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Abstract We prove partially a conjecture of Knopp about the Eichler cohomology of automorphic 
forms on H-groups. 

Keywords : automorphic forms, Eichler cohomology , H-groups . 

Knopp introduced the Eichler cohomology groups connected with automorphic forms of arbi- 
trary real weight and with a suitable underlying space of functions and determined the structure of 
these groups (see Theorems 1 and 2  in ref. [ 1 ] ) . 

For the detailed definitions of conceptions and notations in this paper, we follow ref. [ I ]  . 
Now let r be an arbitrary real number and Y a multiplier system for H group r of weight r .  

P = (functions g holomorphic in H I I g ( z )  I < K ( I  z  I P  + y - a )  for y = Irnz > 01, 
where K , p , o are positive constants. 

Definition 1 .  Let r C PSL(2 , R )  be a subgroup of PSL(2 , R )  . r is called a hyperbolic 
subgroup if it satisfies 

( 1 ) r acts discontinuously on the upper-half plane H = x + i y  E C l y > 0 but r is not 
discontinuous at any point on the real axis; 

( 2 )  there exist translation transformations in r ,  i .  e .  w is a parabolic fixed point of r 
(cusp point) ; 

(3) there is a fundamental domain Do of r with finite edges. 
Definition 2. Let r be a hyperbolic subgroup. A complex-valued function u  = Y [ r , r 1 

defined on r is called a multiplier system of group r with weight r if it satisfies 
( 1 )  I u ( M ) I  = 1  forany M E I ' ;  
( 2 )  v ( M 1 M 2 ) ( c I 2 z  + d 1 2 ) r  = v ( M 1 ) ( c I M 2 z  + d l ) ' v ( M 2 ) ( c 2 z  + d 2 ) '  for any M I ,  M2 

Definition 3 .  Let v  be a multiplier system. A complex-valued function F  ( z  ) is called an 
automorphic form of group r with weight r and multiplier system u if it satisfies 

( 1 )  F ( z )  is meromorphic on H*  = H U p ,  where P is the set of all parabolic vertices 
( i  . e . all cusp points) ; 

( 2 )  F (  Mz)  = u ( ~ ) ( c z  + d ) ' ~ ( z )  for any M = 
(c* 

Note. Afunction F ( z )  ismeromorphicat a c u s p p o i n t p  if ~ ( ~ - ~ ( z ) ) j , - ' ( z ) - ' i s  
meromorphic at z  = i w  , where p E P S L ( 2 ,  R )  such that p ( p )  = i w  and j M ( t )  = cz + d for M 
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Let r be a hyperbolic group. We always assume that - I = ( -01) E r .  If A  E 

PSI,(2 , R )  , Ap = w , then A maps H onto H .  If ME r is parabolic and has a fixed point p , 
then AMA - ' is also parabolic and has the fixed point w . So ArA - ' is a hyperbolic group. 

Let p be the set of all parabolic vertices of I' . For any p  E p n R the isotropic subgroup r, 
= { A € r I A p = p /  is cyclic. If P  generates r,,, then so do - P ,  P - ' ,  - P - ' .  We now 
choose a full representative set 1 po , p  1 , ... , p, / of inequivdent parabolic vertices. If co is one 
of these we assume po = co , otherwise po disappears. Since r has only finite edges, we know 
that t  is finite. Now let = ( P j )  . We define 

It is clear that A,pj = m for j = 0 , l  , -.. , t . A,Pflj  must be a translation because it is parabolic 
and has the fixed point . So it must have the following forms: 

We can choose the generator Pi of r such that A, > 0 for j = 0 , 1 ,  ... , t  , especially, r ,  
pi 

= ( uA0) , A0 > 0. 
We introduce some notations as follows: 

Lemma lL2] . For every pair ( j ,  k ) , Cjk is a discrete subset of R .  
Lemma 2[21 . For every c  E Cjk and every pair ( a  , /3 ) of real numbers, the set D, ( j  , k , 

a , P )  is finite and D , ( j , k , a , p )  = O ( c ) .  
Suppose that u  = u [ F  , r ] is a multiplier system and define that tcj = tcj ( F )  is the unique 

number satisfying the following conditions : 

e ( r c i )  = u ( P j ) ,  0 < tcj < 1 ,  j = 0 ,  1 , " - , t ,  
where e ( a )  = exp(2nicu). 

Consider the group r '  = A j r A j  . The multiplier system u [ r , r ] deduces one u' [ I-'' , r ] 
on r '  : 

u ' ( M 1 )  = u ( M )  if M' = A ~ M A ~ ' .  

Since P, generates r so AjP/ J ' generates Frm , we see that 
PI 

e ( t c j )  = u ( P j )  = u ' ( A ~ P / J ' )  = e ( t c 0 ( r 1 ) ) ,  
i . e .  

~ ~ ( r )  = K ~ ( A , ~ A ; ~ ) .  
Similarly we have 

~ , ( r )  = A ~ ( A , ~ A ; ' ) .  

Definition 4"' . If F is a function meromorphic in H such that 

F IvrV - F E P  for V E r ,  
and for each j , 1  6 j 6 t  , there exists an integer mi such that exp 127ci ( mj + IC, ) /A,  ( z - pj ) 1 
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F ( z )  has a limit as z+pj within Dr ( a  fundamental domain of r )  and also there exists an inte- 
ger mo such that exp 1 - 2ni( mo + /co)/AO 1 . F ( z )  has a limit as z-+i rn within Dr , then we 
call F an automorphic integral of degree r with respect to r . 

If r is an integer 2 0  and P is replaced by P,  (the set of all polynomials with degree < 
r ) , then this definition coincides with the one of Eichler integral. We refer to the cocycle { F 1,'V 
- F 1 as the cocycle of period functions of automorphic integral F. A coboundary of degree r is 

a cocycle 1 F I ,'V - F / such that F I ,'V - F = f l ,'V - f for all V E I' , with f a fixed function f 
E P.  The parabolic cocycles are the cocycles F I,'V - F } which satisfy the following condition: 
Let Qo, Q I  , - - -  , Q t  be a complete set of parabolic representatives for r ,  then for each j ( 1  < j 
6 t ) , there exists a function fh  E P such that F l i Q h  - F = fh lvrQh - fh . 

Definition 5 .  ( a )  The Eichler cohomology group H', , , ( r , P ) is defined to be the vector 
space of cocycles modulo coboundaries . 

( b) Let H L,, ( r , P ) be the subgroup of H:, , ( I' , P ) defined as the space of parabolic co- 
cycles modulo coboundaries . 

In ref. [ 1 ] , Knopp proved the following theorem. 

Theorem 1. If r 2 0  or r < - 2 with v a multiplier system of degree r , then CO ( r , - 
- r - 2 ,  Y ) is isomorphic to H ', , , ( I' , P ) under a canonical isomorphism a , where CO ( r , - r 
- 2 ,  ; ) denotes the collection of cusp forms for group r , weight r and multiplier system Y . 

And Knopp made the following 
Conjecture. Theorem 1 is true in the range - 2 < r < 0. 
In this paper we shall prove this conjecture, i . e . we have - 
Theorem2. If - 2 < r <  - l a n d  c o ( r ,  - r - 2 ,  ; ) = o ,  t h e n H ; , , ( r , P ) = O .  

1 Non-analytic and analytic Poincard series 

Let n be a negative integer and r , Y , tc, , A j  as above and r a positive real number. We 
introduce non-analytic Poincare series P,, ( z , s ; Y , F , K ~ )  as follows : 

exp(2ni( n + rco) Tz/Ao) 
P, , , (z ,s ;  u ,  r ,  K ~ )  = C 

u ( ~ ) ( c z  + d ) '  I cz + d 1 ' '  

We first have to show the convergence of the above series. We see that 
I exp(2ni(n + K ~ )  Tz/Ao) I <exp{2?t.( 1 n I + l ) Im(  T Z ) / A ~ ~  

= exp( 

if y a a > O  a n d O # c E C m ,  where c o j = m i n /  Ic I  I 0 # c € C o j ~  > O  by Lemma 1 .  
On the other hand, the series 

is uniformly convergent with respect to z in the domain D, = ( z E H I I x I < a - ' , y a > 0 1 
which implies that the non-analytical Poincar6 series is absolutely and uniformly convergent with 



respect to z in the domain D, , and hence it deiines a holomorphic function in H if Re( s )  > 2 - 

A straightforward computation shows that 

~ , 1 , ( ~ ~ ,  S ;  U ,  r ,  KO)  = v ( L ) ( c z  + d ) ,  I CZ + d I " ~ , , ( Z ,  S ;  U ,  r ,  KO) 
* * 

for any I. = ( ) E r . In particular, we see that 

P N r ( I J A ~ ~ z 9  s.; U ,  r ,  KO) = u(u'o)P,, ,(z,  s ;  u , r , l c o )  = e2" ' "~~ , , , ( z ,  s ;  u , r , x o ) ,  

which implies that PI,, ( z , s ; u , r , xo ) has a Fourier expansion with respect to variable 
?-nix/',, e , where z = x + i y E H .  

In order to discuss properties of PoincarC series at cusp points we introduce generalized non- 

analytic PoincarC series which are A '-transformations of P,,,( z , s ; u , r , xo)  : 
P n r ( ~ , ~ i  u ,  r, K ~ )  = P,,,(z,  .F; v ' ,  r l , ~ ; )  I , ~ - ' .  I 

Lemma3. F o r j = O , l ; . . , t ,  wehave 

* X 

where L = ( ) € 
\ A j r  = ( S) 

Similarly as above we can prove that P,&,(z, s ; u , r ,  lc,) is holomorphic with respect to z 

E H .  
Lemma 4.  For j = 0,1 , --. , t , we have the following transformation formulae : 

P,,,(Mz, s ;  v , r ,  lc,) = v ( M ) ( c z  + d ) '  I cz + d l S P , , ( z , s ; u ,  

where M = ( 1 ) EF.  

We now want to find the Fourier expansions of P ,a r (z ,  s ; u , r , 19) with respect to variable 
2nix/l, e , which makes an analytic continuation of PI,, ( z , s ; v , r , xj) become possible. 

For R e ( s )  > 2 - r ,  

where Z; and sum over L = ( ) E ( S)  with c = 0 and c + 0 ,  respectively. Since the 
I 2 

values of summands at L and - L are equal we see that 

C = 2 C  
e ( ( n  + K,)Lz/A,) 

2 , , , , , v ( A ~ ' L )  ( C Z  + d l r  I cz + d I " '  
I > O  

rn 

Noting that S = U !R u'o", where !R is the bicoset representative r', \ A j r / r ,  , we can find 
, I ' - - W  

that 

Using Poisson's summation formulae and by a long computation we obtain 
Theorem3. F o r R e ( s ) > 2 - r ,  j = O ,  I , . . . , t ,  P,,(z ,s ;  u ,  I', xj) haveFourierex- 
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pansions as follows : ( 1 ) if K O  > 0 ,  

where 6 0 j  = 1 or 0 if j = O  or j # 0 ,  and 

From above we get the Fourier expansions of P,, ( z , s ; v , r , tcj ) for Re ( s ) > 2 - r . 
Now we deal with the analytic continuation of P,, ( z  , s ; u , r , K ~ )  . Denoting two infinite series 
in Theorem 1  by F I  and F 2  respectively, we hope that F I  and F 2  can be analytically continued to 
an area containing s = 0. 

Lemma 5[3*41 . Let L' ( I' \ H, u , r ) be the Hilbert space consisting of the following 
functions : 

( 1 )  g: H+:id; 
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where Dr is a fundamental domain of r .  Then the spectrum of Laplacian operator 
a2 a 

A, = y2 a - + $1- a,- iry 

I I rl  
is contained in the half-line [ -$( 1 - T) , + 00 ) . 

Lemma 6L51 . Selberg's zeta functions are meromorphic on Re( w ) > 1/2 which has only 

finite simple poles on Re( w ) > 1/2 all contained in real interval (i, I ) .  And we have 

where w = o + i t ,  a > 1 / 2 ,  1 t I 3 1 .  
Using the method in ref. [ 61  and by Lemmas 5 and 6 ,  we can analytically continue 

, - + - + p  , m , n )  to a half-plane Re( s )  > - 6 if there are not any holomorphic modular (; ; 
forms with weight 2 - r and multiplier system for the group r , where 0 < 6 < r  - 1 and 6 is 
independent of m . 

By the definition of o ( y , a , P )  and integration by parts we can continue analytically the 
S S S 

4n(  m - KO) , / l o ,  -, 2 r + + J) 2 and a ( 4 n (  m + r 0 )  ,/lo, r + p + - 2 '  -) 2 to the 

S 
half-plane Re( s ) > - 6 . In this half-plane o 4x( m - K,,) y/Ao , - , r + p + 

2 

phic and a 4 x ( m + ~ ~ ) y / / \ ~ ,  r + p + -  ( ) has unique simple pole s = 0. 
2 '  Z 

By the above continuations and some estimations we can prove that F ,  is convergent abso- 
lutely and uniformly in any compact subset of the half-plane R e ( s )  > - 6 which implies that F 2  
can be continued analytically to the half-plane Re( s ) > - 6 .  

We can continue analytically F I  to the half-plane Re ( s )  > - 6 by a similar way. 
These show that P , , ( z ,  s ; v , r , ~ j )  can be continued analytically to the half-plane Re ( s )  

> - 6 .  In particular, P,,(z, s ; u , r , ~ j )  is holomorphic at points s = 0. 
Definition 6 .  The functions 

,!el 

P, , ( z ,  Y , r , l c j )  = P,,(z,o; v , r ,  I C ~ )  

are called generalized Poincar6 series of group r with weight r and multiplier system v .  
A direct computation shows that 

[ - 4n2( n + rc i)  ( rn + K ~ ) / A ,  A,]P 

p =  0 p ! r ( r  + p )  ~ j ( $  + p ,  m ,  n ) .  



2 Properties of Poinear6 series and the proof of Theorem 2 

In this section we want to show that PI, ( z ,  Y , r ,  t c j )  is holomorphic in H and deal with 
some properties of it. I,et PI, ( m  ) be the m-th Fourier coefficient of P,,, ( z  , v , I' , K ~ )  , i . e . 

. 2 [ -  4 n 2 ( n  + ~ , ) ( m  + K ~ ) / A ,  , IO]"  Sj ( n  1 . 
I t =  I p ! r ( r  + y )  ,.,o 

Since by Lemma 2 S, ( c , m , n ) = 0 ( c ) , where the constant in 0 is only dependent on j and 
r ,  w e  see that 

1 
where C2 = C I 7 is a constant ( only dependent on j , I') . Observing that Z, ( A) = 

, . > O  

0 ( m  ) , the first term in PI, ( m  ) is 0 ( mr ) . And for the second term we see that it 

<mr-1 2 [4x2  1 n  + K,. I ( m  + K ~ ) / A ~ ) \ ~ ] P  

P =  1 ( P ! ) ~  

where Y =47c2/ 1 n + ~ C ~ I / / A ~ A ~ .  So 

Lemma 7. Let ( a ,  1 ," be an infinite series satisfying the conditions a, = 0 ( mr - ' 
e y G )  , where r , Y are any positive reals. Then the function defined by 

is holomorphic in H , where K O ,  A. are positive reals . 
Proof. Let z = x + i y .  Then 

For any E > 0 ,  if y a ~ ,  then 

which shows that C a m e ( y z )  is absolutely and uniformly convergent in the domain DE = 

1 z E H I Im( z  ) E 1 c H and therefore f ( z ) is holomorphic in H , 
Lemma 7 implies that PI,, ( z , v , I' , tcj ) are holomorphic on H for j = 1 , .-. , t . And 

P , , ( z , v , r ) :  = P , , ( z , v , r , ~ ~ )  is meromorphic on H with pole at 0 0 .  



P,,, ( z , s ; v , r , K; ) satisfies the following transformation formulae : 

P,,,.(Iz, .$, V ,  r ,  /ei) = U ( L ) ( C Z  + ( 1 ) "  I cz + d I~ \P , , , ( z ,  Y ,  r ,  K , ) ,  

where Re( s ) > 2 - r , 1, € r . But P,,, ( z , s , v , I' , q )  have an analytic continuation to the 
half-plane Re( s )  > - 6 . Hence two ends of the ahove equation are holomorphic for variable s on 
the half-plane Re( s ) > - 6 .  By identical principle of analytic functions the above equality holds 
for all s on Re( s ) > - 6 .  Especially these imply that 

P,,,(ZZ, u r  r ,  Kj) = u ( L ) ( ( ~ z  + ~ Y P , , ( z ,  u ,  r ,  Kj) 
- * 

o r a l  I d ) E r ,  Z E H  

We now compute the values of P,,,(z, u , r )  at cusp points. Using the similar method as 

above we have 

P,, ,(z,u'  ,rt , I C ; )  = ( -  z ) - r ~ t l , ( ~ ~ l ~ ,  u ,  r ) .  

Hence 

for j = 1 , t . 
We therefore obtain the following 
Theorem 4. Suppose r > 1 and there are not non-trivial cusp forms with weight 2 - r and 

multiplier system Y of group r . Then P,L, ( z , v , r ) ( n < 0 )  are merornorphically automorphic 
forms of group r with weight r and multiplier system u with only pole at w and the values of it 
at cusp points pk ( # w ) are zero. 

Corollary 1.  Suppose r > 1 and there are not non-trivial cusp forms with weight 2 - r and 
multiplier system of group r .  Then there exists an automorphic form with weight r and multi- 
plier system v of group I' which has arbitrarily prescribed principal part at any given cusp point 
and holomorphic in H .  

j n  ioICoz) at z =  - if n Proof. As in Theorem 4 ,  P,, ( z , v , I' ) has only pole term 2 e - 

< 0. Similarly we can prove that there exists an automorphic form which has only pole term 

2 e  (YF) at n = pj  if n < 0 .  On the other hand, we can obtain an automorphic form which 

is regular at all cusp points from each automorphic form by minus a linear combination of such 
Poincar6 series. These complete the proof. 

Proof of Theorem 2 .  The proof is similar to that of Theorem 1 in ref. [ 1 ] . For the sake 
of convenience of readers, we give a sketch as follows. For the detail, please see ref. [ I ]  . 

Now suppose - 2 < r < - 1 and I gov 1 is a parabolic cocycle in P .  We shall prove that 

there exists @ * E P such that 

@ *  I:M - rg* = y , ,  M E r ,  

which implies Theorem 2 .  Without loss of generality, assume that ys = 0 for S = ( y)  since 

poE P .  
Let @ be the function just as in Theorem 3 of ref. [ 1 ] . Since - 2 c r < - 1 and CO ( r , 



- r - 2 ,  Y ) = 0,  we know that there exists C € i I', r , Y such that G-' is holomorphic in H and 
has the same principal part at each 11, as the principal part at pi of the expansion of O by Corol- 

lary 1 .  Let @ "  = @ -  G .  Then 

( I )  O '  /:M- O "  = y ~ ,  MEI ' ;  
( IT) Q, " is holomorphic in H ; 

(111) @ * has an expansion at each pj ( 0  j 6 t ) in which no negative power of the local 
parameter appears. 

Condition (111) implies that there exist positive constants K ,  p , o such that 

I O * ( z )  I <  K(1  y I P +  Y - Q ) f o r a l l z € % n  H ,  ( 1 )  

w h e r e % =  z € H  l R e ( z ) I < A o / 2 a n d I c z + d I > 1 f o r a l l V =  1 ( ; ) ~ r - r - ]  
istheFordfundamentaldomainofr. put f ( z ) =  y - r " 2 1 @ * ( z ) l ,  y = I m z > O .  Thenby ( I )  

f (  V Z )  = y-r/2 I cz + d I '  I O *  ( Vz) I S f ( z )  + y-rn  I y v ( z )  I .  (2 )  

L e t s  = U v(%) n H .  Then 
Y t  r / r= 

I @*(t) I < K(1 y l a  + y-P) fora l l  z € 3, (3)  
where a , p , K are positive constants independent of z . In fact, if t € 3, then z = Vr with V € 
I ' /I ' ,  and r € % n ~ ,  

I O * ( Z )  1 = yr12f(z) = yr12f(vr) < y r n { f ( r >  + t-r" I 9 , (z )  I }  = 

yr/2t-r/2{1 @ * ( r )  l + I  ~ V ( Z )  1 1 ,  
where t = Im( r ) . By ( 1 ) and Lemma 8 in ref. [2]  we deduce inequality (3 ) . 

By the definition of fundamental domain it follows that for any z € H ,  there exists an integer 
m such that Smz E 3. Then 

I O *  ( s m z )  I = I ( O *  I S m ) ( z )  I = 1 @ *  ( 2 )  l 
since gas = 0 .  Therefore ( 3 )  implies that 

I @ * ( z )  I = I @ * ( S m z )  I < K ( I  y l a  + y-P)  
for z E H since 1m( Smz ) = Im ( z ) = y which shows that O * P and hence Theorem 2. 
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