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Abstract Let G be a finite group and let S be a nonempty subset of G not containing the identity element 1. The
Cayley (di) graph X = Cay (G, S) of G with respect to S is defined by V(X) =G, E(X) = {(g, sg)
| g€ G,s€ St A Cayley (di)graph X =Cay(G, S) is said to be normal if R(G)< A=Aut(X). A group G is
said to have a normal Cayley (di)graph if G has a subset S such that the Cayley (di)graph X = Cay(G, S) is normal.
It is proved that every finite group G has a normal Cayley graph unless G=Z, X Z, or G= Q3 X Z;(r=>0) and that
every finite group has a normal Cayley digraph, where Z,, is the cyclic group of order m and Qj is the quaternion
group of order 8.

Keywords: Cayley graph, normal Cayley {di)graph.

The symmetry and the classification of vertex-transitive graphs have been much studied!™2.
Cayley graph is one of the most important classes of vertex-transitive graph. In these studies, we
often need to determine the full automorphism groups of the corresponding Cayley graphsm.
Normal Cayley graphs play an important role in determining their full automorphism groups. On
the other hand, the question about the normality of Cayley graphs should be investigated further
after the conclusion of GRR!*!. In this paper we just want to find out which kind of finite groups
has normal Cayley graphs.

Throughout this paper symbol G always denotes a finite group and 1 denotes its identity. S
stands for a nonempty subset of a group G not containing the identity element 1. Symbol X de-
notes a simple graph. Symbols V(X), E(X), A(X) and A,(X) denote, respectively, its ver-
tex set, edge set, automorphism group, and the stabilizer of the vertex » in A(X). For any set
T, 17 indicates the identity permutation on T. Let Z,, denote the cyclic group of order m, =,
the symmetric group ol degree n, D, the dihedral group of order n, and Qg the quaternion group
of order 8.

A group G is generalized to be dicyclic if it is non-abelian and has an abelian subgroup L and
an element € G\ L such that | G: L] =2,0(8)=4 and b 'xb =z ! for each element x in L.

Definition 1. Let G be a finite group and let S be a nonempty subset of G not containing
the identity element 1. The Cayley (di)graph X = Cay(G, S) of G with respect to S is defined
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by V(X)=G, i(g,sg)| g€ G, E(X)=s€S!}. A Cayley (di)graph X = Cay(G, S) is said
to be nor-mal if R(G)<J A =Aut(X), where R(G) is the right regular representation of G. A
group G is said to have a normal Cayley (di)graph if G has a subset S such that the Cayley (di)
graph X = Cay(G, S) is normal.

Let X =Cay(G, S) be a Cayley digraph of G with respect to S. Then A(X) contains the
right regular representation R(G) of G, so X is vertex-transitive. Moreover, X is (strongly)
connected if and only if G=(S), and X is undirected if and only if S™'=S.

The main result of this paper is the following two theorems.

Theorem 1. Let G be a finite group. Then G has a normal Cayley graph unless G=17Z4
X or G=EQgXZ5, r=0.

Theorem 2. Ewvery finite group G has a normal Cayley digraph .

For convenience we recall the definitions of DRR and GRR. Let X = Cay(G, S) be a Cayley
(di)graph of G with respect to S. Then X is called a (di)graphical regular representation (DRR
or GRR) of G if R(G)=A(X). We mention the results of GRR and DRR as follows!> .

Theorem A. Fuvery finite group G admits a GRR unless G belongs to one of the following
classes of groups:

Class C: abelian groups of exponent greater than two.

Class D the generalized dicyclic groups .

Class E . the following thirteen “exceptional groups’ :

(DZ5, 23, 43,

(2)Dg, Dg, Dyy.

(3)A,.

() a,b,cla*=b*=c*=1, abc=bca = cab) .

(HY{a,bla®=b>=1,bab=10b").

(6)a,b,cla*=c=b>=1,ac=ca, (ab)*= (cb)*=1).

(M a, b, cla’=0=3=1,ac=ca, bc=cb,c= a ‘o lab).

(8) Qg X Zs, Qg X Zy.

Theorem B. Wirh five exceptions, every finite group admits a DRR. The exceptions are
the elementary abelian groups of order 4, 8, 9, 16 and the quaternion group Qg.

1 Preliminary results

Let X =Cay(G, S) be a Cayley (di)graph. It is easy to see that any automorphism of G
fixing S setwise induces an automorphism of the Cayley (di)graph X. Denote this group of auto-
morphisms by Aut( G, S); that is,

Aut(G,S) = ¢ € Aut(G)|S? = S}.
For convenience we denote A, = {2 € V(X) | d{(1,z)=il,A,(8)={zEV(X)|d(b,z)=il
for b%#1 and I''(x) = A, N A (2)={vE A, |d(x,y)=1| for x#1 and positive integer i,
where d(+, ) is the distance function of X. Sometimes we also use A; to denote its induced sub-
graph.

Lemma A'*.  Let G bea group and X =Cay(G, S). Then

(DN4x)(R(G)) = R(G)Aw(G, S), where R(G) is the right regular representation of
G.

(DIR{GYNA(X) ifand only if A(X)EAu(G, S).
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From this lemma and the vertex-transitivity of (di)graph Cay(G, S) we can obtain the fol-
lowing lemma.

Lemma 1. Ler X =Cay(G, S) be connected. Then X is a normal Cayley (di) graph of G
if and only if the following conditions are satisfied :

(1) for each @€ A{(X) there exists 0 € Aut(G) such that ¢ | 4, =0 |A1;

(i) for each o€ A1 (X)), ¢ } A, = La, implies ¢ ‘ a, =14,

Proof. If X is normal then A, (X)=Aut(G, S) by Lemma A, and conditions (i) and
(i1) are obviously satisfied. Now we show that these two conditions are sufficient.

(DI € A(X) and |4, =1a,, then p=1.

Since A(X) is transitive on V(X) = G, every vertex b meets hypothesis (ii}. That is, for
b€ G and 9 € A, (X)), ¢ 1Al(b) =14,() implies ¢ 1/\2(1;) =1s,0). If o€ A;(X) and ¢
a, 7 la, by (i), So ¢ ’Al(:) =14 for all s € A; = S. Therefore ¢

PA2(5) = 1A2<,\) for all &€ A,. Since for each £ € A there exists some s © A; such that z € A,

then ¢

1 1?

‘A =1,

(s), ¢ ‘ s =14 follows. Since X is connected, by induction we can show that ¢ \ a4 =14, for all
possible i. Hence ¢ =1.

(2D)A(X)SAw(G, S).

By hypothesis (i), for each ¢ € A;(X), we may let ¢ € Aut(G) such that ¢ ‘ 4, T 04
Then go ! ‘ a, = 1a,. By the proof above we have go ' =1 and ¢ = ¢ € Aut(G).

Then (2) implies that X is a normal Cayley (di)graph of the group G.

It is well known that any (DRR) GRR must be (strongly) connected and must not be non-
trivial lexicographic product. But for normal Cayley (di)graphs this is not true and we have the
following results. We recall that a Cayley (di)graph X = Cay(G, S) is a nontrivial lexicograph
product if and only if there is a proper nonidentity subgroup H of G such that S\ H is a union of
left cosets of HU"!.

Theorem 3. Let X =Cay(G, S) be a normal Cayley graph for group G. Then

(1) X is disconnected if and only if G=Z5 ' or 24X Z5 ™, where r =1 or r==5; H=(S)
=75, and W:=Cay(H, S) is a GRR for H.

(ii) X is a nontrivial lexicographic product if and only if X or its complement X' is discon-
nected .

Proof. (i)Let X = Cay(G, S) be normal and disconnected. . Then (S) = H< G and
|G:H|=¢>1. Let W=Cay(H, S) and G=HU Hb; U+ U Hb,_{ be a coset-decomposition
of G with respect to H. We use symbol W; to denote the induced subgraph of X by the vertices
in Hb;, i=1,2,,1=1. It is easy to see that W=W,,

For each h € H we define a map 4,: G—>G as

g, g€ H;
A
gh:
gh, g & H.

It is easy to verify that A, € A,(X). By the normality of X we have A, € Aut{G, S). H t>2

then 6,6, "& H, and so 6,65 'h=(b,b; )" =04 (b3 )" = b, hby 'h. This implies that A =1

for all h € H; a contradiction. Hence t =2. We may let G= HU Hb. Notice that Hb = bH .
Let i, k€ H. Then (#&)h = (bk )% = "™ = bhk and so hk = kh . Therefore H is abelian.
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Since 52€ H we have 6% = (52)% = "' = bhoh and b *hb=h ‘for all hE H. Especially for
h=5%we have & '6%b =10 "?; thatis, b*=1.

We assert that W= Cay(H, S) is a GRR for H. Otherwise, let a € A;( W) with a#1.
Then we can defline a map o¢,: G>G by
Jg, g € H;

g"zlhab,g:hb,heH.

[t is easy to verify that 6, € A;(X). The normality of X implies 5, € Aut(G, S). Then (hb)"
=h% = h’b’> = hb and h®=h for all h € H. This contradicts the hypothesis that « 1. Hence
W=_Cay(H, S) is a GRR for H. By Theorem A, H=Z};, where r =1 or r==5. Therefore G
must be abelian itself for 6 'hb=h '=h forall A€ H and € G\ H. If 4°=1 then G
=75 I 6°51 then G =7, X7, '. We have proved the necessity.

Now let X = Cay( G, S) be a Cayley graph which satisfies the conditions in the theorem
above. Then X is obviously disconnected. So we only need to show that X is normal. It is easy to
check that A, € Aut (G, S) for all h € H in this case. Let ¢ € A; (X ). Then
olw €EA(W)=1; thatis, 6|w = lw. Suppose that ° = bk ! for some h € H. Then b= b
and oA, ’ wilw, for W, =W and W is a GRR. Therefore o = A, for some h € H and X is nor-
mal.

(ii) First it is casy to see that both X and X’ are nontrivial lexicographic products if X = Cay
(G, S) is a disconnected normal Cayley graph. Now let normal Cayley graph X = Cay(G, S) be
a connected nontrivial lexicographic product. We shall show that X’ is disconnected. By our as-
sumption we see that G has a nontrivial proper subgroup H such that S=TU», HU---Ubs,H,
where T&H", b, & H, bH7bH(i7j) and r==1. For each A € H if we define a map 2, as
above, then still we have A, € A (X) = Aut(G, S).

Let G=HUbHU---UbsHU-Ub, ;H be a coset-decomposition of G with respect to
H.If t —1>2 then b; '6,& H, and so (57 6,)% = 67 byh = (57 1) 0% = 57 hbyh. This
implies that 2 =1 [or all A € H; a contradiction. Hence t —1=1 and »r =1. So we may let G
= HU Hb. Notice that Hb = bH. In this case X =Cay(G, H* \ T) is obviously disconnected.

From this theorem we immediately have the following corollary.

Corollary 1. If X =Cay(G, S) is a normal Cayley graph and GZZ,, 73,74 X Z; ' and
/8 YW r2=5), then both X and X' are connected .

Theorem 4. Ler X = Cay(G, S) be a normal Cayley digraph for group G. Then

1. X is not strongly connected if and only if G has a subgroup H such that

(1) H is a nontrivial abelian subgroup of G and | G H| =2;

(2) for any b€ G\ Hand h€ H, b*=1 and b 'hb=h"1;

(3)W=Cay(H, S) isa DRR for H. .

2. Xis a nontrivial lexicographic product if and only if X or X' is not strongly connected .

As the proof of this lemma is similar to the undirected case we omit it. Notice that in this
case, from Theorem 3, we know that H$%Z73, 73, Z3 or Z3. So group G is abelian or general-
ized dicyclic.
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2 Normal Cayley graphs for the groups in class C

The Cayley index of a group G is defined by
¢(G) = min| A1(Cay(G, S))
where S runs over all Cayley subsets of G. It is easy to see that G admits a GRR if and only if
c(G)=1. If ¢(G)=2 then G has a normal Cayley graph.
Lemma B, Ler Ghea finite abelian group. Then ¢ (G)<2 unless G is one of the fol-

. P o = o o =2
lowing seven groups: =;, ,4;;,‘2‘, log X lyyy Loy XA;%, 4@%, Lg and Zﬁ.

’

Since 73, 73 are in Class E, by this lemma we only need to investigate the following five
groups: 7y X 7o, 74X 73, 73, 73 and Z2.

Lemma 2. Ewvery group among 7y X 7y, Zy X 73, 73, 73 and 73, except 7y X Z,, has a
normal Cayley graph .

Proof. (i)Z4 X, has no normal Cayley graph.

By Corollary 1, it is enough to show that G has no connected normal Cayley graph of degree
3. Suppose that X = Cay( G, S) is a connected normal Cayley graph for G and | S| =3. Then S
must contain a pair of elements of order 4, say « ~ !, and an involution &; thatis, S={a*!, b1}.
Since G = {a) X (b), (Theorem 1 of ref. [10]), X =Cay(G, S) =Cay({a), {a*'}) X Cay
(OY, 1) =Cy X K,>=K, X K, X K;. So A(X)=Zwr3;, |A(X)| =2°-6 =48, and
A(X) | =6. But Aut(G, S)=7,. Hence A;(X)#Aut(G, S), a contradiction.

(ii)Each of Z, X 73, 73,73 has a normal Cayley graph.

We only prove it for 74 X 73. As for the other two cases, the proof is similar. Let G =7,
x 73 ="{ay X {b) x {¢), where 0(a)=4,0(b)=0(c)=2. If we take S=1{a*!,8,bc,c}l, H
=<{a) and N= (b, ¢), then by Theorem 1 of ref. [10], X = Cay(G, S} =Cay(H X N, S; U
S,) =Cay(H, S;) X Cay(N, S,)=C, X K,, where S;=1{a*'t, S,=18, bc, c}{. By Lemma
2.1of ref. [11], we have A(X)=A(C,) X A(K,)=Dg xS, and | A1(X) | =12. It s easy to
see that Aut(G, S)=7, X 35, and |Aug(G, S)| =12. Hence A;(X) =Aut(G, S) and X =
Cay(G, S) is a normal Cayley graph of G.

(iii) Z3 has a normal Cayley graph.

Let G=(a,bla*=b*=1,ab=ba) and take S= {a*', b, ab,a 6%, b%}. Consider
the neighborhood subgraph A; induced by S (see figure 1).
Let ¢ € A, (X). Considering the restriction of

a, -1

“ -1 1, -1
; A ¢ to Ay, one sees a®* € {a,a ',ab,a ‘b '}
\ // ; since they are only 2-valent vertices of A; with on-
: / \ ly one 4-valent neighbor in A;. We note that (5?)?

AN
N

ab Pt a~1p—1
‘ = b2 since this is the only 2-valent vertex of A;

\\\ with two 4-valent neighbors in A .
b > By simple calculation, we know that I')(x)#
\\ /// M(y)if z,y€G\ S and z# y. Sogo'AlzlAl
;“) implies ¢ | A" 1A2. Hence condition (ii) of Lem-
ma 1 is satisfied.
Fig. |

Now we show that condition (i) also holds.
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Let p& A (X). By observation of A, we have permutation 90‘5 =1g,(a,a " V)(b,b 1) (ab,
a oY, (a,ab)(b, b "D (e La b)), or (a,a b)) (a7t ab). In each case one can
construct a suitable 6 € Aut{ G) such that X’ = X*for all X€ S. By Lemma 1, X is a normal
Cayley graph of G.

3 Normal Cayley graphs for the groups in class D

In this section G always denotes a generalized dicyclic group generated by the abelian group
L and an element b as in the definition in sec. 1 above. We define two functions «, g: G—>G giv-
enby 2=z, (xb)“=z 'band ¥ =z, (xb)P=(xb) '=xb 'forall zE€ L. It is not dif-
ficult to check that o, BEAu(G), a*=p*=1,a8=pz. So B= {1, a, 8, ¢! <<Aut(G) and B
=7%. In addition B is a graph-automorphism of Cay(G, S) for any Cayley subset S of G, and
2=z ' (26)¥ =21 toral z€ L.

In ref. [11] Imrich and Watkins defined a graph X belonging to class 2, ,(n=2, ¢==1) if
it is isovalent and the set V(X) admits a partition { Vi, V3, -, V, | with 2<<p<{n such that
every vertex in V; is adjacent to at most ¢ vertices in V; for all i7=j. It is shown in ref. [11]
(Corollary 1B) that the following lemma holds.

Lemma C. IfX€, ,and | V(X)|>gn(n+2), then X' &2, ,.

Lemma 3. Let G be a generalized dicyclic group. If GZ Qg X ZF (m =0) and
G| >32. Then G has a normal Cayley graph .

Proof. Since | L|>16 and L has even order, by Lemmas B and 6, L has a normal Cay-
ley graph W = Cay (L, J) such that A, (W) = ilL’ a 1L } . Set W =Cay(L,J),S=JU
o, oM, T=7"Ulb,b6 ', X=Cay(G, S), and Y=Cay(G, T).

We {irst prove either

L* = L forall ¢ € A (X) (3.1)
or

LY = L forall ¢ € A (Y). (3.2)
Otherwise, since | L | >16, by Lemma C, either W or W' is not in P 5. If L¥#L then (Lb)*
#1b. Let L=L,UL,and Lb=L;UL, such that LY =L, L§ CLb, L§ =Lb and L§ CL.
Since every vertex in LY is adjacent to at most two vertices in L%, every vertex in L is also adja-
cent to at most two vertices in L,. So W& % ,. In the same way we have W € % ,. This is a
contradiction. Now without loss of generality we may assume that (3.1) holds. We shall show
that A, (X) =Aut(G, S)<<B={1,a, 8, e8!. So X is a normal Cayley graph of G. Now let ¢
€A (X). By (3.1) either ¢ }‘: 1y org L: a |L.

First suppose @ | =1.. Since 6*€ {5, '}, we begin by supposing 6% = b. Notice that
A(X)=6 "A(X)b. Since A (X) |, <A (W), A(X)]|, <6 'A;(W)b],,. By our as-
sumption & A,(X). So ¢, =1;, or b 'ab|,. In the former case ¢ = 1; in the latter case
(zb)?=x '6 for all z€ L. By our assumption on G, there exists an x € L such that z>#1,
b%. In particular, if L =7,xZ5 ={a,) X7} for some m =3, where Z, = (a;), then 6°#al,
or else G would be isomorphic to Qg X Z}'. Hence in this case we can take x = a;. Since (xb)?
=z 'b and ¢ |, =1;, the neighbors of zb in L, namely bxb and =~ !, must coincide with the

neighbors of ' in L, namely bx 'b and z. But clearly x5z}, while z = bzb implies z>
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=p?; a contradiction. Therefore @ |, =1, and % = b include ¢ = 1. Now suppose that b¥
=b ' Then (gB8) |, =1, and b** = b. It follows from what we have shown that g8=1. Since
B> =1 we have ¢ = 8.

On the other hand, suppose ¢ |, = « |.. Let g =a ! ¢@. Then ¢ |, =1,. From the proof
above we conclude that ¢ =1 or ¢ = f3; thatis, p=a or ¢ =af. So A (X)<B<XAut(G) and
X is a normal Cayley graph of G.

Proposition 1. If G is a generalized dicyclic group with L =7Z,,,(m=3), then G has a
normal Cayley graph .

Proof. Let L= (a) and J = {a,a '} whence W= Cay(L, J)=C,,,. Then A;{(W)
={1.,al.!. Let $=JU{b,5 '} and X=Cay(G, S). We can check that each of the edges
(1, a*1) lies on precisely two 4-cycles and each of the edges (1, ) lies on precisely three 4-cy-
cles. Hence for any ¢ € A (X), j*=] and 6* =6 or b '. By Propsosition 2.1 of ref. [8],
L?=L and (Lb)?=Lb forall p€ A (X). Since a®*#1, a*#b*, by similar argument as in the
proof of Lemma 3 we also have A (X) =Aut(G, S)<XB= {1, a, 8, af! in this case. Hence X is
a normal Cayley graph of G.

Proposition 2. Let G be a group and | G| >8. If G has a normal Cayley graph, then G
X Zy has a normal Cayley graph .

Proof. Let W = Cay(G, J) be a normal Cayley graph for G. Let S=JU{al and X
=Cay(G X Z,, S), where («) =7,. We will show that X is a normal Cayley graph for G X Z,.

Since | G| >8, by Lemma C, either W or W’ is not in % ;. We may suppose that W
&%.1. Then G¥=G for all &€ A,;(X) and a¥=a. Notice that A, (W) =Aut(G,J) and ¢ |,
=5 EA(W)=Au(G,J). Since A, (X\ W)=a 'A(W)a and go‘GaEAa(X\ W), we

may let wIGuZara,réAl(W), Forany € G, (x,za)€ E(X). We have (x, za)?=(x°,

7= 27 for all

a7, a). But 2°%a are the neighbors of 27 in Ga. We must have x%a = z’a; thatis, x
z€G6G. So ¢ }Ga =u ‘'oalg, . Itis easy to see that € Aut(G X Z,, S). Hence X is a normal
Cayley graph of G X 7,.

Lemma 4. Let G be a generalized dicyclic group. If G is not of the form Qg X Z5 for
some m =0 and | G| <32, then G has a normal Caxyley graph .

Proof. The proof will {all into three cases according to the structure of the abelian group
L. By Proposition 1 we only need to deal with the cases in which L is not a cyclic group. So we
may let L be one of the following groups Zs X Z,, Z¢ X Z,, Zy4 X 73, 7% or Zzy X Z,.

Case 1. L=7¢XZyor L=7gX7,.

Let L= (a;) % {ay), where (a;) =7Z¢or Zg and {a,) =Z,. If 6*=aT(m =3,4), then G
= (ay, b) X (ay). In this case, by Propositions 1 and 2 we know that G has a normal Cayley
graph. Now suppose o> =«,. (The case b? = a7 a, is equivalent under the automorphism a; Faq,
a, Fa’ta, of group L because we have also L = {a;) X (aTa,)). Let J= |ay, ail, a, |, Then
we can easily verify that Cay(L, J) is a normal Cayley graph of L such that A,{(Cay(L, J))
=11;,a /. |. This time, however, let W be the complement of Cay(L,J), say, W = Cay(L,
J). Let X=Cay(G,S), S=J'Ulb,b . Notice that every edge with both vertices in L or
both vertices in Lb lies on a 3-cycle. No edge with one vertex in L and one vertex in L& has this
property; for if (g, bg) were such an edge, then the other two edges on the 3-cycle would have
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to be (bg, b*g) and (g, b*g) or (b ', g,g) and (b 'g, bg). But (g, b%g), (67" 'g,bg)&E
(X) since b2 =a,& S. It is easy to see that in each instance W is a connected graph. So we have
L?P=L1 forall € A (X).

Since a?#1, 4%, by similar argument as in the proof of Lemma 3 we see that X is a normal
Cayley graph of G.

Case 2. L=175.

Let L={a,cla*=c*=1, ac = ca). We may assume that b*> = ¢* without loss of generality.
HJ=1a"t ™Y, (ac)*t, ¢?}, then by Lemma 2 W = Cay(L, J) is a normal Cayley graph of
L.LetS=JU1}b,6 '} and X =Cay(G, S). Then & and & ! are only two vertices with va-
lence 1 in the induced graph, then 5% =5 or b~ ! and J? =] for all € A{(X). By Propsosition
2.1of ref. [8], L¥=L forall p€ A;(X). Notice that (5b?)?=b*for all € A;(X), especial-
ly for all s € A (W).

Let € A(X) and ¢ |, =06€ A;(W)=Aut(L,J). We suppose 5% = b first. Since A,(X
\ W) is isomorphic as a permutation group to A, (W), and A,(X\ W) |, =86"1A (W)b,
we have ¢ |, =b 'tb for some & A;(W). Then (ab)?®=a’h. The neighbors of (ab)?in L,

namely ba’® and (a™) ', must coincide with the images of the neighbors of ab in L, namely

ba’6 and (a°) . U (a") '=(a") !, then a** 1:a. This implies 6 = z. If (a%) "'##(a®) !,
then (a°) ' = ba’b and a° = (ab?)" and a"’il =ab>& V(A,); a contradiction. Hence ¢ = 7}
that is, if ¢l; = o, then ¢ |1, =6 'ob. For convenience, let 8, denote such a ¢. Obviously 6,
€Aut(G, S) for all 6 € A (W). Now we suppose b?=b"'.Then ¢8|, =6 € A; (W) and %
=b. By what we have just shown, ¢8 = &, and ¢ = §,8€ Aut(G, S) since 8 € Aug(G).
Therefore X is a normal Cayley graph of G.

Case 3. L=74XZ,.

Let L={a,cla*=c?=1,ac=ca). By our b a-1p-1
assumption on G, b°Fa” or else G= Qg X Z,.
So we may assume that b% = ¢ without loss of
generality. In this case G = (a, b
la*=0*=1,0"'ub=0a ).

Let S = {a™! 6" (ba)®!, a*t. Observe
the neighborhood graph A; induced by S (see fig-
ure 2).

Looking at the graph we see that {for any ¢
CA(X), pls=lgor (b, 6" (ba, a ' b7 1)
or (a,a Db, ba)(b ", a ' YD or (a,a™t)
(by,a 'b " 1)(b ', ba).So ¢|g can always be re-
garded as a restriction of a group-automorphism on S. By computation we have I';{x)# ' (y)
when x, y€ A, and 5% y. So ¢|s=1g implies ¢ =1 since G= S U S2US%. By Lemma 1l X
=Cay(G, S) is a normal Cayley graph of G.

Case 4. L =7,x75.

Let L ={(a) x {c) X {d), where 0o(a)=4, and 0(c)=0(d)=2. Since GZ Qg X7, we

— 2
— C

Fig. 2

may assume that &° without loss of generality. Then G = {a, b) X {(d). By Proposition 2
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and the above Case 3 we see that G has a normal Cayley graph.

Lemma 5. IfG= QgxXZ'(m=0), then G has no normal Cayley graph .

Proof. Obviously G = Qg X Z}" is a generalized dicyclic group with L = Z, X Z* and 4%
€ Z4. For any Cayley subset of G we shall construct a graph-automorphism ¥ of X =Cay(G, S)
such that ¥ € A{(X) but ¥ & Aut(G, S). This will imply that G has no normal Cayley graph.

We define ¥: GG by g’ =g ', g€ G. Since G is not abelian, ¥ 1s not a group-automor-
phism of G. Notice that for any z€ L, z?=1 or 2= 5%. Now we show that Y€ A,(X). Let
e=(u,v)EE(X). We only need to verify that e; = (u, v)"=(u ", v ) EE(X). f u,v
are bothin L or Lb, itiseasy tosee e;EE(X). Nowlet u €L and v=xb€ Lb, x € L. Since
e€E(X), vu '=zbu '=zub€ S and (xub) 1=zub 1E€ES. While v a1V 1=y 1y
=zu ‘67 if w?=1, then zu 167 ' =zub '€ S; if u?71, then zu b6 ' = zuulb !
= zub’b ' = zub € S. Hence in each case we have ¢, € E(X). Therefore, yE A,;(X).

4 Normal Cayley graphs for the groups in class E

In this section we shall prove that each exceptional group has a normal Cayley graph. We
choose some appropriate generating set S for each exceptional group G, and verify the conditions
in Lemma 1.

Lemma 6. The Cayley graphs of the following exceptional groups G with respect to the
corresponding generating set are all normal :

(MG="{ay xx{a,), S={ay,ya,}.

(2)G={a,bla’=b*=(ab)"=1),S=1{a, bl.

(3)G=A,, S=1a,b,b '}, wherea =(12)(34), b=(123).

BG={a,b,cla’®=b*=c?=1,abc=bca = cab)y, S={a,b,c,s*}, wheres=abc.

(5)G={a,bla®*=b"=1,bab=a"), S=la,a" ', b,a* a*b}.

(6)G={a,b,cla*=c*=b>=1, ac=ca, (ab)z"(cb)2 1, S=1{a*!, b,

(DG={a,b,cla’= b3‘ =1, ac=ca, be=cb, c=a ‘b lab), S =1{a

(8) G = Qs X Zy, Qg =
{1, 44, 25, 2k},2,=(a), S=
lai, —a ‘i, 5, —ji.

(9) G = Qg X Zy, Qg =
{+1,+i, %5, *k},Z,=(a), S=
fa®™, £i,(ai)™!, £, —11}.

Proof. The normality of the
Cayley graphs in (1) and (2) can be

c*.
+1 bili

shown easily, and the normality of
those in (6), (8) and (9) can be
proved similarly. The proof for the
remainder is similar, and we only
prove case (5).

Set S = la,a!,b,a% a'b}l.
Then A; =S, A,=1a’b, ab, a°, af,

Fig. 3 a’, a®, a ', a®bt, A; = {d%b,
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a®bt (see fig. 3). We can examine whether I';(z)# 'y (y) for any x#y€ A,. Soif € A,
(X)and ¢ |s=1]g, then golA :1IA2- Now we consider the action of any ¢ &€ A;(X) on A;=S.

o stabilizes {a, a | and {a*, a*b, b}, and since ¢ stabilizes | z € Az | [3(z) = @O} = {43, 4%} it al-
so stabilizes I'; (¢*) N ' (a®) = {a*}. Hence ¢ stabilizes {a,a "'}, {b,a*b} and {a*}. It fol-
lows that A, } = ((a,a™ '), (b,a*b)). It is easy to see that ((a, a '), (b, a®b)) <Aut
(G,S)]|s, sowehave A (X) ] <Aut(G, S)|s. Therefore, by Lemma 1, X is a normal Cay-
ley graph and A(X) = Aut(G, S)=7Z, X Z,.

5 Normal Cayley digraphs of finite groups ! oo ! O0————0 ¥
Now we give the proof of Theorem 2.
By Theorems 1 and B we need only to show that
Q5 has a normal Cayley digraph. Let G=Qg=1{*1, 5 )4 5 b
+i,*j, tkl and S=1i}. Then X = Cay(G, S) ~* -1 —k -7
264 Ué4(see figure 4). Fig. 4

If € A;(X), then ¢ fixes { £1, £ i} pointwise, and so it stabilizes the directed cycle (5,
k,~j,— k). Let 6=(j,k, —j, — k) be a permutation on G. It is easy to verify that ¢ € Aut(G,
S), and ¢ € (s). Hence X is a normal Cayley digraph of G by Lemma A.
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