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Abstract Let G be a finitc group and let S be a nonempty subset of G not containing the identity element 1.  The 
Cayley (di)  graph X = Cay ( G ,  S ) of G with respect to S is defined by V ( X ) = G. E ( X ) = 1 ( g ,  sg ) 
I g € G , s € S l .  ACkyley ( d i ) g r a p h X = C a y ( G , S )  issaid tobenormalif  R ( G ) d A = A u t ( X ) .  Agroup G is 

said to have a normal Cayley (dilgraph if G has a subset S such that the Cayley (dilgraph X = Cay( G ,  S )  is normal. 
It is proved that every f~nite group G has a normal Cayley graph unless G 2 &  X & or G 2 Q n  X z( r 2 O )  and that 
every finite group has a normal Cayley digraph, where Z,, is the cyclic group of order m and Qn is the quaternion 
group of ordcr 8 .  

Keywords: Cayley graph, normal Cayley (dilgraph. 

The symmetry and the classification of vertex-transitive graphs have been much . 
Cayley graph is one of the most important classes of vertex-transitive graph. In these studies, we 

often need to determine the full automorphism groups of the corresponding Cayley graphs'31. 

Normal Cayley graphs play an important role in determining their full automorphism groups. On 

the other hand, the question about the normality of Cayley graphs should be investigated further 

after the conclusion of G R R ' ~ ' .  In this paper we just want to find out which kind of finite groups 

has normal Cayley graphs. 

Throughout this paper symbol G always denotes a finite group and 1 denotes its identity. S 
stands for a nonempty subset of a group G not containing the identity element 1. Symbol X de- 

notes a simple graph. Symbols V(  X )  , E ( X )  , A ( X )  and Ab ( X )  denote, respectively, its ver- 

tex set, edge set, automorphism group, and the stabilizer of the vertex b in A ( X ) .  For any set 

T, lT  indicates the identity permutation on T.  Let Z, denote the cyclic group of order m ,  C, 
the symmetric group ol degree n ,  D, the dihedral group of order n ,  and Qg the quaternion group 

of order 8. 
A group G is generalized to be dicyclic if it is non-abelian and has an abelian subgroup L and 

anelement h E G \  I,  such that 1 G : L /  = 2 , o ( b ) = 4  and b - ' ~ b = x ~ ~ f o r e a c h e l e m e n t  x i n L .  

Definitio?~ 1. Let G be a finite group and let S be a nonempty subset of G not containing 

the identity element 1 .  The Cayley (di)gyaph X = C a y ( G ,  S )  of G with respect to S is defined 
-. . . . 
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by V ( X ) =  G ,  1 ( g ,  .jg) g €  G,  E ( X ) = s E  S / . A Cayley (di)graph X = C a y ( G ,  S )  is said 

to be nor-ma1 if R ( C; ) a A = Aut( X )  , where R ( G ) is the right regular representation of G . A 

group G is said to have a normal Cayley (di)graph if G has a subset S such that the Cayley (di) 

graph X = Cay( G , S ) is riormal. 

Let X = Cay( C;, S )  be a Cayley digraph of G with respect to S . Then A ( X )  contains the 

right regular reprcseritation R ( G ) of G ,  so X is vertex-transitive. Moreover, X is (strongly) 

connected if and only II G = ( S )  , and X is undirected if and only if S - '  = S .  

The main result of thls paper is the following two theorems. 

Theorem 1. I,rr G hr u finite group. Then G has a normal Cayley graph unless G 2 Z 4  

x & or G? Q8 X I;, 7 - 2 0 .  

Theorem 2.  Every finite group G has u normal Cayley digraph.  

For convenience we recall the definitions of DRR and GRR. Let X = Cay(G, S )  be a Cayley 

(&)graph of G with respect to S . Then X is called a (di)graphical regular representation (DRR 

or GRR) of G if R ( G )  = A ( X )  . We mention the results of GRR and DRR as  follow^[^^^^. 
Theorem A .  Every finite group G admits  a GRR unless G belongs to one of  the following 

clusses o f  groups : 

Clucc C :  uhel~un g ~ o u p s  of  exponent greater than t w o  

CLUJJ D : the ge71erulzzed dzcycltc groups. 

Clubs E : thv followtng thtrteen "e.rcept?onaL group)" : 
-3  +-J 

( I ) % ,  L,, -2 

(2106,  D R *  L)ro 

( 3 )A4 .  
( 4 ) ( u , h , c  ) ~ ( ? . = 6 ~ = ( ~ = 1 ,  u h c = b ~ u = c a h ) .  

( 5 )  ( u ,  b I = hZ = 1, huh = b 5 ) .  

( 6 ) ( u , h , c  ~ ~ - c ~ = h ~ = l , ~ c = c ~ , ( ~ h ) ~ = ( ~ b ) ~ = l ) .  

( 7 ) ( u ,  h , (  / ~ ' - h ' = ( ~ = l , u (  = c u ,  hc = c b , c = a l b l a b ) .  

(8)Qsx"Y QsX74. 
Theorem B. Wrth flue exceptzon\, every finzte group admits  a DRR. The exceptions are 

the elementury uhelzur~ groups of order 4 ,  8 ,  9 ,  16 and the quaternion group Qs 

1 Preliminary results 

Let X = Cay ( G ,  S ) be a Cayley (di)  graph. It is easy to see that any automorphism of G 
fixing S setwise induces an automorphism of the Cayley (di)graph X.  Denote this group of auto- 

morphisms by Aut((;, S ) ;  that is, 

A U ~ ( G ,  S )  = i E A ~ ~ ( G )  / S? = s 1 .  
Forconvenience wedenote A , =  I x E  V ( X )  I d ( l , x ) = i  \ , A , ( b ) =  i x E  V ( X )  ( d ( b , x ) =  i !  

f o r b #  1 and r , ( x ) = A , n A I ( x ) =  j y ~ ~ , l d ( x , y ) = i /  for x f l  and positive integer i ,  
where d ( . , ) is the distance function of X . Sometimes we also use A, to denote its induced sub- 

graph. 

Lemma A ' ~ ' .  Let G he u group and X = Cay( G ,  S )  . Then 

( 1 ) N A ( X )  ( R  ( C;) ) = I? ( G)Aut(  G ,  S )  , where R ( G )  is the right regular representation of  

G .  
( 2 ) R ( G ) a  A ( X )  rj U T L ~  only i f A I ( X ) G A u t ( G ,  S ) .  
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From this lemma and the vertex-transitivity of (di)graph Cay( G ,  S )  we can obtain the fol- 

lowing lemma. 

Lemma I .  Let X = Cay ( G , S ) be connected . Then X is a normal Cayley ( d i  ) graph of G 
zf a nd  only if the fi)ti,llowing condition5 are  satisfied : 

(i)foreuch p € A l ( X )  thereexis tso€Aut(G) such that = o A l ;  
- 

(ii) foreuch B ~ A ~ ( X ) ,  ? A ,  = I n ,  implies y , n ,  i n , .  

Proof. If X is normal then A1 ( X )  = Aut (G ,  S )  by Lemma A, and conditions ( i )  and 
(ii) are obviously satisfied. Now we show that these two conditions are sufficient. 

- 
(1)If p € A l ( X )  and p n ,  - I n , ,  then p = 1 .  

Since A ( X )  is transitive on V ( X )  = G, every vertex b meets hypothesis ( i i ) .  That is, for 

h E G and p € A,, ( X ) ,  p 1 n,(a) = l n l ( i )  implies y, 1 n,ta) = ln , ta ) .  If y, E A1 ( X )  and y, 
- - 

In, then p - I n ,  by ( i i )  So p / A , ( . )  = l n l [ s )  for all s E d l  = S.  Therefore p 
- / A,(,: - ln2( , ,  for all s 'C A l .  Since for each s E A 3  there exists some s E A l  such that LC € A2 

- 
( s ) ,  p 1 A <  - follows Since X is connected, by induction we can show that y, / A, = In, for all 

possible i . Hence cp = 1 .  

( 2 ) A l ( X ) G A u t ( G ,  S )  

By hypothesis ( i )  , for each p € A1 ( X )  , we may let o E Aut( G )  such that y, 1 A ,  = on,. 

Then p C 1 n 1  = I n , .  By the proof above we have p - ' = 1  and y , = o E A u t ( G ) .  

Then (2 )  implies that X is a normal Cayley (di)graph of the group G . 
It is well known that any (DRR) GRR must be (strongly) connected and must not be non- 

trivial lexicographic product. But for normal Cayley (di)graphs this is not true and we have the 

following results. We recall that a Cayley (di)graph X = Cay( G ,  S )  is a nontrivial lexicograph 

product if and only if there is a proper nonidentity subgroup H of G such that S \ H is a union of 

left cosets of H"'. 
Theorem 3 .  Let X = Cay ( G , S ) be u normal Cuyley graph for group G . Then 

( i ) X  is di.scorr~zected if and  only if GYG" or XZ- ' ,  where r = 1  or r>5; Hz= ( S )  

Zz, and W:=Cay(H,  S )  i s u  GRR for H. 
( i i )X is u nontrivial lexicogruphic product if and  only if X or its complement X' is discon- 

nected . 
Proof. ( i) Let X = Cay ( G,  S ) be normal and disconnected. Then ( S ) = H < G and 

I G : H 1 = t > 1 . Let W = Cay ( H ,  S ) and G = H U Hb 1 U -.- U Hb, - 1 be a coset-decomposition 

of G with respect to H .  We use symbol W, to denote the induced subgraph of X by the vertices 

in Hh,, z = 1 , 2 ,  ..., 1 - 1 .  It is easy to see that W Z W , .  
For each h € H we define a map Ah : G+G as 

g 7  g E H; 
gAIL = 

~ h ,  R B H .  

It is easy to verify that A,, E A1 ( X )  . By the normality of X we have Ah E Aut( G, S )  . If t > 2  
I A t h e n b l b 2 ' & ~ ,  a n d ~ o h ~ h ~ ~ h = ( b ~ t ~ ~ ' ) ~ ~ ~ = b : ~ ( b ~  ) h = b l h b g l h .  Th i s imp l i e s tha th= l  

for all h E H ; a contradiction. Hence t = 2 .  We may let G = H U Hb . Notice that Hb = bH. 

Let h , k E H .  Then ( bk ) h = ( hk = bAhk% = bhk and so hk = kh . Therefore H is abelian. 
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Since b2 E H we have h2 = ( 6' ) ' I '  = bA"hA" = bhbh and b ' hb = h -' for all h E H .  Especially for 

h = b 2 w e h a v e h  ' h 2 b = b  2 ;  that is, h 4 = l .  
We assert that W = Cay( H ,  S )  is a GRR for H .  Otherwise, let cu E Al  ( W )  with cu # 1 .  

Then we can define a map o, : G+G by 

= I " .  "' 1 hub, g = h h ,  h E H .  

It is easy to verify that o, € A1 ( X )  . The normality of X implies a, E Aut( G ,  S ) . Then ( hb 

= hab = hunbue = hb and h" = h for all h E H. This contradicts the hypothesis that cu # 1. Hence 

W = Cay( H ,  S )  is a GRR for H .  By Theorem A, H Z Z ,  where r = 1 or r 3 5 .  Therefore G 

must be abelian itself for h 1  hb = h 1  = h for all h E H and b E G \ H .  If b2 = 1 then G 
h - l  + I  
=& . If h2#l  then G S Z 4 x ~ - 1 .  Wehaveprovedthenecessity. 

Now let X = Cay ( G , S ) be a Cayley graph which satisfies the conditions in the theorem 

above. Then X is obviously disconnected. So we only need to show that X is normal. It is easy to 

check that A, E Aut ( G ,  S ) for all h E H in this case. Let a E A1 ( X ) .  Then 

a l w  E A l ( W ) = l ;  that is, a / w  = l w .  Supposethat b O = b h - l f o r s o m e h E H .    hen boAh=b 

and aAh / w1l w for W I 2 W and W is a GRR. Therefore a = Ah for some h E H and X is nor- 

mal. 

(ii)First i t  is easy to see that both X and X' are nontrivial lexicographic products if X = Cay 

( G,  S )  is a discvnnected normal Cayley graph. Now let normal Cayley graph X =  Cay(G, S )  be 

a connected nontrivial lexicographic product. We shall show that X' is disconnected. By our as- 

sumption we see that G has a nontrivial proper subgroup H such that S = T U bl H U .-. U b f i ,  

where Tc H * , b, 6 H ,  h,H # b,H ( i # j ) and r 2 1 .  For each h E H if we define a map A h  as 

above, then still we have A h  E A 1 ( X )  =Au t (G ,  S ) .  
Let G = H U c', 1 H U ... U b,H U U h, - H be a coset-decomposition of G with respect to 

-1 A A H. If t - 1 3 2  then b ,  ' h 2 $ H ,  and so ( b ~ ' b 2 ) ~ ~ =  b i 1 b 2 h =  ( b l  ) hb2h= b 1 1 h b 2 h .  This 

implies that h = 1 for all h € H ;  a contradiction. Hence t - 1 = 1 and r = 1. So we may let G 

= H U Hb . Notice that Hb = bH . In this case X' = Cay( G ,  H * \ T )  is obviously disconnected. 

From this theorem we immediately have the following corollary. 

Corollary 1 .  I j '  X = Cay ( G, S ) is a normal Cayley graph and G*Z4, z, Z4 X z- and 

+ ' ( r 2 5 ) ,  the72 both X and X' are connected . 
Theorem 4 .  Let X = Cay( G ,  S ) he a normal Cayley digraph for group G . Then 

1 .  X is 710t strongly connected i f  and only if G has a subgroup H such that 

(1)  H is a nontrivial abeliar~ subgroup o f  G and I G : H 1 = 2 ; 

( 2 ) f b r a r 1 ~ h E G \  H c ~ n d h E H ,  h 4 = 1  u n d b - l h h = h - l ;  

( 3 )  W = C a y ( H ,  S )  is a DRR.for H .  

2 .  X is a nontrivial lexicographic product i f  and only i f  X or X' is not strongly connected. 

AS the proof of this lemma is similar to the undirected case we omit it. Notice that in this 

case, from Theorem 3, we know that H ~ Z ,  z, or z;. So group G is abelian or general- 

ized dicyclic. 
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2 Normal Cayley graphs for the groups in class C 

The Cayley index of a group G 1s defined by 

c ( G )  = mini A1(cay (G ,  s ) )  1, 

where S runs over all Cayley subsets of G .  It is easy to see that G admits a GRR if and only if 
( ( C ; ) = l .  If c ( G ) = 2  then G hasanormalCayleygraph. 

Lemma B ' ~ ' .  Let G /I? a fznzte ahelzun group. Then c ( G ) < 2  unless G zs one of the fol- 
7 -4  Lowtng seven groups : 2 ,  ?, 34 X &, 2, X 2, z:, %: und z:. 

-3 -4  Slnce (4, + are in Class E, by this lemma we only need to investigate the following five 
G-- groups: a 4 x F 2 ,  Y 4 X  -:, 7:, Z: a n d ~ i .  

Lemma 2 .  Eve?--v group among L4 X ZQ, Z4 X z:, z:, 2: and  z:, except & x &, has a 
normal CuyLey gruph 

Proof. ( 1)24 X has no normal Cayley graph. 

By Corollary 1, ~t is enough to show that G has no connected normal Cayley graph of degree 

3 .  Suppose that X = Cay( G ,  S )  is a connected normal Cayley graph for G and I S I = 3 .  Then S 
must contain a pair of elements of order 4, say u ", and an involution b ; that is, S = { a " , b 1 . 
Since G =  ( u )  X ( h ) ,  (Theorem 1 of ref. [ l o ] ) ,  X = C a y ( G ,  S ) = C a y ( ( a ) ,  { a ' ' / )  x Cay 

( ( b ) , I h / ) ~ ~ , x  k ' , S K 2 X  K 2 X  K 2 .  SO A ( X ) Z & w r Z g ,  I A ( X ) ~  ~ 2 ~ . 6 = 4 8 ,  and 

1 A I ( X )  I = 6 .  But Aut( G ,  S ) Z > .  Hence A1(X)#Aut (G ,  S ) ,  a contradiction. 

(i1)Each of ZJ4 x  :, ":, ": has a normal Cayley graph. 

We only prove i t  for L~ X 3. As for the other two cases, the proof is similar. Let G = Z4 

x ~ ; = ( u )  x ( b ) x  (0, where o ( u ) = 4 , o ( h ) = o ( c ) = 2 .  If we take S = { a " , b , b c , c \ ,  H 

= ( a )  and N = ( b , ( ) ,  thenbyTheorem1 of ref. [ l o ] ,  X = C a y ( G , S ) = C a y ( H x N , S I U  

S Z )  =Cay(H,  S 1 )  x ( 'ay(N, S 2 ) 2 C 4  X K4 ,  where S1=  { a " / ,  S 2 =  { b , b c , c l .  By Lemma 

2 . 1  of ref. [ l l ] ,  we have A ( X ) = A ( C 4 )  X A ( K 4 ) l " D s x C 4 a n d  I A ~ ( x )  I = 1 2 .  It is easy to 

see that Aut(G,  S ) S r 9  x  C 3 ,  and / A U ~ ( G ,  S )  = 12.  Hence A 1 ( X )  = A u t ( G ,  S )  and X =  
Cay ( G , S ) 1s a normal Cayley graph of G . 

(111) Z: has a normal Cayley graph. 

Let G =  ( a ,  b I u 4 = b ( , " = 1 , u b = b u )  and take S =  { a " ,  b " , a b , a l b l ,  b 2 j .  Consider 

the neighborhood subgraph Al induced by S (see figure 1 ) .  

Let p E AI ( X )  . Considering the restriction of 
0 , ,-I 

- 1 

I_I\ 
/ \  

p to A , ,  one sees a ? €  { a , a  , a b , a - ' b - ' 1  
/ 

since they are only 2-valent vertices of Al with on- 

;;\( ,\\ 

ly one 4-valent neighbor in A1. We note that ( b2)9  

= h2 since this is the only 2-valent vertex of A1 

w ~ t h  two 4-valent neighbors in A1. -7, - I By simple calculation, we know that rl ( x ) # 
\ / 

- 

\ /' 

if X , ~ E G \  S and x i y .  So p / A , - l ~ ,  
v - 

Implies p I h 2  - In, . Hence condition ( ii) of Lern- 
b' 

ma 1 is satisfied. 
1 . 1 ~  1 

Now we show that condition ( i )  also holds. 
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Let p E A 1 ( X ) .  By observat~on of A1 we have permutation p I s  = I s ,  ( a ,  a - ' ) ( b ,  b l ) ( a b ,  

u - ' b ' ) ,  ( u , u h ) ( h ,  h ' ) ( u  ', (L ' b - ' ) ,  or ( a ,  a - ' b - ' ) ( a - ' ,  a b ) .  In each case one can 

construct a suitable o E Aut( G )  such that Xu = x4 for all X E  S .  By Lemma 1, X is a normal 

Cayley graph of (;. 

3 Normal Cayley graphs for the groups in class D 

In this section G always denotes a generalized dicyclic group generated by the abelian group 

L and an element b as in the definition in sec. 1 above. We define two functions a ,  /3 : G+G giv- 

enby  x a = x - ' ,  (sc',)'=z 'b  a n d ~ ~ = x , ( x b ) ~ = ( x b ) - ' ~ x b - ~ f o r a l l x E L .  I t i sno td i f -  

ficult to check that a , P E A u t ( G ) ,  a 2 = ~ ' = 1 , a p = p o l .  So B =  { l , a , P , a p / < A u t ( G )  and B 
2z. In addition P is a graph-automorphism of Cay( G ,  S ) for any Cayley subset S of G, and 
,4 = , - I  , ( ~ h ) " ~ = ~ r  - ' h  ' for all x E L .  

In ref. [ 11 1 Imrich and Watkins defined a graph X belonging to class Pn,, ( n 2 2 ,  q > l )  if 

it is isovalent and the set V ( X )  admits a partition { V1, V2, ... , Vp 1 with 2< p< n such that 

every vertex in V, is adjacent to at most q vertices in V, for all i # j . It is shown in ref. [ 111 
(Corollary 1B) that the following lemma holds. 

LemmaC. 1.f XE:y',,,, und 1 V ( X )  I > p ( n  + 2 ) ,  then X ' & P n , q .  

Lemma 3 .  Let G be u generalized dicyclic group. If G $ Q8 X &m ( m 2 0 ) and  
I G / >32.  Then (f has u normal Cayley graph .  

Proof. Since L > 16 and L has even order, by Lemmas B and 6, L has a normal Cay- 

leygraph W=Cay( l . .  J )  such that A l ( W )  = I ~ L Y ~ / ~ / .  Set W f = C a y ( L , J ' ) ,  S = J U  

/ b , h - ' [ ,  T = J ' U  / 6 , 6  ' 1 ,  X = C a y ( G , S ) ,  and Y = C a y ( G , T ) .  

We first prove either 

Lp = L for all p E- A l ( X )  (3 .1 )  

or 

L* = L for all + E A 1 ( Y ) .  ( 3 . 2 )  

Otherwise, since 1 1)l > 16, by Lemma C, either W or W' is not in PZs2. If LP# L then ( Lb ) 

f Lh.  Let 1 A = l d , U 1 ~ 2 a n d  L b = L 3 U L 4 s u c h t h a t  Ly L L , L $  G L b ,  LT L L b  and L r  C L .  

Since every vertex in Ly is adjacent to at most two vertices in L$, every vertex in L1 is also adja- 

cent to at most two vertices in L 2 .  So W E  9 2 ,  2 .  In the same way we have W' E g2, 2 .  This is a 

contradiction. Now without loss of generality we may assume that ( 3 . 1 )  holds. We shall show 

that A1(X)=Aut (C ; ,S )<B=  { l , c u , p , a p } .  S O X  i ~ a n o r r n a l C a ~ 1 e y ' ~ r a ~ h o f  G .  Nowlet y, 
E A 1 ( X ) .  By ( 3 . 1 )  either p 1 = 1 1 ,  or p i = a  I L .  

First suppose p 1 = 1 L . Since hq E { b , b ' / , we begin by supposing b e  b . Notice that 

A b ( X ) = h  ' A , ( x ) D .  Since A l ( X )  l L < ~ I ( ~ ) ,  Ab(X)  I L b < b - ' ~ l ( ~ ) b I L b .  By our as- 

sumption p E A, ( X )  . So p / Lb = lLb or h -' ah I Lh .  In the former case y, = 1; in the latter case 

( xb ) = x ' h for all x E L . By our assumption on G ,  there exists an x E L such that s2# 1, 
h2. Inparticular, if 1 . = Z 4 X Z r = ( a l )  X&m for some m 2 3 ,  whereZ4= ( a l ) ,  then b2#a:, 

or else G would be isomorphic to Q8 X . Hence in this case we can take x = a 1. Since ( xb ) 

= x - -' h and p I 1, = 1L, the neighbors of s b  in L , namely bxb and x - ' , must coincide with the 

neighbors of .x ' h in I., namely bz- -r- ' h and x . But clearly x#x - ', while r = bxb implies x2 
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= b2 ; a contradiction. Therefore p / L = lL and b? = b include y? = 1 .  Now suppose that bv 

= h ' ' . Then ( @) 1 = 1,. and b@ = b .  It follows from what we have shown that (op= 1. Since 

,B2=1 we have p = p .  
1 On the other hand, suppose p 1 1, = cu I 1- . Let (I, = cu p . Then (I, I L = 1 . From the proof 

above we conclude that $J= 1 or $ = P ;  that is, p = a  or p=a/3. So A1(X)<B<Aut(G)  and 

X is a normal Cayley graph of G . 
Proposition 1 .  If G i s  u generulized dicyclic group with L = &,,, ( m > 3 ) ,  then G has a 

normal Cuyley graph . 

Proof. L e t L - ( a )  a n d J =  { u , u - ' /  whence W = C a y ( L , J ) Z C 2 m .  T h e n A l ( W )  

= ~ 1 1 ~ , a / ~ / .  Let S = J U  i b , b l \  and X = C a y ( G ,  S ) .  We can check that eachof the edges 

( 1,  u " ) lies on precisely two 4-cycles and each of the edges (1, b ' l )  lies on precisely three 4-cy- 

cles. Hence for any p € A I ( X ) , J'" = J and b9 = b or b - I .  By Propsosition 2 . 1  of ref. [8 1, 
L P =  L and ( L L J ) ~ =  Lh forall p E A 1 ( X ) .  Since u2# l ,  a2 f  b2, bysimilarargument as in the  

proof of Lemma3 wealso have A I ( X ) = A u t ( G ,  S ) < B =  11, a , p ,  a p }  in thiscase. Hence X is 

a normal Cayley graph of G . 
Proposition 2 .  Let G he u group und I G 1 > 8. If G has a normal Cayley graph, then G 

x & has a r~orrnul C:uYLey gruph.  

Proof. Let W - Cay ( G ,  J ) be a normal Cayley graph for G .  Let S = J U I a 1 and X 
- 
- Cay( G x &, S ) , where (u )  = & . We will show that X is a normal Cayley graph for G x &. 

Since I G / >8, by Lemma C, either W or W' is not in 92,1. We may suppose that W 

$92,1. Then Gp=C; for all p E A 1 ( X )  and a 9 = a .  Noticethat A 1 ( W ) = A u t ( G , J )  and 

= a E A l ( W ) = A u t ( ( ; , J ) .  S i n c e A , ( X \ W ) = a ' ~ ~ ( ~ ) a a n d y ? l ~ ~ E A , ( X \ W ) ,  we 

may let p/G.=uru, r E A , ( W ) .  For any x E G ,  ( x , x a ) E E ( X ) .  We have ( x , ~ a ) ~ = ( s " ,  

xr,  u ) . But sou are the neighbors of xu in Gu . We must have xau = xra ; that is, xu = xr for all 
I x E G .  S O ~ / ( ; ~ = U  O ( L ( ; ~ .  I t i s e a s y t o s e e t h a t p E A u t ( G ~ & , S ) .  H e n c e X i s a n o r m a l  

Cayley graph of G x ?-?. 

Lemma 4 .  Let (1; be u generu1izt.d dicyclic group. If G is not of the form Q8 X Grn for 

sorne ,n 3 0  und I G 1 <32, then G hus u normal Cuyley graph.  

Proof. The proof will fall into three cases according to the structure of the abelian group 

1, . By Proposition 1 we only need to deal with the cases in which L is not a cyclic group. So we 

may let L be one of the following groups z4 x &, X &, z4 X z, z: or & X & . 
Cuse 1 .  L = x & or L = z8 X ZQ. 

Let L = ((L X \;a2) , where (u = or z8 and (a2)  = & . If b2 = a ?  ( m = 3 , 4 ) ,  then G 

= (a,, h) x ( a 2 )  . In this case, by Propositions 1 and 2 we know that G has a normal Cayley 

graph. Now suppose h'= u 2 .  (The case b2= a;'a2 is equivalent under the autornorphism a l  +al ,  

a2 +a;" u2 of group 1, because we have also L = ( a  x ( a?  a 2 )  ) . Let J = 1 a l ,  a 1 1 ,  a2 / . Then 

we can easily verify that Cay ( I,, J ) is a normal Cayley graph of L such that A1 (Cay ( L , J ) ) 
- 
- i l L ,  cu / 1.1 . This time, however, let W be the complement of Cay( L ,  J ) ,  say, W = Cay( L ,  

J' ) . Let X = Cay( (;, S ) , S = J '  U { b ,  b / . Notice that every edge with both vertices in L or 

both vertices in Lh lies on a 3-cycle. No edge with one vertex in L and one vertex in Lb has this 

property; for if (g, h g )  were such an edge, then the other two edges on the 3-cycle would have 
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to be (bg ,  h 2 g )  and ( g ,  h 2 g )  or ( b l , g , g )  and (big, bg) .  But ( g ,  bZg),  ( b - ' g ,  b g ) B ~  

( X )  since h2 = a2 B S . It is easy to see that in each instance W is a connected graph. So we have 

L p = L  for all p € A 1 ( X ) .  

Since a:# 1, b2, by similar argument as in the proof of Lemma 3 we see that X is a normal 

Cayley graph of G .  
Case 2 .  L = 2: . 

Let L =  ( a ,  c l a 4 =  c 4 =  1, a c = c a ) .  We may assume that b 2 = c 2  without lossof generality. 

I f J = / ~ " , c ~ ' , ( a c ) ~ ' , c ~ ~ ,  t henbyLemma2  W = C a y ( L , J )  i sanormalcayley  graphof 

L .  Let S = J U  16, b ' j  a n d X = C a y ( G , S ) .  Then b and 6-areo only twovertices withva- 

lence 1 in the induced graph, then bp = b or b -' and J9 = J for all 9 E A1 ( X )  . By Propsosition 

2 .1  of ref. [8],  I s 9 =  L for all t p f  A 1 ( X ) .  Notice that ( b 2 ) 9 = b 2 f o r a l l  p E A 1 ( X ) ,  especial- 

ly for all o E A l ( W ) .  

Let p E A , ( X )  and p ) I , = o E ~ l ( ~ ) = ~ u t ( ~ , ~ ) .  Wesuppose b V = b  first. S inceAb(X 

\ W) isisomorphicasapermutationgroup t o A 1 ( W ) ,  a n d A b ( X \  W ) I L b = b - l ~ l ( ~ ) b ,  

we have p I L b = h  ' rh  forsome r E A l ( W ) .  T h e n ( ~ b ) ~ = a ' b .  Theneighborsof ( a b ) ? i n  L ,  

namely barb and ( a ' )  ' , must coincide with the images of the neighbors of ab in L ,  namely 
- 1 

buab and ( a " )  ' .  If ( u r ) ' = ( u " )  ', then a"' = a .  This implies @ =  r .  1f ( a r ) - ' # ( a a ) - ' ,  
1 

then ( u") ' = hurh and u" = ( ah2)  ' and a"' = ab2 6 V ( A ) ; a contradiction. Hence a = r ; 

that is, if 9 ( L = 0, then tp / Lh = h - ' oh. For convenience, let 8, denote such a p . Obviously 6, 

E A u t ( G ,  S )  for all o c A l ( W ) .  Now we suppose b9= b- hen p / 3 1 L = a E A l ( W )  and b'@ 

= b .  By what we have just shown, y/3 = 6, and p = 6,/3 E Aut ( G ,  S ) since ,B E Aug ( G ) .  

Therefore X is a normal Cayley graph of G .  
Case 3 .  L = /I4 X 7, . 
Let L = ( u , c  1 u 4 = c 2 = 1 , a c = c a ) .  By our a - l b - l  

assumption on G ,  b2#u2  or else G G Q 8  X &. 
So -we may assume that b2 = c without loss of 

generality. In this case G = ( a ,  h a - l b  b-I 

l a 4 = b 4 = l , b  ' u b = u  I ) .  

Let S = i u r ' ,  h i ' ,  ( b a ) " , a 2 j .  Observe 

the neighborhood graph ill induced by S (see fig- 

ure 2 ) .  

Looking at the graph we see that for any p 

€ A ' ( x ) ,  p ( s = 1 4 0 r  ( h ,  b - ' )  ( b a ,  a - '  0 - ' )  a  

or ( a , u l ) ( h ,  h u ) ( h - ' ,  a l h  ' )  or ( a ,  u - ' )  
I Fig. 2 

( b , a - ' b - ' ) ( h  , h a ) . S o p I s c a n a l w a y s b e r e -  

garded as a restriction of a group-automorphism on S . By computation we have rl ( x ) # ( y ) 
w h e n x , y E A 2 a n d  s f y .  So y , l S = l s  implies p = 1  since G = s U S ~ U S ~ .  By Lemma 1 X 
= Cay( G ,  S )  is a normal Cayley graph of G . - -2 Case 4 .  L = b4 X L - ~ .  

Let I,= (u )  x ( c )  x (d ) ,  where o ( a ) = 4 ,  and o ( c ) = o ( d ) = 2 .  Since G ~ Q ~ X ~ ,  we 

may assume that b2 = c2 without loss of generality. Then G = ( a ,  b) x ( d )  . By Proposition 2 
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and the above Case 3 we see that G has a normal Cayley graph. 

Lemma 5 .  I f  G = Q8 x ( m  3 0 ) ,  then G  has no normal Cuyley graph.  

Proof. Obviously G = Q8 X is a generalized dicyclic group with L = Z4 x Xrn and b2 

€ 4 .  For any Cayley subset of G  we shall construct a graph-automorphism Y of X  = Cay( G ,  S )  

such that Y € A1 ( X )  but Y B Aut( G ,  S )  . This will imply that G  has no normal Cayley graph. 

We define Y : G +G by gY = g ' , g E G . Since G is not abelian, i s  not a group-automor- 

phism of G .  Notice that for any x E L, x2 = 1  or x2 = b 2 .  NOW we show that y E ( X ) .  Let 

e = ( u , v ) E E ( X ) .  Weonly need toverify that e l = ( u ,  v ) ' = ( u - l ,  ' U - ' ) € E ( X ) .  lf t l , v  

are both in L  or L h ,  it is easy to see el  E E ( X ) .  Now let u E  L and v  = x b E  L b ,  x E  L .  Since 
1 - e E E ( X ) ,  n u  - ~ h u  J U ~ € S  and ( ~ u h ) - ~ = x u b - ' E ~ .  While v - ' ( u - ' ) - ' =  v - ' u  

= s u - l h -  1 , if u 2  = 1, then s u l h - l  = s u b - ' €  S ;  if u 2 # l ,  then x u - ' b - '  = s u u 2 b - '  

= xub2h  = z u h  E s . Hence in each case we have el  E E ( X )  . Therefore, Y E  A 1 ( X ) .  

4 Normal Cayley graphs for the groups in class E 

In this section we shall prove that each exceptional group has a normal Cayley graph. We 

choose some appropriate generating set S for each exceptional group G,  and verify the conditions 

in Lemma 1 .  

Lemma 6 .  The Cayley graphs of the following exceptional groups G  wi th  respect to the 
corresponding generuting set are all normal : 

( l ) G = ( u l ) X , , . X ( u , . ) ,  S =  { a l ; . . , a , ] .  

( 2 ) G = ( a ,  h l u L b 2 = ( a b ) " = 1 ) , ~ = { a , b } .  

( 3 ) G = A 4 , S =  / a , h , h  . ' j , w h e r e a = ( 1 2 ) ( 3 4 ) , b = ( 1 2 3 ) .  

( 4 ) G =  ( u ,  h ,  ( . l u 2 = t ) 2 = c 2 = 1 , a b c = h c a = c a b ) ,  S =  { a ,  b , c , s 2 j ,  wheres=abc .  

( 5 ) G =  ( a ,  h  l a 8 =  h 2 = 1 ,  h u b = a 5 ) ,  S =  { a , a - ' ,  b , a 4 , a 4 b  1 .  
( 6 ) G =  ( a ,  h , c l u 3 = c B =  b 2 = 1 ,  u c = c a ,  ( a b ) 2 = ( c b ) 2 = 1 ) ,  S =  ] a " , b , c k l ] .  

( 7 ) G =  ( a ,  h ,  c (L'= h 3 = c 3 = 1 ,  u c = c a ,  b c = c h ,  c = a l b - l a b ) ,  S  = { a " , b k 1 j .  

( 8 )  G  = Q g  X Qs = 

{ * I ,  k i ,  f j ,  k k l , & = ( a ) ,  S =  

{ a i ,  - a - l i , j ,  - j / .  

( 9 )  G  = Q S  x 2 4 ,  Q ,  = 

{ i l ,  + i ,  i j ,  i k l , Z 4 =  ( a ) ,  S =  

l a k 1 ,  f i , ( a i ) " ,  k j ,  - 1 1 .  

Proof. The normality of the 

Cayley graphs in ( 1 ) and ( 2 )  can be 

shown easily, and the normality of 

those in ( 6 ) ,  ( 8 )  and ( 9 )  can be 

proved similarly. The proof for the 

remainder is similar, and we only 

prove case (5)  . 
Set S  = { a , a - ' , b , a 4 , a 4 b l .  

Then A l  = S, A 2  = 1 a 5 b ,  a b ,  a ' ,  a 6 ,  
Fig. 3 a 2 ,  a 3 ,  a - l  b ,  a 3 b  / ,  A3 = 1 a 2 b ,  
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u 6 b /  (see fig. 3) .  We can examine whether I ' l (x )#I ' l (y )  for any s # y E  A2. SO if y , € A 1  

( X I  and y , s = l ( s ,  then 91 = 1 i A 2 .  Nowweconsidertheactionofany ? E A 1 ( X )  o n A l = S .  
A 2 

y, stabilizes { a , a l i  and i u 4 , u 4 b ,  b / ,  andsince ?stabilizes { X E A ~ /  I'3(.2:)=0j = { a 3 , a 5 }  it al- 
- l so stabilizes rl ( u 3  n rl ( u 5  ) = 1 a 4  \ . Hence y, stabilizes { a ,  a  } , 1 b  , a4  b  1 and l a 4  } . It fol- 

- 1 lows that ~1 / s< ( ( a ,  a ), ( b ,  a 4 b ) ) .  It is easy to see that ( ( a ,  a - I ) ,  ( b ,  a 4 b ) )  <Aut 

( G ,  S )  1 s ,  so we have A l ( X )  1 s < ~ u t ( ~ ,  S )  1 s .  Therefore, by Lemma 1 ,  X is a normal Cay- 

ley graph and A 1 ( X )  = A u t ( G ,  s)%&~&. 
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A 

Now we give the proof of Theorem 2. 
By Theorems 1 and 13 we need only to show that 

A 

Q8 has a normal Cayley digraph. Let G = Q8 = 1 k 1, o- o T 0- I 
- 1 

O .  

F i ,  k j ,  r t k }  and S = { i / .  Then X = C a y ( G , S )  -' - k  -3 
+ 

2 C 4  U e4 (see figure 4) . Fig. 4 

If y, E A ( X)  , then 9 fixes 1 t 1, i. i / pointwise, and so it stabilizes the directed cycle ( j , 
k ,  - j ,  - k ) .  I R ~  o = ( j ,  k ,  - j ,  - k )  be a permutation on G .  It is easy to verify that a E A u t ( G ,  

S ) , and 9 E ( o )  . Hence X is a normal Cayley digraph of G by Lemma A. 


