Hydrothermal synthesis, structure and quantum chemistry of transition metal complex supported by metal-oxo cluster $[{Ni(phen)_2}_2(\xi-Mo_8O_{26})]$

XU Jiqing (徐吉庆)¹, WANG Renzhang (王仁章)¹, GUO Chunxiao (郭纯孝)¹, YANG Guoyu (杨国昱)¹, ZENG Qingxin (曾庆新)¹, BU Weiming (卜卫名)², YE Ling (叶 玲)², FAN Yuguo (樊玉国)² & YANG Guangdi (杨光第)²

1. Department of Chemistry, Jilin University, Changchun 130023, China;

2. Key Laboratory of Supramolecular Structure and Spectroscopy, Jilin University, Changchun 130023, China Correspondence should be addressed to Xu Jiqing (email: xjq@mail.jlu.edu.cn)

Received December 25, 2000

Abstract A nickel-1,10-phenanthroline complex supported on an octamolybdate, [{Ni(phen)₂}₂(ξ -Mo₈O₂₆)], has been hydrothermally synthesized with MoO₃, H₂MoO₄, Ni(OAc)₂ • 6H₂O and 1,10-phenathroline (1,10-phen) as raw materials. The crystals of the compound belong to monoclinic P2₁/n space group, *a* = 1.2952(2), *b* = 1.6659(10), *c* = 1.3956(12) nm, β =106.273(8)°, *V* = 2.8906(5) nm³, *Z* = 2.5604 observable reflections ($I > 2\sigma(I)$) were used for structure resolution and refinements to converge to final *R*₁ = 0.0414, *wR*₂ = 0.0815. The result of structure determination shows that the compound contains octamolybdate possessing a novel structure type (named as ξ -isomer). The feature of ξ -[Mo₈O₂₆]⁴⁻ is that it is composed of Mo₆O₆ ring and two MoO₆ octahedra located at cap positions on opposite faces. The Mo₆O₆ ring contains two octahedral and four trigonal-bipyramidal Mo^{VI} atoms. Each ξ -[Mo₈O₂₆]⁴⁻ unit is bonded with two [Ni(phen)₂]²⁺ through terminal oxygen atoms of octahedral and neighbouring trigonal-bipyramidal Mo atom in the Mo₆O₆ ring. IR and UV-Vis spectra of the compound were measured and its electronic structure was studied by EHMO method.

Keywords: metal-oxo cluster, supporting, transition metal complex, ξ -octamolybdate.

Metal-oxo cluster chemistry has aroused interest for a long time owing to development of the chemistry itself and its many kinds of applications in fields such as catalysis, electric conductivity, magnetism, nonlinear optical properties and medicine^[1,2]. Recently, an important progress in metal oxide cluster chemistry has just been made on polyoxoanion-supported inorganic and organometallic complexes. The syntheses and structures of some such complexes have been reported, for example, inorganic coordination compounds $[{Cu(4,4 '-bipy)}_4(Mo_8O_{26})]^{[3]}$ and $[Cu(en)(V_2O_6)]^{[4]}$, which possess infinite extended structures; $[Zn(2,2 '-bipy)_2(V_4O_{12})]^{[5]}$ and $[La(Mo_8O_{26})_2]^{5-[6]}$, which are molecular clusters, and organometallic compounds $[(CO)_3Mn(cis-Nb_2W_4O_{19})]^{3-[7]}$ and $[{(\eta-C_5Me_5)Rh}(Mo_{13}O_{40})]^{2+[8]}$, etc.

We report here the synthesis and characterization of a novel nickel-phenanthroline complex supported on octamolybdate, $[{Ni(phen)_2}_2(\xi-Mo_8O_{26})](1)$. To date, many reports on syntheses

and structures of the compounds containing α -, β - and γ -[Mo₈O₂₆]⁴⁻ isomer have been presented. Recently, Isobe^[9] reported the first compound having δ -[Mo₈O₂₆]⁴⁻ isomer, [(η -C₅Me₅Rh)₂-(μ_2 -SCH₃)₃]₄[Mo₈O₂₆] • 2CH₃CN, and then Zubieta^[3] reported syntheses and structures of the other compounds having δ -[Mo₈O₂₆]⁴⁻ isomer [{Cu(4,4'-bipy)}₄(Mo₈O₂₆)] and the first compound containing ϵ -[Mo₈O₂₆]⁴⁻ isomer [{Ni(H₂O)₂(4,4'-bipy)₂]₂(Mo₈O₂₆)]. The result of structure determination for compound **1** indicates that it contains a novel unprecedented octamolybate isomer named ξ -[Mo₈O₂₆]⁴⁻.

1 Experimental and structure analysis

1.1 Synthesis of the compound

The title compound was synthesized using the hydrothermal method. A mixture of MoO₃, H_2MoO_4 , Ni(OAc)₂·6H₂O, phen and H₂O in the molar ratio 1.0 : 1.0 : 0.8 : 1.6 : 450 was fully stirred at room temperature, and sealed in a Teflon lined stainless steel reactor and heated at 170°C for three days. The purple block crystals were obtained after the reaction system slowly cooled to room temperature and filtered. The yield is ca. 35% (based on Mo). Elemental analyses calculated for C₄₈H₃₂N₈O₂₆Ni₂Mo₈(%): C, 28.49; H, 1.58; N, 5.53; Ni, 5.83; Mo, 37.96; found (%): C, 28.44; H, 1.52; N, 5.47; Ni, 5.76; Mo, 37.12.

1.2 Structure analysis

A purple single crystal with the dimension of 0.22 mm × 0.24 mm × 0.40 mm was mounted on a Bruker P4 four-circle diffractometer for reflection data collection under ω -2 θ scan mode MoK α radiation ($\lambda = 0.07017$ nm) monochromatized by a graphite monochrometer. The total number of reflections measured in the range of $1.96^{\circ} \le \theta \le 26.00^{\circ}$ was 7944, of which 5604 were considered as the observed ($I > 2\sigma(I)$) and used for structure resolution and refinements. The correction of Lp factor and absorption effect was applied to all reflection data. Crystallographic data: monoclinic system, a = 1.2952(2), b = 1.6659(1), c = 1.3956(1) nm, $\beta = 106.273(8)^{\circ}$, V =2.8906(5) nm³, space group P2₁/n, Z = 2, $D_c = 2.323$ g • cm⁻³ and F(000)=1952. The crystal structure was solved by direct methods and refined with full-matrix least squares program to converge finally to $R_1 = 0.0414$, $wR_2 = 0.0815$, S = 1.058, $\Delta \rho_{max} = 0.630$ (e • nm • 10³) and $\Delta \rho_{min} =$ -0.866 (e • nm • 10³). All computations were performed by using SHELXTL (Version 5) program system on a PC-486 computer.

1.3 Characterizations of the compound

(i) IR spectra. The IR spectra were recorded on KBr with a Perkin Elemer 783 infrared spectrophotometer. There are obvious characteristic absorptions at $945(v_{Mo-O(t)})$, $885(v_{Mo-O-(Ni)})$, $850(v_{Mo-O(u2)})$ and 705 cm⁻¹($v_{Mo-O(u3)})$.

(ii) UV-Vis spectra. The UV-Vis spectra of the title compound were observed in DMF solu-

tion with a concentration of 1.0×10^{-3} mol/L on a UV-3100 UV-Vis-NIR spectrophotometer. λ_{max} ($\varepsilon/L \cdot mol \cdot cm^{-1}$): 340 (6.0×10^{-2}), 585 nm (2.15×10^{-2}). The former is assigned to O \rightarrow M charge transfer peak and the latter belongs to d \rightarrow d transition band.

2 Results and discussion

2.1 Synthesis

It was found that synthetic result was remarkably affected by the raw material ratio. Compound **1** was synthesized in the mole ratio of Ni(OAc)₂ : phen=1 : 2. When Ni(OAc)₂: phen \leq 1 : 3, however, non-supported ion cluster compound, [Ni(phen)₃]₂[Mo₈O₂₆], was easily produced. In this case the following reaction occurred:

$$Ni^{2+} + 3 \text{ phen} \rightarrow [Ni(\text{phen})_3]^{2+}$$

Owing to coordination-saturated complex cation $[Ni(phen)_3]^{2+}$ forming, coordination between nickel cation and terminal oxygen of cluster anion $[Mo_8O_{26}]^{4-}$ cannot take place and the complex supported by metal-oxo cluster will not be produced.

The pH value of the reaction solution is important for obtaining crystal product. Compound 1 was produced in pH=7.0. When pH is over large or small, a precipitate forms easily, and it is difficult to obtain crystal product of compound 1.

2.2 Structure

The non-hydrogen atomic coordinates and equivalent isotropic displacement parameters, selected bond lengths and bond angles, are listed in tables 1-3, respectively. The molecular structure of compound **1** is given in fig. 1.

The crystal of the compound consists of discrete heterometallic decanuclear clusters $[{Ni(phen)_2}_2(Mo_8O_{26})]$ (fig. 1). The octamolybdate anion in **1** possesses a novel unprecedented structure mode named ξ - $[Mo_8O_{26}]^{4-}$ isomer, which is composed of a MoO₆ ring Mo1, Mo4, Mo2, Mo1A, Mo4A and Mo2A capped on opposite faces by two MoO₆ octahedra (Mo3 and Mo3A). The structure characteristic feature of ξ -octamolybdate isomer is that the Mo₆O₆ ring contains two octahedral and four trigonal-bipyramidal Mo^{VI} atoms. In the ring, linkage between any two MoO₅ trigonal bipyramids is edge-shared, while that between any MoO₆ octahedron and MoO₅ trigonal bipyramid is corner-shared. Each capping MoO₆ octahedron is linked to two MoO₆ octahedra and a MoO₅ trigonal bipyramid in the Mo₆O₆ ring by edge-sharing and to another MoO₅ trigonal bipyramid of the ring by corner-sharing. Two capping MoO₆ octahedra are linked to each other by edge-sharing. The structure features of ξ -[Mo₈O₂₆]⁴⁻ in compound **1** are obviously different from those of other octamolybdate isomers synthesized. For example, the α -[Mo₈O₂₆]⁴⁻ consists of six MoO₆ octahedra and two MoO₄ tetrahedra; the β -[Mo₈O₂₆]⁴⁻ is composed of eight MoO₆ octahedra is by edge-sharing; the γ -[Mo₈O₂₆]⁴⁻ contains six MoO₆ octahedra and two MoO₅ trigonal bipyramids; the δ -[Mo₈O₂₆]⁴⁻ has four MoO₆ cotahedra and four MoO₄ tetrahedra^[3, 9], and the

	x	v		U(eq)
Mol	697 (1)	925 (1)	1845 (1)	23 (1)
Mo1	1797 (1)	285 (1)	1547 (1)	23(1)
M02	1787 (1)	265 (1)	-1347 (1)	24 (1)
Mo3	-263 (1)	854 (1)	-/32(1)	22(1)
Mo4	2528 (1)	1078 (1)	664 (1)	27 (1)
Ni1	1621 (2)	-1783 (1)	-2510(1)	27 (1)
01	1155 (7)	1186 (5)	-658 (7)	23 (2)
O2	2825 (8)	314 (6)	-349 (7)	37 (2)
O3	-1065 (8)	1365 (5)	-1709 (7)	33 (2)
O4	-334 (7)	-18 (5)	1673 (7)	26 (2)
O5	1931 (8)	999 (6)	-2357 (7)	33 (2)
O6	1615 (8)	1590 (5)	1372 (7)	30 (2)
07	1599 (9)	534 (6)	2879 (7)	38 (2)
08	2065 (8)	-617 (6)	-2039 (7)	34 (2)
O9	3298 (9)	559 (7)	1642 (8)	44 (3)
O10	1008 (7)	146 (5)	733 (7)	27 (2)
011	-491 (7)	1299 (5)	314 (7)	28 (2)
012	-123 (8)	1552 (5)	2312 (7)	30 (2)
013	3288 (9)	1867 (6)	515 (8)	40 (3)
N1	3021 (8)	-1900 (6)	-2915 (8)	24 (2)
N2	1071 (10)	-1418 (7)	-3980 (9)	32 (3)
C1	3999 (12)	-2123 (9)	-2368 (11)	36 (3)
C2	4879 (12)	-2172 (9)	-2744 (12)	38 (3)
C3	4/33 (12)	-1994 (8)	-3729 (12)	37 (3)
C4	3745 (12)	-1/56 (8)	-4333 (12)	34 (3)
G	3520 (13)	-1531 (9)	-5368 (12)	38 (3)
C6	2531 (14)	-1291 (10)	-5907 (11)	43 (4)
C7	1675 (14)	-1237 (8)	-5464 (10)	36 (3)
C8	1884 (11)	-1444 (8)	-4443 (10)	28 (3)
C9	2898 (11)	-1701 (7)	-3897 (10)	28 (3)
C10	608 (15)	-1006 (10)	-6001 (11)	46 (4)
C11	-150 (11)	-983 (10)	-5502 (10)	39 (4)
C12	85 (15)	-1206 (10)	-4493 (11)	43 (4)
N3	1104 (10)	-2976 (7)	-2764 (10)	35 (3)
N4	2157 (10)	-2206 (7)	-1065 (9)	34 (3)
C13	650 (12)	-3357 (9)	-3591 (12)	40 (4)
C14	293 (13)	-4156 (11)	-3576 (14)	50 (5)
C15	400 (16)	-4530 (11)	-2731 (14)	68 (6)
C16	911 (14)	-4155 (9)	-1821 (15)	49 (4)
C17	1300 (12)	-3371 (8)	-1845 (13)	38 (4)
C18	1099 (16)	-4522 (10)	-832 (15)	58 (5)
C19	1578 (12)	-4125 (12)	-14 (10)	80 (8)
C20	1949 (12)	-3334 (10)	-47 (12)	39 (4)
C21	1823 (12)	-2950 (8)	-969 (11)	33 (3)
C22	2480 (12)	-2889 (11)	812 (12)	46 (4)
C23	2846 (14)	-2128 (12)	724 (12)	49 (4)
C24	2707 (12)	-1816 (10)	-218 (11)	38 (3)

Table 1 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement ($\times 10^5 \text{ nm}^2$)^{a)}

a) $U(eq) = (U_{11} + U_{22} + U_{33})/3.$

Table 2 Selected bond lengths / nm				
Mo1-O7	0.1711(11)	Mo1-O12	0.1740 (9)	
Mo1-O6	0.1876 (9)	Mo1-O4	0.2032 (8)	
Mo1-O10	0.2146 (8)	Mo1-O11	0.2341 (10)	
Mo2-O5	0.1687 (9)	Mo2-O8	0.1731 (9)	
Mo2-O2	0.1830 (10)	Mo2-O4 ^{a)}	0.1894 (9)	
Mo2-O1	0.2244 (8)	Mo3-O3	0.1694 (10)	
Mo3-O1	0.1892 (8)	Mo3-O11	0.1734 (8)	
Mo3-O4 ^{a)}	0.2197 (8)	Mo3-O10 ^{a)}	0.1926 (8)	
Mo3-O10	0.2529 (8)	Mo4-O9	0.1685 (10)	
Mo4-O13	0.1690 (9)	Mo4-O6	0.1939 (9)	
Mo4-O2	0.2018 (10)	Mo4-O1	0.2182 (9)	
Ni1-N1	0.2055 (10)	Ni3-N4	0.2064 (12)	
Ni1-N2	0.2065 (12)	Ni3-N3	0.2094 (12)	
Ni1-O8	0.2080 (9)	Ni3-O12 ^{a)}	0.2071 (9)	

a) Symmetry code: -x, -y, -z.

ε-[Mo₈O₂₆]⁴⁻ consists of six MoO₅ square pyramids and two MoO₆ octahedra^[3]. The structure of the ξ -[Mo₈O₂₆]⁴⁻ isomer also differs from that of (α-γ)- or (β-γ)-[Mo₈O₂₆]⁴⁻ proposed by Klemperer and Shum^[10], which has not been synthesized as yet. Although the ξ -octamolybdate and (α-γ)- or (β-γ)-molybdate are all composed of four MoO₆ octahedra and four MoO₅ trigonal bipyramids, arrangements of the polyhedra in these isomers are different. In (α-γ)- or (β-γ)-isomers, the Mo₆O₆ ring contains four octahedral and two trigonal-bipyramidal Mo^{VI} atoms and there are two edge-shared MoO₅ trigonal bipyramids in the cavity enclosed by polyhedra in the ring. More specifically, ξ -[Mo₈O₂₆]⁴⁻ contains six O(μ₃), six O(μ₂) and fourteen O(t) atoms, while (α-γ)- or (β-γ)-[Mo₈O₂₆]⁴⁻ contains two O(μ₄), two O(μ₃), eight O(μ₂) and fourteen O(t) atoms.

Fig. 1. Molecular drawing of [(Ni(phen)₂)₂(Mo₈O₂₆)] (50% displacement ellipsoids).

	Table 5 Select	eu boliu aligies / ()		
O7-Mo1-O12	104.2 (5)	O7-Mo1-O6	99.9(5)	
O12-Mo1-O6	106.9 (4)	O7-Mo1-O4	94.4(4)	
O12-Mo1-O4	93.4 (4)	O6-Mo1-O4	151.1(4)	
O7-Mo1-O10	99.0 (4)	O12-Mo1-O10	153.0(4)	
O6-Mo1-O10	80.6 (3)	O4-Mo1-O10	72.3(3)	
O7-Mo1-O11	171.9 (4)	O12-Mo1-O11	82.5(4)	
O6-Mo1-O11	80.8 (4)	O4-Mo1-O11	81.7(3)	
O10-Mo1-O11	73.1 (3)	O5-Mo2-O8	105.8(5)	
O5-Mo2-O2	113.7 (5)	O8-Mo2-O2	101.8(5)	
O5-Mo2-O4 ^{a)}	113.4 (4)	O8-Mo2-O4 ^{a)}	94.1(4)	
O2-Mo2-O4 ^{a)}	123.2 (4)	O5-Mo2-O1	91.4(4)	
O8-Mo2-O1	161.6 (4)	O2-Mo2-O1	76.4(4)	
O1-Mo2-O4 ^{a)}	72.6 (3)	O3-Mo3-O11	104.6(5)	
O3-Mo3-O1	105.3 (4)	O11-Mo3-O1	102.8(4)	
O3-Mo3-O10 ^{a)}	103.9 (4)	O11-Mo3-O10 ^{a)}	99.6(4)	
O1-Mo3-O10 ^{a)}	137.0 (4)	O3-Mo3-O4 ^{a)}	94.4(4)	
O11-Mo3-O4 ^{a)}	160.9 (4)	O1-Mo3-O4 ^{a)}	73.7(3)	
O4 ^{a)} -Mo3-O10 ^{a)}	73.2 (3)	O9-Mo4-O13	105.5(6)	
O9-Mo4-O6	96.9 (5)	O13-Mo4-O6	100.4(4)	
O9-Mo4-O2	93.3 (5)	O13-Mo4-O2	99.9(5)	
O6-Mo4-O2	153.9 (4)	O9-Mo4-O1	152.1(5)	
O13-Mo4-O1	101.3 (4)	O6-Mo4-O1	85.7(4)	
O2-Mo4-O1	74.3 (4)	N1-Ni1-N4	98.9(4)	
N1-Ni1-N2	80.8 (4)	N4-Ni1-N2	177.2(5)	
N1-Ni1-O12 ^{a)}	170.6 (4)	N4-Ni1-O12 ^{a)}	90.2(4)	
N2-Ni1-O12 ^{a)}	90.2 (4)	N1-Ni1-O8	89.3(4)	
N4-Ni1-O8	91.2 (4)	N2-Ni1-O8	91.5(4)	
O12 ^{a)} -Ni1-O8	88.3 (4)	N1-Ni1-N3	97.4(4)	
N4-Ni1-N3	81.1 (5)	N2-Ni1-N3	96.1(5)	
O12 ^{a)} -Ni1-N3	86.1 (4)	O8-Ni1-N3	170.6(4)	

Table 3 Selected bond angles $/(^{\circ})$

a) Symmetry code: -x, -y, -z.

Each ξ -[Mo₈O₂₆]⁴⁻ unit is bonded to two [Ni(phen)₂]²⁺ units through terminal oxo groups of octahedral and trigonal-bipyramidal Mo sites in the Mo₆O₆ ring with Ni-O distances of 0.2071(9) and 0.2080(9) nm. Since the terminal oxo groups of fully oxidized polyoxomolybdate (all Mo sites in the VI oxidation state) are non-basic and unreactive, the formation of compound **1** indicates the oxophilicity of the [Ni(phen)₂]²⁺ group and the structural flexibility of the octamolybdate core in adopting the ξ -structure. In the [Ni(phen)₂]²⁺ unit, Ni is coordinated to four N atoms of two 1,10-phenathroline ligands besides two terminal oxygen atoms of the octamolybdate cluster, forming a distorted octahedron with one relatively long Ni-N distance of 0.2094(12) nm and three Ni-N distances in the range of 0.2055(10)—0.2065(12) nm. Compound **1** possesses three kinds of Mo-O bonds: Mo-O(t), Mo-O(µ₂) and Mo-O(µ₃) bonds. Table 4 gives bond length ranges of three types of Mo-O bonds and Mo-O average bond lengths in the coordination polyhedra of Mo atoms. It can be seen from table 4 that Mo-O average bond lengths (0.1975 and 0.1903 nm) of penta-

coordinated Mo2 and Mo4. However, Mo-O average bond lengths of the penta-coordinated Mo itself are very similar to each other, and it is also the same case for hexa-coordinated Mo. It is found for Mo2, Mo3 and Mo4 coordination polyhedra that Mo-O distances increase with increasing coordination number of oxygen, i. e. Mo-O(t) \leq Mo-O(μ_2) \leq Mo-O(μ_3), while for Mo1 site this trend is not completely met. For example, the Mo(1)-O(11)(μ_2) bond length (0.2341(10) nm) is evidently longer than the bond lengths of Mo1-O4(μ_3)(0.2032(8) nm) and Mo1-O10 (μ_3) (0.2146(8) nm).

Table 4 Bond length ranges of three types of Mo-O bonds and average Mo-O bond lengths of each Mo atom in $[{Ni(phen)_2}_2(Mo_8O_{26})]/nm$

Bond length ranges	Mo-O(t)	Mo-O(µ ₂)		Mo-O (µ3)
Bolid length langes	0.1685(10)-0.1711(11)	0.1731(9)—0	(9)-0.2341(10) 0.1892(8)-0.2	
Average Mo-O	Mo1-O	Mo2-O	Mo3-O	Mo4-O
bond lengths	0.1975	0.1877	0.1995	0.1903

2.3 Investigation of electronic structure

Electronic structure of compound **1** has been performed by means of EHMO method^[11]. The fractional atomic coordinates obtained through crystal structure determination are transformed into Cartesian coordinates. The parameters of Mo and Ni atoms used in EHMO calculation are taken from the literature^[12], and other atomic parameters are usual.

Compound **1** has 124 atoms. The total number of valent molecular orbitals is 450, in which 244 are occupied ones. Total energy of the system is -9088.45 eV. The energy of the highest occupied molecular orbital (HOMO) calculated is -10.5411 eV and that of lowest unoccupied molecular orbital (LUMO) is -10.0016 eV. The energy gap between HOMO and LUMO is 0.5395 eV. Table 5 gives the levels and compositions near frontier molecular orbital.

The composition for each molecular orbital is divided into three parts: eight Mo atoms, 26 O atoms and two Ni(phen)₂ units. It can be seen from table 5 that HOMO consists of two $[Ni(phen)_2]^{2+}(86.44\%)$ and cluster skeleton $[Mo_8O_{26}]^{4-}(13.56\%)$. The frontier molecular orbitals mainly comprise molecular orbitals of two $[Ni(phen)_2]^{2+}$. It is known from wave function analysis that first unoccupied d orbital energy level of Mo atom is -9.3712 eV (No. 253 orbital), which can accept charges transferred from bridge oxygen atoms. This is in agreement with presence of O \rightarrow Mo charge transfer transition in electronic absorption spectra of compound **1**.

The charge and bond order distribution of cluster skeleton $[Mo_8O_{26}]^{4-}$ are shown in fig. 2. In cluster skeleton $[Mo_8O_{26}]^{4-}$, average electronic configuration of eight Mo atoms obtained from calculation is $4d^{1.37-1.42} 5s^{0.28} 5p^{0.55}$. There are four Mo atoms with five coordinations and four Mo atoms with six coordinations in eight Mo atoms. Difference of d orbital electron between the two kinds of Mo is very slight (only 0.05e). Average net charge on ten O(t) atoms is -1.38 e, and the charges on ten O(μ_2) and six O(μ_3) are -1.260e and -1.200e, respectively. The charges of three kinds of oxygen atoms partly transferred into empty d orbitals of Mo atoms, resulting in that range of the net charge of Mo atom is between +3.751e - +3.806e.

Vol. 44

 $\label{eq:Fig.2.Bond} Fig.\ 2. \quad Bond\ orders\ and\ charge\ distribution\ in\ [Mo_8O_{26}]^{4-}\ of\ [(Ni(phen)_2)_2]\ (Mo_8O_{26})].$

 Table 5
 Levels and compositions near frontier molecular orbitals

No.	Energy level/eV	8Mo	26O	Ni(phen) ₂	Ni(phen) ₂	%
254	-9.3562	63.99	11.02	12.50	12.50	1.18
253	-9.3712	86.69	12.77	0.27	0.27	1.16
252	-9.4508	0.10	0.02	49.94	49.94	1.24
251	-9.4508	0.13	0.03	49.92	49.92	1.24
250	-9.6344	0.35	0.22	49.71	49.71	1.24
249	-9.6346	0.36	0.23	49.71	49.71	1.24
248	-9.6942	0.06	0.01	49.96	49.96	1.24
247	-9.6942	0.07	0.01	49.96	49.96	1.24
246	-10.0008	1.99	4.76	46.62	46.62	1.34
245	-10.0016	2.14	4.74	46.56	46.56	1.34
244	-10.5411	1.79	11.77	43.22	43.22	1.29
243	-10.5412	1.80	11.77	43.21	43.21	1.29
242	-12.2804	0.07	0.69	49.62	49.62	0.97
241	-12.2804	0.07	0.70	49.61	49.61	0.97
240	-12.3072	0.02	0.30	49.84	49.84	0.92
239	-12.3072	0.02	0.30	49.84	49.84	0.92
238	-12.3344	0.01	0.21	49.89	49.89	0.91
237	-12.3344	0.01	0.21	49.89	49.89	0.91

145

As to bond order, average bond order of Mo-O(t) in $[Mo_8O_{26}]^{4-}$ is 0.711, which possesses double bond character. The bond order of Mo-O(μ_2) is divided into two classes: one is that both side Mo-O(μ_2) bond orders of linking one and the same O(μ_2) are basically equal and possess single bond character. For examples, two bond orders of Mo1-O6-Mo4 are 0.484 and 0.426, respectively. The other class of two Mo-O(μ_2) bond orders linking the same O(μ_2) is obviously different, in which the bigger bond order possesses double bond character, for example, bond order of Mo3-O11(0.655) in Mo3-O11-Mo1 is just in this case, while smaller bond order, Mo1-O11 (0.263), displays coordination bond character. This is in agreement with relatively shorter Mo3-O11 bond length (0.1734(8) nm) and longer Mo1-O11 bond length (0.2341(10) nm) obtained from single crystal structure determination of the compound. The latter bond is formed by O11 atom providing lone pair for Mo1 d empty orbital. Bond orders of Mo1A-O12A in Mo1A-O12A-Ni1 and Mo2-O8 in Mo2-O8-Ni1 are 0.645 and 0.661, respectively. Their bond lengths are respectively 0.1740(9) and 0.1731(9) nm, possessing double bond character. While bond orders of Ni1-O12A and Ni1-O8 are respectively 0.160 and 0.128, and the bond lengths are respectively 0.2071(9) and 0.2080(9) nm, indicating coordination bond character. It is deduced from this that forming process of the compound 1 is probably that cluster skeleton anion $[Mo_8O_{26}]^{4-}$ and coordination cation $[Ni(phen)_2]^{2+}$ firstly form, respectively, then four terminal O(t) atoms in $[Mo_8O_{26}]^{4-}$ provide their lone pairs for two Ni atoms in $[Ni(phen)_2]^{2+}$ units, forming coordination bonds.

The average bond orders of Mo-O(t), Mo-O(μ_2) and Mo-O(μ_3) are 0.711, 0.454 and 0.315, respectively, which are in agreement with corresponding characteristic absorption peaks (945, 885 and 705 cm⁻¹) of infrared spectra of the compound.

To date, the six kinds of $[Mo_8O_{26}]^{4-}$ isomers have been synthesized, but their functional performances were rarely reported. At present, nonlinear optical properties of these isomers are being investigated in our laboratory.

References

- Pope, M. T., Müller, A., Polyoxometalate chemistry: An old field with new dimension in several disciplines, Angew. Chem. Int. Ed. Engl., 1991, 30: 34.
- 2. Hill, C. L., Polyoxometalate, Chem. Rev., 1998, 98(1): 1.
- Hagrman, D., Zubieta, C., Rose, D. J. et al., Composite constructed from one-dimensional coordination polymer matrices and molybdenum oxide subunits: polyoxomolybdate clusters within [{Cu(4, 4'-bpy)}₄Mo₈O₂₆] and {Ni(H₂O)₂(4, 4'bpy)₂}₄Mo₈O₂₆] and one-dimensional oxide chains in [{Cu(4, 4'-bpy)}₄Mo₁₅O₄₇]·H₂O, Angew. Chem. Int. Ed. Engl., 1997, 36: 873.
- DeBord, J. R. D., Zhang, Y., Haushalter, R. C. et al., One-dimensional vanadium oxide chains containing covalently bound copper coordination complexes: hydrothermal synthesis and characterization of Cu[H₂N(CH₂)₂NH₂][V₂O₆], Cu(C₁₀H₈N₂)₂ [V₂O₆] and Cu(C₁₀H₈N₂)[V₂O₆], J. Solid. State. Chem., 1996, 122: 251.
- Zhang, Y., Zapf, P. J., Meyer, L. M. et al., Polyoxoanion coordination chemistry: synthesis and characterization of the heterometallic, hexanuclear clusters [{Zn(bipy)₂}₂V₄O₁₂], [{Zn(phen)₂}₂V₄O₁₂]·H₂O, and [{Ni(bipy)₂}₂Mo₄O₁₄], Inorg. Chem., 1997, 36: 2159.

- Kitammura, A., Ozeki, T., Yagasaki, A., β-Octamolybdate as building block: synthesis and structural characterization of rare earth-molybdate adducts, Inorg. Chem., 1997, 36: 4275.
- 7. Besecher, C. J., Day, V. W., Klemperer, W. G. et al., Synthesis and structure of the $[(OC)_3Mn(cis-Nb_2W_4O_{19})]^{3-}$ and $[(OC)_3Re(cis-b_2W_4O_{19})]^{3-}$ anions, Inorg. Chem., 1985, 24: 44.
- Chae, H. K., Klemperer, W. G., Paez Logo, D. E. et al., Synthesis and structure of a highnuclearity oxomolybdenum(V) complex, [(C₃Me₅-Rh^{III})₈ (Mo^V₁₂O₃₆)(Mo^{VI}O₄)]²⁺, Inorg. Chem., 1992, 31: 3187.
- Xi, R., Wang, B., Isobe, K. et al., Isolation and X-ray crystal structure of a new octamolybdate: [(RhCp*)₂(μ₂-SCH₃)₃]₄[Mo₈O₂₆]·2CH₃CN(Cp*=η⁵-C₅Me₅), Inorg. Chem., 1994, 33: 833.
- 10. Klemperer, W. G., Shum, W., Synthesis and interconversion of the isomeric α and β -Mo₈O₂₆⁴⁻ ions, J. Am. Chem. Soc., 1976, 98: 8291.
- 11. Summerville, R. H., Hoffmann, R., Tetrahedral and other M₂L₆ transition metal dimers, J. Am. Chem. Soc., 1976, 98: 7240.
- 12. Hoffmann, D. M., Hoffmann, R., Fisel, C. R., Perpendicular and parallel acetylene complexes, J. Am. Chem. Soc., 1982, 104: 3858.