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Abstract The stress analysis based on the theory of a thin shell is carried out for cylindrical shells with normally in- 
tersecting nozzles subjected to external moment loads on the ends of shells with a large diameter ratio ( 8 ) .  In- 

stead of the Donnell shallow shell equation, the modified Morley equation, which is applicable to po(R/ ~)''~>>1, is 
used for the analysis of the shell with cutout. The solution in terms of displacement function for the nozzle with a non- 
planar end is based on the Goldenveizer equation. The boundary forces and displacements at the intersection are all 
transformed from Gaussian coordinates ( a ,  P )  on the shell, or Gaussian coordinates ( r ,  0)  on the nozzle into three-di- 
mensional cylindrical coordinates ( p ,  8 ,  2). Their expressions on the intersecting curve are periodic functions of 6' and 

expanded in Fourier series. Every harmonic of Fourier coefficients of boundary forces and displacements are obtained 
by numerical quadrature. The results obtained are in agreement with those from the three-dimensional finite element 
method and experiments. 

Keywords: two normally intersecting cylindrical shells, theory of thin shells, stress concentration factors(SCF) . 
Two intersecting cylindrical shells subjected to internal pressure and external moments are of 

common occurrence in pressure vessel and piping industry. The highest stress intensity occurring 

in the vicinity of junction might cause trouble. The intersecting curve of two cylindrical surfaces, 

r ,  is a complicated space curve when the diameter ratio of two cylinders increases. Since the 

1950s ~ r i n ~ e n " ] ,  ~ i j l a a r d ' ~ ] ,  ~ i a n ' ~ ] ,  ~eke rke rke r [~ l  and ~teele'" have obtained the analytical 

solution for po = r /  R GO.  3 based on the Donnell's shallow shell equation and on the supposition 

that F is a circle laid on the developed surface of the main shell'). Since the 1980s  offa at'^.^' and 

widera['] have been making efforts to obtain FEM solution and to develop empirical formulas on 

numerical and experimental results. The authors and co-workers of the present paper developed a 

thin shell theoretical solution of two normally intersecting cylindrical shells subjected to internal 

pressure'9p131 . The solution is developed from the symmetrical case into the asymmetrical cases 

about 8 = 0,  x / 2  and from Timoshenko' s solution[141 into Goldenveizer ' s solution[151 for branch 

pipes in this paper. Usually two intersecting cylindrical shells are subjected to arbitrary kinds of 

external load accompanied with internal pressure. An arbitrary external moment loaded to the 

main shell could be decomposed into three basic moments, that is, torsional moment, M,,, longi- 

tudinal moment, My, and transverse moment, M,, , as shown in fig. 1. For this problem the 

governing differential equations and the analytical solutions are given in the present paper. 

1 ) steeleL5' gave an approximate solution suited for 5 .  
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The geometric parameters and four coordinate systems are shown in fig. 1. The Cartesian 

and polar coordinate systems ( E ,  y, ) and ( a ,  p )  on the developed surface of the main shell and the 

Cartesian ( c, 6 )  on the developed surface of branch pipe are taken as Gaussian coordinates, re- 

spectively. Cylindrical coordinates ( p ,  6 ,  z ) are taken as the global system. Their transforma- 

tions are shown in references [9-131. 

Fig. 1 . Four-coordinate systems. 

Three loading cases based on symmetrical or antisymmetrical stress fields about 8 =O( P =  0) 
and 0 = x /2  ( p = x / 2 )  caused by themselves, are given in table 1 .  All components of force, mo- 

ment, deformation and displacement can be expanded in Fourier series of p (or 8).  For example, 

the set of complete trigonometric functions of membrane normal forces, T,  and Tp, bending mo- 

ments, Ma and M p ,  and transverse shear force, Q, , is marked by ( G ( N ~ )  ( m p )  (or G:' ( me > 
and those of membrane shear force TUp, torsion moment Map and transverse shear force, Qp, 

GG)( m p )  (or G g ) (  m e ) )  , where m is harmonic number, and subscript N = 1,2 ,3  is the case 

number. The subscript of general forces, a and P, is transformed into r and 8 for branch pipe 

respectively. GG)( rnp) and GG)( mp) for each case are shown in table 1 .  

Table 1 Svmmetrv and triaonometric functions in three cases 

Case About P = 0 About P = x/2 G!$'( m ~ )  ~ 2 ' (  mp) Loading 

N = l  symmetry symmetry cos2 kp sin2 kP Mx 
N = 2  antisymmetry antisymmetry sin2 kp - cod kp M x c  

N = 3  antisymmetry symmetry sin(2k + l ) P  - cos(2k + 1 ) P  M ,  

1 Thin shell theoretical solution of cylindrical shell with large opening due to external moments 
on its ends 

The solution is obtained by superposition of membrane solution on homogeneous solution. 

Membrane solution is given in Cartesian coordinates, ( 6, q), and homogeneous in polar, ( a ,  P )  . 
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Homogeneous solution based on modified Morley ' s equation with the accuracy order of 
O (  T / R ) ,  which is the accuracy of thin shell theory, can be applied to large openings. 

1.1 Membrane solution 
Under the torsional moment M,, : 

M,  T, =- Tc = T ,  = 0 ,  
2 7 ~ ~ ~ '  

( l a ,  b) 

Under the in-plane bending moment M ,  , 

M,c 
ue = E T x R E ~ ~ ~ ~ ,  u p  = 2 E T a R  My (e2 - $)sinp, (4a, b) 

My 
u ,  = - E T x R  [. + + ( F 2  - (4c) 

M, vM 
Y E  = - E T K R ~  Ecosp, fP = E T n g 2 ~ i n p .  (5a, b) 

Under the out-plane bending moment M,, , 
Mzc T - - -  

€ -  xR 
2 s i n ~ ,  T ,  = TE, = 0, (621, b) 

MZC Mzc L 
U E  = - -  ETxR Fsinp, ;, = (e2 - z)COs9, 

1 L - - % [ v + T ( ~ 2 - 7 i i ) ] s i n i p ,  
u n  -ETxR 

M,, Ssinq, Y ,  = E T x R ~ ~ ~ ~ ~ .  vMzc 
=EX 

1 - 2  Homogeneous solution 
The modified Morley's equation 

is used inst'ead of Donnell's shallow shell equation used in refs. [l-51 

where 

where the real part of X ,  u,  is the normal displacement; the imaginary part $ is the Airy stress 
function and 

4 , ~ ~  = [12(1 - v 2 ) 1 1 / 2 ~ / ~ .  (12) 
The solution of eq. (9)  for the three cases shown in table 1 can be obtained as in reference [4 1 . 
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where C, are unknown complex constants, 

C, = Cnl + iCnz ; 

m is harmonic number 

m = 2 k  + e ( 2 , N ) ;  

G(Nl)(mp) is trigonometric [unctions shown in table 1 and 

where J, and H,  arc, ri r h-order Bessel and Hankel functions respectively. e (1, N )  - e (4 ,  N )  are 

given in table 2 ant1 

Table 2 e( j , N )  in three cases 

Case e(1, N) e(2, N )  e(3, N) e(4, N) 

The components of membrane forces, T,, Tp, Tap are expressed through the imaginary part 

of and moments, M,, Mp, Map, and transverse shear forces, Q,, Qp, through the real part 

(see eqs. (11 ) - - ( I 8 1  in ref. [ 9 ]  ) . The components of tangential deformation, e,, ep, w ,  can 

be obtained from constitutive equations in the tangential plane of shell. Then the Fourier coeffi- 

cients of expressions of partial derivative of u, , up with respect to a ,  /3, fk ( a ) gk ( a ) and hR 

( a ) , can be obtained from geometrical description of thin shell theory[16' : 

and tl,, up can be expanded in Fourier series as follows: 

Substituting eq. (20) into eq. ( 19), we can get a set of differential equations and obtain the solu- 

tion for each k : 

Vk = (aRgk - Uk)/ rn ,  k > 0. (21b) 

Considering that the rigid body displacement causes zero stress field, Uo and Vo can be de- 

termined based on zero rigid body displacement for case N = 1 and case N = 3 as follows ( Uo and 

Vo vanish in case 2 ) .  
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When N = 1, because the rigid rotation round z-axis is zero, we have 

Uo = aRgo, Vo = 0. (22a) 

When N = 3, because the rigid displacement in the direction of y is zero, we have 

1.3 General forces and displacements at the edge of the hole in the main shell 

The expressions for the intersecting curve r in the system ( a ,  /3) are 

ar  = [p;cos28 + a r c ~ i n ~ ( p ~ s i n B ) ] ~ ' ~ ,  (23a) 

and the homogeneous solutions of general forces and 

displacements on r can be given by substituting eq. 

(23 a, b) into their expressions. The particular solu- 

tions on r are obtained by substituting ( E r ,  pr)  in- 

to their formulas, where Er and p r  are the Cartesian 

'1 
coordinates of r 

Er = po~os8, q+ = arcsin(posin8). (24a, b) 
i ( 1 )  Q M ; t b  

The tangential forces, T, and S,, and trans- 
i ' L '  - 

verse shear force, Q,, which are the components of 1 ~ 5 ~ )  ~ ( t )  

boundary force vector F, and bending moment, i,, i v  

Mu, on boundary r ,  are expressed in the direction 
I 

of triad of unit vectors at the hole edge ( i t ,  i,, i n ) .  

The boundary displacement vector, U and 7, at the 

hole edge is composed df u,, up, u, and y,, yp, re- 

spectively, as shown in fig. 2 .  The relation between 

( i, , i, , i n  ) and ( i, , ip) shown in ref. [12 1 are pe- 

riodic functions of 0 and dependent on parameter p ~ .  

F and U are re-decomposed in the global coordinates 

and F,, F a ,  F,, M,, up ,  ug, u,, Y, are the eight 

basic general forces and displacements at the hole Y 

edge of the main shell. They are expanded in Fourier 
Fig. 2. The directions of unit vector boundary forces and 

series of 0 and dependent on diameter ratio po and 
on r. 

real and imaginary parts of unknown complex con- 

stants, Cnl ( I = 1 , 2 )  . For example, 
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where the first items are homogeneous solutions and the second items particular solutions. 

A* . . ,  ugnL..., kg-.. are Fourier coefficients that are definite integrals in which integrands are very 

complicated expressions involving Bessel and Hankel functions shown in eq. (16) and trigonomet- 

rical functions such as eqs. (23) and (24).  They are calculated by numerical quadrature[121. 

2 The homogeneous solution for a closed cylindrical shell with curved ends 

2.1 Goldenveizer general solutionC1s1 for a closed cylindrical shell 

Branch pipe is a semi-infinite long circular pipe with a curved end (radius is r, thickness is 

t ) . The expressions of components of displacement for branch pipe, u p ) ,  u 5') and u lf ) , through 

displacement function, $ ( c, 8 ) , are 

where 

a 2  = t2/12r2.  

The governing equation of cylindrical shells expressed through @ ( T, 8 )  is 

where 

For three different cases shown in table 1, (/I( c, 8) is expanded in Fourier series of 0 as follows: 

The characteristic equation of eq. (28) can be simplified according to the anaIysis of its character- 

istic roots by ~oldenveizer[ '~' ,  so we get 
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where 

a.1 = ( -  A~ + J . / m t  + 2 m 2 ) / 2  
m 2 A, ,  (3%) 

bml = ( -  A,  + J . ~ m j  - 2 m 2 ) / 2  

am2 = ( A ,  + J./=; + 2 m ' ) l ~  
m 2 A,.  (33d) 

bm2 = ( A ,  + J J ~ ;  - 2m')/2 

Eqs. (32) and (33c, d) are approximate formulas with the accuracy.order of 0 ( m2 t /  r ) for eqs. 

(32a), (33c) and. O ( l /  m2) for equations (32b) and (33d). 

The solutions for branch pipe only have homogeneous parts when the external moments are 

only loaded on the ends of main shell, so the displacement fields in branch pipe can be obtained by 

eq. (27) and the stress fields by geometrical relations and constitutive equations[16' 

2.2 The general forces and displacements at the curve end of branch pipe 

The geometric description of the intersecting curve, r ,  in the developed surface of branch 

pipe is 

From eqs. (301, (311, (27) and (34) we can see that all general forces and displacements are 

the functions of ( cr(po, 81, O), that is, the periodic functions of 19, and dependent on po and 

unknown constants Dkl . Therefore, they can be expanded in Fourier series and the Fourier coeffi- 

cients can be calculated by numerical integration as well. 

3 Continuity conditions 

At the intersecting curve, the general forces and displacements of the main shell and branch 

pipe must satisfy the following continuity conditions: 
F p  = - ~ ' t ' ,  F ,  = - Fit', F,  = - ~ ' , t ' ,  M ,  = 

P (35a) 
( 2 )  u p  = u L t ) ,  1.40 = ug , uZ = u(Zt), Y ,  = -  Y ( , )  v .  (3%) 

Substituting eqs. (25)-(27) and (30), truncated after the terms of either k = K or n = 
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2K + e(2, N)  into eq. (35), from eqs. (13)-(Is), (30)-(31) and tables 1 and 2 we can see 

that the number of unknown constants Cd and Djl for three different cases is shown in table 3. 

Table 3 Number of constants in three cases 

Case GI D,L 

N = l  4K + 2 4 K + 2  
N = 2  4K 4K 

From eqs. (35a, b),  we can get the following equations for each harmonic Fourier coeffi- 

cient : 
2 K + e ( 2 ,  N )  2  K  4  

X Ccnrfgn, + R = -  x CD,J~;)P, k = e(4, N ) ,  ..., K ,  (36a) 
n = e ( l . N )  1 = 1  1 = e ( 4 , N )  1=1 

2 K + e ( 2 .  N )  2  K  4 x xcnrfinz + f i  = - x C D , J ~ ; ) Z ,  k = e(4, N ) ,  -.., K ,  (36c) 
n = e ( l , N )  1 = 1  = e ( 4 . N )  1 = l  

2 K + e ( 2 ,  N )  2  K  4  

): cnlugnZ + kg = 2 x D,~U&)P, k = e(4, N ) ,  .*., K ,  ( 3 7 4  
n = e ( l , N )  1 = I  1 = e ( 4 , N )  1 = l  

2 K + e ( 2 .  N )  2 K 4  

): x ~ ~ ~ u ! ~ ~  + G: = x x DjlU&)', k = e (4, N ) ,  , K ,  
n = e ( l , N )  l = L  i = e ( 4 . N )  1 = 1  

(37b) 

Test-calculation shows that the truncation error for stress concentration factors is less than 

1 %  when K - 5  or 6 .  From eqs. (13)-(15) and (30)-(31) and tables 1, 2 we can get the 

number of unknown constants Cn1 and DIl shown in table 3 for three different cases. The reason is 

Case 1 .  When k = 0, there are no eqs. (36b) and (37b). Eq. (36c) expressing equilibri- 

um of forces in the direction of z axis should be auto-satisfied; and eq. (37c) expressing the conti- 

nuity of rigid-body displacements in z-direction, is unnecessary to be considered because it has no 

effect on stress fields; so the number of independent equations is 8K + 4. 

Case 2 .  When k = 0, there is only eq. (36b) expressing torsion equilibrium about rota- 

tional axis (z-axis), which is auto-satisfied. So the number of equations is 8K. 
Case 3.  When k = 0 ( m = 1 ) , because the equilibrium of forces and moments should be 

auto-satisfied, the 4 conditions F, = F, = My = M,  = 0 are auto-satisfied due to symmetric func- 

tions G$)  ( me) ( N = 3) about y = 0 and antisymmetric G:) ( me) ( N  = 3) about s = 0.  The fol- 

lowing equation 

must be auto-satisfied due to Fy = 0 so that only one equation of eq. (36a, b) is independent. 
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should be auto-satisfied due to the moment equilibrium about x-axis so that only one equation of 
eq. (36c, d) is independent. 

As to the condition of rigid-body displacement when k = 0 ( m = 1 ) , the four conditions u lo) 
- - u ( o )  = (0) = (0) = , w y  w, 0 are auto-satisfied and the continuity conditions of u y ) ,  wl0) can be omit- 
ted because they have no effect on stress fields. 

Notice 

so that eqs. (37b) and (37c) can be omitted. Therefore, for case 3 eqs. (36a), (36d), (37a) 
and (37d) are used only and we have 8K + 4 independent equations. 

4 Verification 

4 . 1  Comparison of tested results for ORNL-~["] (po = 0.5, D/ T =  d/ t  = 100) 
The comparison of tested results for ORNL-1 model shown in figs. 3 and 4 shows that the 

100 80 60 40 20 0 20 40 60 80 100 100 80 60 40 20 0 20 40 60 80 100 

d,/mm d,lmm 

Fig. 3 .  (a) Distribution of k along the gage line 0 = 60' on the outer surface of model ORNL-1 for M,, . (b)  Distribution 

of k along the gage line 0 = 60' on the inner sprface of model ORNL-1 for M, . - - - , k, analytic; -, k, analytic. 

Fig. 4 .  (a) Distribution of k along the gage line 0 = 90' on the outer surface of model ORNL-1 for M,. (b)  Distribution 
of k along the gage line 0 = 90' on the inner surface of model ORNL-1 for M,. 0, k, tested; 0 ,  kt tested. 

present theoretical results are in good agreement with the tested one for the loading cases of tor- 
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sion (main shell subjected to Mz, ) and in-plane bending (which subjected to My) .  However, for 
the cases of out-plane bending (loaded by M,,) the tested results are different from the present re- 

sults just as they are different from FEM results as shown in ref. [ 1 7 ] .  Ref. [ 1 7 ]  did not explain 

the reason but the present and numerical results are in good agreement with each other for the 

out-plane bending cases. Take an example for large diameter ratio as shown in figure 5. 
In figs. 3-5 kt and k ,  are dimensionless normal stresses in the inner or outer surface of the 

main shell and the subscripts t and v mean the stress directions in it and i,, respectively. d, is 
the normal distance from a described point to r on the developed surface of the main shell. 

Fig. 5. (a) Distribution of k along the gage line 6' = 90' on the outer surface of a model ( po = 0.8) for M, . (b )  Distri- 

bution of k along the gage line 6' = 90" on the inner surface of a model ( po = 0.8) for M, . - - - , k: analytic; -, 
k, analytic; n, k, tested; A ,  k, tested. 

4 . 2  Comparison with Moffat's FEM results 
16 Moffat gave a number of numerical results[6371 
14 - and stress concentration factor diagrams for po<l, 
12 - D/ T G 7 0  and po<t/ T<1 based on 3D-finite el- 
10 - 

ement method. The comparison between the pre- 

sent and Moffat ' s results for po = 0 .  8, D/ T = 

d / t = 40 under three cases ( see fig. 6 )  shows that 

: the two results of SCF versus 0 are in good agree- 

ment. Here, SCF is the dimensionless Tresca stress 
0 10 20 30 40 50 60 70 80 90 

intensity and usually SCF along the crotch line on 
0 

~ i ~ .  6 .  SCF for varying 6' along the crotch line on the in- the inner surface of cylinder is the maximum corn- 
ner surface of cylinder. ., ~ , , ( n u m e r i c a ~ ) ;  -, M, pared with those on the outer surface. The compar- 
(analytic) ; r , M,(numerical) ; - - - , M,(analytie) ; ison of relations of maximum dimensionless Tresca 

m, M,(nurnerical), - - - - - - ,  M,(analytic). stress intensity, K,,, K, and K,,, to po and D/ T 
= d /  t with Moffat's results given in figs. 7( a)- 

(c) shows that they are in good agreement as well. Here, subscript K means the loading case. 

5 The relation of K to po,  A ,  and t /  T 

From the above-mentioned analysis the maximum dimensionless stress intensity, K ,  is de- 
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d/D d l D  

Fig. 7 .  (a)  Maximum of SCF( K,) for varying d / D  and D / T  due to torsional moment M,. ( b )  Maximum of SCF 

(K,) for varying d / D  and D / T  due to in-plane moment M,. (c) Maximum of SCF( K,) for varying d / D  and D / T  

due to out-plane moment M,. - - - . , D / T = 2 0  (thispaper); -, D / T = 4 0  (thispaper); - - - -, D / T = 6 0  

(this paper) ; 0, D/ T = 20  offat at'^]) ; 0 ,  D/ T  = 40  offat at'^]) ; W ,  D/ T = 60  o off at'^]). 

pendent on the parameters po = r /  R , A = ( d I D )  m~ and t / T . A set of design diagrams can 

be given by the present analytical method. An example of K, for ,oo = 0.8, 2.5</\  <8, t /  T 
<2 is shown in figure 8.  

Fig. 8. Maximum of SCF ( K , )  for varying A and t / T due to torsional moment MIC on cylinder. 

6 Conclusion 

A thin shell theoretical solution of cylindrical shells with normally intersecting nozzles due to 

external moments on the ends of shells is given in this paper. The solution applicable to r /  R< 
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0 .8  is successful by experimental and numerical verification. 
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