . 5 )  satisfy 

r1 - ... - T i  - ... - rn-1 - - - - = l p .  
1 + 2 n m l  i + 2nmi ( n  - 1 )  + 2nm,-l 

( 3 . 2 )  

Then every family 1 r 4 1 of periodic solutions of ( 1 . 2 )  ( ( 1 . 5  ) ) gives a periodic solution of period 

2 n p  of ( 0 . 5 ) .  

(i i)  When n = &"(for 2 s j < n / 3 ,  l o = 2 k  - 2 q o +  1 )  or l o =  ( 2 k  + 1 )  - qo f m e d ) ,  for a 

real p satisfying Tqo = 2jp < 2 x /  yq0 ( 2rr/Tq0 ) and Tqo is sufieintly close to 27r/ yqo ( 2 x / y q 0  ) , 
, E v  € v  

taking ri = ( i + 2jmi ) lp  for some nonnegative integers m l  , m 2 ,  ... , m,  - ( not necessarily distinct ) . 
This means that the delays of ( 1 )  satisfy 

'-1 - r2 - ... - rn- l  - - - = p .  
1 + 2jml  2 + 2jm2 ( n  - 1 )  + 2jrnn-l 

( 3 . 3 )  

Then the family { r } of periodic solutions of ( 1 . 2 )  ( ( 1 . 5 )  ) yields a periodic solution of period 2jp 

of ( 0 . 5 )  
Proof. It follows from the assumptions, Lemmas 4 ,  5 and Theorem 2 that system ( 1 . 2 )  (for 

n = 2 k ) or ( 1 .5  ) (for n = 2 k + 1 ) has at least k distinct families (say { r 4 1 ) of periodic solutions 

and the period T,  , , , - of each family of periodic orbits is close to 2x /  Y, for n = 2 k ( q = 0 , 1 ,  ... , - 
k - 1 )  o r 2 x / y q f o r  n = 2 k  + l ( q ,  = 1 , 2 , . - . , k ) .  By our assumption, the period T q , E q = 2 n p  of 

the q th family of the periodic solutions of ( 1 . 2 )  or ( 1 . 5 )  satisfies condition ( i )  . Hence when n + 
j l ,  for 1 = 2 k  - ( 2 q  + l ) ( n  = 2 k )  or 1 = ( 2 q  + 1 )  - 2 k ( n  = 2 k  + I ) ,  Hamiltonian system ( 1 . 2 )  

or ( 1  . 5 )  has a periodic solution of period 2 np in every family { r 4 1 . Thus the conclusion of ( i)  fol- 

lows from Theorem 1 . 
When n = j lo ,  condition ( H I ) ,  f ' ( 0 )  = w >O and condition ( i i )  imply that ( 1 . 2 )  ( ( 1 . 5 ) )  
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has a Tqo, ,  = 2jp-periodic solutions in 1 r 1 . Taking into account 
u,, 

instead of n by j and by similar discussion as Theorem 1 , we know from ( 3  .3) that ( 0 . 5 )  has a 2jp- 
periodic solution. 

Remark. ( i )  When n = j l o =  j ( 2 m o +  l ) , q 0 = 0 . 5  (2k - 1,- I ) ,  for n = 2 k  and q o = 0 . 5  

(2k - lo + 1) for n = 2k + 1,  the linearized systems x = wAzkx and x = have an eigenvalue 

Y = k w i .  Thecorrespondingeigenvector is $ = ( 0 ,  -P,O,,G',O, - , G ' , . - . , O , ( -  l ) k + l , G ' ) T f o r  
40 

wAzk . It is easy to see that TYZ = E: , i . e . $ is an eigenvector of T?; corresponding to the eigenvalue 

1. 

(ii) We know from Theorem 3 that, except the family { r90 ) of periodic solutions of ( 1 - 2 )  

( ( 1 . 5 )  ) , all families { r } of periodic solutions do yield 2 nP-periodic solutions of (0 .5)  . 
( iii) Under the asymptotically linear conditions : 

lim,,of(x)/x = f ' ( 0 )  = w ,  lim,,,f(x>/x = o,, 

we can give a concrete estimation for ,u in Theorem 3.  We will discuss this problem in another paper. 

Let ri = i ,  lp = 1 and mi = O  in ( 1 . 8 ) .  Then we have 

Corollary 1. Suppose the assumption of Theorem 3 holds. Then (0 .3 )  has a periodic solution 

of period 2 n . 
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