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Abstract In this paper we show that there exists a unique local smooth solution for the Cauchy 
problem of the Schr0dinger flow for maps from a compact Riemannian manifold into a complete Kithler 
manifold, or from a Euclidean space R" into a compact K/ihler manifold. As a consequence, we prove 
that Heisenberg spin system is locally well-posed in the appropriate Sobolev spaces. 
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I Main results 

In this paper, we discuss the short time existence of solutions to the Schrfidinger flow [l~ for 
maps from a Riemannian manifold ( M, g )  into a complete Kahler manifold ( N,  J ,  h ) with com- 
plex structure J and Kahler metric h.  The Schrfidinger flow is defined by the initial value prob- 
lem 

a t u ( x , t )  = J ( u ( x , t ) ) r ( u ( x , t ) ) ,  
u ( ' , 0 )  = no: M - - * N ;  (1 .1 )  

where r ( u )  denotes the tension field of u which, in local coordinates, can be written as 
3u ~ 3u r 

: ( u ) = Asu~  + ( u ) 
3 X  i 3 ~  ' 

where A s is the Laplace-Behrami operator on M with respect to the metric g and /-~r is the 
Christoffel symbol on the target manifold ( N ,  h ) .  It is well known that u is a harmonic map if 
and only if r ( u ) = 0. 

An important example of the Schr~linger flow is the Heisenberg spin chain system (also 

called ferromagnetic spin chain system ~2~ ) which is given by 
3u  
-~t = u x An,  (1 .2 )  

where u takes values in S 2 C ~3 and • denotes the cross product in ]~313 ,4 ]  �9 This carl be written 

in the form of ( 1.1 ) because u x : T,S 2--* T=S 2 is just the standard complex structure on S 2 and 

r ( u ) is the tangential part of A u in ~3 L I] 

In 1991, Zhou, Guo and Tan Is] proved that for any smooth initial data u0: SI--*S 2 , there 
exists a unique smooth global solution to the Cauchy problem of the ferromagnetic spin chain sys- 

tem ( 1 . 2 ) ,  i . e .  the Schrodinger flow of maps from Sl into S 2 . Ding and Wang t l] generalized 

the result of Zhou-Guo-Tan to the case of Schr~inger flow from S I into a general compact Kahler 
manifold ( N,  J ,  h ) .  They proved that the Cauchy problem admits a unique local smooth solution 
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provided Uo is smooth. When the target ( N,  J ,  h )  is a Kahler manifold with constant holomor- 
phic curvature, it is proved in refs. [ 1,6 ] that the problem has a unique global smooth solution 
(see also refs. [ 7 , 8 ]  for a generalization to the so-called inhomogeneous Schrfdinger flow). 

Terng and Uhlenbeck [9] considered the SchrSdinger flow from ~1 into a Grassmannian manifold. 
They were able to establish the gauge equivalence of the Schrfidinger flow with a nonlinear matrix 

Schr0dinger equation. In the case where M = ]$1 and N is a compact Riemann surface, Chang, 

Shatah and Uhlenbeck [1~ proved the global existence and uniqueness in the space W2'2(~ 1 , N ) ,  

using a generalized Hasimoto transformation. For M = ~2 and N a compact Riemann surface with 

S l symmetry, they obtained similar result under the additional conditions that the initial mapping 

u0 is radially symmetric or S 1 equivariant with small energy. 

In ref. [ 6 ] ,  Pang et al. proved the local existence of smooth solutions to the Cauchy prob- 
lem ( 1.1 ) when M is a closed Riemann surface and N is a compact Kahler manifold with non- 
positive Riemannian curvature. It is our aim in this paper to generalize their result to the cases 

where M is an arbitrary closed Riemannian manifold or M = ~"~, while N is a complete Kahler 
manifold. As in refs. [ 1,6 ] ,  we use parabolic approximation and energy method to obtain a pr/- 

ori W k'2 estimates for the approximating solutions. It turns out that the geometric structures of the 

Schrfidinger flow are crucial for obtaining such estimates. Instead of directly estimating the W k'2- 

norm of the solutions, one needs to first estimate the L2-integrals of the covariant differentials 

ku of the solution u, where Vu is considered as a section on the pull-back tangent bundle u * 

TN. When N is Kahler, the time derivative of such an L2-integral can be controlled by a poly- 

nomial of similar L2-integrals of covariant differentials of order ~< k. In other words, the higher 
order covariant differentials disappear as a result of good geometric structures in our equations. 

Our main results are as follows. 
Theorem 1.1 .  Let ( M ,  g )  be a closed Riemannian manifold and ( N ,  J ,  h ) be a com- 

plete Kahler manifold. Let m0 = [ 2 ]  + 1, where [ q ] denotes the integral part of a positive 

number q. Then, if N is compact (or noncompact), the Cauchy problem ( 1.1 ) with initial map 

u 0 E W  ~ '2(M,  N ) ,  for any integer k1> m0+ 1 (or k~> m0+ 2 ) ,  admits a local solution 

uEL| W L 2 ( M , N ) ) ,  where T =  T(II u011 ~o*'.~) (or T=  T(N,  I1 u011 w-0"2.~)); 

when k >~ m0 + 3, the local solution is unique. Moreover, if uo E C | , the local solution 

u E  C|  T] • M , N ) .  

Theorem 1.2 .  Let ~'~ be a Euclidean space and ( N , J , h )  be a compact Kahler mani- 

fold. Let mo = [ 2 ] + 1. Then the Cauchy problem ( 1.1 ) with u0 E W k'2(]$m, N ) ,  for any in- 

teger k1> mo + 1, admits a local solution u E  L | ( [ 0 ,  T ] ,  W k ' 2 ( ~ m , N ) ) ,  where T =  
T( II ~7 u0 II ~0.2). If k~> m0 + 3, then the local solution is unique. Moreover, if u 0 E ~  - 

N~=IW~'2(~ m, N ) ,  then u E C |  

In refs. [ 11,12] ,  it has been shown that the Cauchy problem to the Heisenberg spin chain 
system defined on a closed Riemannian manifold admits a global, weak solution. Also, it is easy 

to check that an L | ( [ 0, T ] ,  C 2 ( M,  S 2 ) ) solution to the Cauchy problem of the Heisenberg 
spin chain system is unique. As a direct consequence of Theorems 1.1 and 1.2 we have 

Corollary 1 .1 .  Let ( M ,  g )  be a closed Riemannian manifold or a Euclidean space and 
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S 2 be a sphere with standard metric. Let mo = [ 2 ] + 1 where m = dim ( M ) ,  and let ~ -- 

r'l ~= i wk'2( M, N) .  Then, the Cauchy problem to the Heisenberg spin chain system (1 .2)  with 

initial data UoE Wk'2( M, $2),  for any integer k >I m0 + 1, admits a local solution u E L | ( [0, 

T], W~'2(M,S2)),  where T= T( tl V u0 II r The local solution is unique when k ~  m0 

+ 2 .  In particular, if u0E~/r then u E  C |  T] ,  J ~ ) .  

Sulem et al. [131 also discussed the existence of solutions to Heisenberg spin chain system 

defined on a Euclidean space •" by employing the difference method. 
The rest of the paper is organized as follows. In sec. 2 we prove the interpolation inequality 

of bundle valued Sobolev spaces defined on a compact Riemannian manifold or a Euclidean space 

~,n, and establish the relations between W ~'2 norm and H k'2 norm. Sec. 3 is devoted to the proof 
of the above theorems. 

2 Some inequalities for Sobolev sections on vector bundles 

Let ~:  E --~ M be a Riemannian vector bundle over a Riemannian manifold M. Then we 

have the bundle APT* M (~ E --~ M over M which is the tenser product of the bundle E and the 

induced p-form bundle over M,  where p = 1 , 2 , ' "  , d i m ( M ) .  We define ['(APT * M (~E) as 

the set of all smooth sections of APT * M (~E--*M. There exists an induced metric on .APT * M 

|  from the metric on T" M and E such that for any Sl, s2E ['(.APT* M |  

<81'$2> = E <$1(eil,~176176 )>, 
where {el} is an orthonormal local frame of TM. We define the inner product on ['(.APT* M (~ 
E ) as follows : 

( , 1 , s2 )  = f (S l , S2>(x )dM= f ( S l , S 2 ) ( x ) *  1. 
M M 

The Sobolev space LE(M,.APT" M (~E)  is the completion of ['(APT ~ M (~E)  with respect to 

the above inner product ( �9 �9 ) ,  we may also define analogously the Sobolev spaces H k' ~ ( M, 

APT* M (~ E ) or H k'r ( M, E ) .  Let V be the covariant differential induced by the metric on E ,  
then we can take the completion of the smooth sections of E in the norm, 

l 

I1 s II = II s II = . M ]v~s ]'dM , 

where 
1 

I sl-- < v . . .  v , ,  v . . .  v 
T v 

; tirnel i times 

We call the above Sobolev spaces the bundle-valued Sobolev spaces. 
We first prove the following interpolation inequality for sections on vector bundles, which 

was proved for functions on ~ "  by Gagliardo and Nirenberg, and for functions on Riemannian 
�9 [14 7 

manifolds by Aubm ". 

Theorem 2.1. Let s E C | (E), where E is a finite-dimensional C | vector bundle over 

a closed m-dimensional Riemannian manifold M. Then we have 

. 1 - .  (2 .1)  11 clI,II .,II,I1L, , 
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where 

where l ~ < p ,  q ,  r ~< 
such that 

k 

I I ,  II . , ,  = ~ II v', II , , ,  
l*O 

, a n d j / k ~ a ~ l  ( j / k ~ a  < 1 if q = m / ( k  - j ) # l )  are numbers 

- + - -  + a - - - -  . ( 2 . 2 )  
P m r q r 

The constant C in ( 2 . 1 )  depends only on M and the numbers j ,  k ,  q ,  r ,  a .  
P roo f .  We will follow the proof in ref. [14]  closely and be sketchy. We first note that, 

for functions f E  C ** ( M )  (without the assumption that JM f = 0 ) ,  one can modify slightly Theo- 

rem 3 .70  in ref. [ 14 ] to get 

a 1 - a  ( 2 . 3 )  [I vsfl[ L~ ~ C [ ] f [ ] ~ . , [ [ f [ [ E  ' 

where the constants in ( 2 . 3 )  satisfies the conditions of Theorem 2 . 1 .  
Case ( i ) .  j = 0  and k = 1. In this case,  letting f =  I s l  in ( 2 . 3 )  and noticing that 

Kato ' s inequal i ty  I v  I sl  [ ~ l V s l  implies [I I s l  [I w"' ~< 1[ s [[ n .... we get inequality ( 2 . 1 )  

for j = 0 ,  k = l .  

In general, one can let f = [ V/s I and use Kato' s inequality I V [ ~ s  I I ~ I ~ §  s I for j 
1 to derive from ( 2 . 3 )  

a l - .  ( 2 . 4 )  11 v , l [ e ~  Clls l l ,r  .... II VJsll,: 
Case ( i i ) .  j = l  and k = 2 .  In this case we have 1 / 2 ~ a ~ l .  It is clear that the case a 

= 1 has been treated in ( 2 . 4 ) .  For the remaining cases,  similar to ref. [ 1 4 ] ,  the crucial step 
is to prove ( 2 . 1 )  for a = 1 /2 ,  or 

II V s II = ( 2 . 5 )  ,, <~ C ( m , p ) II V z s I] ~, I I ,  II , : ,  

where l / q  + 1 / r  = 2/p.  
Proo f  of  ( 2 . 5 ) .  We assume p I> 2,  which is what we need for our applications. By di- 

rect computation we have 
Div([  V s  [ P - 2 V s , s )  = I V s  I p + 1 V s  IP-2(V=V=s,s)  

+ (p  - 2 ) I  V s  IV-4(,Vlss,V=V~s><Vos, s). 
Integrating the equality over M and noting that 

I N vovo : Iv ,l: s ~< m 

we get 

/ Iv ,1 +, p - 2 ' ) /  fV2sJ IV 
J M 0 M 

Applying the Htflder 's  inequality (noting 1/q + 1/r + (p - 2)/p = 1 ) ,  we have 
p - 2  

II V s I{ L ~ <~ C(m,p)  II V = s  II L' II s II E l i  V s [l L' ' 

which is just ( 2 . 5 ) .  
For 1 /2  < a < 1, we need to consider two cases. 

(a )  q < m.  Using the convexity of log( ]I f II L ~ )  as a function of p ~ 1, we have 
l - a t  

II v , l l e < ~  II v , l t~ , l l  V s l l c  ' 
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where 1 ~< t ~< p ~< r and a = (p  - 1 _ r - I ) / (  t - ' - r - 1 ) .  Choose t ,  r so that 

1 1 1 2 1 1 2 1 
_ - - ,  and - + - - - .  

r q m t q r q m 

Then by ( 2 . 5 ) ,  
1/2 1/2 II VslIL,~< ell V~,IIL, I Is l Ic ,  

and by (2 .4)  with j = l ,  a = l ,  
II v s II c ~< c l l~ I I , ,  . . . .  

Combining the above three inequalities we get ( 2 . 1 ) .  

(b )  q t> m.  Under this condition one can choose t such that 

and choose b E [0 , 1  ] such that 

1 

P 
Then by ( 2 . 4 )  with j = 1, 

Then by ( 2 . 5 ) ,  

2 1 1 
t q r 

1 
- t + b - T - m  " 

l - b  
II v s II L" ~< C II s II b,,,., li v s II c 

1/2 1/2 
II v ~ l l c ~ <  c l l  V ~ s l l ~ ,  I I ~ l i c  

Combining the above two inequalities we get ( 2 . 1 )  with a = (1 + b ) / 2 .  

This completes the proof of Case ( i i ) .  All the remaining cases then can be derived by in- 

duction. 

Now let u E C | ( M ,  N ) ,  where M is a closed Riemannian manifold. Considering Vu as a 

section on the bundle u * ( T N )  (~ T* M ,  then with s = • u ,  we have by Theorem 2 . 1 ,  

a 1 - a  ( 2 . 6 )  {I v J + l u  [I ff ~ C {I V u {I k.,  II v u II c , 

where the constants in ( 2 . 6 )  satisfy the conditions of Theorem 2 . 1 .  

We need to consider the case M = T~ = ][{m/(R .~)m, where R ~ 1 and the Riemannian 

metric of T~ is just the Euclidean metric. 

P r o p o s i t i o n  2 . 1 .  If M = T~,  then the constant C in ( 2 . 6 )  does not depend on the di- 

ameter R >~ 1. 

P r o o f .  For each u E C | ( T~,  N)  let uR E C | ( Tl m, N )  be defined by 

uR(x) = u ( R x ) ,  y x E  ~ .  
Then it is easy to find that for any integer l I> 1, 

= R ' - ~ ' '  II V' ( 2 . 7 )  II v ~ uR II er u I1 L'r 

Since R I> 1, one deduces from ( 2 . 7 )  

II v u~ II r176162 ~ (k  + 1)R k+l-'/q II V u II r162 ( 2 . 8 )  

Note un satisfies ( 2 . 6 )  with the constant C = C( TT~ , j ,  k , p ,  q ,  r ) .  Combining ( 2 . 6 )  for u = 

uR with ( 2 . 7 )  and ( 2 . 8 )  we get 
a l - a  

II v ' + l u l l , , ~ <  CR ~ II V u l l , , . . l l  V a i l , .  , 
for some constant h .  However, using ( 2 . 2 )  one cheeks that h = 0.  This proves the proposition. 
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In the following we consider the problem of comparing the W k'2 norm with H k'2 n o r m  of 

maps u E C | ( M ,  N ) .  We assume that M is a closed Riemannian manifold and N is a compact 
Riemannian manifold with or without boundary. It will be convenient to imbed N isometrically in- 

to some Euclidean space ~K,  and consider N as a compact submanifold of ]~K. Then the map u 

can be represented as u = ( u 1 , " ' ,  u r )  with u i being globally defined functions on M.  Then we 

have 
k 

i = 0  

w h e r e  

II O'u II ~ 
l a l  = i  

and D denotes the covariant derivative for functions on M.  The H k'2 n o r m  of u is defined simi- 
larly, we only need to replace D by V , where V is the covariant derivative for sections of the 

bundle u * ( T N )  over M (for simplicity we also write Vu = Du. ) .  

In general, V is a section of u ~ ( T N )  if and only if V E  C | (M,]$  K) such that V ( x ) E  

T~(~)N for all x E  M.  For each y E N  C ~K, let P ( y )  be the orthogonal projection from ~K 

onto TrN,  then we have 

V ( x )  = P ( u ( x ) ) V ( x ) ,  V x  E M. 
Applying the operator D~ to the identity we get 

D~V = P ( u ) D ~ V  + A ( u ) ( D ~ u , V ) ,  

or equivalently, 
DoV = v ~ v +  A(u)(Vou,V), 

where A is the second fundamental form of N in R K . Using this, it is easy to derive by induction 

the following identity (with u~ = V) 

D.u = V,,u + ~ - ] B ~ ( , , ) ( u ) ( V , , u , ' " ,  V . u ) ,  ( 2 . 9 )  
a 

where l a l ~ > 2  and the sum is over all multi-indices a l  , " "  , a ,  such that l a i l~> 1 for all i and 
( a l , ' " , a , )  = a ( a )  

is a permutation of a .  The B,,(a) in ( 2 . 9 )  is the multi-linear form on TN, whose norm as an op- 

erator depends only on the geometry of N .  
It follows that 

ID,ul  Iv, ul+ C(N)  V,u ... V,u, 
and 

II O~u II L~ ~ I/ V~u II L~ + c(g) ~ II I ~/~u I " "  I V/,u I ]] L ~. ( 2 . 1 0 )  
j l  + " "  +.l~ = k ,  j ~s l 

Inversely, by the definition of covariant differential we can also deduce that there a r e  Si 

which are multi-linear vector valued functions on 1~  such that 

V,u  = D,,u + ~-]~B~(,,)(u)(Da u , ' " , D , L u ) ,  
a 

where I a I t>2 and the sum is over all multi-indices a l  , ' " ,  a ,  such that 
( a , , ' " , a , )  = a ( a )  

is a permutation of a .  There also holds 

I[ V~u II L ~ ~< 

( 2 . 1 1 )  

a i[ ~ 1 ~r  all i and 

II O~u II ~=+ C ~ II I D j 'u I " "  I D J'u I II L 2. 
j, § +]~ = k , / ; , t  

( 2 . 1 2 )  
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Proposit ion 2 . 2 .  Assume that k > m / 2 .  Then there exists a constant C = 

such that for all u E C | ( M,  N ) ,  
k 

t 
1] Du I1 , /  .... ~ C ~ 11 V u II , / - ~ ,  

t = l  

and 

Proof .  

that 

Then by Hfilder' 

C ( N , k )  

(2 .13 )  

k 
t 

II V u II ff-,.~ ~< C ~ II Du II w'  ..... ( 2 . 1 4 )  
t = l  

Consider the terms in the sum in ( 2 . 1 0 ) .  Let 2 ~ p ~  ~ ( i  = 1 , " "  , l )  be such 

1 1 1 - - + - - - +  _ . 
Pl Pl 2 

s inequality, 

II I vJ,  u I . . .  I VJ,u I II ,2 ~< I1 v J, u tl L, .""  II v ~,u It L"" 

We a s s u m e  j l  + " ' "  + j l  = j <~ k .  We claim that under the condition k > m / 2  one can check that 

there exist Pi and ( j i  - 1 ) / (  k - 1 ) ~< ai ~< 1 with 

1 j i -  1 1 a ~ ( k  - 1) 
- + 2  m Pi m 

By Theorem 2 . 1 ,  with s = V u ,  we have 
a 1 - a  

II vJ'tt  II if, ~ C II V tt I[ H L,.2 II V tt II L 2 ' ~ C II V U l[ / /LI.2.  ( 2 .  1 5 )  

Using this in ( 2 . 10 )  we get 
J 

l llOJuilL2~< c ~ l l  V u l l e  .... 
l f l  

for 1 ~< j ~< k.  It follows easily that ( 2 . 1 3 )  holds. 
Now we turn to proving the above claim. From Theorem 2.1  we see that the condition a i 

j i  - l 
k---S- ~ is equivalent to pi ~ 2 ,  and the condition al ~< 1 is equivalent to 

1 1 j i  k 
Pi ~ -2 + --m - --m =- 7i .  (2 .16 )  

Also, we see 

We may assume that 

m 
7, > 0 if and only if ji  > k - - ~ .  

m 
j l  >~ j2 >~ ""jr  > k -  -~ >~ jt+l >~ "'" >~ j t .  

That is, for i ~< t we have 7i > 0 ,  while for i > t we have 7i ~ 0.  

When t ~> 1, let Pi ( i = 1 , " " ,  t ) be a set of positive numbers such that 

1 1 1 - - + . . . +  _ . 
P~ Pt 2 

We need each p i (1  <~ i <~ t )  to satisfy ( 2 . 1 6 ) ,  i . e .  

1 1 j; k 
Pi ~ 7i = -~  + m - m > O. 

We can choose Pi to satisfy both ( 2 . 1 6 )  and ( 2 . 1 7 )  if only 

(2 .17 )  
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1 ~-~, ~q ~< ~-. 
i = l  

This can be verified by the following computation 

2 (1 12 (1 1~= y -  t + - -  j~<  ~ - -  t + - -  
i = 1  m i = 1  m 

1 1 
= ~ - +  ( t - l )  - ~  ~ < ~ .  

For i > t ,  to apply (2 .15 )  we need only to select Pi = ~ 

When t = 0, it is obvious that to apply (2 .15 )  we need only to choose Pm = 2 and Pi = " 
for i = 2 , " ' , l .  

By the same spirit as above, we can use (2 .11 )  and ( 2 . 1 2 ) t o  derive ( 2 . 1 4 ) .  Thus, we 
complete the proof of the proposition. 

3 Local existence of Schr/klinger flow 

In this section we prove the local existence of smooth solutions for the initial value problem 
of the Schrtktinger flow 

ut = J ( u ) r ( u ) ,  
u ( . , O )  = Uo E C |  (3 .1 )  

We need to employ an approximate procedure and solve first the following perturbed problem 

{u, = ~ r ( u )  + J ( u ) r ( u ) ,  

u ( ' , O )  = Uo E C |  (3 .2 )  

where e > 0 is a small number. 
The advantage of (3 .2 )  is that the equation with ~ > 0 is uniformly parabolic. Hence the 

initial value problem has a unique smooth solution u, E C | ( M x [0,  T~ ) ,  N)  for some T, > 0. 
The problem is then to obtain a uniform positive lower bound T of T,, and uniform bounds for 
various norms of u, ( t )  in suitable spaces for t in the time interval [0 ,  T) (Since we shall use 

L 2 estimates, the norms are Wk'2( M,  N ) -  norms for all positive integer k.  ) .  Once we get these 
bounds it is clear that the u~ subconverge to a smooth solution of (3 .1 )  as r 

Now let u = u, be a solution of ( 3 . 2 ) .  Then it is easy to see that the energy E ( u ( t ) ) = 

1_. I[ V u ( t )  [[ L' is uniformly bounded for t E  [0 7',) Actually, 
2 ' " 

M 

M M 

The last integral vanishes since the complex structure J is anti-symmetric. It follows that the time 
derivative for the energy is non-positive, and 

E ( u ( t ) )  <~ E ( u o ) .  (3 .3 )  

In the following we will make estimations on L 2- norms of all covariant derivatives Vtu ( k = 2 ,3 ,  
�9 " ) .  We will assume M is flat, i . e .  the Riemannian curvature of M vanishes identically, to 
simplify the computations. For the general case, the additional terms involving the curvatures of 
M actually do not provide additional difficulties, since the derivatives of u appearing in these 
terms are of lower orders. We formulate our estimates into a lemma. 
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Lemana 3 . 1 .  Let mo= [ m/2 ] + 1, where [ q ] denotes the integral part of a positive 

number q, and let UoE C |  There exists a constant T=  T( [I uo II H-0 ~.') > 0 ,  inde- 

pendent of e E [0,1 ] ,  such that if u E C | ( M x [0,  T~ ] ) is a solution of ( 3 .1 )  with r E (0,  
1 ] then 

T( II uo II 
and 

I] u ( t )  II x ..... <. C ( k ,  II u0[t H "',2) t E [0, T] 

for all k i> m0. 

Proof.  As N may not be compact we let g2 ~ t p E N  : distN ( p ,  u0 ( M )  ) < 1 t ,  which is 
an open subset of N with compact closure ~ .  Let 

T' = sup{t > 0: u ( M , t )  C ~ t .  
Fix a k I> mo, and let l be any integer with 1 ~< l ~< k. Suppose that a be a multi-index of 

length l ,  i . e .  a = ( a l , ' " , a t ) .  Then we have for t~< T' 

1 d II V , V , u  112 f (VoV, u ,  V,V,Viu) .  (3 .4 )  
2 d t  i = M 

Exchanging the order of covariant differentiation we have (of. ref. [ 15 ] ) 

7tVaVil~ -~ 7aViVtU 'at" ~ VbR(u)(~Ttu, VdVtU) 7 , V i u ,  

where the sum is over all multi-indexes b ,  c ,  d ,  e with possible zero lengths, except that 
] c I > 0 always holds, such that 

( b ,  c , d , e )  = a ( a )  
is a permutation of a .  Noting that we may replace 7tu in the terms of the summation by the fight 
hand side of eq. ( 3 . 2 ) ,  the above identity can be rewritten as 

7,XTaViu = V,ViV,u + Q (3 .5)  

with 

I Q I<~ c(z,a) lVJ, al'"lvJ, ul (3 .6)  

where the summation is over all ( j l , " ' , j , )  satisfying 
jt >~ j2 ~ "'" >~ j , ,  l +  1 ~ ji >~ 1, j l + " "  + j ,  = / + 3 ,  s ~>3. (3 .7)  

For the first term in the fight hand side of ( 3 . 5 ) ,  we may use eq. (3 .2 )  to get 
V,,ViV,u= V, V i ( r  + J ( u ) r ( u ) )  

= eXToV/VkVku + J ( u )  VoV~VkVku, (3 .8)  

where we have used the integrability of the complex structure J of the Kahler manifold N. By ex- 
changing the orders of covariant differentiation as the above, we get from (3 .5)  and (3 .8)  

~TtVaViU = eVkVk~7aTiU + J ( u )  7kVkV,  Viu + Q 
where Q satisfies (3 .6 )  and ( 3 . 7 ) .  Substituting this into (3 .4 )  and integrating by part we then 
have 

1 d I] V,V,u I]2 
2 dt L ~ 

= f  ( -  ~ I V V a V l t t ]  2 -  (VkVaViU,J( t t )  VkVaVltt) + ( V ~  
M 

Note that the first integrand is non-positive and the second vanishes, so we have by (3 .6)  
d II v,  V,u I1: I dt ~? <~ C ( l , O )  IVl§ IVJiul'"lVJ.ul, 

M 
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and consequently 

d-td II VI+I lI II 2L ~ <~ C ( l , f 2  

where the summation is over all ( j l , ' "  ,J, ) 
To treat the integrals in the summation 

l = f  IV ~+l 
M 

we need the following lemmas. 

) ~ f  Iv '§ u I Iv~ u I ... I VJ, u I, (3.9) 
M 

satisfying ( 3 . 7 ) .  
of ( 3 . 9 ) ,  i . e .  

ul  [VJ, u l ' " l V J . u l ,  (3.10)  

L e m m a 3 . 2 .  Let I be the integral ( 3 . 10 ) ,  where ( j l , ' " , j , )  satisfy ( 3 . 7 ) .  If l~</~< 
m0, then there exists a constant C = C ( M, l) such that 

B 
I <  CII Vu[I A,ro2 II V u Ilell V z§ 

where A = [ l + 3 + ( m / 2  - 1) s - m / 2 ] / m o  and B = s - A .  

Proof .  Let 2 <~ p i <~ ~ ( i = 1 , ' "  , s ) be real numbers (to be chosen later) such that 

2 1  1 
i=1 P i  2 

Then by Holder's inequality 

t ~< II V ' + ' a  II L 2 II W~u II ,:,'" 11 W,a II L'' ( 3 . 1 1 )  

Now by Theorem 2 .1 ,  we have 
a ,  1 - a i 

II V~,u I1 L" <~ C II V u II .=o~ II v u II L~ , ( 3 . 1 2 )  

where (ji - 1 ) / m o  <~ ai < 1, and 

1 j i -  1 1 aimo 
- + - -  - ( 3 . 1 3 )  

Pi m 2 m 

Note that when (3 .13)  holds, Pi >~2 implies a i >I ( J i  - 1 ) / m 0 ,  while the condition ai < 1 is 
equivalent to 

1 j i  - 1 1 mo 
- -  > - -  + - - - - -  - 7 i .  ( 3 . 1 4 )  
Pi m 2 m 

Also note that 

m if and only if ji I> 2. )'i ~> 0 if and only if j i -  1 >~ m o - - ~  

Assume that j i  ~ 2 for i ~< t ,  and ji = 1 for t I> t + 1. We choose p; = ao for i ~> t + 1 so that 

2 1 1 (3.15)  
i=1 P i -  2 "  

Then we may choose p/for i = 1 , ' " ,  t to satisfy both (3 .14)  and (3 .15)  if and only if 

1 2 1 ( 2  j ) t  mot 
2 > 7 i =  i - t + 2  m 

i ff i l  i ~ l  

s 

But ~ j i  = l + 3 and s >~ 3, we have 
i = l  

t 

>_2 Ji - t = l + 3 - ( s  - t )  - t <~ l <~ mo, 
i f f i l  

hence 

2 m o t m o t  1 ( 1  ~ )  1 
7i ~< - -  + - - -  - - ( t -  1) ~< ~- 

,=1 m 2 m 2 + 2- 
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The last equality can hold only if t = 1, which implies pl  = 2 and j l  = l + 1. If l < m o  we have 

1 
Yl < ~ and ( 3 .14 )  holds true. If l = mo, we see inequality ( 3 . 1 2 )  is trivially true for j l  = mo 

+1  and a l = l .  
We have shown that in any case we can choose Pi and ai such that (3 .12 )  holds for all i .  

It follows from (3 .11 ) and (3 .12 )  that 
B ~ l + i  I~< CII Vull~.o211 VUlIL 211 ull L2~ 

withA = ~ a i  = m = [ 1 + 3 +  ( m / 2 -  1 ) s -  m/2]/moandB = ~ ( 1 -  a , )  = s - A .  
i = 1  i = 1  

This finishes the proof of Lemma 3 . 2 .  
L e m m a  3 . 3 .  Assume l > m0. Then there 

( i )  if j l  = l + 1, 

l ~ C l r  V"'u l l  L2II V u  
( i i)  i f j l~<  l ,  

I~< C(1 + 11 V u I [  2 #2) 

where A = A ( m , l ) .  
Proof .  ( i )  If j l  = l + 1, we see from (3 .7  

exists a constant C = C ( M,  l ) such that 

2 -  m / m  o 
II m:.o 11 v u TI L 2 Hmo ,2 

A 
(1 + II V u  I1,,, .... ) 

) that s = 3  and j2 = j3  = 1 ,  i . e .  

1 = | Iv ,+ ,u l21v  /Zl 2 

d M 

Also, we see 
m 

~'k,j >~ 0 if and only i f j  >~ k -  ~-.  

Now, we turn to the integral I .  We may assume that for some integer t ~ O, 

(3 .18 )  

(3 .17 )  

Then it is clear that 

I ~< II vt+'u IJ 2 2 L ~11 V U l I L . .  
The claimed inequality follows immediately 

a 1 - a  
11 Vu II L" ~< C II Vu II ,,...2 I1 VU It L~ , 

where a = m/(2mo). 
(ii)  Assume jx~< 1. We need to use a special case of Theorem 2 . 1 ,  where s = VJu (j>~ 

1) ,  r = q = 2 a n d  k is replaced by k - j > 0 .  We have 
a Z - a  

II W u l l e ~ < c l L  Wullr  V J u l l e  , (3.16) 

where 

1 1 (k - j ) a  
p 2 m 

m 
with 0 ~< a ~< 1, unless j = k - ~- in which case 0 ~< a < 1. 

From ( 3 . 1 7 )  we see that the condition a ~>0 is equivalent to p ~>2, and the condition a < 

1 is equivalent to 

1 1 k - s  - -  > - - -  ----- } ' k , j -  
p 2 m 
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m 
l - - ~  > j t + t > ~ " "  ~ j , ~  1, 

while if t > 0 ,  

m 
l > ~ j l  >~""  ~ j , ~  l - ~ .  

That means ,  for i ~< t we have 7t,j, >- O, while for i ~ t + 1 we have 7/,j. < 0 .  Then from ( 3 . 1 6 )  

we have for i ~ > t + l  (with k = l ,  Pi = ~ )  
t l  1 - ~t i 

II VJ, u l I L - < ~  CII VJ,ulIM~ ..... II ~J, UllL 2 , 

m 
where ai - 2(1  - Ji) < 1. 

First ,  consider the ease t = O. For this case we have 

,<.  , ,, u .( 2 , ,Z,,u , ::~ ) f l ,z'.' l l ,Z, u l . 
i ~ 2  

where A I = a2 + "'" + a , .  Then we have 
AI+I "~ ~ I + l u  

iL v u It ,,,-,.,~ it I [L' I[ VJ, u II L' ~< C ( l  + II V u II A,~_+y,)II V u It ~,.~. I C(1 + 

Assume now that t I> 1 then we have 

A ' - " ) I  I ~ C I I  Vul l~/_,.=(~-~l l  VJ.ull,, ' Iv '+Xul lVJ, ul . . . lVJ, u I , 
i = t §  M 

where A2 = at + 1 + " ' "  + a, .  So we can also write 

I ~ <  C ( I +  II V u l l , , ,  .... j j M I  u l l V J ,  ul. . . l~TJ, u l .  ( 3 . 1 9 )  

Let p i( i = 1 , " ' ,  t )  be a set of positive numbers  such that 

1 1 1 - - + - . , +  _ . 

Pl  p~ 2 

Then by Hfilder inequali ty,  the integral on the right hand side of ( 3 . 1 9 )  is no greater than 

It v '+ 'u It ~ It VJ~u li e , " "  It VJ,u t[ e,. (3 .2o)  
If  t = 1,  we have P l = 2 and obviously 

II ~zJ, u II L' --< C II ~Z u II ,/-,2. 

In view of ( 3 . 1 9 )  and ( 3 . 2 0 ) ,  the lemma is proved.  So in the following we assume t ~>2. 

For the second term in ( 3 . 2 0 )  we need to treat two cases differently. 

m 
Case  1 .  j l  I> l + 1 - ~ - .  In this case we may apply ( 3 . 1 6 )  with k = l + 1,  a = 1 - r  

where e = 0 if j l  > l + 1 - m / 2 ,  and e > 0 arbitrarily small when j l  = l + 1 - m / 2 ,  to get 

I1 ~7J, u II e. ~< c II vJ, u II ,r II vJ, u II L 2 ~< C II V u II ~r 

where 

1 1 ( l  + 1 - j l ) ( 1  - e )  
- > 0 .  

Pl  2 m 

Note that we now have 

1 - - + . . . +  

P2 

1 _ 1 _1 _- ( I  + 1 - j l ) ( 1 -  r  ( 3 . 2 1 )  
Pt 2 Pl  m 

To apply inequality ( 3 . 1 6 )  with k = l and j = ji for 2 ~< i ~< t ,  we need each Pi to satisfy 
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( 3 . 1 8 ) ,  i . e .  
1 1 l - j~ 

- -  > Y l j  =-- - - - - -  ~ 0 .  
Pi 2 m 

We can choose Pi to satisfy both ( 3 . 1 8 )  and ( 3 . 2 3 )  if only 

x ~  ( l  + 1 - j l ) ( 1  - e )  
z_, ~+t,j < 
i = 2  ~ m 

This can be verified by the following computation. 

7,,j= (t-1)(2 /1 1~ - -  "4- - -  j /  
, = 2  ' m i=2 

_. t , - 1  - -  + 

m 

t -  mo ( l + 3 - j l ) -  ( s -  t )  
+ 

m m 

( l  + 3 - j t ) -  ( s -  t )  ( l +  l - j , )  
< 

m m 

w h e r e  

since P i = ~ �9 We still have 

m 

al  = 2 ( /  + 1 - j l )  < I .  

Similar to the proof in Case 1, what we need to show now is 

2 1 F ~_ 7t,i, < 2 ' 
i = 2  

t (1 '-x+, 
F = ( t -  1) - ~ -  + m,=2 

But by ( 3 . 7 )  

~ ( 2 )  m ji = / + 3 - j 1 -  jl < / + 3 -  l -  - s +  t ~ -~  + t .  
i f 2  i =  1+1 

Since the left hand side is an integer, we must have 
t 

ji  <~ + t = m o -  1 + t ,  
i ~ 2  

with equality holds if and only if s = 3,  jt § 1 = "'" = j ,  = 1 and j l  = l + 1 - m0. So we have 

' - '  m~ '-1/o - - + - - +  - + ( t - l )  w -  o 

m m m 

Noting that l > m o  implies 1 ~ m0 + 1, hence 1/2 < ( l - 1 ) / m ,  we see (by t ~ 2 )  
1 1 

P ~< 2 - -  1--(lm - m o -  1) ~< ~ .  

m 
since s ~> 3,  t ~> 2 and l > mo > ~- .  Choosing e sufficiently small we get what we need. Now, 

applying ( 3 . 1 6 )  to the terms in ( 3 . 20 )  with i~>2 we get 
a 1-a .  II VJ, u l l , . ~  cl] V u l l d  .... IJ VJ,ullL~ '~< cl l  Vu l l , , , ,~ ,  

where ai is determined by ( 3 . 1 7 )  with p =  pi ,  k =  l ,  j =  j i .  In view of ( 3 . 1 9 )  and ( 3 . 2 0 ) ,  
the lemma is proved. 

m 
Case 2 .  J l < l + l - ~ - .  We may apply ( 3 . 1 6 )  with k = l + l  a n d p =  ~ to get 

a l ~ a  1 
II V~,u ll ~. < c ll vJ , .  ll , , , . ,~  ll ~ ' U  lI L <~ ~ ll V ~ I/ . ,2,  
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Note that equality can hold if and only if l = mo + 1, j l  = l + 1 - m0, j, + 1 = "'" = js = 1, s = 3 

and t = 2.  The first two equalities imply that j l  = 2 .  It follows that we must have j l  = j2 = 2 ,  J3 

= 1, hence by ( 3 . 7 )  l = 2 ,  and by l = mo + 1 it holds mo = 1. This then shows that m = 1. 

Except for this special case,  our proof for Case 2 can go through just as we did for Case 1. Final- 

ly,  we remark that the remaining special case can also be treated, and the proof is omitted. This 

finishes our proof of Lemma 3 . 3 .  

Now, return to the proof of Lemma 3 . 1 .  We 

Then Lemma 3 . 2  together with ( 3 . 3 )  leads to 
mo 

d II V u l l  ~ c ~  
dt  -"'~ l f f i l  

where 

If we let f (  t ) = 

first consider the case 1 ~ 1 ~ mo in ( 3 . 9 ) .  

l §  
A(s,l) 

s = 3  

A ( s , l )  = [ l  +3  + ( m / 2 -  1)s  - m / 2 ] / m o .  

II v u ( t )  1[ ,,..2 + 1, then we have 

f '  <~ Cfao, f ( O )  = I} V u o l l  u'*" + 1, ( 3 . 2 2 )  

where Ao = max l A ( s ,  l )  : 3 ~< s ~< l + 3,  1 ~< l ~< mo} �9 The constant C in ( 3 . 2 2 )  depends only 

on mo, M and N .  It follows from ( 3 . 2 2 )  that there exists To > 0 and Ko > 0 such that 

l[ V u ( t ) 1 7  n-0. 2 ~ Ko, t E [ 0 , m i n ( T o ,  T ' ) ] .  ( 3 . 2 3 )  

For any k > too, we need to consider the ease too< l<~k in ( 3 . 9 ) .  Lemma 3 . 3 ,  ( 3 . 3 )  and 

( 3 . 2 3 )  then imply 

d fl V u l [  2 A 
dt ~ ~< C(1 + II V u  [12 - -  tf.2)(1 + 11 V u 11H . . . . .  ). (3 .24)  

For k = mo + 1, we see from ( 3 . 2 3 )  that the summation in ( 3 . 2 4 )  is bounded since k - 1 = 

too. Then, since ( 3 . 2 4 )  is a linear differential inequality for 11 V u ][ zH~.2, there exists a con- 

stant Ki > 0 such that 

11 V u ( t )  l [ . .  .... ~< K i ,  t E  [ 0 , m i n ( r 0 , r ' ) ] .  ( 3 . 2 5 )  

It is now clear that inductively using ( 3 , 2 4 )  one can show the existence of K i > 0 for any i ~ 1 

such that 

II W u ( t )  II n,o .... <~ K,,  t 6 [ 0 , m i n ( T 0 , r ' ) ] .  ( 3 . 2 6 )  

Since we assume ~ is compact, consequently [1 u ( t ) 11 t"  is uniformly bounded for t E [ 0 ,  

min (To ,  T' ) ] . 

Note that a positive lower bound of T' can be derived from ( 3 . 2 6 ) .  In deed,  it is easy to 

see that 

sup II u, II ~,...2 ~ K,.  
tE [o, T] 

However, by Theorem 2 . 1 ,  for some 0 < a < 1 there holds 
fit 

II u, 11 c o ~ C ( M )  11 u, II H-,211 u, II ~,-fit 
This implies 

II u, tl co ~< ~ 

for some ~ > 0 ,  assuming that t < rain { To, T' t . Thus we have 

su~dN(U(X,t),Uo(X))<~t for t < m i n l r o , T ' } .  

If T' > To we get the lower bound, so we may assume that T' ~< To. Then letting t ---~ T' in the 
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f !  1 
above inequality we get ~//g T '~>I .  Therefore, if we set T=  minl.--~, T01, then the desired es- 

timates hold for t E [0,  T ] .  It is worthwhile pointing out that, if N is compact (noncompact), 

T= T ( N ,  I]VUoll ~~ ( T =  T ( N ,  tl V u0 11 w-0 .... ) )  depends only on N,  u0, not on 

0 < e < l .  

It is easy to find that the solution to (3 .2 )  with ~ E ( 0 , 1 )  must exist on the time interval 
[0,  T ] .  Otherwise, we always extend the time interval of existence to cover [0,  T ] ,  i . e .  we al- 
ways have T~ I> T. Thus, Lemma 3.1 has been proved. 

Remark 3 . 1 .  In the proofs of Lemmas 3 . 1 - - 3 . 3 ,  we only use the interpolation inequali- 
ties in Theorem 2.1 and the H~lder inequality. All estimates do not depend on the volume of M, 
but on the Sobolev constant of M. 

Proof of Theorem 1 . 1 .  First, we would like to mention that N is always regarded as an 

embedded submanifold of ~x .  If u0 : M -'} N is C | , then, Lemma 3.1 claims that the Cauchy 
problem ( 3 . 2 )  admits a unique smooth solution u~ which satisfies the estimates in Lemma 3 .1 .  
It follows from Proposition 2 .2  that, for any k > 0 and r E (0 ,1  ] ,  there holds 

max II u~ I[ #~(M) <~ C~(O,Uo),  
tE [0, r] 

where C~ ( ~ ,  Uo) does not depend on e .  Hence, by sending e'--}0 and applying the embedding 

theorem of Sobolev spaces to u ,  we have u~-~ u E C k ( M x [ 0,  T ] ,  N)  for any k. It is very 
easy to check that u is a solution to the Cauchy problem ( 3 . 1 ) .  The uniqueness was addressed 
in Proposition 2.1 in ref. [ 1 ] .  

Finally, if u0: M--~N is not C | , but u 0 E  W/t'2(M, N ) ,  we may always select a se- 

quence of C** maps from M into N,  denoted by Uio, such that 

Uio--~ u0 in W k'2, as i--~ 

This together with (2.11 ) leads to 

II v ui0ll , ..... --~ li Vu01l n ..... , as i---} ,o 

Thus, there exists a unique, smooth solution ui, defined on time interval [0,  Ti ] ,  of the Cauchy 
problem ( 3 . 1 )  with u0 replaced by Uio. Furthermore, it is not difficult to see from the arguments 
in Lemma 3.1 that if i is large enough, then there exists a uniform positive lower bound of Ti, 
denoted by T, such that the following holds uniformly with respect to large enough i:  

sup tl v u , ( t )  II ,,, c ( r ,  11 v u0 I} 
te  [o, r] 

Here, we would like to point out that T = T( 11 V Uo I1 qr-o ,~) ( T = T( 1[ ~7 Uo I[ ~,-o§ when 

N is compact (noncompact). It follows from Proposition 2 .2  and the last inequality that 

sup II Dui(t)  tl r <~ C'( T, II Duotl w,-,.~), 
tE [0, T] 

where D denotes the covariant derivative for functions on M. Therefore, there exists a u E L** 

( [ 0 ,  T ] ,  W k ' 2 ( M , N ) )  such that 

u, --~ u [ w e a k l y ' ]  in L |  T ] ,  Wk'2(M,N))  
upon extracting a subsequence and re-indexing if necessary. It remains to verify that u is a strong 

solution to ( 3 . 1 ) ,  i . e .  we need to check that for any v E C| [0 ,  T] x M , ~  x) there holds 

<,3tu,v) = ( J ( u ) r ( u ) , v ) .  
0 M 0 M 

However, for each ui, the following is always true 
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f T f  <~t[l'i ' v ) f T f  = ( J ( u i ) r ( u i ) , v ) .  
0 M 0 M 

As u E L '~ ( [0,  T ] ,  W ~'2( M, N) ) where k ~ m0 + 1 (or k ~> mo + 2 when N is noncompact), 
we can see easily (see also (2 .14 ) )  

A s u , A ( u ) ( D u , D u )  E L |  
Therefore, in the sense of distribution r ( u )  can be written as 

r ( u )  = Agu + A ( u ) ( D u , D u )  = P(u)Agu.  
Indeed, for any T/E Col(M,]~x), we have 

= -  f (Vu ,P (u )Vz] )  - f ( D u , D ( P ( u ) ) T  I) 
M M 

= - J  ( ( D u ,  Dr l) - (A(u) (Du,Du) , r]>)  
M 

= ~ [M(Ag u + A ( u ) ( D u , D u ) , r l ) .  

Now, we consider 

fMxCO.T: ] <J (u , )P (u , ) agu ,  - j ( u ) p ( u ) A , u , v )  ] 

<<fMxco.T~l<(j(~,)P(u,) - j(ulp(~))agu,,v)] 
+ 

When N is compact, obviously 
H o ( / ( . ) P ( . ) ) I L  t'(r,) < |  

When N is noneompaet, by the $obolev embedding theorem, we can infer that there is a compact 
subset of N,  denoted by .~, such that ui(M • [0,  T ] )  c Y f o r  i large enough and u(M x [0, 
T] ) C Y. Hence, we also have 

II D ( J ( ' ) P ( . ) ) I I  L' (~  < |  
Therefore, it is not difficult to see that every term on the right hand side of the last inequality 
converges to zero as i goes to infinity, no matter whether N is compact or not. Hence, 

lira <J(u,)P(u~)Agui,v) = <J(u )P(u)Agu ,  v).  
i~|  0 M 

On the other hand, we also have 

f lim (Stu,,v) = -  (u,atv)  + ( u ( T ) , v ( T ) )  - ( u o , v ( 0 ) ) ) .  
i ~ d O J M  0 M M 

The last two equalities lead to 

; ( J ( u ) P ( u ) A g u , V )  = -  (u,Otv) + ( ( u ( r ) , v ( r ) )  - ( u 0 , v ( 0 ) ) ) .  
0 M 0 M M 

(3 .27)  

Noting J ( u ) r ( u ) E  L2(M x [0,  T ] ,  ~ x ) ,  (3 .27 )  also implies that 8tuE L2(M x [0,  T ] ,  

~K).  So, for any smooth function v we always have 

0 M 0 M 
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this means that u is a strong solution. 
The uniqueness of u follows Proposition 2 .1  in ref. [ 1 ] ,  when k >~ m0 + 3. Obviously, u 

is smooth as k is large enough. Thus, the proof of Theorem 1.1 is complete. 

Let N be a closed submanifold of the Euclidean space ~ x .  We say u E Wk'~($ m , N)  if 

and only if there is a point O E N such that if we take the origin of ~K at O then u E W~'P(~ m , 

$ x )  and u ( x )  E N for a . e .  x E ~ ' .  In order to prove Theorem 1 .2 ,  we need to use the fol- 

lowing: 

m W k ,2 l .~mma 3 . 4 .  Let k > ~ and u E (~m,  N ) .  Then there exists a sequence of maps 

u~E W ~ ' 2 ( $ Z , N ) N  C ~ ( I t ~ ' , $  g) such that u d + u  inWk'2(~. '~, N ) .  

Proof .  By the density theorem of Sobolev spaces, there exists a sequence { v i t ,  vi E 

C~ ( ~ ' ~ , ~  K) such that vi'-~u in W~'2(~ m, $ K ) .  

It is well-known that there exists a tubular neighbourhood 57"(N) of N such that the projec- 

tion map ~': 5r(  N)'--~N,  defined by 
d i s t ( p , ~ ( p ) )  = d i s t ( p , N )  = i n f { I p -  q I:  q E N} 

for p E ~ ' ( N ) ,  is a smooth map. Define 

U i = ~ ( V i ) .  

We need to show 

for l a [ ~ k .  
It is well known that we have 

11 D.u, - Dou tl L ~--~ 0 

Ou i = dzc ( V i) Dvi, 

D2 ui = d~r( v i )  D2 vi + d2~r( v i )  ( Ovi , Dvi)  . 

In general, we have 

Dau i = Dazc(vi)  = ~ B~(, , ) (vi)(D, ,  v i , " ' , O , , v i ) ,  

where the sum is over all multi-indices a l ,  " '" ,  as such that Iay I >~ 1 for all j = 1, " " ,  s and 
( a , , ' " , a , )  = a ( a )  

is a permutation of a ,  and B~<o) is a muhi-linear form with uniformly bounded norm. 

Since we have 
~r ( u ) = u ,  D,u = D.zc ( u ) , 

SO 

D.ui - D.u = Ddr(  vi) - D.zc( u ) 

= ~ [ B o ( o ) ( v , ) ( D o ,  v , , ' " , D a v , )  - B ~ ( a ) ( u ) ( D ~ u , ' " , D ~ u ) ] .  

Set v~ = u + t ( v l  - u)  for t E  [ 0 , 1 ] .  Then, we get 

 o.u, - o.o  = I t 
c  IlolDJ, v:l I DJ,v:tlDJ,.,(v, -u) l  d t ,  <~ 

where the sum is over all j l  , " "  ,jr + 1 such that j l  + "" + Jt + 1 6 I a I , j l  , " "  ,jl >/1,  jl + 1 ~>0. 
It follows that 

j t 
J ' IhJ , .1  )t It , ,  l] h .u i  - Dau ]l L 2 <~ X~ max ][ [D , v i [ ' " ] O  (vi - u 

tE[o,1] 
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The proof that the right hand side of the above goes to 0 follows essentially from the proof of 
Proposition 2 .2 .  The detailed estimates are hence omitted. 

Proof of Theorem 1.2 .  Since u0: ~ ' - - ~ N  belongs to Wk'2(R " ,  N ) ,  by Lemma 3.4  

we may always choose a sequence of C0~-maps in Wk'2(~ ~', N ) ,  denoted by { ui0t, such that 
the supports of t Uiot are compact, and 

Uio--~ Uo in W k,2, as i--~ oo. 

m 
Moreover, since k > ~- we can apply (2.11 ) to prove easily 

II v II ,,k .... I[ v u0 II .k . . . . .  as i - ~  ~ .  

If the support of uio is denoted by f2i, we may pick a large enough Ri such that f2 i C C 
m 

A 

~ i m t  - R , , R i ]  x " " x  [ - R i , R i i .  Thus, Uio can be regarded as a function d e f i n e d  o n  a flat 

toms T~" = ~ r " / ( 2 R i ' 7 / )  m 

We consider the following Cauehy problem 

3 t u ( x , t )  = J ( u ( x , t ) ) r ( u ( x , t ) )  on TT' x ( 0 , T ] ,  

u ( x , O )  = Uio Ulo: T~--~ N .  

Since the constant in Proposition 2.1 does not depend on the diameter of a flat torus, by checking 
the proof of Lemma 3 .1 ,  we can see easily that there exists T > 0, which does not depend on i ,  

such that the above Cauchy problem admits a unique, smooth solution u~ on Ti m • [0,  T ] .  Fur- 
thermore, the following holds uniformly with respect to i : 

sup II V u , ( t )  II ,~-'.~ ~< C ( T ,  II Vuol l  ,- , .2).  
tE [o, r ]  

It follows from Proposition 2 .2  and the last inequality that 

sup II D u i ( t ) I I  r ~< C ' ( T ,  II Duo II r  
t6 [o, r~" 

We regard each ui as a map from ~ i  x [0,  T] into N. Therefore, there exists a u E  L | ( [ 0 ,  

T] ,  Wk'2(I~ r" , N ) )  such that for any compact domain ~ C  ~ "  

u~--" u [weakly"]  in L |  T ] ,  W L 2 ( ~ , N ) )  

upon extracting a subsequence and re-indexing if necessary. It is easy to see that u is a strong 
solution to the following Cauchy problem: 

{ 3 t u ( x , t )  = J ( u ( x , t ) ) r ( u ( x , t ) )  o n e "  x (0,  T ] ,  

u ( x , O )  = Uo u0: ]$m__~ N. 

From the process of the proof of Proposition 2.1 in ref. [ 1 ] ,  we can see easily that u is unique 
when k ~> m0 + 3. When k is large enough, u is smooth. Thus, the proof of Theorem 1.2 is 
complete. 
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