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Abstract From the wave equation of a generalized beam the orbital angular momentum is studied. 
It is shown that the orbital angular momentum exists not only in the Laguerre-Gaussian beam, but in 
any beam with an angular-dependent structure. By calculating the second order intensity moments of 
the beam the relation between the orbital angular momentum and the second order moments ( x e , ) ,  
( ye,) is given. As an example the orbital angular momentum of the general astigmatic Gaussian beam 
is studied. 
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The characterization of laser beams (beam radii, beam divergences, and beam quality fac- 
tors, etc. ) by using their second order intensity moments has been widely . It is 
shown that any general astigmatic beam can be characterized by its ten independent second order 

intensity moments: ( x 2 ) ,  ( x e , ) ,  ( 0 3  , ( y 2 > ,  (fly), (82,), ( x Y ) ,  ( O z B y ) ,  (dy), ($4). 
Every second order moment has its specific physical meaning. (x2 )  and ( y2) describe the beam 
dimensions in x and y directions, respectively. ( 19;) and ( 8 ; )  give the far field divergences in 
x and y directions, respectively. ( xy ) and (88,) describe the orientations of the beam in the 
near field and the far field. (x0,) and (fly) are related to the effective radii of curvature. A bit 
unknown parameters are ( dy ) and (ye,). From their definitions we know that they are related to 
the coupling between the near field in one direction ( x  or y ) and the far field in the perpendicu- 
lar direction ( y or x) . In this paper we will show that they are related to the orbital angular mo- 
mentum of the beam. 

The orbital angular momentum of a beam was first described by Allen and his coworkers 
when they studied the properties of Laguerre-Gaussian They pointed out that the La- 
guerre-Gaussian beam has not only an angular momentum caused by the circular polarization, but 
also an orbital angular momentum. The angular momentum caused by the circular polarization was 
known long time ago and Beth proved its existence in experiment. But the orbital angular momen- 
tum was known only in the last few years. 

In this paper we will study the orbital angular momentum of a generalized coherent beam. It 
is shown that the orbital angular momentum of the beam exists not only in Laguerre-Gaussian 
beams, but also in any beam with an angular-dependent phase structure. Furthermore, by calcu- 
lating the second order moments of a generalized beam the relation between the orbital angular 
momentum and the second order moments is given. As an example the orbital angular momentum 
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of a general astigmatic Gaussian beam is studied. 

1 Angular momentum of the beam 

1 - 1  The Poynting vector 
Any beam carries energy and momentum. For a coherent beam propagating along z-direc- 

tion, the electric field can be expressed by 
E ( x , y , z )  = Eo e u ( x , y , z )  exp[i(wt - kz)] ,  (1)  

where k is the wave number, which is related to the angular frequency o by 

k = o / c ,  c = 1 / G 0 .  (2) 
.so and ,uo are the dielectric constant and the magnetic permeability in vacuum, respectively. In 
eq . ( 1 ) Eo u ( x , y , z ) describes the amplitude of the electric field, where u ( x , y , z ) is a 
normalized complex scalar function which describes the distribution of the amplitude. u ( x , y , 
z )  satisfies the wave equation in the paraxial approximation. e represents the unit polarization 
vector of the beam. 

In the non-magnetic medium the magnetic field of the beam can be obtained from the 
Maxwell equationsL6] 

From the electric field and the magnetic field the Poynting vector S is defined as 
S = E ,  x H,, (4)  

where 

The subscript "re" and superscript " * " mean the real part and the conjugate part. 
The Poynting vector S describes the energy flow of the beam. The time averaged value of S 

reads 

where "c . c . " means the complex conjugate. 
Substitution of eqs . ( 1 ) and (2) into eq. (5) yields 

In the right part of eq. ( 6 )  the second term is related to the beam structure and the third term is 
related to the beam polarization. For the sake of convenience these two terms are written as T I  , 
T2 : 

i 
T ,  = - - I Eo 12( ugradu* - u *  g a d u ) ,  

4wPo 
(7) 

i T 2 = - -  I Eo 1 2 [ -  ( e  . g a d u * ) u e f  + ( e *  g r a d u ) u *  e l .  
~ W P O  

(8 )  

1 .2  Angular momentum of the beam 

The angular momentum density of a beam is defined byL6] 



1308 SCIENCE IN CHINA (Series A )  Vol. 43 

M = r x p ,  (9) 
where r is the position vector and p  is the momentum density of the beam. p  is defined by 

P = E O E ,  x B , ,  (10) 

where B is the magnetic induction of the beam. For the non-magnetic medium B = p o H ,  there- 
fore the angular momentum density is 

M = cor  x ( E , ,  x B , ) .  (11)  

From eq. (4) the angular momentum density can be written as 

Integrating M yields the total angular momentum 

L = 1 r x Sdxdydz .  
c 

The angular momentum flux J of the field is defined by 

The component of J in the direction of propagation (the z-axis) is of importance because it 

can be transferred to optical elements. From eqs . ( 13) and ( 14) the angular momentum flux in 

z-direction reads 

Substitution of eq .  (6) into eq .  (15)  shows that J, can be separated into two parts: J, = 
Jr, + J, ,  , where J,, is related to the structural term of the Poynting vector and J,, to the 

beam polarization. 

1 . 2 . 1  Orbital angular momentum. The angular momentum related to the beam structure is 

called the orbital angular momentum, which is defined by 

ieoc a u *  
I Eo 12J(xu  - 

a u *  
J ~ , L  = L J [ r  c x ~ , ] d ~ d ~  = - - 4 w 1 a y  

- yu, - C . C .  dxdy.  (16)  

The orbital angular momentum of light was first predicted for Laguerre-Gaussian beamsL4] . 
Actually it exists in any beam with an angular-dependent structure. For an arbitrary beam with an 

azimuthal structure of the phase u ( r , # ) = f ( r ) exp [ ig ( # ) ] , the orbital angular momentum 

flux reads 

where P is the power of the beam: 

Therefore when ag/a # # 0, the beam will have orbital angular momentum. The Laguerre-Gaus- 

sian beam is a special case of eq. (17) with g (  # )  = I#, where I is the azimuthal mode index of 

the Laguerre-Gaussian mode. Then the orbital angular momentum flux of a Laguerre-Gaussian 

mode reads 
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The beams with orbital angular momentum have many applications. They can be used to ro- 
tate or manipulate micro-particles. For example, the ring-shaped mode with orbital angular mo- 

mentum has been used as optical spanners in biological and medical fields[71 . 

1 . 2 . 2  Angular momentum related to polarization. The angular momentum flux related to 
the beam polarization is given by 

The unit-vector of the polarization can be written as e = - , where a = 0 ,  k x / 2 ,  repre- 

sent the linear and the circular polarization, respectively. Substitution of e into eq.  ( 2 0 )  yields 

From eq. ( 2 1 )  it is known that the circularly-polarized beam has the angular momentum while 
the linearly-polarized beam does not. For the fundamental Gaussian beam with circular polariza- 

tion the angular momentum flux is J z , s  = P / o  . 
2 Orbital angular momentum and the second order moments 

In this sector we will show that the orbital angular momentum is related to the second order 
intensity moments ( x 8,) , ( y 8,) . For an arbitrary optical field E ( x , y ) the second order mo- 

ments ( x  8,) , ( y 8,) are defined asL3] 

Substitution of eq . ( 1 ) into eqs . ( 2 2 )  and (23  ) ~ i e l d s  

The difference of eqs. ( 2 4 )  and ( 2 5 )  delivers 

Comparison of eq. ( 16) with eq. ( 2 6 )  delivers the orbital angular momentum flux of the 
beam 

where P is given by eq . ( 18) . Because the orbital angular momentum of the beam means a rota- 
tion of the phase structure, ( x 8,) and ( y 8, ) are called the twist parameters of the beam. By 
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calculating the second order intensity moments ( x Oy ) and ( y 8 , )  , the orbital angular momentum 

of an arbitrary beam can be obtained. 

We calculate the orbital angular momentum of the general astigmatic Gaussian beam as an 

example. The wave function of a general astigmatic Gaussian beam reads 

where w, and w ,  describe the beam radii along x-axis and y-axis, and R, and R, describe the 

radii of curvature along x-axis and y-axis, respectively. wXy and R,, are used to describe the ori- 

entations of the intensity ellipse and phase ellipse, respectively. They are related to the angles of 

the principal axes of the intensity and phase ellipses a ,  0  by 

Fig. 1 shows the physical meanings of respective 

beam parameters w, , w y  , R, , R, . Substituting 

eq . (28) into eqs . (22) and (23) yields the sec- 

ond order intensity moments ( x 8 , )  , ( y 0 , )  of the 
general astigmatic Gaussian beam : 

2 2 2 2 
1 W x  '"xy 

( % e y )  = -  . [? - z] , (31) 
Fig. 1 .  Intensity ellipse and phase ellipse of a general 

4 w:, - w: w', Rxy 
astigmatic Gaussian beam. 

The orbital angular momentum of the general astigmatic Gaussian beam is 

3 Conclusion 

From a generalized wave function we show that the Poynting vector and the angular momen- 

tum consist of two parts: one related to the beam polarization and the other related to the beam 

structure. The angular momentum related to the beam structure is named the orbital angular mo- 

mentum, which exists in any beam with an angular-dependent structure. By calculating the sec- 

ond order intensity moments of the beam the relation between the orbital angular momentum and 

the second moments is given. As an example the orbital angular momentum of the general astig- 

matic Gaussian beam is calculated. 

Since the ten second order intensity moments of an arbitrary beam can be determined experi- 

mentally[81, the orbital angular momentum of the beam can be obtained from eq. (27 ) .  It gives 
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a simple method for determining the orbital angular momentum. 

References 

Siegman, A. E . , New developments in laser resonators, SPIE, 1990, 1224: 2 .  

Nemes , G . , Siegman , A .  E . , Measurement of all ten second-order moments of an astigmatic beam by use of rotating simple 

astigmatic optics, J .  Opt. Soc. Am. A,  1994, 11: 2257. 

Weber, H . , Propagation of higher-order intensity moments in quadratic-index media, Opt. and Quan . Elec . , 1992, 24 : 

S1027. 

Allen, L. , Beijersbergen, M.  W. , Spreeuv, R.  J. C . et al. , Orbital angular momentum of light and the transformation of 

Laguerre-Gaussian laser modes, I'hys . Rev. , 1992, A45 : 8185. 

Baennet , S . M . , Allen, L. , Orbital angular momentum and nonparaxial light beams, Opt. Comm . , 1994, 110 : 670. 
Jackson, J .  D . , Classical Electrodynamics, New York: John Wiley & Sons, Inc . , 1962. 

Simpson, N . B . , Dholakia , K . , Allen, L . et a1 . , Mechanical equivalence of spin and orbital angular momentum of light : an 

optical spanner, Opt. Lett. , 1997, 22 : 52. 

Eppich, B.  , Gao, C .  , Weber, H.  , Determination of the ten second order moments, Opt. & Laser Tech. , 1998, 30: 337. 


	00121306.TIF
	00121307.TIF
	00121308.TIF
	00121309.TIF
	00121310.TIF
	00121311.TIF

