The Ni-Pr (Nickel-Praesodymium) System

Y.Y. Pan and P. Nash Illinois institute of Technology

Equilibrium Diagram

The assessed Pr-Ni phase diagram (Fig. 1) is based primarily on the differential thermal analysis (DTA) and X-ray analysis data of [47Vog] and [84Pan]. It consists of seven intermetallic compounds--Pr3Ni, Pr7Ni3, PrNi, PrNi2, PrNi3, Pr2Ni7, and PrNi5. PrNi2, PrNi3, and Pr2Ni7 form by peritectic reactions, and the others are congruently melting compounds; five eutectic reactions occur. Invariant reaction

Table 1 Invariant Reactions in the Pr-Ni System

Reaction	Co of the i	espective at.% Ni	s phases,	Temperature, °C	Reaction type
L↔βPr		0		931	Melting point
$\beta Pr \leftrightarrow \alpha Pr$		0		795	Allotropic
$L \leftrightarrow (\alpha Pr) + Pr_3Ni$	~19	0	25	460	Eutectic
L ↔ Pr ₃ Ni		25		525	Congruent
$L \leftrightarrow Pr_3Ni + Pr_7Ni_3$	~27	25	30	490	Eutectic
$L \leftrightarrow Pr_7 Ni_3$		30		535	Congruent
$L \leftrightarrow Pr_7Ni_3 + PrNi_{\dots}$	~ 32.5	30	50	510	Eutectic
L ↔ PrNi		50		730	Congruent
L ↔ PrNi + PrNi2	~53	50	66.7	680	Eutectic
$L + PrNi_3 \leftrightarrow PrNi_2$	~62	75	66.7	910	Peritectic
$L + Pr_2Ni_7 \leftrightarrow PrNi_3$	~65	77.8	75	1010	Peritectic
$L + PrNi_5 \leftrightarrow Pr_2Ni_7$	~70	83.3	77.8	1160	Peritectic
$L \leftrightarrow PrNi_5$		83.3		1385	Congruent
$L \leftrightarrow PrNi_5 + (Ni)$	~ 89	83.3	100	1280	Eutectic
L↔Ni		100		1455	Melting point

NI-Pr

temperatures and compositions are summarized in Table 1. There is no solid solubility of either metal in any of the compounds. The terminal solid solutions are also very restricted, but the extent has not been clearly established.

[47Vog] first studied this system using Pr with 98 to 99 wt.% purity. No information on Ni purity was given. The diagram was established on data obtained from only nine alloys, which were selected at critical compositions on the basis of the similarity of Ni-Pr to the La-Ni and Ce-Ni systems. [47Vog] reported four compounds—Pr3Ni, PrNi, PrNi2, and PrNi5. The existence of PrNi3 and PrNi4 was uncertain. His diagram cannot be considered accurate, because only a limited number of samples were used in the thermal analysis.

In view of the X-ray data for Ce2Ni7 [59Cro], [61Gsc] proposed that the true composition of PrNi4 should be Pr2Ni7. This was confirmed by [70Bus] and [71Tay] using X-ray analysis. [70Bus] suggested that there are two modifications of Pr2Ni7. The high-temperature form is hexagonal, and the low-temperature form is rhombohedral, but the transformation temperature was not determined. X-ray diffraction (XRD) has also confirmed the existence of Pr3Ni [67Lem1], PrNi [63Dwi, 65Dwi, 64Abr, 64Wal], PrNi2 [60Wer, 71Tay], and PrNi5 [59Wer, 61Dwi]. [47Vog] suggested that PrNi2 decomposes peritectically at 880 °C but [60Wer] did not observe any transistion between room temperature and 880 °C in their DTA study. [66Kis] reported a Pr-Ni compound with Fe3Th7 structure type. It was investigated by [73Olc] using metallographic and XRD techniques on alloys prepared in a

Table 2 Thermal Treatment of Pr-Ni alloys

Composition, at.% Ni	Temperature, °C	Time, days	
0 to 45	400	30	
45 to 75	500	30	
75 to 100	800	30	
From [84Pan].			

Table 3 Pr-Ni Crystal Structure Data

tantalum furnace or in an arc melting furnace from 99.9 wt.% Pr and 99.998 wt.% Ni. The occurrence of Pr7Ni3 was ascertained, and the lattice parameters were measured.

[84Pan] investigated this system using DTA and XRD of samples prepared by induction melting under purified argon of 99.9 wt.% Pr and 99.99 wt.% Ni. Each sample was remelted several times, then homogenized by appropriate thermal treatments (Table 2). Seven previously reported compounds were confirmed. The diagram of [84Pan] is similar to that of a previous evaluation [61Gsc], but the temperatures and compositions of the reactions are rather different. The data of [84Pan] are accepted in Fig. 1, because they used higher-purity starting metals than [47Vog].

The melting points of Pr and Ni are 931 and 1455 °C, respectively [Melt]. The temperature of the allotropic transformation $\alpha Pr \leftrightarrow \beta Pr$ is 795 °C [86Gsc]. The effect of Ni on this transformation is not known. [84Pan] investigated samples with compositions between 50 and 67 at.% Ni and found two peaks (~680 and ~700 °C) on the DTA curves of some samples. The XRD pattern showed some extra lines, but [84Pan] did not obtain enough data to determine if another phase exists in this region.

Crystal Structures and Lattice Parameters

Pr-Ni crystal structures and lattice parameters are given in Tables 3 and 4.

Thermodynamics

The heat capacity (C_p) and derived thermodynamic properties of PrNi₂ and PrNi₅ are summarized in Table 5. The C_p data for PrNi₂ are shown in Fig. 2, which shows that heat capacity of the compound is much larger than that of its constituent elements.

The specific heat of PrNi5 was measured over the temperature range 1.6 to 4 K [71Nas]. The results can be represented as:

Composition, at.% Ni	Pearson symbol	Space group	Strukturbericht designation	Prototype	Reference
	cI2	Im3m	A2	w	[86Gsc]
0	hP4	P63/mmc	A3'	αLa	[86Gsc]
25.0	oP16	Pnma	D011	Fe ₃ C	[67Lem1]
	hP2 0	P63mc	$D10_2$	Fe3Th7	[730]c]
50.0	oC8	Cmcm	Br	CrB	[64Wa], 65Dwi]
	cF24	Fd3m	$\overline{C15}$	Cu ₂ Mg	[47Vog]
	hR24	R3m		PuNis	[67Pac]
	hP36	P63/mmc		Ce2Ni7(c)	[70Bus]
	hR54	R3m		$Gd_2Ni_7(d)$	[70Bus]
	hP6	P6/mmm	D2-1	CaCus	[59Wer]
100	cF4	Fm3m	A1	Cu	[King1]
	Composition, at.% Ni 0 25.0 30.0 50.0 66.7 75.0 77.8 83.3 	Composition, at.% Ni Pearson symbol 0 cI2 0 hP4 25.0 oP16 30.0 hP20 50.0 oC8 66.7 cF24 75.0 hR24 77.8 hP36 hR54 83.3 100 cF4	Composition, at.% Ni Pearson symbol Space group 0 cI2 Im3m 0 hP4 P63/mmc 25.0 oP16 Pnma 30.0 hP20 P63mc 50.0 oC8 Cmcm 66.7 cF24 Fd3m 75.0 hR24 R3m 77.8 hP36 P63/mmc hR54 R3m 83.3 hP6 P6/mmm 100 cF4 Fm3m	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 4 Pr-Ni Lattice Parameter Data

	Composition,		Lattice parameters, nm		_	
Phase	at.% Ni	a	ь	С	Comment	Reference
3Pr	0	0.413			At >795 °C	[86Gsc]
v Pr	0	0.36721	•••	1.18326	At 25 °C	[86Gsc]
Pr3Ni	25 .0	0.707	0.996	0.649		[67Lem1]
Pr7Ni3	30.0	0.9904		0.6322	•••	[[730lc]
PrNi	50.0	0.3816	1.0503	0.4354		[65Dwi]
		0.3817	1.0501	0.4347		[64Abr]
		0.379	1.039	0.433	•••	[64Wal]
PrNi2	66.7	0.720			•••	[47Vog]
		0.7285		•••		[60Wer]
		0.7274				[71Tay]
rNi3	75.0	0.5035		2.432		[70Bus]
		0.503	•••	2.501		[67Pac]
r2Ni7	77.8	0.5015	•••	2.444(a)		[70Bus]
		0.501		2.423		[71Tay]
		0.5015	•••	3.664(b)		[70Bus]
rNis	83.3	0.4958		0.3980		[59Wer]
-		0.4948	•••	0.3973		[47Vog]
		0.4964	•••	0.3975		[61Dwi]
{i	100	0.35241	•••			[King1]
a) High-tempera	ture form. (b) Lo	w-temperature	e form.			-

$$C_p = \gamma T + \beta T^3$$

where the electronic specific heat coefficient γ is 37.02 + 0.16 mJ/mol \cdot K⁴. The Debye temperature (θ D) of 333.5 K was estimated by [71Nas] using the expression:

 $\beta = (12/5)\pi^4 kN/\theta D^3$

where k is Boltzmann's constant and N is Avogadro's number.

The enthalpies (ΔH) of the transition L $\leftrightarrow \beta Pr$ and $\beta Pr \leftrightarrow \alpha Pr$ are 6890 and 3170 J/mol, respectively [83Cha].

Magnetism

The magnetic behaviors of the Pr-Ni compounds are listed in Table 6. The temperature dependence of the magnetization of PrNi5 is shown in Fig. 3.

Cited References

- *47Vog: R. Vogel, "On the Systems of Ce-Ni, La-Ni, Pr-Ni and Ce-Co," Z. Metallkd., 38, 97-103 (1947) in German. (Equi Diagram, Crys Structure; Experimental; #)
- **59Cro:** D.T. Cromer and A.C. Larson, "The Crystal Structure of C₂Ni₇," *Acta Crystallogr.*, *12*, 855-859 (1950). (Equi Diagram; Experimental)

Table 6 Magnetic Characteristics of Ni-Pr Compounds

	Param	agnetic					
Compound	Debye temperature, K	Effective moment, µ _B /Pr	State type	Curie temperature, K	Ordered moment, µ _B /Pr	State type	Reference
Pr ₃ Ni	24	3.7	Curie-Weiss	•••		Antiferromagnetic	[68Fer]
Pr7Ni3	–2	3.6	Curie-Weiss(a)				[66Kis]
PrNi	23	3.9	Curie-Weiss	22	2.26	Ferromagnetic	[64Wal.64Abr]
PrNi2	4	3.57	Curie-Weiss(a)	•••			[66Far. 68Mad]
PrNi3				20	1.57	Ferromagnetic	[67Pac]
Pr2Ni7				85	4.36(b)	Ferromagnetic	[67Lem2]
From [73Wal]. (a) Exhibits Va	an Vlek para	magnetism. (b) l	Per formula unit	of Pr2Ni7.	-	

Table 5Heat Capacities and Derived Ther-
modynamic Properties of Pr₂Ni₂ and PrNi₅ (a)

Property	PrNi ₂	PrNi ₅
Heat capacity (C_p)	77.62	162.20
Enthalpy $(H-H_0)/T$	57.78	109.98
Entropy (S)	136.58	230.14
Gibbs energy $-(G-H_0)/T$	78.81	120.16
Entropy at fusing (ΔS_f)	3.66	7.61
From [73Wall, (a) at 298.15	K in J/mol·K.	

59Wer: J.H. Wernick and S. Geller, "Transition Element-Rare Earth Compounds with the Cu₅Ca Structure," Acta Crystallogr., 12, 662-665 (1959). (Equi Diagram, Crys Structure; Experimental)

- 60Wer: J.H. Wernick and S. Geller, "Rare Earth Compounds with the MgCu₂ Structure," *Trans. AIME*, 218, 866-868 (1960). (Equi Diagram, Crys Structure; Experimental)
- 61Dwi: A.E. Dwight, "Factors Controlling the Occurrence of Laves Phases and AB₅ Compounds Among Transition Elements," Trans. ASM, 53, 479-500 (1961). (Equi Diagram, Crys Structure; Experimental)
- 61Gsc: K.A. Gschneidner, Jr., Rare Earth Alloys, D. Van Nostrand Company, Inc., New York, 221-230 (1961). (Equi Diagram; Compilation: #)
- 63Dwi: A.E. Dwight, J.B. Darby, Jr., D.J. Lam, and M.V. Nevitt, "Occurrence and Structures of Intermediate Phases in Transition Metal Systems," ANL-6868, USAEC, 303-305 (1963). (Equi Diagram; Experimental)
- 64Abr: S.C. Abrahams, J.L. Bernstein, R.C. Sherwood, J.H. Wernick, and H.J. Williams, "The Crystal Structure and Magnetic Properties of the Rare-Earth Nickel (RNi)

Compounds," J. Phys. Chem Solids, 25, 1069-1080 (1964). (Equi Diagram, Crys Structure, Magnetism; Experimental)

- 64Wal: R.E. Walline and W.E. Wallace, "Magnetic and Structure Characteristics of Lanthanide-Nickel Compounds," J. *Chem. Phys.*, 41(6), 1587-1591 (1964). (Equi Diagram, Crys Structure, Magnetism; Experimental)
- **65Dwi:** A.E. Dwight, R.A. Conner, Jr., and J.W. Downey, "Equiatomic Compounds of the Transition and Lanthanide Elements with Rh, Ir, Ni and Pt," *Acta Crystallogr.*, *18*, 835-838 (1965). (Equi Diagram, Crys Structure; Experimental)
- **66Far:** J. Farrell and W.E. Wallace, "Magnetic Properties of Intermetallic Compounds between the Lanthanides and Nickel or Cobalt," *Inorg. Chem.*, 5(1), 105-109 (1966). (Magnetism; Experimental)
- 66Kis: F. Kissel, T. Tsuchida, and W.E. Wallace, "Magnetic Characteristics of ZrNi5 and HfNi5 and Some Lanthanide-Nickel Compounds Having the Th7Ni3 Structure," J. Chem. Phys., 44, 4651-4652 (1966). (Equi Diagram, Magnetism; Experimental)
- 67Lem1: R. Lemaire and D. Paccard, "Crystal Structure of Intermetallic Compound T₃Ni," Bull. Soc. Fr. Min. Cristallogr., 90, 311-313 (1967) in French. (Equi Diagram, Crys Structure; Experimental)
- 67Lem2: R. Lemaire, D. Paccard, and R. Pauthenet, "Magnetic Properties of Nickel Alloys with Rare Earth Metals and Yttrium," C.R. Acad. Sci. Paris, 265B, 1280-1282 (1967) in French. (Magnetism; Experimental)
- **67Pac:** D. Paccard and R. Pauthenet, "Crystallographic and Magnetic Properties of Alloys with the formula *T*Ni₃, where *T* is Yttrium or a Rare Earth Metal," *C.R. Acad. Sci. Paris*, *A, B264B*(15), 1056-1059 (1967) in French. (Crys Structure; Experimental)
- 68Fer: J.L. Feron, R. Lemaire, D. Paccard, and R. Pauthenet, "Magnetic Properties of Intermetallic Compounds between Rare-Earths and Nickel of the Formula T₃Ni," *Compt. Rend. B, 267, 371-374 (1968).* (Magnetism; Experimental)
- 68Mad: K.H. Mader and W.E. Wallace, "Magnetic Characteristics of Pr_zYi_{1-z} Ni₂ Alloys and Nature of PrNi₂ at Low

Temperatures," Inorg. Chem., 7, 1627-1629 (1968). (Magnetism; Experimental)

- **70Bus:** K.H.J. Buschow and A.S. Van Der Goot, "The Crystal Structure of Rare-Earth Nickel Compounds of the Type R₂Ni₇," *J. Less-Common Met.*, 22(4), 419-428 (1970). (Equi Diagram Crys Structure; Experimental)
- 71Nas: S. Nasu, H.H Neumann, N. Marouk, R.S. Craig, and W.E. Wallace, "Specific Heats of LaNi5, CeNi5, PrNi5, NdNi5 and GdNi5 between 1.6 and 4K," J. Phys. Chem. Solids, 32, 2779-2783 (1971). (Thermo; Experimental)
- 71Tay: K.N.R. Taylor, "Intermetallic Rare-Earth Compounds," *Phys.*, 20(N87), 551 (1971). (Equi Diagram, Crys Structure; Compilation)
- 72Cra: R.S. Craig, S.G. Sankar, N. Marsouk, V.U.S. Rao, W.E. Wallace, and E. Sega, "Thermal, Magnetic and Electrical Characteristics of PrNi5," J. Phys. Chem. Solids, 33, 2267-2274 (1972). (Thermo, Magnetism; Experimental)
- 73Olc: G.L. Olcese, "Crystal Structure and Magnetic Properties of Some 7-3 Binary Phases between Lanthanides and Metals of the 8th Group," J. Less-Common Met., 33, 71-81 (1973). (Equi Diagram, Crys Structure; Experimental)
- 73Wal: W.E. Wallace, Rare Earth Intermetallics, Academic Press, New York, 111-144 (1973). (Thermo, Magnetism; Compilation)
- **83Cha:** M.W. Chase, "Heats of Transformation of the Elements," *Bull. Alloy Phase Diagrams*, 4(1), 124 (1983). (Thermo; Compilation)
- *84Pan: Y.Y. Pan and C.S. Cheng, "The Phase Equilibria in Ni-Pr System," Chinese Nat. Symp. Phase Diagrams, Kumming, Sep 21-23 (1984) in Chinese. (Equi Diagram, Crys Structure; Experimental; #)
- **86Gsc:** K.A. Gschneidner, Jr. and F.W. Calderwood, "Intra Rare Earth Binary Alloys: Phase Relationships, Lattice Parameters and Systematics," *Handbook on the Physics and Chemistry of Rare Earths*, Vol. 8, K.A. Gschneidner, Jr., and L. Eyring, Ed., North-Holland, Amsterdam, 1-161 (1986). (Equi Diagram, Crys Structure; Compilation)

*Indicates key paper.

#Indicates presence of a phase diagram.

Ni-Prevaluation contributed by **Y.Y. Pan** and **P. Nash**, Illinois Institute of Technology, Department of Metallurgical and Materials Engineering, 10 West 33rd St., Chicago, IL 60616. This work was supported by NASA grant No. NAG3-302 through ASM INTERNATIONAL. We gratefully acknowledge Dr. K.A. Gschneidner, Jr. for providing additional references. Literature searched through 1985. Professor Nash is the ASM/NIST Data Program Category Editor for binary nickel alloys.