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Abstract Let k 2 2  be an integer and let G be a graph of order n with minimum degree at least k ,  n 2 8 k  - 16 for 
even n and n>6k - 13 for odd n . If the degree sum of each pair of nonadjacent vertices of G is at least n, then for 

any given Harniltonian cycle C. G has a [ k ,  k + 1 ]-factor containing C .  

Keprords: grrph. connected factor, Hunlltonim cycle. 

All graphs under consideration are undirected, finite and simple. A graph, denoted by 

G = ( V, E ) ,  consists of a non-empty set V( G )  of vertices and a set E (  G )  of edges. Let xy de- 

note the edge joining vertices x and y . If X is a subset of V( G )  , we write G [XI for the sub- 

graph of G induced by X,  E G [ X ] = E ( G [ X ] )  a n d X =  V ( G ) - X .  Sometimesx isusedfora 

singleton 1 x 1 . Given a graph G = ( V, E ) and x € V( G )  , write dG ( s ) for the degree of x in 

G,  which is the number of edges of G incident to x . For integers a and b, b>a 20, an [ a ,  b ] - 
factor of G is defined as a spanning subgraph F of G such that 

a < d F ( v )  < h for all v E V ( G ) ,  

and an [ a ,  a]-factor is abbreviated to an a-factor. A subset M of E ( G )  is called a matching if 

no two edges in M are adjacent in G .  Other notations and definitions not defined here can be 
found in ref. [ 1 ] . 

We first mention some known results on k-factors or connected [ a ,  b]-factors. 

Theorem A ' ~ ] .  Let k be a positive integer, and let G be a graph of order n with n>4k - 

5, kn even, and minimum degree a t  least k . Then G has a k-factor if the degree sum of each 

pair of nonadjacent vertices is a t  least n . 
Theorem B [ ~  . Let k 2 3  be an  integer and let G = ( V, E ) be u connected graph of order 

n with n a 4 k  - 3, kn even, minimum degree a t  least k . If for each pair of nonadjacent ver- 

tices u and v of V ( G )  

G has a k- factor. 

Theorem ci3]. Let k be a positiw integer and let G be a graph of order n such that n 2 4 k  - 5, 
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kn even, and minimum degree ut leust k . I f  the degree sum of euch pair of nonadjacent vertices 

of G is at least n ,  then G has both a Humiltoniatl cycle C and u k-factor F .  Hence G has a con- 

nected [ k ,  k + 21 - factor C + F . 
Theorem D ' ~ ] .  Let k 2 2  be an integer and G be a connected graph of order n . I f  G hus u 

k- factor F a n d ,  moreover, among any three independent vertices of G there are ( a t  l u s t  ) two 

with degree sum at least n - k ,  then G has a mutching M such that M and F are edge-disjoint 

and M + F is a connected [ k ,  k + 1 ]  -factor of' G . 
Theorem E"]. Let k 2 3  be an odd integer, and G be a connected graph of odd order n 

with n >4k - 3 ,  and minimum degree at least k . I f  for each pair of nonudjacent vertices u and 

v of G ,  

G has an almost k ' -factor F ' and u matching M such that F -  and M are edge-disjoint and 

F -  + M is u connected [ k ,  k + 1 ]  - factor of G ( a n  ulmost k ' -factor is a factor whese every ver- 

tex has degree k except at most one with degree k k 1 ) .  

Theorem F ' ~ ] .  Let k 2 2  be an  integer and let G be a graph of order n such that 

n 2 8 k  - 4 ,  kn is a n  and minimum degree at least n / 2 .  Then G has a k-factor containing a 

Hamiltonian cycle . 
The purpose of this paper is to extend "connected [ k ,  k + 11-factor" in some of the above 

theorems to "[ k ,  k + 11-factor containing a given Hamiltonian cyclen, which is obviously a 2- 
connected [ k ,  k + 11-factor under somewhat stronger conditions. Our main result is the follow- 
ing. 

Theorem 1 .  Let k 2 2  be an integer and let G be a graph of order n 2 3  with minimum 

degree at least k ,  n a 8 k  - 16 for even n and n 3 6 k  - 13 for odd n . I f  for each pair of nonad- 

jacent vertices u and v of G ,  

~ G ( u >  + d ~ ( v )  2 n ,  ( 1  

then for any given Humiltonian cycle C ,  G has a [ k ,  k + 11 -factor containing C.  
Remark 1 .  The conditions n>8k - 16 for even n and n>6k - 13 for odd n are best pos- 

sible. T o  see this, for even n such that 2k<n <8k - 16, write m = ( n / 2 )  + 2 ;  for odd n such 

that 2k - l < n  <6k - 13, write m = ( n  + 3 ) / 2 .  Let C' = v lv2 . . ,  urn be a cycle and let P = 
urn + , . v ,  ,2 . . .  V ,  be a path. Set G = C' V P ,  where V denotes join union. Then it is easy to 

check that G has no [ k ,  k + 1 ]-factor containing Hamiltonian cycle C = vl  vz ..- v ,  even if the 
minimum degree is at least n / 2 .  

Remark 2 .  For a graph G of order n , the condition that the minimum degree 2 n / 2  can- 

not guarantee the existence of a k-factor containing a given Hamiltonian cycle in G . For instance, 

suppose n 2 5  and k 3 3 .  Write 

n - + 2  for even n ,  
m = { 2  

+ for odd n .  
2 

Let C' = v1 v2-" V ,  be a cycle and let P = urn + urn + 2 . . .  v ,  be a path. Set G = C' V P. Then the 

minimum degree >, n / 2  and G has no k-factor containing Hamiltonian cycle C = vl v2... v,. 
Proof of Theorem 1 .  We may suppose k>3 as G contains C for k = 2 .  Write 
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Then V ( H ) =  V ( G ) ,  p 2 1 ,  d H ( v ) = d G ( v ) - 2 a p  forall v E  V ( G ) ,  n>,8p foreven n  and 

n 2 6 p  - 1  for odd n .  
Obviously, G  has a required factor if and only if H  has a [ p ,  p + 11 -factor. Suppose, to the 

contrary, that H  has no such factor. Then, by Lov6sz's [ g ,  f ]-factor theorem[71, there exists 
an ordered pair B  = ( S ,  T )  of disjoint subsets S and T of V( H )  such that 

6 ( B )  := - ( p  + 1 ) s  + pt - C d H - s ( ~ )  >, 1,  
a€ T 

where s = I S I  and t =  [ T I .  
We may assume 

d f , - s ( v ) < p -  1  forall v € T .  ( 3 )  
Otherwise, say d H - S ( ~ ) 2 p  for some u E  T, and put B'= (S,  T \ u). Then 6 ( B f ) 2 6 ( B ) ,  
( 2 )  still holds for B'. 

Assertion 1 .  G [ L ] is a complete graph . 
Indeed, for any two vertices u ,  v  E L ,  dG ( u  ) + dG ( v )  < n  by the definition of L . Thus 

u v E E ( G )  by ( 1 ) .  
Assertion 2. s >l . 
Otherwise 6 ( B  ) = pt - C d H (  V )  < 0, a contradiction. 

WE T 

Assertion3. t>p+2 .  
Indeed, assume t  G p  + 1, then using d H (  v  ) >,,o for all v  E V( H) , we have 

6 ( B )  <- ( p  + 1 ) s  + pt - C ( d H ( v )  - S )  

v E  T 

<- ( p  + 1 ) s  + pt - t ( p  - s )  
= s ( t  - p  - 1 )  GO, 

which contradicts ( 2 ) .  

Assertion4. s < [ 1 ] - 3 .  

Write X = 1 v E s I dc ( v )  n / 2  1 , Y = \ X. We consider two cases according to whether 
n  is even or odd. 

For even n ,  assume s > ( n / 2 )  - 2 ,  and put q : = s - ( n / 2 )  + 2 ( > 0 ) ,  r  := n  - S -  t ( >  
0 ) .  Then 

unless q=O, r G l  and C d H - S ( V )  = 0 .  
vE T 

Indeed, suppose C d H -  s ( v ) ), 1 .  If r  2 1 ,  obviously 6  ( B ) < 0 .  And if r  = 0 ,  then 
V E T  



936 SCIENCE IN CHINA (Series A) Vol. 41 

C d H - - s ( V )  = 2  I E G [ S I  \ C I =  0  (mod 2 ) ,  yielding 6 ( B ) < O .  So it suffices to show 
WE T 

~ ~ H - s ( v )  2 1.  q = 0  yields s = ( n / 2 )  - 2 .  Assuming x d H - S ( ~ )  = 0 ,  as r<l,  it follows 
vE T vE T  

that 

E , [ S ]  C C .  
Hence for each v E S ,  d G ( v ) < d I l - s ( v ) +  s + 2 = n / 2 ,  implying 

n  d c ( v ) = -  f o r a l l v E X .  
2 

Therefore, all the edges of C incident to vertices in X are contained in EG [ 3 1 .  We have 
I X I + l  Y I - ~ = I S I - ~ ~ ~ E ~ [ S I ~ C I  

implying 

a contradiction. 

Forodd n ,  assume s > ( n - 3 ) / 2 ,  and put q : = s - ( n - 3 ) / 2 ( > 0 ) , r  : = n - s - t ( > O ) .  
Then 

unless q = 0  and C d H -  S ( v  ) = 0 .  Similarly we have E, [ 3 1 C C, and 
V E T  

d G ( v )  = - + 'for a11 v  E X .  2 
All the edges of C  incident to vertices in X are contained in EG [ S 1 .  We derive a contradiction 

1 Y1>2+ I Y l ( l  Y l  - 1 ) / 2 .  
Assertion 5 .  T n U# Q . 
Indeed, if T c  L,  then I EG [ T ]  1 = t ( t - 1 ) / 2  by Assertion 1 .  As C is a Hamiltonian cy- 

cle, l E G I T ] n C l < t  -1. Hence 

C d H - S ( v )  >2 1 \ C I >  t ( t  - 1 )  - 2 ( t  - 1 )  = ( t  - l ) ( t  - 2 ) ,  
V E T  

6 ( B )  <- ( p  + 1 ) s  + pt - ( t  - l ) ( t  - 2 ) ,  
<- ( p  + 1 ) s  + pt - ( t  - l ) p  (by Assertion 31, 
= -  ( p +  1 ) s  + p < 0  (by Assertion 2 ) ,  

a contradiction. 
Assertion 6 .  T  n L # 8 
Indeed, suppose T E  U .  Then 

[ : ~ < ~ c ( ~ ) s ~ H - S ( V )  + s + 2 < p +  s + 1 forall v E T ,  

yielding d H -  s(  v )>[  n / 2 ]  - s  - 2  and p + s + 2  - 1 n/2]>,1. Hence 
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< ( n - s )  p + s + 2 -  ( 
Put J ' ( s ) = ( t l -  s ) ( p +  s + 2 -  [ n / 2 ] ) -  ( p + l ) s .  Then 

= - 2 p + 3 +  [ 5 1 > 0 ,  (as n >, 6p - 1 )  

implying 

The last inequality follows from the condition that n 2 8 ,  for even n and n >6p - 1 for odd n . 
Therefore 6 (  B )GO, a contradiction. Hence Assertion 6 is true. 

Now put 

T I  : = T  n U ,  T2 : = T  n L ,  t1  :=  i TI 1 ,  t2  : =  I T2 I .  

Clearly, t 1 3 1 ,  t2>l and dH - S ( v ) > d G ( v )  - s - 2  for all v E  T. Hence for all v E  TI, 

s - 2 if n is even, 
d H - s ( ~ )  >{i - 3 

7 - s - 2 if n is odd. 

It follows from (3)  that 

n 3 n 
p + s + 2 -  -3 1 if n isevenand p + s + - - - 2 1  if n isodd. 

2 2 2 
Assertion 4 yields 

p 3 2 .  ( 5 )  
We claim 

t 2 < p + 2 .  (6)  

Indeed, by Assertion 1, ~ f ~ - ~ ( v ) ) , t ~  - 3  for all v E  TZ. ( 6 )  derives from ( 3 ) .  
TO complete the proof it suffices to consider two cases according to whether n is even or odd. 
For even n , using (4)-(6) we have 
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<- 2p + t2 < 0 .  
For odd n ,  write r := n - s - t ( 3 0 ) .  It is easy to see 

Using ( 4 ) ,  ( 5 )  and ( 6 )  we have 

n 5 
unless s = - - -, t2 = 2 ,  r = 0 ,  p  = 2  and ( 7 )  holds throughout with equality. If ( 7 )  holds 

2 2 
n 5 throughout with equality, I EG [ T 2 ]  fl C / = 1 .  AS s = - - - and ,o = 2, it follows from ( 3 )  and 
2  2 

( 4 )  that for all v E TI, 
n + l  d H - S ( ~ )  = 1 and d G ( v )  = - 

2 '  
implying all the edges of C incident to vertices in T I  are contained in EG [ TI \ E [ T 2 ]  and thus 

the number of such edges is at least t l  + 1 .  Therefore, I EG [ TI fl C I 2 t l  + 1 + 1 = t , contra- 

dicting the assumption that C is a Hamiltonian cycle. Consequently the theorem is proved. 

Slightly modifying the proof of Theorem 1 ,  one can prove the following. 

Theorem2. InTheorem 1 wi th n > 8 k - 1 2  i n p l a c e o f  n 2 8 k - 1 6  and n 2 6 k - 9  in 
place of n >6k - 13, the other conditions being the same, for any given 2 -  factor F, G has a 
[ k , k + 1 ] -factor containing F. 
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