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Abstract: The length and fineness of fibers are critical to the strength of yarns. Much research has been conducted on the
issue in the past decades. Zeidman and Sawhney introduced a new parameter called strength efficiency (SE) of fibers in a
yarn using an elaborate probabilistic method. Their final formula, a non-dimensional measure, describes the influence of the
fiber length distribution on the strength of yarn. The result, however, is based on the assumption that the fibers are identica l in
all respects including their cross-sectional area. The influence of fiber fineness can not be seen in their formula. In fact the
joint influence of fiber length and fineness is rarely studied. We derive a new strength efficiency of the joint influence of fiber
length and fineness on the basis of Zeidman’s result. The conclusion is helpful to the understanding of the comprehensive
influence of fiber length and fineness on the strength of yarn. Furthermore, we give a plausible method to estimate the critical
length defined by Zeidman. The result can be applied to the research of the properties between fibers and yarns. 
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 Introduction
 

The relationship between the properties of fibers and that

of yarns attracted a lot of textile scientists from all over the

world. The tensile properties of fibers and the properties of

yarns are the focus of the research. For decades, scientists

have developed different models to describe and understand

the mechanism of yarn formation and failure [1-5]. Liujk et al.

researched the behaviour of staple-fiber yarns. Suh studied

the influence of fiber length distribution on the geometrical

configuration of yarns [6]. Zeidman et al. [7] derived a

probability model and defined a new quantity called strength

efficiency to study the effectiveness of fiber length to the

strength of yarns. All of the research laid the basis of the

proceedings concerning the study of fiber length distribution.

Among all of the researches of effect of fiber length distribu-

tion on the tensile properties of yarns, Mishu Zeidman and

Paul S. Sawhney did a very elaborate and accurate deduction

work [7]. They modelled the strength of fibers assemblies in

a yarn on the base of some simple assumptions, resulting in a

non-dimensional parameter called strength efficiency (SE)

which indicates the effect of fiber length distribution on the

strength of yarns. The final formula is precise and under-

standable. The derivation is done under the assumption that

all fiber properties (mechanical, geometrical, dimensional)

are identical except the length of fibers. The analysis of the

SE implies that under same conditions (such as the minimum

length and the maximum length) the higher the length

irregularity is, the larger the SE will be. However, the

strength efficiency they derived does not reflect the effect of

fiber fineness. In fact, the influence of fibers fineness is

significant among the factors that dominate the strength of

yarns. Extensive researches have been done on the impact of

fiber fineness on the unevenness of yarns, and the fineness

of fibers is regarded as the main reason that causes the yarn

irregularity [1,2]. So we start, with the use of multivariate

distribution method, to add the fiber fineness to the strength

efficiency formula including fiber length distribution. We

finally result in a joint influence both of the fiber length and

the fiber fineness distributions on the yarn strength. Another

result is that we give an estimate method of the critical

length defined by Zeidman and Sawhney in their model,

thus the method can be used to make an estimate of the

critical length through other parameters and to analyze the

yarn failure mechanics. The analysis of our result can also be

extended to more comprehensive forms if the variation of

friction coefficient and other factors are taken into account.

Zeidman’s Theory

Zeidman and Sawhney first assume that the fibers in the

yarn are parallel to the axis of the yarn and are uniform along

their lengths. All the fibers in the yarn are identical in all

respects (cross-sectional configuration, and dimensions,

mechanical properties) but differ in their lengths. The fibers

in the yarn are supposed to be subject to a lateral pressure

which has a constant proportionality factor. Because of the

previous assumptions on the fibers, the fiber surface area a

and the length l and the invariant proportionality coefficient

k have the following relation:

 (1)

According to Zeidman and Sawhney, the fibers in the

breaking zone of the yarn can be divided into two parts: one

a kl=
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breaks in the breaking process and the other slips during the

fracture of the yarn. Friction in two opposite directions happens

on the surface of the fibers. The contact surfaces of a single

fiber by two parts of lateral fibers moving in opposite directions

are stochastic. The contact area by any part of the lateral

fibers follows a uniform distribution on the total area of the

fiber. Furthermore, the contact area of a single fiber by the

moving fibers cannot exceed a certain area, otherwise the

friction force will be larger than the breaking strength of the

fiber. Consequently the fiber will not slip but break. So a

critical area exists. Thus whether a fiber can slip or break is

dependent on the area contacted by the lateral fibers moving

to one direction.

Because of the relation (1), the area of the fiber is easily

converted to the length of a fiber. The critical area for the

fiber in the previous discussion can be changed to the length

of the fiber. Zeidman and Sawhney derived through a very

elaborate probabilistic deduction and finally reached to the

following expression:

(2)

where P is the total strength of the yarn, pb is the breaking

strength of a single fiber, m2 is the second moment of the

fiber length with respect to the length distribution. N stands

for the number of fibers in the cross-section of the yarn, lm is

the average length of the total fibers, lc is the critical length

for the fibers that may break, W(x) is a fibrogram defined as

follows:

(3)

where  is the fiber length frequency density function

satisfying

(4)

That is 

(5)

In the analysis, Zeidman divided the fiber in the fracture

zone of a yarn into two parts, and calculate the breakage

probability according to their locations in the yarn. A pro-

babilistic technique has been used to analyze each part

respectively. As a result an integral form of the yarn strength

is given as below: 

(6)

An analysis of the final strength efficiency shows that the

non-dimensional measure can become bigger when longer

fibers are among the total fibers. Another conclusion can be

drawn that the strength efficiency is the monotonically

increasing function of lc, therefore the smaller the critical

length lc is, the bigger the strength efficiency will be.

Zeidman also pointed out that the fiber break strength pb

and the critical break length have such a relation that

(7)

Where k is defined by (1), µ is the coefficient that may reflect

the friction coefficient and the lateral pressure between fibers.

(8)

However, the theory did not take the fiber fineness distribu-

tion into consideration, nor gave the way to estimate of lc on

the basis of experiment data. In fact, it is very difficult to

estimate lc, as is illustrated by a lot of approaches. In the

following discussion, we assume the cross section of the

fiber a circular shape, inverting the critical length problem to

a parameter estimate problem of an estimate of the area of a

cross section. 

Development of the Model

Zeidman’s strength efficiency, in general, can be applied

to a yarn as well as any fiber bundles in the yarn. We develop

the new result based on his formula. The equation (6) can be

regarded as a theorem. It can be restated as an available

result that any cross section fiber bundle with identical cross

section area and length density  in the cross section can

be derived to result in the equation (6) as the yarn strength

efficiency with fiber length distribution  in the length

population. 

For the sake of convenience, we change some of the

assumptions given by Zeidman. We assume that the fiber

cross section is a round area. This is exactly true when some

artificial fibers are spun. The cotton fibers, however, can

approximately be viewed as a geometrical cylinder with

round cross section area because here we will focus on the

friction strength. The assumption will not virtually influence

the final result. Another assumption we specify here is that

the fiber strength is proportional to the fiber cross section

area. This assumption does not contradict the fact. Furthermore,

we assume that the fiber length and the fiber fineness are

independent. And we assume that the lateral pressure is

independent of the cross-sections of fibers. 

First, let pb be the fiber strength, then we have

(9)

λ is the proportion coefficient, s is the cross section area of

the fiber. Because we have assumed a round cross section of

the fiber, so we have 

(10)

First and foremost, we try to express the number of fibers
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as a joint function of the fiber length and fineness. The

length and fineness can be temporarily viewed as discrete

variables for it is easier to be understood. We will then

change the discrete result into a continuous form as the two

different expressions may not have virtual distinction. 

We assume the fibers in the yarn may have k different

lengths  in ascending order, and the fiber cross

section areas have h different values , also in

ascending order. They are precise forms of expression of the

fiber length and fiber fineness distributions. Thus we have a

function with fiber length l and fineness s as two independent

variables. We denote the number of the fibers with length li
and the cross section area sj as rij, that is 

  (11)

We still assume that there are N fibers totally in the cross

section of the yarn as Zeidman did in his deduction. So we

divide each numbers of the two sides of the expression

defined above by the number of fibers in the cross section.

We have 

,

(12)

Then the expression (12) is the joint probability of the

fiber length and fiber fineness (cross-sectional area). So the

marginal distributions are

(13)

(14) 

Here we apply the independence assumption for the fiber

length and fiber fineness. Then we have

(15)

Now we will come to apply the theorem as stated at the

beginning of this section. We notice that for a fixed cross

section area sj, the marginal distribution of the fiber length is

invariant. We take it as a fiber bundle with a continuous

distribution denoted by , and we then apply Zeidman’s

fiber strength result as

(16)

After that we take the sum of all different cross sections as

follows:

(17)

Here we need to analyze the new variables in (17). n(si) is

the number of the fibers with cross section area si. According

to the property of marginal distribution, the number of

fibers should be .  is the break strength

of the fiber with cross section area si which we have

assumed that it is proportional to si, the fiber cross section

area. That is

(18)

where λ > 0 is the proportional coefficient. 

At last, we discuss the length , with stands for the

critical length with cross section area sj. This can be derived

in line with Zeidman’s analysis, we have 

(19)

The expression (1) and (8) imply that k is the perimeter of

the fiber cross section as we assume the fiber cross section is

a cylinder. Here we may have a ki for the fiber bundle with

the identical cross section si. Then we have 

(20)

 

We substitute (18), (19), (20) for the respective variable in

(17). We then have

 (21)

where lm is the average fiber length in all fibers in the

population. To be precise, we denote g(s)  as a

continuous density function of the fiber cross section. So the

expression (21) can be easily rewritten as follows

(22)

Considering that the maximum strength produced by N

fibers in the yarn is

(23)

so the joint strength efficiency is

(24)

Let , then (24) can be written in another form:
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(25)

When the cross section of the fibers remains identical,

expression (25) will immediately go back to Zeidman’s

expression (6). 

 

 Discussion

An analysis of the expression (25) reveals that the original

form of Zeidman’s expression of strength efficiency is still

preserved when the fiber cross sections are invariant.

Equalizing (25) and (6) and comparing the counterparts of

the two expressions we reach to another conclusion that 

(26)

Expression (26) gives us a relation between the propor-

tional coefficients and the critical length. The result is very

helpful to find out the critical length in the fibers through

experimental method. If we could measure the proportional

coefficients, we can estimate the critical length, thus the yarn

strength can be obtained. 

In textile production we know that for a certain linear

density of yarn, thinner fibers can be spun to be a yarn with

larger strength and better evenness. The expression (25)

does not contradict this fact. According to (25), the smaller

cross-sectional area  can make the numerator smaller. In

fact a yarn with thinner fibers under certain linear density

will have larger number of fibers. Expression (25) also

reflects that a more uniform cross section of fibers can be

expected to have larger strength efficiency in yarns. 

The estimation of the critical length and the further analysis

of the result (25) remain to be investigated later. The practical

use of the result needs other technical skills such as the

measurement of the fiber length distribution and the fiber

fineness distribution as well. 
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