A conjecture on the Eichler cohomology of automorphic forms

WANG Xueli (王学理)

Department of Mathematics, Guangzhou Teachers' College, Guangzhou 510400, China Email; gztcimis@letterbox.scut.edu.cn

Received September 20, 1999

Abstract We prove partially a conjecture of Knopp about the Eichler cohomology of automorphic forms on H-groups.

Keywords: automorphic forms, Eichler cohomology, H-groups.

Knopp introduced the Eichler cohomology groups connected with automorphic forms of arbitrary real weight and with a suitable underlying space of functions and determined the structure of these groups (see Theorems 1 and 2 in ref. [1]).

For the detailed definitions of conceptions and notations in this paper, we follow ref. [1]. Now let r be an arbitrary real number and ν a multiplier system for H group Γ of weight r.

 $P = \{$ functions g holomorphic in H || $g(z) | < K(|z|^{\rho} + y^{-\sigma})$ for $y = \text{Im}z > 0 \}$, where K, ρ, σ are positive constants.

Definition 1. Let $\Gamma \subseteq PSL(2,\mathbb{R})$ be a subgroup of $PSL(2,\mathbb{R})$. Γ is called a hyperbolic subgroup if it satisfies

(1) Γ acts discontinuously on the upper-half plane $H = \{x + iy \in \mathbb{C} \mid y > 0\}$ but Γ is not discontinuous at any point on the real axis;

(2) there exist translation transformations in Γ , i.e. ∞ is a parabolic fixed point of Γ (cusp point);

(3) there is a fundamental domain D_0 of Γ with finite edges.

Definition 2. Let Γ be a hyperbolic subgroup. A complex-valued function $\nu = \nu [\Gamma, r]$ defined on Γ is called a multiplier system of group Γ with weight r if it satisfies

(1) $|\nu(M)| = 1$ for any $M \in \Gamma$;

(2) $\nu(M_1M_2)(c_{12}z + d_{12})^r = \nu(M_1)(c_1M_2z + d_1)^r\nu(M_2)(c_2z + d_2)^r$ for any $M_1, M_2 \in \Gamma$, $M_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix}$, $M_1M_2 = \begin{pmatrix} a_{12} & b_{12} \\ c_{12} & d_{12} \end{pmatrix}$.

Definition 3. Let ν be a multiplier system. A complex-valued function F(z) is called an automorphic form of group Γ with weight r and multiplier system ν if it satisfies

(1) F(z) is meromorphic on $H^* = H \bigcup p$, where p is the set of all parabolic vertices (i.e. all cusp points);

(2)
$$F(Mz) = \nu(M)(cz+d)'F(z)$$
 for any $M = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma$.

Note. A function F(z) is meromorphic at a cusp point p if $F(\rho^{-1}(z))j_{\rho^{-1}}(z)^{-r}$ is meromorphic at $z = i\infty$, where $\rho \in PSL(2, \mathbb{R})$ such that $\rho(p) = i\infty$ and $j_M(z) = cz + d$ for M

$$= \begin{pmatrix} c & d \end{pmatrix}$$

Let Γ be a hyperbolic group. We always assume that $-I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in \Gamma$. If $A \in PSL(2,\mathbb{R})$, $Ap = \infty$, then A maps H onto H. If $M \in \Gamma$ is parabolic and has a fixed point p, then AMA^{-1} is also parabolic and has the fixed point ∞ . So $A\Gamma A^{-1}$ is a hyperbolic group.

Let \mathfrak{p} be the set of all parabolic vertices of Γ . For any $p \in \mathfrak{p} \cap \mathbb{R}$ the isotropic subgroup Γ_p = $\{A \in \Gamma \mid Ap = p\}$ is cyclic. If P generates Γ_p , then so do -P, P^{-1} , $-P^{-1}$. We now choose a full representative set $\{p_0, p_1, \dots, p_t\}$ of inequivalent parabolic vertices. If ∞ is one of these we assume $p_0 = \infty$, otherwise p_0 disappears. Since Γ has only finite edges, we know that t is finite. Now let $\Gamma_{p_i} = \langle P_j \rangle$. We define

$$A_j = \begin{pmatrix} 0 & -1 \\ 1 & -p_j \end{pmatrix}, \quad j > 0, \ A_0 = I.$$

It is clear that $A_j p_j = \infty$ for $j = 0, 1, \dots, t$. $A_j P_j A_j^{-1}$ must be a translation because it is parabolic and has the fixed point ∞ . So it must have the following forms:

$$A_j P_j A_j^{-1} = \begin{pmatrix} 1 & \lambda_j \\ 0 & 1 \end{pmatrix} = U^{\lambda_j}, \ \lambda_j \in \mathbb{R}.$$

We can choose the generator P_j of Γ_{p_j} such that $\lambda_j > 0$ for $j = 0, 1, \dots, t$, especially, $\Gamma_{\infty} = \langle U^{\lambda_0} \rangle$, $\lambda_0 > 0$.

We introduce some notations as follows:

$$C_{jk} = \left\{ x \left| \begin{pmatrix} * & * \\ x & * \end{pmatrix} \in A_{j} \Gamma A_{k}^{-1} \right\}, \quad j, k = 0, 1, \cdots, t; \right.$$
$$D_{c}(j, k, \alpha, \beta) = \left\{ d \left| \begin{array}{c} * & * \\ c & d \end{array} \in A_{j} \Gamma A_{k}^{-1}, \alpha \leq -\frac{d}{c} < \beta \right\}, c \neq 0. \right.$$

Lemma 1^[2]. For every pair (j, k), C_{jk} is a discrete subset of \mathbb{R} .

Lemma 2^[2]. For every $c \in C_{jk}$ and every pair (α, β) of real numbers, the set $D_c(j, k, \alpha, \beta)$ is finite and $D_c(j, k, \alpha, \beta) = O(c)$.

Suppose that $\nu = \nu [\Gamma, r]$ is a multiplier system and define that $\kappa_j = \kappa_j(\Gamma)$ is the unique number satisfying the following conditions:

$$e(\kappa_j) = \nu(P_j), \ 0 \leq \kappa_j < 1, \quad j = 0, \ 1, \dots, t,$$

where $e(\alpha) = \exp(2\pi i \alpha)$.

Consider the group $\Gamma' = A_j \Gamma A_j^{-1}$. The multiplier system $\nu [\Gamma, r]$ deduces one $\nu' [\Gamma', r]$ on Γ' :

$$\nu'(M') = \nu(M)$$
 if $M' = A_j M A_j^{-1}$

Since P_j generates Γ_{p_i} so $A_j P_j A_j^{-1}$ generates Γ'_{∞} , we see that

$$e(\kappa_{j}) = \nu(P_{j}) = \nu'(A_{j}P_{j}A_{j}^{-1}) = e(\kappa_{0}(\Gamma')),$$

i.e.

$$\kappa_j(\Gamma) = \kappa_0(A_j\Gamma A_j^{-1}).$$

Similarly we have

$$\lambda_i(\Gamma) = \lambda_0(A_i \Gamma A_i^{-1}).$$

Definition 4^[1]. If F is a function meromorphic in H such that

$$F \mid_{\nu}^{\prime} V - F \in P \text{ for } V \in \Gamma,$$

and for each j, $1 \le j \le t$, there exists an integer m_j such that $\exp\{2\pi i(m_j + \kappa_j)/\lambda_j(z - p_j)\}$.

Vol. 43

F(z) has a limit as $z \rightarrow p_j$ within D_{Γ} (a fundamental domain of Γ) and also there exists an integer m_0 such that $\exp\{-2\pi i(m_0 + \kappa_0)/\lambda_0\} \cdot F(z)$ has a limit as $z \rightarrow i \infty$ within D_{Γ} , then we call F an automorphic integral of degree r with respect to Γ .

If r is an integer ≥ 0 and P is replaced by P_r (the set of all polynomials with degree $\le r$), then this definition coincides with the one of Eichler integral. We refer to the cocycle $\{F|_{\nu}V - F\}$ as the cocycle of period functions of automorphic integral F. A coboundary of degree r is a cocycle $\{F|_{\nu}V - F\}$ such that $F|_{\nu}V - F = f|_{\nu}V - f$ for all $V \in \Gamma$, with f a fixed function $f \in P$. The parabolic cocycles are the cocycles $\{F|_{\nu}V - F\}$ which satisfy the following condition: Let Q_0, Q_1, \dots, Q_t be a complete set of parabolic representatives for Γ , then for each j $(1 \le j \le t)$, there exists a function $f_h \in P$ such that $F|_{\nu}Q_h - F = f_h|_{\nu}Q_h - f_h$.

Definition 5. (a) The Eichler cohomology group $H^1_{r,\nu}(\Gamma, P)$ is defined to be the vector space of cocycles modulo coboundaries.

(b) Let $\widetilde{H}^{1}_{r,\nu}(\Gamma, P)$ be the subgroup of $H^{1}_{r,\nu}(\Gamma, P)$ defined as the space of parabolic cocycles modulo coboundaries.

In ref. [1], Knopp proved the following theorem.

Theorem 1. If $r \ge 0$ or $r \le -2$ with ν a multiplier system of degree r, then $C^0(\Gamma, -r-2, \bar{\nu})$ is isomorphic to $\tilde{H}^1_{r,\nu}(\Gamma, P)$ under a canonical isomorphism α , where $C^0(\Gamma, -r-2, \bar{\nu})$ denotes the collection of cusp forms for group Γ , weight r and multiplier system $\bar{\nu}$.

And Knopp made the following

Conjecture. Theorem 1 is true in the range -2 < r < 0.

In this paper we shall partially prove this conjecture, i.e. we have

Theorem 2. If -2 < r < -1 and $C^{0}(\Gamma, -r-2, \bar{\nu}) = 0$, then $\tilde{H}^{1}_{r,\nu}(\Gamma, P) = 0$.

1 Non-analytic and analytic Poincaré series

Let *n* be a negative integer and Γ , ν , κ_j , λ_j as above and *r* a positive real number. We introduce non-analytic Poincaré series $P_{nr}(z,s;\nu,\Gamma,\kappa_0)$ as follows:

$$P_{nr}(z,s;\nu,\Gamma,\kappa_0) = \sum_{r \in (D)} \frac{\exp(2\pi i(n+\kappa_0)Tz/\lambda_0)}{\nu(T)(cz+d)^r | cz+d |^s}$$

where $T = \begin{pmatrix} * & * \\ c & d \end{pmatrix}$, $D = \Gamma_{\infty} \setminus \Gamma$.

We first have to show the convergence of the above series. We see that

$$|\exp(2\pi i(n + \kappa_j)T_z/\lambda_0)| \leq \exp\{2\pi(|n|+1)\operatorname{Im}(T_z)/\lambda_0\}|$$

$$= \exp\left\{\frac{2\pi(|n|+1)y}{\lambda_{0}}((cx+d)^{2}+c^{2}y^{2})^{-1}\right\}$$

$$\leq \exp\left\{\frac{2\pi(|n|+1)y}{\lambda_{0}c^{2}y^{2}}\right\} \leq \exp\left\{\frac{2\pi(|n|+1)y}{\lambda_{0}c_{00}^{2}\alpha}\right\}$$

if $y \ge \alpha > 0$ and $0 \ne c \in C_{00}$, where $c_{0j} = \min\{|c| | 0 \ne c \in C_{0j}\} > 0$ by Lemma 1.

On the other hand, the series

$$\sum_{r\in (D)}\frac{1}{\mid cz+d\mid^{l}}, l>2, T=\begin{pmatrix} * & *\\ c & d \end{pmatrix}$$

is uniformly convergent with respect to z in the domain $\overline{D}_{\alpha} = \{z \in H \mid | x | \leq \alpha^{-1}, y \geq \alpha > 0\}$ which implies that the non-analytical Poincaré series is absolutely and uniformly convergent with

respect to z in the domain \overline{D}_{α} , and hence it defines a holomorphic function in H if $\operatorname{Re}(s) > 2 - r$.

A straightforward computation shows that

$$P_{nr}(Iz, s; \nu, \Gamma, \kappa_0) = \nu(L)(cz + d)^r | cz + d | {}^sP_{nr}(z, s; \nu, \Gamma, \kappa_0)$$

for any $L = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma$. In particular, we see that
 $P_{nr}(U^{\lambda_0}z, s; \nu, \Gamma, \kappa_0) = \nu(U^{\lambda_0})P_{nr}(z, s; \nu, \Gamma, \kappa_0) = e^{2\pi i \kappa_0}P_{nr}(z, s; \nu, \Gamma, \kappa_0),$

 $P_{nr}(U \circ z, s; \nu, I, \kappa_0) = \nu(U \circ) P_{nr}(z, s; \nu, I, \kappa_0) = e^{-\varepsilon} P_{nr}(z, s; \nu, I, \kappa_0)$, which implies that $P_{nr}(z, s; \nu, \Gamma, \kappa_0)$ has a Fourier expansion with respect to variable $e^{2\pi i x/\lambda_0}$, where $z = x + iy \in H$.

In order to discuss properties of Poincaré series at cusp points we introduce generalized nonanalytic Poincaré series which are A^{-1} -transformations of $P_{nr}(z, s; \nu, \Gamma, \kappa_0)$:

$$P_{ur}(z,s; \nu, \Gamma, \kappa_j) = P_{ur}(z, s; \nu', \Gamma', \kappa'_0) |_{A_i^{-1}}.$$

Lemma 3. For $j = 0, 1, \dots, t$, we have

$$P_{nr}(z, s; \nu, \Gamma, \kappa_j) = \sum_{L \in (S)} \frac{e((n + \kappa_j) L z / \lambda_j)}{\nu(A_j^{-1}L)(cz + d)^r + cz + d + s},$$
$$L = \begin{pmatrix} * & * \\ z & - d \end{pmatrix} \in \Gamma'_{\infty} \setminus A_j \Gamma = (S).$$

where $L = \begin{pmatrix} c & d \end{pmatrix} \in \Gamma'_{\infty} \setminus A_j \Gamma = (S)$. Similarly as above we can prove that $P_{-}(z, s)$

Similarly as above we can prove that $P_{nr}(z, s; \nu, \Gamma, \kappa_j)$ is holomorphic with respect to $z \in H$.

Lemma 4. For $j = 0, 1, \dots, t$, we have the following transformation formulae:

 $P_{nr}(Mz, s; \nu, \Gamma, \kappa_j) = \nu(M)(cz + d)^r | cz + d |^s P_{nr}(z, s; \nu, \Gamma, \kappa_j),$ where $M = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma.$

We now want to find the Fourier expansions of $P_{nr}(z,s;\nu, \Gamma, \kappa_j)$ with respect to variable $e^{2\pi i x/\lambda_j}$, which makes an analytic continuation of $P_{nr}(z,s;\nu, \Gamma, \kappa_j)$ become possible.

For $\operatorname{Re}(s) > 2 - r$,

$$P_{nr}(z, s; \nu, \Gamma, \kappa_j) = \sum_{l} + \sum_{2},$$

where \sum_{1} and \sum_{2} sum over $L = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in (S)$ with c = 0 and $c \neq 0$, respectively. Since the values of summands at L and -L are equal we see that

$$\sum_{2} = 2 \sum_{\substack{L \in (S) \\ c > 0}} \frac{e((n + \kappa_j) Lz/\lambda_j)}{\nu(A_j^{-1}L) (cz + d)^r | cz + d |^s}.$$

Noting that $S = \bigcup_{q=-\infty}^{\infty} \Re U^{\lambda_0 q}$, where \Re is the bicoset representative $\Gamma'_{\infty} \setminus A_j \Gamma / \Gamma_{\infty}$, we can find that

$$\sum_{2} = 2 \sum_{\substack{L \in (\mathfrak{M}) \\ r > 0}} c^{-s-r} \overline{\nu} \left(A_{j}^{-1}L \right) e\left(\left(n + \kappa_{j} \right) a/c\lambda_{j} \right) \sum_{p=0}^{\infty} \frac{1}{p!} \left[-\frac{2\pi i \left(n + \kappa_{j} \right)}{c^{2}\lambda_{j}} \right]^{p}$$
$$\cdot \sum_{q=-\infty}^{\infty} e\left(-\kappa_{0}q \right) \left(z + \frac{d}{c} + q\lambda_{0} \right)^{-r-p-\frac{s}{2}} \left(\frac{z}{z} \frac{d}{c} + q\lambda_{0} \right)^{-\frac{s}{2}}.$$

Using Poisson's summation formulae and by a long computation we obtain

Theorem 3. For $\operatorname{Re}(s) > 2 - r$, $j = 0, 1, \dots, t$, $P_{inr}(z, s; \nu, \Gamma, \kappa_i)$ have Fourier ex-

pansions as follows: (1) if $\kappa_0 > 0$,

$$\begin{split} P_{nr}(z, s; \nu, \Gamma, \kappa_{j}) &= 2\delta_{0j}e\left(\frac{n+\kappa_{0}}{\lambda_{0}}z\right) + \frac{2i^{-r}(2\pi)^{r+s}}{\Gamma(s/2)\lambda_{0}^{r+s}}\sum_{n=0}^{\infty}\left(m+\kappa_{0}\right)^{r+s-1}e\left(\frac{m+\kappa_{0}}{\lambda_{0}}z\right) \\ &\cdot \sum_{p=0}^{\infty} \frac{\left[-4\pi^{2}(n+\kappa_{j})(m+\kappa_{0})/\lambda_{j}\lambda_{0}\right]^{p}}{p!\Gamma\left(r+p+\frac{s}{2}\right)} Z_{j}\left(\frac{r}{2}+\frac{s}{2}+p,m,n\right) \\ &\cdot \sigma\left(4\pi(m+\kappa_{0})y/\lambda_{0},r+p+\frac{s}{2},\frac{s}{2}\right) \\ &+ \frac{2i^{-r}(2\pi)^{r+s}}{\Gamma(s/2)\lambda_{0}^{r+s}}\sum_{n=0}^{\infty}\left(m-\kappa_{0}\right)^{r+s-1}e\left(-\frac{m-\kappa_{0}}{\lambda_{0}}z\right)\sum_{p=0}^{\infty}\frac{\left[-4\pi^{2}(n+\kappa_{j})(m-\kappa_{0})/\lambda_{j}\lambda_{0}\right]^{p}}{p!\Gamma\left(r+p+\frac{s}{2}\right)} \\ &\cdot Z_{j}\left(\frac{r}{2}+\frac{s}{2}+p,-m,n\right)\sigma\left(4\pi(m-\kappa_{0})y/\lambda_{0},\frac{s}{2},r+p+\frac{s}{2}\right); \\ (2) \text{ if } \kappa_{0}=0, \\ P_{nr}(z,s;\nu,\Gamma,\kappa_{j}) &= \\ \frac{4\pi i^{-r}}{\lambda_{0}(2y)^{r+s-1}\Gamma(s/2)}\sum_{p=0}^{\infty}\frac{1}{p!}\left[-\frac{\pi(n+\kappa_{j})}{y\lambda_{j}}\right]^{p}\frac{\Gamma(r+p+s-1)}{\Gamma\left(r+p+\frac{s}{2}\right)}Z_{j}\left(\frac{r}{2}+\frac{s}{2}+p,0,n\right) \\ &+ 2\delta_{0j}e\left(\frac{n}{\lambda_{0}}z\right) + \frac{2i^{-r}(2\pi)^{r+s}}{\Gamma(s/2)\lambda_{0}^{r+s}}\sum_{n=0}^{\infty}m^{r+s-1}e\left(\frac{m}{\lambda_{0}}z\right)\sum_{p=0}^{\infty}\frac{\left[-4\pi^{2}(n+\kappa_{j})m/\lambda_{j}\lambda_{0}\right]^{p}}{p!\Gamma\left(r+p+\frac{s}{2}\right)} \\ &\cdot Z_{j}\left(\frac{r}{2}+\frac{s}{2}+p,m,n\right)\sigma\left(4\pi my/\lambda_{0},r+p+\frac{s}{2},\frac{s}{2}\right) \\ &+ \frac{2i^{-r}(2\pi)^{r+s}}{\Gamma(s/2)\lambda_{0}^{r+s}}\sum_{n=0}^{\infty}m^{r+s-1}e\left(-\frac{m}{\lambda_{0}}z\right)\sum_{p=0}^{\infty}\frac{\left[-4\pi^{2}(n+\kappa_{j})m/\lambda_{j}\lambda_{0}\right]^{p}}{p!\Gamma\left(r+p+\frac{s}{2}\right)} \\ &\cdot Z_{j}\left(\frac{r}{2}+\frac{s}{2}+p,-m,n\right)\sigma\left(4\pi my/\lambda_{0},r+p+\frac{s}{2},\frac{s}{2}\right) \\ &+ \frac{2i^{-r}(2\pi)^{r+s}}{\Gamma(s/2)\lambda_{0}^{r+s}}\sum_{n=0}^{\infty}m^{r+s-1}e\left(-\frac{m}{\lambda_{0}}z\right)\sum_{p=0}^{\infty}\left(\frac{1-4\pi^{2}(n+\kappa_{j})m/\lambda_{j}\lambda_{0}\right)^{p}}{p!\Gamma\left(r+p+\frac{s}{2}\right)} \\ &\cdot Z_{j}\left(\frac{r}{2}+\frac{s}{2}+p,-m,n\right)\sigma\left(4\pi my/\lambda_{0},\frac{s}{2},r+p+\frac{s}{2}\right), \end{aligned}$$

$$S_{j}(c, m, n) = \sum_{d \in D_{c}} (A_{j}^{-1}L) e\left(\frac{n + \kappa_{j}}{\lambda_{j}} \frac{a}{c} + \frac{m + \kappa_{0}}{\lambda_{0}} \frac{d}{c}\right);$$

$$Z_{j}(w, m, n) = \sum_{c \in C_{j_{0}}} S_{j}(c, m, n) c^{-2w}, \operatorname{Re}(w) > 1;$$

$$D_{c} = D_{c}(j, 0, 0, \lambda_{0}), C_{j0}' = \{c \in C_{j0} | c > 0\};$$

$$\sigma(y, \alpha, \beta) = \int_{0}^{\infty} (u + 1)^{\alpha - 1} u^{\beta - 1} e^{-yu} du.$$

From above we get the Fourier expansions of $P_{nr}(z, s; \nu, \Gamma, \kappa_j)$ for $\operatorname{Re}(s) > 2 - r$. Now we deal with the analytic continuation of $P_{nr}(z, s; \nu, \Gamma, \kappa_j)$. Denoting two infinite series in Theorem 1 by F_1 and F_2 respectively, we hope that F_1 and F_2 can be analytically continued to an area containing s = 0.

Lemma 5^[3,4]. Let $L^2(\Gamma \setminus H, \nu, r)$ be the Hilbert space consisting of the following functions:

(1) g: H→C;

(2)
$$g(\gamma z) = \nu(\gamma) \left(\frac{cz+d}{|cz+d|} \right)^r g(z), \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma;$$

(3) $\int_{D_r} |g(z)|^2 \frac{dxdy}{y^2} < +\infty,$

where D_{Γ} is a fundamental domain of Γ . Then the spectrum of Laplacian operator

$$\Delta_r = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) - iry \frac{\partial}{\partial x}$$
$$\frac{r!}{(1 - \frac{|r|}{\partial x})} + \infty$$

is contained in the half-line $\left[\frac{|r|}{2}\left(1-\frac{|r|}{2}\right), +\infty\right)$.

Lemma 6^[5]. Selberg's zeta functions are meromorphic on Re(w) > 1/2 which has only finite simple poles on Re(w) > 1/2 all contained in real interval $\left(\frac{1}{2}, 1\right)$. And we have

$$|Z_j(w,m,n)| = O\left(\frac{t^{1/2}}{\sigma-\frac{1}{2}} |n+\kappa_j| |m+\kappa_0|\right),$$

where $w = \sigma + it$, $\sigma > 1/2$, $|t| \ge 1$.

Using the method in ref. [6] and by Lemmas 5 and 6, we can analytically continue $Z_j\left(\frac{r}{2} + \frac{s}{2} + p, m, n\right)$ to a half-plane $\operatorname{Re}(s) > -\delta$ if there are not any holomorphic modular forms with weight 2 - r and multiplier system $\bar{\nu}$ for the group Γ , where $0 < \delta < r - 1$ and δ is independent of m.

By the definition of $\sigma(y, \alpha, \beta)$ and integration by parts we can continue analytically the factor $\sigma\left(4\pi(m-\kappa_0)y/\lambda_0, \frac{s}{2}, r+p+\frac{s}{2}\right)$ and $\sigma\left(4\pi(m+\kappa_0)y/\lambda_0, r+p+\frac{s}{2}, \frac{s}{2}\right)$ to the half-plane $\operatorname{Re}(s) > -\delta$. In this half-plane $\sigma\left(4\pi(m-\kappa_0)y/\lambda_0, \frac{s}{2}, r+p+\frac{s}{2}\right)$ is holomorphic and $\sigma\left(4\pi(m+\kappa_0)y/\lambda_0, r+p+\frac{s}{2}, \frac{s}{2}\right)$ has unique simple pole s = 0.

By the above continuations and some estimations we can prove that F_2 is convergent absolutely and uniformly in any compact subset of the half-plane $\operatorname{Re}(s) > -\delta$ which implies that F_2 can be continued analytically to the half-plane $\operatorname{Re}(s) > -\delta$.

We can continue analytically F_1 to the half-plane $\operatorname{Re}(s) > -\delta$ by a similar way.

These show that $P_{nr}(z,s;\nu,\Gamma,\kappa_j)$ can be continued analytically to the half-plane $\operatorname{Re}(s) > -\delta$. In particular, $P_{nr}(z,s;\nu,\Gamma,\kappa_j)$ is holomorphic at points s = 0.

Definition 6. The functions

$$P_{nr}(z,\nu,\Gamma,\kappa_j) \stackrel{\text{def}}{=} P_{nr}(z,0;\nu,\Gamma,\kappa_j)$$

are called generalized Poincaré series of group Γ with weight r and multiplier system v. A direct computation shows that

$$P_{nr}(z,\nu,\Gamma,\kappa_j) = 2\delta_{0j} e\left(\frac{n+\kappa_0}{\lambda_0}z\right) + \frac{2\mathbf{i}^{-r}(2\pi)^r}{\lambda_0^r} \sum_{m=0}^{\infty} (m+\kappa_0)^{r-1} e\left(\frac{m+\kappa_0}{\lambda_0}z\right)$$
$$\cdot \sum_{p=0}^{\infty} \frac{\left[-4\pi^2(n+\kappa_j)(m+\kappa_0)/\lambda_j\lambda_0\right]^p}{p!\Gamma(r+p)} Z_j\left(\frac{r}{2}+p,m,n\right).$$

Properties of Poincaré series and the proof of Theorem 2 2

In this section we want to show that $P_{nr}(z, \nu, \Gamma, \kappa_j)$ is holomorphic in H and deal with some properties of it. Let $\hat{P}_n(m)$ be the *m*-th Fourier coefficient of $P_{nr}(z, \nu, \Gamma, \kappa_i)$, i.e.

$$\hat{P}_{n}(m) = \frac{2i^{-r}(2\pi)^{r}}{\lambda_{0}^{r}}(m+\kappa_{0})^{r-1}\sum_{p=0}^{\infty}\frac{\left[-4\pi^{2}(n+\kappa_{j})(m+\kappa_{0})/\lambda_{j}\lambda_{0}\right]^{p}}{p!\Gamma(r+p)}Z_{j}\left(\frac{r}{2}+p,\ m,n\right)$$

$$= \frac{2i^{-r}(2\pi)^{r}}{\lambda_{0}^{r}\Gamma(r)}(m+\kappa_{0})^{r-1}Z_{m}(r/2) + \frac{2i^{-r}(2\pi)^{r}}{\lambda_{0}^{r}}(m+\kappa_{0})^{r-1}$$

$$\cdot \sum_{p=1}^{\infty}\frac{\left[-4\pi^{2}(n+\kappa_{j})(m+\kappa_{0})/\lambda_{j}\lambda_{0}\right]^{p}}{p!\Gamma(r+p)}\sum_{r>0}\frac{S_{j}(c,m,n)}{c^{r+2p}}.$$

Since by Lemma 2 $S_j(c, m, n) = O(c)$, where the constant in O is only dependent on j and Γ , we see that

$$\sum_{r>0} \left| \frac{S_j(c, m, n)}{c^{r+2p}} \right| \leq C_1 \sum_{r>0} \frac{1}{c^{r+2p-1}} \leq C_2 < +\infty$$

where $C_2 = C_1 \sum_{r>0} \frac{1}{c^{1+r}}$ is a constant (only dependent on j, Γ). Observing that $Z_m(r/2) = O(m)$ the first term in $\hat{P}(m)$ is $O(m^r)$. And for the second term we see that it O(m) + l

$$(m)$$
, the first term in $P_n(m)$ is $O(m')$. And for the second term we see that it

$$\ll m^{r-1} \sum_{p=1}^{\infty} \frac{\lfloor 4\pi^2 \mid n + \kappa_j \mid (m + \kappa_0)/\lambda_0 \lambda_j \rfloor^p}{(p!)^2}$$

$$\leq m^{r-1} \left[\sum_{p=1}^{\infty} \frac{\left(\sqrt{4\pi^2 \mid n + \kappa_j \mid (m + \kappa_0)/\lambda_0 \lambda_j}\right)^p}{p!} \right]^2$$

$$\leq m^{r-1} e^{4\pi \sqrt{\ln + \kappa_j \mid (m + \kappa_0)/\lambda_0 \lambda_j}} \leq m^{r-1} e^{\gamma \sqrt{m}},$$

where $\gamma = 4\pi \sqrt{|n + \kappa_i|/\lambda_i \lambda_0}$. So

$$\hat{P}_n(m) = O(m^{r-1}e^{\gamma\sqrt{m}}).$$

Lemma 7. Let $\{a_m\}_{m=0}^{\infty}$ be an infinite series satisfying the conditions $a_m = O(m^{r-1} \cdot$ $e^{\gamma\sqrt{m}}$), where r, γ are any positive reals. Then the function defined by

$$f(z) = \sum_{m=0}^{\infty} a_m e\left(\frac{m+\kappa_0}{\lambda_0}z\right)$$

is holomorphic in H, where κ_0 , λ_0 are positive reals.

Proof. Let
$$z = x + iy$$
. Then
 $\left| a_m e\left(\frac{m + \kappa_0}{\lambda_0} z\right) \right| = |a_m| e^{-2\pi(m + \kappa_0)y/\lambda_0} \ll m^{r-1} e^{\gamma\sqrt{m}} e^{-2\pi(m + \kappa_0)y/\lambda_0}.$

For any $\varepsilon > 0$, if $\gamma \ge \varepsilon$, then

$$\left|\sum_{m=0}^{\infty} a_m e\left(\frac{m+\kappa_0}{\lambda_0}z\right)\right| \ll \sum_{m=0}^{\infty} m^{r-1} e^{\gamma \sqrt{m}} e^{-2\pi (m+\kappa_0)\varepsilon/\lambda_0} < +\infty,$$

which shows that $\sum a_m e\left(\frac{m + \kappa_0}{\lambda_0}z\right)$ is absolutely and uniformly convergent in the domain $\overline{D}_{\varepsilon} =$ $|z \in H | Im(z) \ge \varepsilon | \subset H$ and therefore f(z) is holomorphic in H.

Lemma 7 implies that $P_{nr}(z, \nu, \Gamma, \kappa_j)$ are holomorphic on H for $j = 1, \dots, t$. And $P_{nr}(z, \nu, \Gamma)$:= $P_{nr}(z, \nu, \Gamma, \kappa_0)$ is meromorphic on H with pole at ∞ .

 $P_{nr}(z, s; \nu, \Gamma, \kappa_i)$ satisfies the following transformation formulae:

 $P_{nr}(Lz, s, \nu, \Gamma, \kappa_j) = \nu(L)(cz + d)^r + cz + d + {}^sP_{nr}(z, s; \nu, \Gamma, \kappa_j),$ where $\operatorname{Re}(s) > 2 - r$, $L \in \Gamma$. But $P_{nr}(z, s, \nu, \Gamma, \kappa_j)$ have an analytic continuation to the half-plane $\operatorname{Re}(s) > -\delta$. Hence two ends of the above equation are holomorphic for variable s on the half-plane $\operatorname{Re}(s) > -\delta$. By identical principle of analytic functions the above equality holds for all s on $\operatorname{Re}(s) > -\delta$. Especially these imply that

$$P_{nr}(Iz, \nu, \Gamma, \kappa_j) = \nu(L)(cz + d)' P_{nr}(z, \nu, \Gamma, \kappa_j)$$
*) $(\Gamma - C V +$

for all $L = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma, \ z \in H.$

We now compute the values of $P_{nr}(z, \nu, \Gamma)$ at cusp points. Using the similar method as above we have

$$P_{nr}(z,\nu',\Gamma',\kappa'_{j}) = (-z)^{-r}P_{nr}(A_{j}^{-1}z,\nu,\Gamma).$$

Hence

$$P_{nr}(p_j, \nu, \Gamma) = \lim_{z \to i\infty} P_{nr}(A_j^{-1}z, \nu, \Gamma) = \lim_{z \to i\infty} (-z)^r P_{nr}(z, \nu', \Gamma', \kappa'_j)$$
$$= \lim_{z \to i\infty} (-z)^r \sum_{m+\kappa_0 > 0} \hat{p}'_n(m) e\left(\frac{m+\kappa_0}{\lambda_0}z\right) = 0$$

for $j = 1, \cdots, t$.

We therefore obtain the following

Theorem 4. Suppose r > 1 and there are not non-trivial cusp forms with weight 2 - r and multiplier system $\bar{\nu}$ of group Γ . Then $P_{nr}(z, \nu, \Gamma)$ (n < 0) are meromorphically automorphic forms of group Γ with weight r and multiplier system ν with only pole at ∞ and the values of it at cusp points $p_k (\neq \infty)$ are zero.

Corollary 1. Suppose r > 1 and there are not non-trivial cusp forms with weight 2 - r and multiplier system $\bar{\nu}$ of group Γ . Then there exists an automorphic form with weight r and multiplier system ν of group Γ which has arbitrarily prescribed principal part at any given cusp point and holomorphic in H.

Proof. As in Theorem 4, $P_{nr}(z, \nu, \Gamma)$ has only pole term $2e\left(\frac{n+\kappa_0}{\lambda_0}z\right)$ at $z = \infty$ if n < 0. Similarly we can prove that there exists an automorphic form which has only pole term $2e\left(\frac{n+\kappa_j}{\lambda_j}A_{jz}\right)$ at $z = p_j$ if n < 0. On the other hand, we can obtain an automorphic form which is regular at all cusp points from each automorphic form by minus a linear combination of such Poincaré series. These complete the proof.

Proof of Theorem 2. The proof is similar to that of Theorem 1 in ref. [1]. For the sake of convenience of readers, we give a sketch as follows. For the detail, please see ref. [1].

Now suppose -2 < r < -1 and $\{\varphi_V\}$ is a parabolic cocycle in P. We shall prove that there exists $\Phi^* \in P$ such that

$$\Phi^*\mid_{\nu}'M-\Phi^*=\varphi_M,\ M\in\Gamma,$$

which implies Theorem 2. Without loss of generality, assume that $\varphi_S = 0$ for $S = \begin{pmatrix} 1 & \lambda_0 \\ 0 & 1 \end{pmatrix}$ since $\varphi_0 \in P$.

Let Φ be the function just as in Theorem 3 of ref. [1]. Since -2 < r < -1 and $C^0(\Gamma)$,

 $(r-2, \nu) = 0$, we know that there exists $G \in \{\Gamma, r, \nu\}$ such that G is holomorphic in H and has the same principal part at each p_j as the principal part at p_j of the expansion of Φ by Corollary 1. Let $\Phi^* = \Phi - G$. Then

(I) $\Phi^* \mid_{v}^{r} M - \Phi^* = \varphi_M, M \in \Gamma;$

(II) Φ^* is holomorphic in H;

(III) Φ^* has an expansion at each $p_j (0 \le j \le t)$ in which no negative power of the local parameter appears.

Condition (III) implies that there exist positive constants K, ρ , σ such that

$$|\Phi^*(z)| < K(|y|^{\rho} + y^{-\sigma}) \text{ for all } z \in \overline{\mathfrak{R}} \cap \mathrm{H}, \tag{1}$$

where $\Re = \left\{ z \in H \mid | \operatorname{Re}(z) \mid < \lambda_0/2 \text{ and } \mid cz + d \mid > 1 \text{ for all } V = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma - \Gamma_{\infty} \right\}$ is the Ford fundamental domain of Γ . Put $f(z) = \gamma^{-r/2} | \Phi^*(z) |$, $\gamma = \operatorname{Im} z > 0$. Then by (I)

$$f(Vz) = y^{-r/2} | cz + d |' | \Phi^*(Vz) | \leq f(z) + y^{-r/2} | \varphi_V(z) |.$$
(2)

Let $\mathfrak{J} = \bigcup_{v \in P/F_*} V(\overline{\mathfrak{R}}) \cap H$. Then

ł

$$\Phi^*(z) \mid < K(\mid y \mid^{\alpha} + \gamma^{-\beta}) \quad \text{for all } z \in \mathfrak{F}, \tag{3}$$

where α, β, K are positive constants independent of z. In fact, if $z \in \mathfrak{F}$, then $z = V\tau$ with $V \in \Gamma/\Gamma_{\infty}$ and $\tau \in \mathfrak{R} \cap H$,

$$\Phi^*(z) \mid = y^{r/2} f(z) = y^{r/2} f(V\tau) \leq y^{r/2} \{ f(\tau) + t^{-r/2} \mid \varphi_V(z) \mid \} = y^{r/2} t^{-r/2} \{ \mid \Phi^*(\tau) \mid + \mid \varphi_V(z) \mid \},$$

where $t = Im(\tau)$. By (1) and Lemma 8 in ref. [2] we deduce inequality (3).

By the definition of fundamental domain it follows that for any $z \in H$, there exists an integer m such that $S^m z \in \mathfrak{F}$. Then

$$\Phi^*(S^m z) \mid = \mid (\Phi^* \mid S^m)(z) \mid = \mid \Phi^*(z) \mid$$

since $\varphi_s = 0$. Therefore (3) implies that

$$\Phi^{*}(z) \mid = \mid \Phi^{*}(S^{m}z) \mid < K(\mid y \mid^{\alpha} + y^{-\beta})$$

for $z \in H$ since $Im(S^m z) = Im(z) = y$ which shows that $\Phi^* \in P$ and hence Theorem 2.

Acknowledgements This work was partially supported by the National Natural Science Foundation of China (Grant No. 19871017).

References

- 1 Knopp, M., Some new results on the Eichler cohomology of automorphic forms, Bulletin of the American Mathematical Society, 1974, 80: 607.
- 2 Lehner, J., Discontinuous Groups and Automorphic Functions, Math. Surveys, No. 8, Providence: Amer. Math. Soc., 1964.
- 3 Roelcke, W., Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene: I, Math. Ann., 1966, 167: 292.
- 4 Roelcke, W., Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene: II, Math. Ann., 1967, 168: 261.
- 5 Hejhal, D. A., The Trace Formula for PSL(2, 3), Vol. 2, LNM, Vol. 1001, Berlin; Springer-Verlag, 1983.
- 6 Selberg, A., On the estimation of Fourier coefficients of modular forms, in Theory of Numbers, Proc. Sympos. Pure Math., Vol. 8, Providence: Amer. Math. Soc., 1965, 1-15.