A $[k, k+1]$ -factor containing given Hamiltonian cycle^{*}

CAI Maocheng (蔡茂诚), LI Yanjun (李彦君)

(Institute of Systems Science, Chinese Academy of Sciences, Beijing *100080.* China)

and M. Kano

(Department of Computer and Information Sciences, lbaraki University, Hitachi *316,* Japan)

Received November *12, 1997*

Abstract Let $k \geq 2$ be an integer and let G be a graph of order *n* with minimum degree at least k , $n \geq 8k - 16$ for even *n* and $n \ge 6k - 13$ for odd *n*. If the degree sum of each pair of nonadjacent vertices of G is at least *n*, then for any given Hamiltonian cycle C, G has a $[k, k+1]$ -factor containing C.

Keprords: grrph. connected factor, Hunlltonim cycle.

All graphs under consideration are undirected, finite and simple. A graph, denoted by $G = (V, E)$, consists of a non-empty set $V(G)$ of vertices and a set $E(G)$ of edges. Let xy denote the edge joining vertices x and y. If X is a subset of $V(G)$, we write $G[X]$ for the subgraph of G induced by X, $E_G[X] = E(G[X])$ and $\overline{X} = V(G) - X$. Sometimes x is used for a singleton $\{x\}$. Given a graph $G = (V, E)$ and $x \in V(G)$, write $d_G(x)$ for the degree of x in G, which is the number of edges of G incident to x. For integers a and $b, b \ge a \ge 0$, an [a, b]factor of G is defined as a spanning subgraph F of *G* such that

 $a \leq d_F(v) \leq b$ for all $v \in V(G)$,

and an [a, a]-factor is abbreviated to an a-factor. A subset M of $E(G)$ is called a matching if no two edges in M are adjacent in G. Other notations and definitions not defined here can be found in ref. $\lceil 1 \rceil$.

We first mention some known results on k -factors or connected [a, b]-factors.

Theorem A^[2]. Let k be a positive integer, and let G be a graph of order n with $n \ge 4k$ -5, kn even, and minimum degree at least k . Then G has a k -factor if the degree sum of each pair of nonadjacent vertices is at least n .

Theorem B^[3]. Let $k \geq 3$ be an integer and let $G = (V, E)$ be a connected graph of order n with $n \geq 4k - 3$, kn even, minimum degree at least k. If for each pair of nonadjacent vertices u and v of $V(G)$

$$
\max\{d_G(u),\ d_G(v)\}\geqslant \frac{n}{2},
$$

G has a k- factor.

Theorem C^[3]. Let k be a positive integer and let G be a graph of order n such that $n \ge 4k - 5$,

^{*} Preject supported partially by an exchange program between the Chinese Academy of Sciences and the Japan Society for **Pro**motion of Sciences and by the National Natural Science Foundation of China (Grant No. *19136012).*

kn even, and minimum degree ut leust k . *If the degree sum of euch pair of nonadjacent vertices* of G is at least n, then G has both a Hamiltonian cycle C and a k-factor F. Hence G has a con*nected* $[k, k+2]$ *-factor* $C + F$.

Theorem $D^{[4]}$ **.** Let $k \geq 2$ be an integer and G be a connected graph of order n. If G has a *k- factor F and, moreover, among any three independent vertices of G there are (at lust*) *two* with degree sum at least $n - k$, then G has a matching M such that M and F are edge-disjoint and $M + F$ is a connected $[k, k+1]$ -factor of G.

Theorem $\mathbf{E}^{[5]}$ **.** Let $k \geq 3$ be an odd integer, and G be a connected graph of odd order n *with n >4k* - *3, and minimum degree at least k* . *If for each pair of nonudjacent vertices u and v of G,*

$$
\max\{d_G(u), d_G(v)\}\geqslant \frac{n}{2},
$$

 $\max{d_G(u), d_G(v)} \geqslant \frac{\pi}{2},$
G has an almost k^{\pm} *-factor* F^{\pm} and a matching M such that F^{\pm} and M are edge-disjoint and *G* has an almost k^{\pm} -factor F^{\pm} and a matching M such that F^{-} and M are edge-disjoint and F^{-} + *M* is a connected $[k, k+1]$ -factor of G (an almost k^{\pm} -factor is a factor whese every ver*tex has degree k except at most one with degree k* \pm 1).

Theorem $F^{[6]}$ **.** Let $k \geq 2$ be an integer and let G be a graph of order n such that $n \geq 8k - 4$, kn is even and minimum degree at least $n/2$. Then G has a k-factor containing a *Hamiltonian cycle* .

The purpose of this paper is to extend "connected $[k, k + 1]$ -factor" in some of the above theorems to "[k , $k + 1$]-factor containing a given Hamiltonian cycle", which is obviously a 2connected $[k, k+1]$ -factor under somewhat stronger conditions. Our main result is the following.

Theorem 1. Let $k \geq 2$ be an integer and let G be a graph of order $n \geq 3$ with minimum *degree at least k, n* $\geq 8k - 16$ for even n and n $\geq 6k - 13$ for odd n. If for each pair of nonad*jacent vertices u and v of G,*

$$
d_G(u) + d_G(v) \geqslant n, \tag{1}
$$

then for any given Hamiltonian cycle C, G has $a[k, k+1]$ -factor containing C.

Remark 1. The conditions $n \ge 8k - 16$ for even *n* and $n \ge 6k - 13$ for odd *n* are best possible. To see this, for even *n* such that $2k \le n \le 8k - 16$, write $m = (n/2) + 2$; for odd *n* such that $2k - 1 \le n \le 6k - 13$, write $m = (n + 3)/2$. Let $C' = v_1 v_2 \cdots v_m$ be a cycle and let $P =$ v_{m+1} v_{m+2} \cdots v_n be a path. Set $G = C' \vee P$, where \vee denotes join union. Then it is easy to check that G has no $[k, k+1]$ -factor containing Hamiltonian cycle $C = v_1 v_2 \cdots v_n$ even if the minimum degree is at least *n /2.*

Remark 2. For a graph G of order *n*, the condition that the minimum degree $\geq n/2$ cannot guarantee the existence of a k -factor containing a given Hamiltonian cycle in G . For instance, suppose $n \geq 5$ and $k \geq 3$. Write

$$
m = \begin{cases} \frac{n}{2} + 2 & \text{for even } n, \\ \frac{n+3}{2} & \text{for odd } n. \end{cases}
$$

Let $C' = v_1 v_2 \cdots v_m$ be a cycle and let $P = v_{m+1} v_{m+2} \cdots v_n$ be a path. Set $G = C' \vee P$. Then the minimum degree $\geq n/2$ and *G* has no k-factor containing Hamiltonian cycle $C = v_1 v_2 \cdots v_n$.

Proof of Theorem 1. We may suppose $k \geq 3$ as G contains C for $k = 2$. Write

 $H := G - C$, $U := \left\{ v \in V(G) \mid d_G(v) \geq \frac{n}{2} \right\}$, $L := V(G)/U$, $\rho := k - 2$. Then $V(H) = V(G)$, $\rho \ge 1$, $d_H(v) = d_G(v) - 2 \ge \rho$ for all $v \in V(G)$, $n \ge 8\rho$ for even *n* and $n \geq 6\rho - 1$ for odd *n*.

Obviously, *G* has a required factor if and only if *H* has a $[\rho, \rho + 1]$ -factor. Suppose, to the contrary, that *H* has no such factor. Then, by Lovász's $[g, f]$ -factor theorem^[7], there exists an ordered pair $B = (S, T)$ of disjoint subsets S and T of $V(H)$ such that

$$
\mathfrak{F}(B) := -(\rho + 1)s + \rho t - \sum_{v \in T} d_{H-S}(v) \geq 1, \qquad (2)
$$

where $s = |S|$ and $t = |T|$.

We may assume

 $d_H \, g(v) \leqslant \rho - 1$ for all $v \in T$. (3)

Otherwise, say $d_{H-S}(u) \geq \rho$ for some $u \in T$, and put $B' = (S, T \setminus u)$. Then $\delta(B') \geq \delta(B)$, *(2)* still holds for B'.

Assertion 1. $G[L]$ *is a complete graph*.

Indeed, for any two vertices $u, v \in L$, $d_G(u) + d_G(v) \le n$ by the definition of L. Thus $uv \in E(G)$ by (1).

Assertion 2. $s \geqslant 1$.

Otherwise $\delta(B) = \rho t - \sum_{v \in T} d_H(v) \leq 0$, a contradiction.

Assertion 3. $t \geq \rho + 2$. Indeed, assume $t \leq \rho + 1$, then using $d_H(v) \geq \rho$ for all $v \in V(H)$, we have $\delta(B) \leq -(\rho + 1)s + \rho t - \sum (d_{H}(v) - s)$

$$
\rho = (\rho + 1)s + \rho t - \sum_{v \in T} (a_H(v) - \mu)(v)
$$

\n
$$
\leq - (\rho + 1)s + \rho t - t(\rho - s)
$$

\n
$$
= s(t - \rho - 1) \leq 0,
$$

which contradicts (2).

Assertion 4. $s \leqslant \left\lceil \frac{n}{2} \right\rceil - 3$.

Write $X = \{ v \in \overline{S} \mid d_G(v) \ge n/2 \}$, $Y = \overline{S} \setminus X$. We consider two cases according to whether *n* is even or odd.

For even *n*, assume $s \ge (n/2) - 2$, and put $q := s - (n/2) + 2(\geq 0)$, $r := n - s - t$ (≥ 0) *0).* Then

$$
\delta(B) = -(\rho + 1)s + \rho(n - s - r) - \sum_{v \in T} d_{H-S}(v)
$$

= $-s(2\rho + 1) + \rho(n - r) - \sum_{v \in T} d_{H-S}(v)$
= $-(\frac{n}{2} - 2 + q)(2\rho + 1) + \rho(n - r) - \sum_{v \in T} d_{H-S}(v)$
= $4\rho + 2 - \frac{n}{2} - (\rho + 1)q - \rho(r + q) - \sum_{v \in T} d_{H-S}(v)$

 \leqslant 0. unless $q=0$, $r \leq 1$ and $\sum d_{H-S}(v) = 0$. Indeed, suppose $\sum_{v \in T} d_{H-S}(v) \ge 1$. If $r \ge 1$, obviously $\delta(B) \le 0$. And if $r = 0$, then **vE T**

 $\sum d_{H-S}(v) = 2 + E_G[\bar{S}] \setminus C \equiv 0 \pmod{2}$, yielding $\delta(B) \leq 0$. So it suffices to show $\sum_{v \in T} d_{H \cdot S}(v)$ ≥ 1. *q* = 0 yields *s* = (*n/2)* − 2. Assuming $\sum_{v \in T} d_{H-S}(v) = 0$, as $r ≤ 1$, it follows that

 $E_{\circ}[\bar{S}] \subset C$.

Hence for each
$$
v \in \overline{S}
$$
, $d_G(v) \leq d_{H-S}(v) + s + 2 = n/2$, implying

$$
d_G(v) = \frac{n}{2} \quad \text{for all } v \in X.
$$

Therefore, all the edges of C incident to vertices in X are contained in $E_G[\bar{S}]$. We have $|X|+|Y|-1=|\bar{S}|-1 \geq |E_G[\bar{S}] \cap C|$

$$
\geqslant |X|+1+1 E_G[Y]| = |X|+1+\frac{|Y| (|Y|-1)}{2},
$$

implying

$$
|Y| \geqslant 2 + \frac{|Y| \left(|Y| - 1 \right)}{2},
$$

a contradiction.

For odd *n*, assume $s \ge (n-3)/2$, and put $q := s - (n-3)/2 \ge 0$, $r := n - s - t \ge 0$. Then

$$
\delta(B) = -(\rho + 1)s + \rho t - \sum_{v \in T} d_{H-S}(v)
$$

\n
$$
= 3\rho + \frac{3}{2} - \frac{n}{2} - (\rho + 1)q - \rho(r + q) - \sum_{v \in T} d_{H-S}(v)
$$

\n
$$
\leq 0,
$$

\n
$$
\sum_{v \in T} d_{H-S}(v) = 0.
$$
 Similarly we have $E_G[\bar{S}] \subset C$, and
\n
$$
d_G(v) = \frac{n+1}{2} \text{ for all } v \in X.
$$

\n
$$
C
$$
 incident to vertices in X are contained in $E_G[\bar{S}]$. We derive

unless $q = 0$ and $\sum_{v \in T} d_{H-S}(v) = 0$. Similarly we have $E_G[\bar{S}] \subset C$, and

$$
d_G(v) = \frac{n+1}{2} \text{for all } v \in X.
$$

All the edges of *C* incident to vertices in *X* are contained in $E_G[\bar{S}]$. We derive a contradiction $|Y| \geq 2 + |Y| (|Y| - 1)/2.$

Assertion 5. $T \cap U \neq \emptyset$.

Indeed, if $T \subseteq L$, then $|E_G[T]| = t(t-1)/2$ by Assertion 1. As C is a Hamiltonian cycle, $|E_G[T] \cap C | \leq t-1$. Hence

$$
\sum_{v \in T} d_{H-S}(v) \geq 2 + E_G[T] \setminus C \geq t(t-1) - 2(t-1) = (t-1)(t-2),
$$

\n
$$
\delta(B) \leq -(p+1)s + pt - (t-1)(t-2),
$$

\n
$$
\leq -(p+1)s + pt - (t-1)\rho
$$
 (by Assertion 3),
\n
$$
= -(p+1)s + \rho < 0
$$
 (by Assertion 2),

a contradiction.

Assertion 6. $T \cap L \neq \emptyset$

Indeed, suppose $T \subseteq U$. Then

$$
\left|\frac{n}{2}\right| \leq d_G(v) \leq d_{H-S}(v) + s + 2 \leq \rho + s + 1 \text{ for all } v \in T,
$$

yielding $d_{H-S}(v) \geq [n/2] - s - 2$ and $\rho + s + 2 - [n/2] \geq 1$. Hence

$$
\delta(B) \leq -(\rho + 1)s + \rho t - t\left(\left\lfloor \frac{n}{2} \right\rfloor - s - 2\right)
$$

$$
= t \left(\rho + s + 2 - \left\lceil \frac{n}{2} \right\rceil \right) - (\rho + 1)s
$$

\n
$$
\leq (n - s) \left(\rho + s + 2 - \left\lceil \frac{n}{2} \right\rceil \right) - (\rho + 1)s.
$$

\nPut $f(s) = (n - s) (\rho + s + 2 - \left\lfloor n/2 \right\rfloor) - (\rho + 1)s$. Then
\n
$$
f'(s) = -2\rho - 3 + n + \left\lceil \frac{n}{2} \right\rceil - 2s
$$

\n
$$
\geq -2\rho - 3 + n + \left\lceil \frac{n}{2} \right\rceil - 2 \left\lceil \frac{n}{2} \right\rceil + 6 \qquad \text{(by Assertion 4)}
$$

\n
$$
= -2\rho + 3 + \left\lceil \frac{n}{2} \right\rceil \geq 0, \qquad \text{(as } n \geq 6\rho - 1)
$$

implying

$$
f(s) \leq f\left(\left\lceil \frac{n}{2} \right\rceil - 3\right)
$$

=
$$
\left(\left\lceil \frac{n}{2} \right\rceil + 3\right)(\rho - 1) - (\rho - 1)\left(\left\lceil \frac{n}{2} - 3\right\rceil\right)
$$

=
$$
\rho\left(\left\lceil \frac{n}{2} \right\rceil - \left\lceil \frac{n}{2} \right\rceil + 6\right) - n \leq 0.
$$

The last inequality follows from the condition that $n \ge 8\rho$ for even n and $n \ge 6\rho - 1$ for odd n. Therefore $\delta(B) \leq 0$, a contradiction. Hence Assertion 6 is true.

Now put

$$
T_1 := T \cap U, T_2 := T \cap L, t_1 := |T_1|, t_2 := |T_2|.
$$

Clearly, $t_1 \ge 1$, $t_2 \ge 1$ and $d_{H-S}(v) \ge d_G(v) - s - 2$ for all $v \in T$. Hence for all $v \in T_1$,

$$
d_{H-S}(v) \geqslant \begin{cases} \frac{n}{2} - s - 2 & \text{if } n \text{ is even,} \\ \frac{n}{2} - s - \frac{3}{2} & \text{if } n \text{ is odd.} \end{cases} \tag{4}
$$

It follows from (3) that

 $n > 1$ if y is such and $s + s + \frac{3}{2} = n$ be posed in (3) that
 $p+ s + 2 - \frac{n}{2} \geq 1$ if *n* is even and $p + s + \frac{3}{2} - \frac{n}{2} \geq 1$ if *n* is odd.

Assertion 4 yields

$$
\rho \geqslant 2. \tag{5}
$$

We claim

$$
t_2 \leqslant \rho + 2. \tag{6}
$$

Indeed, by Assertion 1, $d_{H-S}(v) \ge t_2 - 3$ for all $v \in T_2$. (6) derives from (3).

To complete the proof it suffices to consider two cases according to whether n is even or odd. For even *n*, using (4) - (6) we have

$$
\delta(B) \leqslant -(\rho+1)s + \rho t - t_1 \left(\frac{n}{2} - s - 2 \right)
$$
\n
$$
= t_1 \left(\rho + s + 2 - \frac{n}{2} \right) - (\rho+1)s + \rho t_2
$$
\n
$$
\leqslant (n - s - t_2) \left(\rho + s + 2 - \frac{n}{2} \right) - (\rho+1)s + \rho t_2
$$
\n
$$
= -\left(s - \frac{n}{2} + 3 \right)^2 + \left(s - \frac{n}{2} + 3 \right) \left(\frac{n}{2} + 3 - 2\rho - t_2 \right) + 6\rho + t_2 - n
$$

 \leqslant - 2p + $t_2 \leqslant 0$.

For odd *n*, write $r \coloneqq n - s - t \geq 0$. It is easy to see

$$
\sum_{\epsilon \tau_2} d_{H-S}(\nu) \geq 2 + E_G[T_2] \setminus C \geq (t_2 - 1)(t_2 - 2). \tag{7}
$$

Using *(4), (5)* and *(6)* we have

$$
(B) \leqslant -(\rho+1)s + \rho t - t_1 \left(\frac{n}{2} - s - \frac{3}{2}\right) - (t_2 - 1)(t_2 - 2)
$$
\n
$$
= t_1 \left(\rho + s + \frac{3}{2} - \frac{n}{2}\right) - (\rho + 1)s + \rho t_2 - (t_2 - 1)(t_2 - 2)
$$
\n
$$
= (n - s - t_2 - r) \left(\rho + s + \frac{3}{2} - \frac{n}{2}\right) - (\rho + 1)s + \rho t_2 - (t_2 - 1)(t_2 - 2)
$$
\n
$$
= -\left(s - \frac{n}{2} + \frac{5}{2}\right)^2 + \left(s - \frac{n}{2} + \frac{5}{2}\right) \left(\frac{n}{2} + \frac{5}{2} - 2\rho - t_2\right)
$$
\n
$$
+ 5\rho - n + t_2 - (t_2 - 1)(t_2 - 2) - r \left(\rho + s + \frac{3}{2} - \frac{n}{2}\right)
$$
\n
$$
\leq 0.
$$

 ≤ 0 ,
 n less $s = \frac{n}{2} - \frac{5}{2}$, $t_2 = 2$, $r = 0$, $\rho = 2$ and (7) holds throughout with equality. If (7) holds *throughout with equality,* $|E_G[T_2] \cap C| = 1$. As $s = \frac{n}{2} - \frac{5}{2}$ and $\rho = 2$, it follows from (3) and (4) that for all $v \in T_1$, *n* = 2 and (7) holds throughout with
 $\lceil T_2 \rceil \cap C \rceil = 1$. As $s = \frac{n}{2} - \frac{5}{2}$ and $\rho = 2$,
 $d_{H-S}(v) = 1$ and $d_G(v) = \frac{n+1}{2}$,

dent to vertices in T, are contained in Eq.

$$
d_{H-S}(v) = 1
$$
 and $d_G(v) = \frac{n+1}{2}$

implying all the edges of C incident to vertices in T_1 are contained in $E_G[T] \setminus E[T_2]$ and thus the number of such edges is at least $t_1 + 1$. Therefore, $|E_G[T] \cap C| \ge t_1 + 1 + 1 = t$, contradicting the assumption that C is a Hamiltonian cycle. Consequently the theorem is proved.

Slightly modifying the proof of Theorem *1,* one can prove the following.

Theorem 2. In Theorem 1 with $n \ge 8k-12$ in place of $n \ge 8k-16$ and $n \ge 6k-9$ in *place of n* $\geq 6k - 13$, the other conditions being the same, for any given 2-factor F, G has a $[k, k+1]$ -factor containing F .

References

- **¹**Bondy, J. **A.** , Murty, U. S. R. , *Graph Theory with Applications,* New York: Elsevier, 1976.
- **²**Iida, T. , Nishimura, T., An ore-type condition for the existence of k-factors in graphs, *Graphs and Combinat.* , 1991, 7: 353.
- 3 Nishimura, T., A degree condition for the existence of k-factors, **J.** *Graph Theory,* 1992, 16: 141.
- 4 Kano, K., Some current results and problems on factors of graphs, in *Proc* . *3rd China-USA Internat. Conf. on Combinatorics, Graph Theory, Algorithms and Applications, Beijing,* 1993 (eds. Alavi, Y. , Lick, D. R. , Liu, J.) , River Edge: World Sci. Publishing, 1994, 93.
- **⁵**Cai Mao-cheng, A degree condition for the existence of connected [k, k + 11-factors, **J.** *Sys* . *Sci* . & *Math. Scis.* , 1995, 8: 164.
- 6 Cai Mao-cheng, Connected [k, k + 11-factors of graphs, *Discrete Math.* , 1997, 169: 1.
- 7 Lovasz, L. , Subgraphs with prescribed valencies, **J** . *Combin* . *Theory,* 1970, 8: 391.

 δ