A conjecture on the Eichler cohomology of automorphic forms

WANG Xueli (王学理)

Department of Mathematics, Guangzhou Teachers' College, Guangzhou 510400, China Email : gztcimis @ letterbox. scut . edu . cn

Received September 20, 1999

Abstract We prove partially a conjecture of Knopp about the Eichler cohomology of automorphic forms on H-groups.

Keywords : **automorphic forms, Eichler cohomology** , **H-groups** .

Knopp introduced the Eichler cohomology groups connected with automorphic forms of arbitrary real weight and with a suitable underlying space of functions and determined the structure of these groups (see Theorems *1* and *2* in ref. [1]) .

For the detailed definitions of conceptions and notations in this paper, we follow ref. $\lceil 1 \rceil$. Now let r be an arbitrary real number and ν a multiplier system for H group Γ of weight r.

 $P = \{$ functions g holomorphic in H $\mid \mid g(z) \mid \mid \leq K(\mid z \mid f' + \gamma^{-\sigma})$ for $\gamma = \text{Im} z > 0 \}$, where K, ρ, σ are positive constants.

Definition 1. Let $\Gamma \subseteq \text{PSL}(2, \mathbb{R})$ be a subgroup of $\text{PSL}(2, \mathbb{R})$. Γ is called a hyperbolic subgroup if it satisfies

(1) *F* acts discontinuously on the upper-half plane $H = \{x + i y \in \mathbb{C} \mid y > 0\}$ but *F* is not discontinuous at any point on the real axis;

(2) there exist translation transformations in Γ , i.e. ∞ is a parabolic fixed point of Γ (cusp point) ;

(3) there is a fundamental domain D_0 of Γ with finite edges.

Definition 2. Let Γ be a hyperbolic subgroup. A complex-valued function $\nu = \nu [\Gamma, r]$ defined on Γ is called a multiplier system of group Γ with weight r if it satisfies

 (1) $|v(M)| = 1$ for any $M \in \Gamma$;

(2) $\nu(M_1M_2)(c_{12}z + d_{12})^r = \nu(M_1)(c_1M_2z + d_1)^r \nu(M_2)(c_2z + d_2)^r$ for any M_1 , M_2
 $\in \Gamma$, $M_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix}$, $M_1M_2 = \begin{pmatrix} a_{12} & b_{12} \\ c_{12} & d_{12} \end{pmatrix}$.

Definition 3. Let ν be a multiplier system. A complex-valued function $F(z)$ is called an automorphic form of group Γ with weight r and multiplier system ν if it satisfies

(1) $F(z)$ is meromorphic on $H^* = H \cup p$, where p is the set of all parabolic vertices $(i.e.$ all cusp points);

(2)
$$
F(Mz) = \nu(M)(cz+d)'F(z)
$$
 for any $M = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma$.

Note. A function $F(z)$ is meromorphic at a cusp point p if $F(\rho^{-1}(z))j_{\rho^{-1}}(z)^{-r}$ is meromorphic at $z = i\infty$, where $\rho \in PSL(2, \mathbb{R})$ such that $\rho(p) = i\infty$ and $j_M(z) = cz + d$ for M \prime * $*$ \

$$
= \left(\begin{array}{cc} & & \\ c & & d \end{array} \right)
$$

Let *I* be a hyperbolic group. We always assume that $-I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in I$. If $A \in$ PSL(2, R), $Ap = \infty$, then *A* maps H onto H. If $M \in \Gamma$ is parabolic and has a fixed point p, then *AMA*^{-1} is also parabolic and has the fixed point ∞ . So *ATA*^{-1} is a hyperbolic group.

Let p be the set of all parabolic vertices of Γ . For any $p \in \mathfrak{p} \cap \mathbb{R}$ the isotropic subgroup Γ_p $=$ { $A \in \Gamma \setminus Ap = p$ } is cyclic. If *P* generates Γ_p , then so do - *P*, P^{-1} , - P^{-1} . We now choose a full representative set $\{p_0, p_1, \cdots, p_k\}$ of inequivalent parabolic vertices. If ∞ is one of these we assume $p_0 = \infty$, otherwise p_0 disappears. Since Γ has only finite edges, we know that *t* is finite. Now let $\Gamma_{p_i} = \langle P_j \rangle$. We define

$$
A_j = \begin{pmatrix} 0 & -1 \\ 1 & -p_j \end{pmatrix}, \quad j > 0, A_0 = I.
$$

It is clear that $A_i p_j = \infty$ for $j = 0, 1, \dots, t$. $A_i P_j A_j^{-1}$ must be a translation because it is parabolic and has the fixed point ∞ . So it must have the following forms:

$$
A_j P_j A_j^{-1} = \begin{pmatrix} 1 & \lambda_j \\ 0 & 1 \end{pmatrix} = U^{\lambda_j}, \lambda_j \in \mathbb{R}.
$$

We can choose the generator P_j of Γ_{p_i} such that $\lambda_j > 0$ for $j = 0, 1, \dots, t$, especially, Γ_{∞} $=\langle U^{\lambda_0}\rangle$, $\lambda_0 > 0$.

We introduce some notations as follows:

$$
C_{jk} = \left\{ x \Big| \begin{pmatrix} * & * \\ x & * \end{pmatrix} \in A_j \Gamma A_k^{-1} \right\}, \quad j, k = 0, 1, \dots, t;
$$

$$
D_c(j, k, \alpha, \beta) = \left\{ d \Big| \begin{array}{ll} * & * \\ c & d \end{array} \in A_j \Gamma A_k^{-1}, \alpha \leq -\frac{d}{c} < \beta \right\}, \ c \neq 0.
$$

Lemma $1^{[2]}$. For every pair (j, k) , C_{jk} is a discrete subset of R.

Lemma 2^[2]. For every $c \in C_{ik}$ and every pair (a, β) of real numbers, the set $D_c(j, k, j)$ α , β) is finite and $D_c(j, k, \alpha, \beta) = O(c)$.

Suppose that $\nu = \nu [\Gamma, r]$ is a multiplier system and define that $\kappa_i = \kappa_i (\Gamma)$ is the unique number satisfying the following conditions :

 $e(\kappa_i) = \nu(P_i), 0 \leq \kappa_i < 1, \quad j = 0, 1, \dots, t,$ where $e(\alpha) = \exp(2\pi i \alpha)$.

Consider the group $\Gamma' = A_i \Gamma A_i^{-1}$. The multiplier system $\nu [\Gamma, r]$ deduces one $\nu' [\Gamma', r]$ on Γ' :

$$
\nu'(M') = \nu(M)
$$
 if $M' = A_j M A_j^{-1}$.

Since P_j generates Γ_{p_j} so $A_j P_j A_j^{-1}$ generates Γ'_{∞} , we see that

$$
e(\kappa_j) = \nu(P_j) = \nu'(A_j P_j A_j^{-1}) = e(\kappa_0(\Gamma'))
$$

i.e.

$$
\kappa_j(\Gamma) = \kappa_0(A_j \Gamma A_j^{-1}).
$$

Similarly we have

$$
\lambda_j(\Gamma) = \lambda_0(A_j \Gamma A_j^{-1}).
$$

Definition $4^{[1]}$ **.** If F is a function meromorphic in H such that

$$
F \mid V - F \in P \text{ for } V \in \Gamma,
$$

and for each *j*, $1 \le j \le t$, there exists an integer m_i such that $\exp\{2\pi i (m_i + \kappa_i)/\lambda_i (z - p_i)\}\$.

 $F(z)$ has a limit as $z \rightarrow p_j$ within D_r (a fundamental domain of Γ) and also there exists an integer m_0 such that $\exp\{-2\pi i(m_0 + \kappa_0)/\lambda_0\} \cdot F(z)$ has a limit as $z \rightarrow i\infty$ within D_r , then we call F an automorphic integral of degree r with respect to Γ .

If r is an integer ≥ 0 and P is replaced by P_r (the set of all polynomials with degree \leq r), then this definition coincides with the one of Eichler integral. We refer to the cocycle ${F1,V}$ $- F$ as the cocycle of period functions of automorphic integral F. A coboundary of degree r is a cocycle $\{F \mid V - F\}$ such that $F \mid V - F = f \mid V - f$ for all $V \in \Gamma$, with f a fixed function f $\subseteq P$. The parabolic cocycles are the cocycles $\{F \mid V - F\}$ which satisfy the following condition: Let Q_0, Q_1, \dots, Q_t be a complete set of parabolic representatives for Γ , then for each j $(1 \leq j$ $\leq t$), there exists a function $f_h \in P$ such that $F \cup Q_h - F = f_h \cup Q_h - f_h$.

Definition 5. (a) The Eichler cohomology group $H^1_{r,\nu}(\Gamma, P)$ is defined to be the vector space of cocycles modulo coboundaries.

(b) Let $\widetilde{H}_{r,\nu}^1(\Gamma, P)$ be the subgroup of $H_{r,\nu}^1(\Gamma, P)$ defined as the space of parabolic cocycles modulo coboundaries .

In ref. $[1]$, Knopp proved the following theorem.

Theorem 1. If $r \ge 0$ or $r \le -2$ with ν a multiplier system of degree r, then $C^0(\Gamma)$, **Theorem 1.** If $r \ge 0$ or $r \le -2$ with ν a multiplier system of degree r , then C (1, $r-2$, $\bar{\nu}$) is isomorphic to $\tilde{H}^1_{r,\nu}(\Gamma, P)$ under a canonical isomorphism α , where $C^0(\Gamma, -r-2, \bar{\nu})$ denotes the col

And Knopp made the following
Conjecture. Theorem 1 is true in the range $-2 < r < 0$.

In this paper we shall partially prove this conjecture, i.e. we have
 Theorem 2. If $-2 < r < -1$ and $C^0(\Gamma, -r - 2, \bar{\nu}) = 0$, then If $-2 < r < -1$ and $C^0(\Gamma, -r-2, \bar{\nu}) = 0$, then $\tilde{H}^1_{r,\nu}(\Gamma, P) = 0$.

1 Non-analytic and analytic Poincaré series

Let *n* be a negative integer and Γ , ν , κ _i, λ _i as above and r a positive real number. We introduce non-analytic Poincaré series $P_{nr}(z, s; \nu, \Gamma, \kappa_0)$ as follows:

$$
P_{nr}(z,s; \nu, \Gamma, \kappa_0) = \sum_{T \in (D)} \frac{\exp(2\pi i (n + \kappa_0) T z / \lambda_0)}{\nu(T) (cz + d)^r + cz + d|^s},
$$

where $T = \begin{pmatrix} * & * \\ c & d \end{pmatrix}$, $D = \Gamma_{\infty} \setminus \Gamma$.

We first have to show the convergence of the above series. We see that

$$
|\exp(2\pi i(n+\kappa_j)T_z/\lambda_0)| \leq \exp\{2\pi (|n|+1)\mathrm{Im}(T_z)/\lambda_0\}
$$

$$
= \exp\left\{\frac{2\pi(1 + n + 1)y}{\lambda_0}((cx + d)^2 + c^2y^2)^{-1}\right\}
$$

$$
\leq \exp\left\{\frac{2\pi(1 + n + 1)y}{\lambda_0c^2y^2}\right\} \leq \exp\left\{\frac{2\pi(1 + n + 1)y}{\lambda_0c_{00}^2a}\right\}
$$

if $y \ge a > 0$ and $0 \ne c \in C_{00}$, where $c_{0j} = \min \{ |c| | 0 \ne c \in C_{0j} \} > 0$ by Lemma 1.

On the other hand, the series

$$
\sum_{T \in (D)} \frac{1}{|cz + d|^l}, l > 2, T = \begin{pmatrix} * & * \\ c & d \end{pmatrix}
$$

is uniformly convergent with respect to z in the domain $D_{\alpha} = \{ z \in H \mid x \in \alpha^{-1}, y \ge \alpha > 0 \}$ which implies that the non-analytical Poincaré series is absolutely and uniformly convergent with respect to z in the domain \overline{D}_{α} , and hence it defines a holomorphic function in H if Re(s) > 2 - \boldsymbol{r} .

A straightforward computation shows that

For any
$$
L = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma
$$
. In particular, we see that
\n
$$
P_{nr}(L^2, s; \nu, \Gamma, \kappa_0) = \nu(L)(cz + d)^r \mid cz + d \mid {}^s P_{nr}(z, s; \nu, \Gamma, \kappa_0)
$$
\nfor any $L = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma$. In particular, we see that
\n
$$
P_{nr}(U^{\lambda_0}z, s; \nu, \Gamma, \kappa_0) = \nu(U^{\lambda_0}) P_{nr}(z, s; \nu, \Gamma, \kappa_0) = e^{2\pi i \kappa_0} P_{nr}(z, s; \nu, \Gamma, \kappa_0),
$$

which implies that $P_{nr}(z, s; \nu, \Gamma, \kappa_0)$ has a Fourier expansion with respect to variable $e^{2\pi ix/\lambda_{\theta}}$, where $z = x + iy \in H$.

In order to discuss properties of Poincaré series at cusp points we introduce generalized nonanalytic Poincaré series which are A^{-1} -transformations of $P_{nr}(z, s; \nu, \Gamma, \kappa_0)$:

$$
P_{nr}(z,s; \nu, \Gamma, \kappa_j) = P_{nr}(z,s; \nu', \Gamma', \kappa'_0) |_{A_j^{-1}}.
$$

Lemma 3. For $j = 0, 1, \dots, t$, we have

$$
P_{nr}(z, s; \nu, \Gamma, \kappa_j) = \sum_{L \in (S)} \frac{e((n + \kappa_j) Lz/\lambda_j)}{\nu(A_j^{-1}L)(cz + d)^r + cz + d + s},
$$

$$
L = \begin{pmatrix} * & * \\ * & d \end{pmatrix} \in \Gamma'_{\infty} \setminus A_j \Gamma = (S).
$$

where $L = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \in \Gamma'_{\infty} \setminus A_j \Gamma = (S)$.

Similarly as above we can prove that $P_{nr}(z, s; \nu, \Gamma, \kappa_i)$ is holomorphic with respect to z \in H .

Lemma 4. For $j = 0, 1, \dots, t$, we have the following transformation formulae:

 $P_{nr}(Mz, s; \nu, \Gamma, \kappa_j) = \nu(M)(cz + d)^r + cz + d + sP_{nr}(z, s; \nu, \Gamma, \kappa_j),$ where $M = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma$.

We now want to find the Fourier expansions of $P_{nr}(z, s; \nu, \Gamma, \kappa_i)$ with respect to variable $e^{2\pi i x/\lambda_j}$, which makes an analytic continuation of $P_{nr}(z, s; \nu, \Gamma, \kappa_j)$ become possible.

For $Re(s) > 2 - r$,

$$
P_{nr}(z, s; \nu, \Gamma, \kappa_j) = \sum_i + \sum_i,
$$

where \sum_{i} and \sum_{i} sum over $L = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in (S)$ with $c = 0$ and $c \neq 0$, respectively. Since the values of summands at L and $-L$ are equal we see that

$$
\sum_{2} = 2 \sum_{\substack{L \in \{S\} \\ c>0}} \frac{e((n + \kappa_{j})Lz/\lambda_{j})}{\nu(A_{j}^{-1}L)(cz + d)^{r} + cz + d)^{s}}.
$$

Noting that $S = \int_{a=-\infty}^{\infty} \Re U^{\lambda_0 q}$, where \Re is the bicoset representative $\Gamma'_{\infty} \setminus A_j \Gamma / \Gamma_{\infty}$, we can find that

$$
\sum_{2} = 2 \sum_{\substack{L \in (\Re) \\ c > 0}} c^{-s-r} \bar{\nu} (A_{j}^{-1}L) e((n + \kappa_{j}) a/c\lambda_{j}) \sum_{\rho=0}^{\infty} \frac{1}{p!} \left[-\frac{2\pi i (n + \kappa_{j})}{c^{2} \lambda_{j}} \right]^{p}
$$

$$
\cdot \sum_{q=-\infty}^{\infty} e(-\kappa_{0} q) \left(z + \frac{d}{c} + q\lambda_{0} \right)^{-r-p-\frac{s}{2}} \left(z \frac{d}{c} + q\lambda_{0} \right)^{-\frac{s}{2}}.
$$

Using Poisson's summation formulae and by a long computation we obtain

Theorem 3. For $\text{Re}(s) > 2-r$, $j=0, 1, \dots, t$, $P_{ir}(z, s; \nu, \Gamma, \kappa_i)$ have Fourier ex-

pansions as follows: (1) if $\kappa_0 > 0$,

$$
P_{nr}(z, s; \nu, \Gamma, \kappa_{j}) = 2\delta_{0j} e\left(\frac{n + \kappa_{0}}{\lambda_{0}} z\right) + \frac{2i^{2} (2\pi)^{r+s}}{\Gamma(s/2)\lambda_{0}^{r+s}} \sum_{m=0}^{\infty} (m + \kappa_{0})^{r+s-1} e\left(\frac{m + \kappa_{0}}{\lambda_{0}} z\right)
$$

\n
$$
\cdot \sum_{r=0}^{\infty} \frac{[-4\pi^{2} (n + \kappa_{j}) (m + \kappa_{0})/\lambda_{j}\lambda_{0}]^{p}}{p! \Gamma(r + p + \frac{s}{2})} Z_{j}\left(\frac{r}{2} + \frac{s}{2} + p, m, n\right)
$$

\n
$$
\cdot \sigma\left(4\pi (m + \kappa_{0}) y/\lambda_{0}, r + p + \frac{s}{2}, \frac{s}{2}\right)
$$

\n
$$
+ \frac{2i^{2} (2\pi)^{r+s}}{\Gamma(s/2)\lambda_{0}^{r+s}} \sum_{m=0}^{\infty} (m - \kappa_{0})^{r+s-1} e\left(-\frac{m - \kappa_{0}}{\lambda_{0}} z\right) \sum_{r=0}^{\infty} \frac{[-4\pi^{2} (n + \kappa_{j}) (m - \kappa_{0})/\lambda_{j}\lambda_{0}]^{p}}{p! \Gamma(r + p + \frac{s}{2})}
$$

\n
$$
\cdot Z_{j}\left(\frac{r}{2} + \frac{s}{2} + p, -m, n\right) \sigma\left(4\pi (m - \kappa_{0}) y/\lambda_{0}, \frac{s}{2}, r + p + \frac{s}{2}\right);
$$

\n(2) if $\kappa_{0} = 0$,
\n
$$
P_{nr}(z, s; \nu, \Gamma, \kappa_{j}) = \frac{4\pi i^{2r}}{\lambda_{0}(2y)^{r+s-1} \Gamma(s/2)} \sum_{p=0}^{\infty} \frac{1}{p!} \left[-\frac{\pi (n + \kappa_{j})}{y\lambda_{j}}\right]^{p} \frac{\Gamma(r + p + s - 1)}{\Gamma(r + p + \frac{s}{2})} Z_{j}\left(\frac{r}{2} + \frac{s}{2} + p, 0, n\right)
$$

\n
$$
+ 2\delta_{0j} e\left(\frac{n}{\lambda_{0
$$

$$
S_j(c, m, n) = \sum_{d \in D_i} c(A_j^{-1}L) e\left(\frac{n + \kappa_j}{\lambda_j} \frac{a}{c} + \frac{m + \kappa_0}{\lambda_0} \frac{d}{c}\right);
$$

\n
$$
Z_j(w, m, n) = \sum_{e \in C_{j_0}} S_j(c, m, n) c^{-2w}, \text{Re}(w) > 1;
$$

\n
$$
D_c = D_c(j, 0, 0, \lambda_0), C'_{j0} = \{c \in C_{j0} | c > 0 \};
$$

\n
$$
\sigma(y, \alpha, \beta) = \int_0^{\infty} (u + 1)^{\alpha - 1} u^{\beta - 1} e^{-\gamma u} du.
$$

From above we get the Fourier expansions of $P_{nr}(z, s; \nu, \Gamma, \kappa_j)$ for Re(s) > 2 - r. Now we deal with the analytic continuation of $P_{nr}(z, s; \nu, \Gamma, \kappa_j)$. Denoting two infinite series in Theorem 1 by F_1 and F_2 respectively, we hope that F_1 and F_2 can be analytically continued to an area containing $s = 0$.
Lemma 5^[3,4]. L

Let L^2 ($\Gamma \setminus H$, ν , r) be the Hilbert space consisting of the following functions :

 (1) $g: H \rightarrow 0$;

(2)
$$
g(\gamma z) = \nu(\gamma) \left(\frac{cz + d}{|cz + d|} \right)^r g(z), \ \forall \ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma;
$$

(3) $\int_{D_r} |g(z)|^2 \frac{dxdy}{y^2} < +\infty$,

where
$$
D_{\Gamma}
$$
 is a fundamental domain of Γ . Then the spectrum of Laplacian operator
\n
$$
\Delta_{\Gamma} = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) - i\mathbf{r}y \frac{\partial}{\partial x}
$$
\nis contained in the half line $\left[\frac{|\mathbf{r}|}{|\mathbf{r}|} \left(1 - \frac{|\mathbf{r}|}{|\mathbf{r}|} \right) + \infty \right)$

is contained in the half-line $\left[\frac{|r|}{2}\left(1 - \frac{|r|}{2}\right), +\infty\right)$.

Lemma $\mathbf{6}^{[5]}$ **. Selberg's zeta functions are meromorphic on** $\text{Re}(w) > 1/2$ **which has only** finite simple poles on Re(w) > 1/2 all contained in real interval $\left(\frac{1}{2}, 1\right)$. And we have

$$
| Z_j(w, m, n) | = O\left(\frac{t^{1/2}}{\sigma - \frac{1}{2}} | n + \kappa_j | m + \kappa_0 | \right),
$$

where $w = \sigma + it$, $\sigma > 1/2$, $|t| \ge 1$.

Using the method in ref. $[6]$ and by Lemmas 5 and 6, we can analytically continue $Z_i\left(\frac{r}{2}+\frac{s}{2}+p, m, n\right)$ to a half-plane Re(s) > - δ if there are not any holomorphic modular forms with weight $2 - r$ and multiplier system $\bar{\nu}$ for the group Γ , where $0 < \delta < r - 1$ and δ is independent of m .

By the definition of $\sigma(y, \alpha, \beta)$ and integration by parts we can continue analytically the S S S S he definition of $\sigma(y, \alpha, \beta)$ and integration by parts we can continue analytically the $4\pi(m + \kappa_0)y/\lambda_0$, $\frac{s}{2}$, $r + p + \frac{s}{2}$ and $\sigma(4\pi(m + \kappa_0)y/\lambda_0$, $r + p + \frac{s}{2}$, $\frac{s}{2}$ to the half-plane Re(s) > - δ . In this half-plane $\sigma\left(4\pi(m-\kappa_0)y/\lambda_0, \frac{s}{2}, r+p+\frac{s}{2}\right)$ is holomorphic and $\sigma\left(4\pi(m+\kappa_0)y/\lambda_0, r+p+\frac{s}{2}, \frac{s}{2}\right)$ has unique simple pole $s=0$.

By the above continuations and some estimations we can prove that $F₂$ is convergent absolutely and uniformly in any compact subset of the half-plane Re(s) > - δ which implies that F_2 can be continued analytically to the half-plane $\text{Re}(s) > -\delta$.

We can continue analytically F_1 to the half-plane $\text{Re}(s) > -\delta$ by a similar way.

These show that $P_{nr}(z, s; \nu, \Gamma, \kappa)$ can be continued analytically to the half-plane Re(s) $> -\delta$. In particular, $P_{nr}(z, s; \nu, \Gamma, \kappa_i)$ is holomorphic at points $s = 0$.

Definition 6. The functions

$$
P_{nr}(z,\nu,\Gamma,\kappa_j) = P_{nr}(z,0;\nu,\Gamma,\kappa_j)
$$

are called generalized Poincaré series of group Γ with weight r and multiplier system v . **A** direct computation shows that

$$
P_{nr}(z,\nu,\Gamma,\kappa_j) = 2\delta_{0j} e\left(\frac{n+\kappa_0}{\lambda_0}z\right) + \frac{2i^{-r}(2\pi)^r}{\lambda_0^r} \sum_{m=0}^{\infty} (m+\kappa_0)^{r-1} e\left(\frac{m+\kappa_0}{\lambda_0}z\right)
$$

$$
\cdot \sum_{p=0}^{\infty} \frac{[-4\pi^2(n+\kappa_j)(m+\kappa_0)/\lambda_j\lambda_0]^p}{p!\Gamma(r+p)} Z_j\left(\frac{r}{2}+p, m, n\right).
$$

2 Properties of Poinear6 series and the proof of Theorem 2

In this section we want to show that $P_{nr}(z, \nu, \Gamma, \kappa)$ is holomorphic in H and deal with some properties of it. Let $\hat{P}_n(m)$ be the m-th Fourier coefficient of $P_{nr}(z, \nu, \Gamma, \kappa_i)$, i.e.

$$
\hat{P}_n(m) = \frac{2i^{-r}(2\pi)^r}{\lambda_0^r}(m + \kappa_0)^{r-1} \sum_{p=0}^{\infty} \frac{[-4\pi^2(n + \kappa_j)(m + \kappa_0)/\lambda_j\lambda_0]^p}{p!\Gamma(r + p)} Z_j\left(\frac{r}{2} + p, m, n\right)
$$
\n
$$
= \frac{2i^{-r}(2\pi)^r}{\lambda_0^r\Gamma(r)}(m + \kappa_0)^{r-1}Z_m(r/2) + \frac{2i^{-r}(2\pi)^r}{\lambda_0^r}(m + \kappa_0)^{r-1}
$$
\n
$$
\cdot \sum_{p=1}^{\infty} \frac{[-4\pi^2(n + \kappa_j)(m + \kappa_0)/\lambda_j\lambda_0]^p}{p!\Gamma(r + p)} \sum_{p=0}^{\infty} \frac{S_j(c, m, n)}{c^{r+2p}}.
$$

Since by Lemma 2 $S_j(c, m, n) = O(c)$, where the constant in O is only dependent on j and *r,* we see that

$$
\sum_{\epsilon>0}\left|\frac{S_j(c,m,n)}{c^{r+2p}}\right|\leqslant C_1\sum_{\epsilon>0}\frac{1}{c^{r+2p-1}}\leqslant C_2<+\infty,
$$

 $\sum_{r>0}$ $\left| \frac{P_1(c, m, n)}{c^{r+2p}} \right| \leq C_1 \sum_{r>0} \frac{1}{c^{r+2p-1}} \leq C_2 < +\infty$,
where $C_2 = C_1 \sum_{r>0} \frac{1}{c^{1+r}}$ is a constant (only dependent on j, Γ). Observing that $Z_m(r/2) =$ $0(m)$, the first term in $\hat{P}_n(m)$ is $0(m')$. And for the second term we see that it

m, the first term in
$$
P_n(m)
$$
 is $O(m)$. And for the second term we see that

$$
\ll m^{r-1} \sum_{p=1}^{\infty} \frac{\left[4\pi^2 + n + \kappa_j + (m + \kappa_0)/\lambda_0\lambda_j\right]^p}{(p!)^2}
$$
\n
$$
\leq m^{r-1} \Biggl\{\sum_{p=1}^{\infty} \frac{\left(\sqrt{4\pi^2 + n + \kappa_j + (m + \kappa_0)/\lambda_0\lambda_j}\right)^p}{p!}\Biggr\}^2
$$
\n
$$
\leq m^{r-1} e^{4\pi \sqrt{\ln \kappa_j + \kappa_0/\lambda_0\lambda_j}} \leq m^{r-1} e^{\gamma \sqrt{m}},
$$

where $\gamma = 4\pi \sqrt{ |n + \kappa_i| / \lambda_i \lambda_0}$. So

$$
\hat{P}_n(m) = O(m^{r-1}e^{\gamma \sqrt{m}}).
$$

Lemma 7. Let $\{ a_m \}_{m=0}^{\infty}$ be an infinite series satisfying the conditions $a_m = O(m^{r-1} \cdot$ $e^{\gamma\sqrt{m}}$), where r , γ are any positive reals. Then the function defined by

$$
f(z) = \sum_{m=0}^{\infty} a_m e \left(\frac{m + \kappa_0}{\lambda_0} z \right)
$$

is holomorphic in H, where κ_0 , λ_0 are positive reals.

Proof. Let
$$
z = x + iy
$$
. Then
\n
$$
\left| a_m e \left(\frac{m + \kappa_0}{\lambda_0} z \right) \right| = |a_m| e^{-2\pi (m + \kappa_0) y / \lambda_0} \ll m^{r-1} e^{\gamma \sqrt{m}} e^{-2\pi (m + \kappa_0) y / \lambda_0}.
$$

For any $\varepsilon > 0$, if $y \geq \varepsilon$, then

$$
\left|\sum_{m=0}^{\infty} a_m e\left(\frac{m+\kappa_0}{\lambda_0}z\right)\right| \ll \sum_{m=0}^{\infty} m^{r-1} e^{\gamma\sqrt{m}} e^{-2\pi(m+\kappa_0)\epsilon/\lambda_0} < +\infty,
$$

which shows that $\sum a_m e\left(\frac{m+\kappa_0}{\lambda_0}z\right)$ is absolutely and uniformly convergent in the domain \overline{D}_ϵ = $|z \in H$ I $\text{Im}(z) \ge \varepsilon$ \subset H and therefore $f(z)$ is holomorphic in H.

Lemma 7 implies that $P_{nr}(z, \nu, \Gamma, \kappa_j)$ are holomorphic on H for $j = 1, \dots, t$. And $P_{nr}(z,\nu,\Gamma)$: = $P_{nr}(z,\nu,\Gamma,\kappa_0)$ is meromorphic on H with pole at ∞ .

 $P_{nr}(z, s; \nu, \Gamma, \kappa_i)$ satisfies the following transformation formulae:

 $P_{nr}(Lz, s, \nu, \Gamma, \kappa_i) = \nu(L)(cz + d)^r + cz + d^rP_{nr}(z, s; \nu, \Gamma, \kappa_i),$ where $\text{Re}(s) > 2 - r$, $L \in \Gamma$. But $P_{nr}(z, s, \nu, \Gamma, \kappa)$ have an analytic continuation to the half-plane Re(s) > - δ . Hence two ends of the above equation are holomorphic for variable s on the half-plane $\text{Re}(s) > -\delta$. By identical principle of analytic functions the above equality holds for all *s* on $\text{Re}(s) > -\delta$. Especially these imply that

$$
P_{nr}(Lz, \nu, \Gamma, \kappa_j) = \nu(L)(cz + d)^{r}P_{nr}(z, \nu, \Gamma, \kappa_j)
$$

 \star \star for all $L = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \in \Gamma$, $z \in H$.

We now compute the values of $P_{nr}(z, \nu, \Gamma)$ at cusp points. Using the similar method as above we have

$$
P_{nr}(z, \nu', \Gamma', \kappa'_j) = (-z)^{-r} P_{nr}(A_j^{-1}z, \nu, \Gamma).
$$

Hence

$$
P_{nr}(p_j, \nu, \Gamma) = \lim_{z \to i\infty} P_{nr}(A_j^{-1}z, \nu, \Gamma) = \lim_{z \to i\infty} (-z)^r P_{nr}(z, \nu', \Gamma', \kappa'_j)
$$

=
$$
\lim_{z \to i\infty} (-z)^r \sum_{m+\kappa_0 > 0} \hat{p}'_n(m) e\left(\frac{m + \kappa_0}{\lambda_0} z\right) = 0
$$

for $j = 1, \dots, t$.

We therefore obtain the following

Theorem 4. Suppose $r > 1$ and there are not non-trivial cusp forms with weight $2 - r$ and multiplier system $\bar{\nu}$ of group Γ . Then $P_{nr}(z, \nu, \Gamma)$ ($n < 0$) are meromorphically automorphic forms of group Γ with weight r and multiplier system ν with only pole at ∞ and the values of it at cusp points p_k ($\neq \infty$) are zero.

Corollary 1. Suppose $r > 1$ and there are not non-trivial cusp forms with weight $2 - r$ and multiplier system ν of group Γ . Then there exists an automorphic form with weight r and multiplier system ν of group Γ which has arbitrarily prescribed principal part at any given cusp point and holomorphic in H.

Proof. As in Theorem 4, $P_{nr}(z, \nu, \Gamma)$ has only pole term $2e\left(\frac{n+\kappa_0}{\lambda_0}z\right)$ at $z=\infty$ if *n* < 0. Similarly we can prove that there exists an automorphic form which has only pole term $2e\left(\frac{n+\kappa_j}{\lambda_i}A_{\beta}\right)$ at $z=p_j$ if $n<0$. On the other hand, we can obtain an automorphic form which is regular at all cusp points from each automorphic form by minus a linear combination of such Poincar6 series. These complete the proof.

Proof of Theorem 2. The proof is similar to that of Theorem 1 in ref. [1]. For the sake of convenience of readers, we give a sketch as follows. For the detail, please see ref. $[1]$.

Now suppose $-2 < r < -1$ and $\{\varphi_V\}$ is a parabolic cocycle in P. We shall prove that there exists $\Phi^* \in P$ such that

$$
\Phi^* \big|_M^r - \Phi^* = \varphi_M, \ M \in \Gamma,
$$

which implies Theorem 2. Without loss of generality, assume that $\varphi_S = 0$ for $S = \begin{pmatrix} 1 & \lambda_0 \\ 0 & 1 \end{pmatrix}$ since $\varphi_0 \in P$.

Let Φ be the function just as in Theorem 3 of ref. [1]. Since $-2 < r < -1$ and $C^0(\Gamma, \Gamma)$

 $(r - r - 2, \nu) = 0$, we know that there exists $G \in \{T, r, \nu\}$ such that *G* is holomorphic in H and has the same principal part at each p_i as the principal part at p_j of the expansion of Φ by Corollary 1. Let $\Phi^* = \Phi - G$. Then

$$
(I) \Phi^* |_{\mathcal{I}}^r M - \Phi^* = \varphi_M, M \in \Gamma;
$$

(II) Φ^* is holomorphic in H;

(III) Φ^* has an expansion at each p_i ($0 \le j \le t$) in which no negative power of the local parameter appears.

Condition (III) implies that there exist positive constants K , ρ , σ such that

$$
|\Phi^*(z)| < K(|y|^\rho + y^{-\sigma}) \text{ for all } z \in \overline{\mathfrak{R}} \cap H,
$$
 (1)

where $\Re = \left\{ z \in H \middle| \exists \text{Re}(z) \mid <\lambda_0/2 \text{ and } \exists cz+d\mid >1 \text{ for all } V = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma - \Gamma_{\infty} \right\}$ is the Ford fundamental domain of Γ . Put $f(z) = y^{-r/2} |\Phi^*(z)|$, $y = \text{Im} z > 0$. Then by (I)

$$
f(Vz) = y^{-r/2} + cz + d \vert V \vert \Phi^*(Vz) \vert \leq f(z) + y^{-r/2} + \varphi_V(z) \vert . \tag{2}
$$

Let $\mathfrak{F} = \bigcup_{v \in \Gamma/\Gamma} V(\overline{\mathfrak{R}}) \cap H$. Then

$$
\Phi^*(z) \leq K(1 \, y \, 1^{\alpha} + y^{-\beta}) \quad \text{for all } z \in \mathfrak{F}, \tag{3}
$$

where α , β , K are positive constants independent of z. In fact, if $z \in \mathcal{S}$, then $z = V\tau$ with $V \in$ Γ/Γ _{*} and $\tau \in \overline{\mathfrak{R}} \cap H$,

$$
\Phi^*(z) \mid = y^{r/2} f(z) = y^{r/2} f(V\tau) \leq y^{r/2} \{f(\tau) + t^{-r/2} \mid \varphi_V(z) \mid \} = y^{r/2} t^{-r/2} \{ \varphi^*(\tau) \mid + \varphi_V(z) \mid \},
$$

where $t = \text{Im}(\tau)$. By (1) and Lemma 8 in ref. [2] we deduce inequality (3).

By the definition of fundamental domain it follows that for any $z \in H$, there exists an integer m such that $S^m z \in \mathcal{S}$. Then

$$
|\Phi^*(S^m z)| = |(\Phi^* | S^m)(z)| = |\Phi^*(z)|
$$

since $\varphi_s = 0$. Therefore (3) implies that

$$
|\Phi^*(z)| = |\Phi^*(S^m z)| < K(|y|^a + y^{-\beta})
$$

for $z \in H$ since Im(S^mz) = Im(z) = y which shows that $\Phi^* \in P$ and hence Theorem 2.

Acknowledgements This work was partially supported by the National Natural Science Foundation of China (Grant No. 19871017).

References

- **¹**Knopp, M. , Some new results on the Eichler oohomology of automorphic forms, Bulletin of the American Mathematical Society, 1974, 80: 607.
- 2 Lehner, J., Discontinuous Groups and Automorphic Functions, Math. Surveys, No. 8, Providence: Amer. Math. Soc., 1964.
- 3 Roelcke, W., Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene: I, Math. Ann., 1966, 167: 292.
- **⁴**Roelcke , W . , Das Eigenwertpmblem der automorphen Formen in der hyperbolischen Ebene: **11,** Math. Ann. , **1967,** ¹⁶⁸: 261.
- **⁵**Hejhal , D . A. , The Trace Formula for **PSL(2,** 1:) , Vol . 2, **LNM** , Vol . 1001 , Berlin: Springer-Verlag, 1983.
- 6 Selberg, **A.** , On the estimation of Fourier coefficients of modular forms, in Theory of Numbers, Proc. Sympos. Pure Math. , Vol. 8, Providence: Amer. Math. Soc., 1965, 1-15.