
Vol. 44 No. 3 SCIENCE IN CHINA (Series A) March 2001 

Exact solitary wave solutions of nonlinear wave equations 
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Abstract The hyperbolic function method for nonlinear wave equations is presented. In support of a 
computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations 
are obtained via the method. The method is based on the fact that the solitary wave solutions are es- 
sentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the 
polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear sys- 
tem of algebraic equations. The system can be solved via Wu Elimination or GrSbner base method. 
The exact solitary wave solutions of the nonlinear wave equation are obtained including many new ex- 
act solitary wave solutions. 

Keywords: nonlinear wave equations, exact so l i t a ry  wave solutions, travelling wave solutions, hyperbolic func- 
tion m e t h o d .  

Nonlinear wave equations are applied in many fields of natural sciences. It is very important 

for us to obtain the exact solutions of these equations. Up to now, only a few methods for nonlin- 

ear wave equations proved successful, such as IST (inverse scattering transform) method, Hirota 

method, Backlund method and homogeneous balance method N-4] . Shang also carried out a deep 

research on how to solve nonlinear wave equations ES] . In this paper,  we present a hyperbolic 

function method which is based on the hyperbolic tangent method [63 , changing a nonlinear wave 

equation into a nonlinear system of algebraic equations. Solving this system via Wu Elimination [73 

or Grtibner base method ~s] , the exact solutions of the nonlinear wave equation can be obtained. 

We apply the method to some nonlinear wave equations. The exact solutions of these equations 
are obtained, which indicates that the method is feasible. 

1 Hyperbolic function method 

The hyperbolic function method is based on the fact that many solitary wave solutions have 

the format of hyperbolic functions. In this method, we assume that the nonlinear wave equations 

have solitary wave solutions, and the solutions can be expressed as the combination of hyperbolic 
functions. 

We assume that PDE is a nonlinear wave equation, and it can be used to describe the dy- 

namic evolution process of solitary wave u ( x ,  t ) .  The steps of hyperbolic function method can be 
shown as follows: 

1 ) Solitary wave is a kind of special travelling wave. That PDE has travelling wave solutions 
requires that PDE has only one argument ~ = k x  - ct  + l ,  where k (wave number) ,  c (frequen- 
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cy) are constants to be determined and l is an arbitrary constant. Then u ( x ,  t )  = u ( $ ) .  PDE 
can be changed into an ordinary differential equation (ODE) via the following differential trans- 
formation : 

3 3 3 3 
_ k -  ( 1 )  

o t  - -  O x  

2) In order to obtain exact solitary wave solutions of ODE, we introduce two elementary soli- 

tary wave functions f and g defined as 

1 g ( ~ )  _ sinh~ (2) 
f ( ~ )  - eosh~ + r '  eosh~ + r '  

where r ( i > 0 )  is a constant to be determined. Functions f ( ~ )  and g ( ~ )  satisfy the coupled 

Riecati equations [9] 

f ' ( ~ )  = - f ( ~ ) g ( ~ ) ,  g ' ( ~ )  = 1 - g2 (~ )  _ r f ( ~ )  (3) 
and their first integral 

g a ( $ )  = 1 - 2 r f ( $ )  

3) We assume that the solutions of ODE are 
mial degree of m 

r = 2 a i f  i + 
i = 0  

+ ( r  2 - 1 ) f 2 ( ~ ) .  (4) 

polynomials of f and g which have the polyno- 

by'g, (5) 
j = l  

where the coefficients a i ( i  = 0 , 1 , 2 , ' " ,  m)  and bj ( j  = 1 , 2 , " ' ,  m )  are constants to be deter- 

mined and satisfy a~  + b2m ~ 0.  The polynomial degree m can be determined via balancing the 

highest order derivative terms and the nonlinear terms in ODE. 
4) Constructing this polynomial with the degree m and substituting the polynomial into 

ODE, eliminating any derivative of ( f ,  g )  and any power of g higher than one with eqs. ( 3 , 4 )  
and setting the coefficients of the different powers of f and g to zero, we obtain a nonlinear sys- 
tem of algebraic equations (AES) with all parameters which are to be determined. 

5 ) Solving the AES to obtain all parameters via Wu Elimination or Grisbner base method, we 
obtain the exact solitary wave solutions of PDE in support of computer algebra system maple 4 in 
this paper. 

2 Exact solitary wave solutions of nonlinear wave equations 

In this section we will apply the hyperbolic function method to some nonlinear wave equa- 
tions to verify the correctness of the method. We wish that the exact solitary wave solutions can be 
obtained via the method. 

2.1 Burgers equation 
Burgers equation is one of the important nonlinear wave equations in physics and mechanics. 

Its standard format is listed as followsEt~ : 

u, + uux + pUxx = O. (6) 

In order to obtain the solitary wave solutions of eq. ( 6 ) ,  using the hyperbolic function method we 
can determine the degree of the solitary wave solutions, and then we have m = 1. The corre- 
sponding AES is 
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t 
k a l b l  - k 2 p a l  + b l c r  - k a o b l r  = O, 

3 k a l b l r  - 3 k 2 p a l  r + b l c ( r  2 - 1) - k a o b l ( r  2 - 1) = 0 ,  

2 k 2 p a l ( r  2 -  1) - 2 k a l b l ( r  2 -  1) = 0,  (7 )  

a l c  - k a o a i  + kb~r - k 2 p b l r  = O, 

2 k 2 p b 1 ( r  2 -  1) - ka 2 -  k b ~ ( r  2 -  1) = 0. 

Using the Gr0bner base method, in support of computer algebra system maple 4,  three solitary 

wave solutions are obtained: 
C 

ul  = -~  + 2 p k t a n h ( k x  - ct + l ) ,  (8)  

where k ,  c ,  l are arbitrary constants ; 

c s inh(kx  - c t  + l )  (9)  
u2 = T + pk ct + l )  + 1 '  

where k ,  c ,  l are arbitrary constants ; 

c 1 s inh(kx  -__ ct + l )  (10)  
= - + p k  c o s - - ~ k x  - c t  + l )  + r '  u3 -~ + p k  ~ r  2 1 eosh(kx  - ct + l )  + r 

where k ,  c ,  l ,  r ( ~> 1 ) are arbitrary constants. 

2 . 2  KdV equation 

KdV equation ~ ll 3 

ut + uu~ + pUxxx = 0 (11)  

is a very famous nonlinear wave equation. It is a fundamental model in nonlinear wave theory and 

it is a classical equation used to study the soliton phenomenon. 
In order to obtain the solitary wave solutions of eq. (11 ) ,  using the hyperbolic function 

method we can determine the degree of the solitary wave solutions, and then we have m = 2.  The 

corresponding AES is 

b2c - blCr - k a l b i  - kaob2 + k a o b l r  + k3pb l  r - k 3 p b 2  = O ,  

b l c ( r  2 - 1) - 3 b 2 c r  - k a o b l ( r  2 - 1) - 2 k a 2 b i  - 2 k a l b 2  + 3 k a l b l r  + 3 k a o b 2 r  

+ 4 k 3 p b t  + 1 5 k 3 p b 2 r -  7 k 3 p b l  r2 = O, 

2 b 2 c ( r  2 - 1) - 2 k a l b l ( r  2 - 1) - 2 k a o b 2 ( r  2 - 1) - 3ka2b2  + 5 k a E b l  + 5 k a l b 2 r  

+ 20k3pb2  - 5 0 k 3 p b 2 r  2 + 1 2 k 3 p b l r ( r  2 - 1) = 0,  

7 k a 2 b 2 r  - 3 k a 2 b l ( r  2 - 1) - 3 k a l b 2 ( r  2 - 1) + 6 0 k 3 p b 2 r ( r  2 - 1) 

- 6 k 3 p b l ( r  2 -  1) = = 0 ,  

g k a 2 b 2 ( r  2 -  1) + 2 4 k 3 p b 2 ( r  2 -  1) 2 = 0,  

a l c -  k a o a l -  k b l b 2  + k b ~ r -  k 3 p a l  = O, 

2 a 2 c  - ka~ - 2 k a o a 2  - kb~ - k b ~ ( r  2 - 1) + 4 k b l b 2 r  - 8k3pa2  + 6 k 3 p a l  r = O, 

3 k a t a 2  + 3 k b l b 2 ( r  2 - 1) - 3 k b 2 r  + 6 k 3 p a l ( r  2 - 1) - 3 0 k 3 p a 2 r  = O, 

2ka~  + 2 k b ~ ( r  2 - 1) + 2 4 k 3 p a 2 ( r  2 - 1) = 0. 

(12)  

Using the same method as in sec. 2 . 1 ,  two solitary wave solutions are obtained; 

C 
Ul = -~  - 4 k 2 p  + 1 2 k 2 p s e c h 2 ( k x  - ct + l ) ,  (13)  

where k ,  c ,  l are arbitrary constants; 
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c 1 6kZp(1 - r 2 )  _ 6kZp ~ r  2 -  l s inh (kx  - ct + l )  

uz k + 6kZpr eosh(kx - et + l )  + r [cosh(kx - et + l )  + r] z 

(14) 
where k ,  c ,  l ,  r ( > 1) are arbitrary constants.  

2 . 3  Chaffee-Infante equation 

The standard format of Chaffee-Infante equation [12~ is 
u, - u~x + ) ` ( u  3 - u )  = 0 .  ( 1 5 )  

In order to obtain the solitary wave solutions of eq.  ( 15 ) ,  using the hyperbolic function method 
we can determine the degree of the solitary wave solutions, then we have m = 1. The correspond- 
ing AES is 

)`a3o + 3)`aob 2 - )`ao = O, 

3)`a~bi + 3 ) `a lb  2 - 6)`aob~r - 2a l  - b l c r  - kEal  = O, 

b l c ( r  2 - 1) + 3 k 2 a l r  + 3)`aoa~ + 3 A a o b 2 ( r  2 - 1) - 6 A a l b ~ r  = O, 

)`a~ + 3 ) ` a t b ~ ( r  2 - 1) - 2 k 2 a l ( r  2 - 1) = 0 ,  (16)  

3)`a~bl + )`b~ - )`bl = 0 ,  

a l c +  k 2 b l r  + 6 ) ` a o a l b l  - 2)`b~r = O, 

.3)`a2bl + )`b3(r 2 -  1) - 2 k 2 b l ( r  2 -  1) = 0. 

Using the same method as in sec.  2 . 1 ,  some solitary wave solutions are obtained. 
If 2 < 0 ,  eq.  (15)  admits two exact solitary wave solutions: 

ul = + ~/-2sech(kx + l ) ,  (17)  

where k 2 = - )`, and l is an arbitrary constant;  

-f6 1 
+ 1, (18)  u 2 -  3 

c o s h ( k x  + l )  + ~ 
3 

where k 2 = - )` , and I is an arbitrary constant.  
If 2 > 0 ,  eq.  (15)  admits four exact solitary wave solutions: 

u3 = -+ t a n h ( k x  + l ) ,  (19)  

where k 2 = ) ` / 2 ,  and l is an arbitrary constant;  

1 s i n h ( k x  + l )  (20)  
U4 a l  c o s h ( k x  + l )  + r c o s h ( k x  + l )  + r 

where k 2 = 2X,  a~ = r 2 - 1, l and r ( >I 1 ) are arbitrary constants ; 

1 sinh[ kx "~ (3)`bl -T- 3 2 ) t  + l] 

3 l]  1 '  (21)  us = + ~- + bl cosh[ kx ~ (3)`bl T -~-)`)t + + 

where k 2 = ) , / 2 ,  b~ = 1 / 4 ,  and l is an arbitrary constant;  

1 1 1 s i n h ( k x  -T- 3)`aot  + l )  

u6 = a 0 +  ~ -cosh (kx_T .  3Aa0t + l )  + ~  + y c o s h ( k x - T - 3 ) ` a 0 t  + l )  + 4 ~ '  (22)  

where k 2 = ) ` / 2 ,  a 2 = 1 / 4 ,  and l is an arbitrary constant.  
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2 . 4  NLS § equation 

NLS § equation is a very important equation in quantum mechanics.  It has the following for- 
mat E131 : 

iut - U~x + 2 ( I  u I 2 - p 2 ) u  = O, (23)  

where u ( x ,  t )  is a complex wave function, p is a constant. 

In order to solve eq. ( 2 3 ) ,  we must change eq. (23)  into a real function and eliminate the 

symbol of absolute value. We introduce the following travelling wave transformation: 

E (c 11 u ( x , t )  = ~ ( k x  - ct + l ) e x p  - 1 ~-~x + 2t , (24)  

where l is an arbitrary eonstant and k ,  c ,  ,~ are constants to be determined. Let ~ = kx - ct + l .  

Substituting (24)  into eq.  ( 2 3 ) ,  an ordinary differential equation of one argument ~ is obtained, 

4" + p ~  - q~3 = O, ( 2 5 )  

where 

l( 
$5 2p  - 2 - (26)  P = k  0 '  q - k  2" 

In order to obtain the solitary wave solutions of eq.  ( 2 5 ) ,  using the hyperbolic function method 

we can determine the degree of the solitary wave solutions, and then we have m = 1. The corre- 

sponding AES is 

aop - ( a  3 + 3 a o b Z ) q  = O, 

al  + a l p  - ( 3 a Z a l  + 3 a l b ~ -  6 a o b Z r ) q  = O, 

3 a ~ r  + ( 3 a 0 a  2 + 3 a o b ~ ( r  2 -  1) - 6 a ~ b Z r ) q  = O, 

2 a , ( r  z -  1) - ( a  3 + 3 a l b ~ ( r  2 -  1 ) ) q  = O, (27)  

b , p  - (3a02ba + b 3 ) q  = O, 

bar + ( 6 a o a l b t  - 2 b 3 r ) q  = O, 

. 2 b , ( r  2 -  1) - ( 3 a ~ b l  + b ~ ( r  2 -  1 ) ) q  = 0. 

Using the same method as in sec.  2 . 1 ,  two solitary wave solutions of eq.  (23)  are obtained, 

[ 1 s i n h ( k x -  ct + l )  ] 

= + bl c t  + l )  + r Ul al  c o s h ( k x  - ct + l )  + r 

where a I ,  b I satisfy 

k k (29)  2 - 1 ,  

and k ,  e ,  r ( I> 1) are arbitrary constants. [ ( ( c ))l 
u2 = +_ k s e e h ( k x  - ct + l )  �9 exp - i ~ x  - 2p  2 -  2k  2 - ~ t , (30)  

where k ,  c are arbitrary eonstants. 

3 Conclusion 

Using the hyperbolic function method to solve the nonlinear wave equations, many exact 

solitary wave solutions are obtained, including some new exact solitary wave solutions. It indi- 

cates that the method is really a very simple and effective method. The method can be used to 
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solve a large class of nonlinear wave equations. We hope this method can do some work in re- 

search of nonlinear wave equations. 
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