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1. — Introduction.

The present definite knowledge of the Earth’s interior is supported by meas-
urements of seismic-wave velocity, free-oscillation periods, their decay, moments

of inertia and average density.

The major divisions of the internal structure are mantle and core, whose
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dimensions and properties are known with remarkable precision (Fig. 1, 2).
The core constitutes about one third, the mantle two thirds, of the whole mass.
Both are further divided by seismologists: as any proper geological unit, the
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Fig. 1. - Major divisions of the

FEarth’s interior, true scale; the crust

corresponds to a 40 km continental
crust.

mantle is subdivided into lower, mid-
dle and upper mantle. Similarly we
distinguish an inner and outer core,
with a somewhat complex transition
region in between. The chemical differ-
ence between mantle and core has been
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Fig. 2. — The seismic evidence for the in-
ternal structure of the Earth: velocities as a
function of depth, after JEFrrEYS [1] (solid
curves) and GUTENBERG [2] (dashed curves).

confirmed in recent years by experiments with shock pressures equal to those
of the core. However the question is by no means completely closed.

The hypothesis of an iron core

vs. a silicate mantle depended orig-
inally upon the recognition that
meteorites—iron and stony—fur-
nished samples of an early stage
of the chemical origin of inner
planets. Now Fig. 3 is [3, 4] the

Fig. 3. — Hydrodynamical velocity,
(0p/2p)}, vs. density. The solid curves
are shock data for metals; the dashed

density

lines are from static compressions.
The dashed curves for mantle and

core are obtained from seismic velocities combined with representative density distri-
butions. The circle labeled A is for dunite at 2.4 megabar. (For references, see [5]).
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best evidence. Here a number related to the seismic velocities (*) is plotted
against density for the metals through the transition group; the solid curves
are from laboratory experiments and the broken curves show the same quantities
for mantle and core. From these data it is not possible to make a core of light
metals or their oxygen compounds, and a mantle of heavy metals. Transforma-
tion of light compounds to a metallic state may take place in the Earth, but
the density of the core demands a metal of the transition group, and only iron
is sufficiently abundant. The properties of iron are close to those required
and can be adjusted with small amounts of alloying elements. Figure 3 is the
best demonstration that core and mantle are chemically distinet.

From another point of view, direct comparisons of pressure-density relation-
ships of known materials with the known pressure-density variation of the
Earth would allow various assumed compositions to be rejected or accepted
as reasonable possibilities. Until about ten years ago, comparisons of pressure-

TABLE 1. — Some comparisons of properties of the Farth’s core with measured values
for iron. (These averages are founded on data now out of date, but sufficient for our
indicative purposes.)

Sound velocity
ol . 2 1
Depth (ke /s) PleSSsz)e 10t De?s)lty
|
(lem) JEF- GUTEN- Model B Model B
FREYS [1] | BERG [2] 1
Earth: outer 2900 8.10 8.00 1.33 9.7
core 4980 10.44 10.04 3.22 12.0
inner 5120 9.40 10.1 3.33 15.0
core 6370 11.31 3.94 17.9
Iron (after [9]) 7.85 1.22 11.03
8.49 1.68 11.56
| 9.53 2.85 12.56
| 9.98 3.48 12.95
(Iron — Gur.)/GuvTr. |(Iron—B)/B | (Iron —B)/B
Difference — 2% — 9% +139,
—15% —509%, — 49,
— 5% —16% — 209,
L 15% — 259,
(*y BULLEN [8].

() The number related to the seismic velocities is (K/g)* =(Vi—% Vf,)*, where K
is the incompressibility.
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density relations could be made only at the moderate pressure obtainable
with static apparatus (<10) (*). The recent development of the shock-wave
methods for the determination of equations of state has allowed such compar-
isons. In fact the measurements of ALTSHULER and others [6] on iron and other
metals at pressure up to 5-10'% give comparisons at pressures as high as those
at the centre of Earth (& 3.5-10%). These experimental data have been
used by Kxororr and MacDoONALD [7] to study the core composition. Their
results are that the density of iron is somewhat larger (&~ 10 to 209,) than the
densities of the core and that a mean atomic number of about 23 is consistent
with the core conditions.

TABLE II. — Density, pressure, and incompressibility of iron.

0 P10 K-10%2 Ko ((km/s)?)
7.87 0 1.68 21.4
8.35 0.111 2.12 25.5
8.83 0.245 2.61 29.7
9.32 0.402 3.17 34.2
9.83 0.586 3.81 38.9

10.35 { 0.798 4.52 43.8
10.87 1.039 5.31 49.0
11.39 1.312 6.18 54.4
11.93 1.617 7.14 60.0
12.48 1.962 8.21 65.9
13.03 2.342 9.37 72.1
13.61 2.765 10.64 78.5
14.18 3.232 12.03 85.1
14.78 3.742 13.53 92.0
15.34 4.298 15.16 98.8
15.93 4.916 16.91 106.1

The data of ALTSHULER and others for iron are reproduced in Table I together
with some of the reported values for the core [1, 2, 8]. The correspondence be-
tween sound velocity and pressure is seen to be fairly close for the outer core
although the correspondence in densities is less close. Table IT reports the main
characteristics of iron determined by means of the Birch-Murnaghan equation
of state.

2. — The Earth’s core.

The existence of a core within the Earth was suggested by WIECHERT
in 1897. In 1906 OLDHAM gave a seismologic proof of the validity of Wiechert’s

(*) Throughout this work, we use c.g.s. units.
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hypothesis. In 1913 GUTENBERG estimated that the distance of core boundary
from the Earth’s surface should be about 2900 km. A recent value of such a
distance, 2883 km, ig that of BuUrien [10]. This value has emerged from an
analysis of free-oseillation data; but further analysis of these oscillations
may possibly fovee a modifieation of this vesult [117.

JENSEN [12] suggested the possibility of using the Thomas-Fermi model
to speculate about the state of muiter at the pressures which are in the Earth’s
core. He made an interpolation
curve for iron, connecting the ex- 20
perimental pressure-density rela-
tion with the Thomas-Fermi curve
by means of the seismiec velocities

in the Earth's core (see Fig. 4).
Kray and RirrMax [13] have

shown that, even under the most

favourable conditions, the time re-

aensity

quired to separate liquid iron from
silicates is much larger than the age
of the Earth. That should conflict 5 ; B B
with one of the argunments support-
ing the hypothesis that the core is

pressure

I'ig. 4. — Jensen’s interpolation eurve for iron,

made of iron separated from sili-
cates: theimmisetbility of iron and
silicates. Then they suggested a

connecting the experimental pressure-density
relation with the Thomas-Fermi ewrve: a) Mur-
naghan curve foriron; b) Jensen’s interpolation ;

¢) Earth’s core, after BuriLex; d) Thomas-
Fermi curve for iron, after JENsEX.

core made up of undifferentiated
solar matter rich in hydrogen.
However it was shown by WIGNER
and HuNTINGTON [14] and by KRONIG, D1z BoER and KoRRINGA [15] that a sig-
nificant amount of hydrogen ai the core pressure would yield a material whose
density is not suficiently great eompared with that in the core of the Earth.
In fact the caleulations lead to a deusity for metallie hydrogen of about one
at the pressure of the core, and it is clear that the hydrogen content must be
limited to a smaller fraction, probably even less than the 109, by mass pro-
posed by KroNING, DE BoER and KoRRINGA (see also [16, 17]). It is evidently
more reasonable to reserve hydrogen for the giant planets, which have mean
densities in the neighborhood of one, than to attempt the construction, with
so light elements of small planets having mean densities between 4 and 5.5.

BRIDGMAN [18-20] obtained in the laboratory static pressures of about 10';
these pressures correspond to a depth of only 250 km in the Earth. Therefore
large extrapolations are necessary to reproduce the conditions of the Earth’s
core. In many cases such extrapolations do not seem acceptable, as shall be
seen in a following Section.
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RAMSEY [16, 21, 22] suggested that the large increase of density at the
core boundary is due to a pressure transition from the molecular to a metallic
phasge, rather than to the appearance of a new material such as an alloy of
iron and nickel. Thus he assumes, in first approximation, that the Earth is
of uniform chemical composition {(below the crustal layer) which he identifies
with olivine: a mixture of 90%, magnesium ortho-silicate and 109, iron ortho-
silicate. Originally RAMSEY put forward his hypothesis to account for the
densities of the terrestrial planests. On his hypothesis the pressure at the bound-
ary of the core will be characteristic of the chemical composition of the material
which he assumes is the same for all the terrestrial planets.

A very important result is that of BurieNn [23], who found strong evidence
for the inner-core solidity.

KUIpER [24] has pointed out that the dimensions and masses of the
terrestrial planets show that Ramsey’s hypothesis is untenable. Rabe’s
work [25] on the orbit of Eros and the more accurate values of the masses of
Mercury and Venus rule it out on astronomical grounds.

Recent revisions [10, 16] of the estimated Mars radius make this conclusion
open to question.

KUIPER [27] also observed that Kuhn and Rittman’s objections used by
RAMREY to criticize the iron core, cannot, on empirical grounds, apply to planets.
In faet the separation of iron and silicate phases is clearly shown in large me-
teorites which almost certainly derived from asteroidal bodies of roughly 500 km
in diameter. Therefore at least experimental evidence of the separation of
iron and silicates exists, while the opposite thesis has never been verified.

ELSASSER [28] compares the estimates of the densities and compressibilities
of a larger number of elements and compounds found experimentally by BripaG-
MAN, for pressures up to 101!, with the limiting computed values at pressures
of the order of 10® and above obtained from the Thomas-Fermi model. ELsAS-
SER interpolates in the gap between 10! and 10'® and states that the densities
of all elements can be determined as functions of the pressure in this range,
with a maximum error of at most 15 to 20%,. In comparing the density variation
within the Earth with his interpolated curves, ELsASSER finds strong support
to the theory that the mantle consists mainly of silicates and the core of iron,
thus excluding the possibility of Ramsey’s hypothesis. He is also able to give
an atomic number to the Earth’s core. This atomic number, 29, is to be
compared with the atomic number of iron (26) and nickel (28). At the same time
ELsAssER finds some diserepancies between his extrapolated curves and geo-
physical data. We shall examine more critically Elsasser’s results in a fol-
lowing Section.

Buirex [29] has analysed from a different point of view the problem and
disagrees with Elsasser’s findings. From his Earth model A, BuLrLen found
that there was no noticeable difference in the incompressibility gradient d.K/dp
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between the base of the mantle and the top of the core. Moreover there was
only a 59, difference in the value of K across the core-mantle boundary. These
features are in marked contrast to the large changes in the density and rigidity
at the boundary. The change in K is a diminution from the mantle to the core.
However, interpolating between experimental data at 10! and theoretical
results at 10'® of pressure, a slight inerease of X is found in the transition from
the mantle to the core. Then BuLLEN [29, 30] assumed that K and dK/dp are
smoothly varying functions below a depth of 1000 km (model B). This implies
that at high pressure the compressibility of a substance is independent of its
chemical composition. More recent theoretical works indicate that there is some
small variation of K with atomic number at high pressure, showing, however,
that Bullen’s hypothesis is a good approximation. BULLEN can so estimate the
density at the core-mantle boundary obtaining 9.7. BULLARD [31] has investi-
gated, by an independent method, the permissible density distributions within
the Barth and has concluded that Bullen’s estimate of 9.7 at the core-mantle
boundary should not be in error by more than 0.5. Recent analyses of free-
Earth-oscillation data have confirmed Bullen’s results. Moreover on the grounds
of his results, BULLEN [32] gave an important contribution analysing Elsasser’s
work and showing that it has some internal inconsistencies. In fact his cal-
culations lead to the statement that the atomic number of the outer core (re-
gion F) should be almost 6 units less than that found by Ersasser. However, if
such a reduction does not overcome the six units, Elsasser’s main result shall
be supported, i.e. the region E would still be iron and nickel. But some aspects
of Bullen’s calculations suggest that the reduction could be greater than six
units and therefore the region K may consist of a modification of ultra-basic
rocks.

URrEY [33] has put forward a theory for the evolution of the planets, which
mainly rests on physical chemistry, concluding, on several grounds, that the
Earth’s core has an iron composition. BULLEN questions a number of his argu-
ments, although agreeing that the inner core is chemically distinet from the
rest of the Earth and of the outer part of the core.

Brircu [34] reviewed the hypothesis of RaMsEY and of KroniG, DE BOER
and KoRrRRINGA, and concluded that the core is mainly iron-nickel, although he
noted that the density of the core is perhaps 10 to 209% less than that of iron
or iron-nickel at core conditions. Some years later, BiIrcH [35] stated an upper
bound, near 13, to the Earth’s central density. If this result is accepted, it
entails a negative rigidity gradient in the lower core [10] and hence leads to
confirmation of the inner-core solidity.

Kn~ororr and UFFEN [36] have extended the quantum-gtatistieal caleulations
of the densities of the pure elements to solid compounds. Then they have inter-
polated between the Bridgman experimental data and their theoretical results
to obtain pressure-density curves for all probable constituents. The interpo-
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lation is improved by means of Birch-Murnaghan’s semi-empirical theory of
finite strain. As we shall see in a following Section the quantum method is
strietly valid at absolute zero of temperature. KNororr and UFFEN estimate,
however, that providing the temperature at the core boundary does not exceed
10 000°, the errors should be less than 89,. For the temperature range (0 --5300)°
the representative atomic number (defined as the atomic number of a hypo-
thetical pure element which has the same pressure-density relationship as
the considered substance) lies between 12.5 and 13.5 with the corresponding
range of composition for an olivine mantle of from 479, to 639, Mg,SiO,.
The representative atomic number of the outer part of the core was found to
be 22, intermediate between iron and silicates. Provided that there are no phase
transitions, a core with an atomic number 22, composed of iron, fayalite
(Fe,Si0,) and forsterite (Mg,8i0,), would have an iron content of nearly 909,.
However, concluding this necessarily incomplete review of the work about
the Earth’s core, we can say that the core composition is not yet defined.

Perhaps the core consists of a material whose representative atomic
number is close to that of iron with the addition of some substance of higher
atomic number.

Meteorites and the fact that iron is probably liquid at the temperatures
and pressures at which the silicates are probably solid give a further evidence
for that composition. Moreover a ferromagnetic core should explain the origin
of the Earth’s magnetic field. The assumption that the relative abundances
of the chemical elements in the Earth may be found from the analysis of the
constitution of meteorites iy somewhat supported by the probable origin of
meteorites in masses of planetary dimensions and by the good agreement between
the meteoritic and solar abundances for the heavy elements. The meteorites
have two phases:

a) silicates, mainly olivines and pyroxenes,

b) free metals, approximately 909, of iron.

These phases oceur in nearly every proportion, from stones with no free metals,
to iron with no silicates.

WIECHERT suggested that the Earth possesses an iron core surrounded by
a silicate mantle to explain the high mean density and central condensation.
This concept is very fascinating but it is very difficult to estimate correctly
the ratio between silicates and iron. The range of values of the ratio of mas-
ses of stony to iron meteorites [16, 37, 38] is very large and it seems evident
that no serious quantitative argument either for or against an iron core can
be drawn from such data. Moreover the variety of particles coming from space
indicates that it is possible that the interior of the Earth contains a variety
of components much different from those contained in meteorites.
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Fig. 5. — The experimental data, the Birch-Murnaghan computation and the

Thomas-Fermi computations for four materials (after [36]): o experimental data;
— — — Thomas-Fermi model; ——— Murnaghan-Birch model.
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Fig. 6. — The pressure-density relation for the Earth in relation to the interpolated
curves for fayalite (Fe,8i0,), iron and nickel at T'= 0 °K (after [36]).
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However an inner core largely composed of uickel-iron is mainly supported
by the fact that, for elements for which Z > 28, the abundances are very small
until Z is considerably greater than 28, while curves derived through seismo-
logy do not, on reasonable assumptions, permit the representative Z for the
inner core to be much greater than 28.

3. — Equations of state from the Thomas-Fermi model.

3'1. The Thomas-Fermi equation. — When the temperature or density is
suificiently high to introduce a large mixture of electronic quantum state, a
simple statistical approximation to the equation of state can be based on inde-
pendent free electrons and nuclei. In the Thomas-Fermi theory each atom of
the material occupies an independent spherical cell, and the electron distribu-
tion is determined to a first approximation about a nuclens fixed in the centre
of the cell. The electrons are assumed to be free Fermi-Dirac particles, and
all other aspects of the quantum mechanics of atoms are ignored. Thus, the
distribution of the cloud of partially degeunerate nonrelativistic electrons is
related to the electrostatic potential by Poisson’s equation. In this manner
the main effects of Coulomb inferactions are included self-consistently to all
orders in the electrie charge.

The Thomas-Fermi equation is obtained directly from Poisson’s equation
by a suitable choice of vaviables:

d*¢o @

1 drr At
1) drz o’
where

Ze , -

7¢: I (7‘)—"“107
(2) t o=y,

C 9 \Y R\
— —Vl. | — =0.88534a,2%
# (128Z) (ch) m 580 a7,

where Z is the atomie number, a, the Bohr radius for hydrogen, m the electron
mass, ¢ the electron charge, b Planck’s constant, » the distance from the nu-
cleus, V the potential and V, the chemieal potential.

The applicable boundary conditions are that the electrostatic potential and
its gradient are zero at the cell boundary r,, and the potential has a Coulomb
singularity at the origin. In dimensionless form they are

o 49

(3) D0y =1, O

at e =ua,.
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FeynMAN, METROPOLIS and TELLER [39] point out that, in crystals, solu-
tions of spherical symmetry are not strictly valid. Hence in this case (1) is not
rigorously correct. More correctly, the atom should be surrounded by a poly-

hedron; for many cases the polyhedron may be approximated by a sphere.
No striet solution of (1) is known. However @(x) can be developed in a semi-

convergent power series:
(4) D=1+ a,x + a2t + a,2® - ... .

Once fixed a,, the remaining coeficients can be evaluated; Table I1I gives the
values of the first few in terms of a,.

TasLe III. — Coefficients of the series solution of the Thomas-Fermi equation.
a, is the initial slope.

4 2
a’.’}:g as:f"jaZ
o 2 1,
a, — Gy —— — — @
4 97 252 °
9 1,
aszgaz Ayg §7—5 9
1 31 n 1 s
g = — Ay = — - @ - —a
tT 3 171485 % 1056 °
3
”7:%’12

For a special value of a,, @ tends asymptotically to the x-axis. This solu-
tion corresponds to the free atom or, in other words, to an atom of infinite
radius. The solutions obtained for values smaller than this initial slope refer
to isolated atoms while larger slopes give solutions for ions [40].

Taking into account the exchange effects it is also possible to write down
the Thomas-Fermi-Dirac equation (in dimensionless form):

. dz(pﬁ n EE 373
( ) dx2 =T« x ’
where
V—V,4 a? = Ze* Dr ,
(6) T
63

o == (n%)7F = 0.21187247F,
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The exchange term appears as a simple correction to the nonhomogeneous term
of the differential equation. When the exchange term vanishes, eq. (5) approaches
the Thowmas-Fermi equation. This correction vanishes with inereasing atomic
number.

This simple picture of an atom has provided a most useful approximation
to the cquation of state ol muatter between the completely degenerate region
at high density and low temperature and the elassical ideal-gas region at high
temperature aad modest density. Swrprisingly, the theory is also useful in many
types of low-femperaiure, normal-density applications.

IProm its stalistical baxis, the Thomus-Fermi theory would not be expected
to apply to atomic problems at normal densities and low temperatores. For
instance. an interesting theorem of TELLER [ 11] shows that in normal conditions
molecular binding cannoi oceur in the Thomas-Fermi approximation even
when exchange corrections are made. A related problem for the theory is its
well-known inability (o distinguish between the ground states of the atom and
the solid. However, BrinLovin [42] showed long ago that the Thomas-Fermi
equation corresponding to zero temperature is in part & WKB approximation
to Hartvee theory for the atomie ground state. Actual calenlations show the
average electron density distribution [10] and energy eigenvalues in the atom
as calculated from the electrostatic potential in Thomas-Fermi theory [43] to
be in close agreement with Iartree values. Another remuarkable success of
the theovy ix ils ability to prediet the value of the atomic number Z at which
new angular-momentum components appear in the atom [40].

An interesting development in this connection has been the demonstration
of the Thomus-Fermi equation as a first step in an asymptotic expansion of
the Hartree-Fock equationys in powers of Planck’s constant k. The next higher-
order terms in this expansion were shown to include quantum corrections as
well ag exchange. They have been investigated by Kirzaxtes [44] and others
in the Soviet Union. In their metliod the electron density at a point about the
atom is expanded in higher commutators of the individual electron momentum
operators by a standard but fornal method which has in the past been used,
mainly in high-temperature approximaiions. Only the leading term of the
density expansion is used to derive the Thomas-Fermi equation, and the re-
maining terms represent quantum corrections which contain various local
derivatives of the electrostatic potential at the point. If was pointed out
that the first quantum correction term in the density correction are both of
order /* and c¢an be treated more consistently as perturbation corrections in
the Thomas-Fermi equation rather than in the self-consistent manner used in
Dirac’s modification of Thomas-IFermi theory [ 13].

However, GROVER [46] has shown that there iy a more important class of
quantum corrections which were overlooked by the Kirzhnits method, and which
ean be similarly expanded in an asymptotic series in h. These corrections were
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derived for the particle density of a bound system of particles in a one-dimen-
sional potential by extending the Brillouin method of summing directly over
individual particle states represented by WKB eigenfunctions. A more compli-
cated asymptotic expansion in powers of A results which includes the Kirzhnits
corrections but in which the leading correction term is of order h. This term
has an oscillating magnitude arising from individual particle levels. In addition
it is nonlocal in nature, since it depends on the spacing of the eigenvalues of
the well-known WKB integral condition for bound-state eigenvalues. This
is no more than a complication, since the level spacing may be consistently
evaluated from the zero-order Thomas-Fermil potential. The improved density
can then be used in the Poisson equation ete.

Such an iterative expansion in powers of » appears to provide, for the first
time, a formal justification of the common usage of the Thomas-Fermi potential
in atomic problems as a zeroth-order approximation. The sucecess of the cal-
culation of atomic energy levels and angular-momentum thresholds in atoms,
which were mentioned previously, and the apparent accuracy of the new first-
order density corrections indicate that this interaction scheme converges
rapidly. Higher-order corrections will introduce great complications into the
scheme, but it should at least be possible to estimate truncation errors from
them.

A problem of particular interest to which this method appears well suited
is the study of the manner in which the high-pressure equation of state of solids
blends into the Thomas-Fermi limit at high compression. The extension of
this density expansion to the spherical Hartree atom presents some analytical
problems which have as yet not been completely worked out. It is clear however,
that in the spherical atom the additional correction terms are of the order k2,
the same as the Kirzhnits corrections, and that there are both oscillating and
slowly varying corrections of this order.

In view of the as yet incomplete theoretical picture, it is interesting to note
that high-pressure experimental data already illustrate some of the expected
properties of this expansion. The very regular and large periodic influence of
shell structure is evident in plots of the atomic volume of the solid elements at
fixed pressure [47]. All the Thomas-Fermi predictions, with and without the
Kirzhnits correction as well as with the Dirac modification, parallel the average
increase of atomic volumes with Z throughout the periodic table. The Kirzh-
nits correction is somewhat less than the amplitude of the periodie variations
in all shells. It is expeeted that the ineclusion of the oscillating correction terms
mentioned above will bring the modified Thomas-Fermi theory into even better
agreement with observations.

3'2. Equations of state from the Thomas-Fermi model. — At extremely high
pressure two different procedures can be followed to determine an equation of
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state (isothermal). One is to apply the classical virial theorem

(7) 3pv= E_, + 2E

kin ?
where p is the pressure, » is the volume per atom, ¥, and E,_ are the potential
and kinetic energies, respectively. FrEYNMAN, METROPOLIS and TELLER [39]
have shown that the virial theorem holds in the background of the assumptions
of the Thomas-Fermi model, despite the nonlinear nature of eq. (1). The
latter procedure is to apply the kinetic theory of a free-electron gas. The pres-
sure due to the bombardment of the eleetron gas on the boundary of the atomie
sphere appears to be that due to a free-electron gas equalin density to the actual
electron gas at the boundary. Such an assumption is possible since the Thomas-
Fermi theory may be derived by applying free-electron relations locally. If g (r,)
is the boundary density, obtained by solution of the Thomas-Fermi equation,
the pressure is then

(8) p =56 {o,r)}%

as follows from the theory of perfect gases.

We see from (8) that pressure is never zero, except when g,(r,) = 0, which
is only true for the isolated-atom solution corresponding to an infinite value
of r,. Introducing exchange, treating the free-electron gas by the Hartree-
Fock approximation, the pressure p is now given by

(9) p=3afa ) —ie o)t 25
where g, (r,) is the boundary density calculated 20
from the Thomas-Fermi-Dirac equation.
In both procedures we see that the Thomas- 5k
Fermi equation of state may be written as s
t
9 Zret E 10r-
(10) pv = ;_5 L x%u(@(xo))% ’ ?
5L
where v = gm(uz,)? is the volume per atom. Nu-
merical valnes over a wide range of pressures or
and atomic volumes are provided in Table IV and
graphically represented in Fig. 7. This model -5 ' .
gives satisfactory results for very high pressures; e *z?og 550 "
the lower limit of these pressures could be low- .
Fig. 7. — Pressure-volume

ered by modifying the basic assumptions of the relationship for the TF mod-
model on the pressure distribution within the el (from [48]).
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TaBLe IV. — Numerical solutions of the Thomas-Fermi equation over a wide range of
pressures and atomic volumes (from [48]).

Zv pZ-10 Zu pZ-10i3
0.70194 (— 29) 0.89937 (22) 0.10149 (—21) 0.10855
0.13888 (— 28) 0.28876 0.14860 0.44673 ( 9)
0.27965 0.89344 (21) 0.20698 0.203 36
0.54172 0.29573 0.28683 0.92398 ( 8)
0.10969 (— 27) 0.90806 (20) 0.41234 0.37791
0.21075 0.30408 0.61568 0.13803
0.42911 0.92242 (19) 0.81508 067383 ( T)
0.83218 0.30306 0.11247 (—20) 0.29235
0.16481 (—26) 0.95881 (18) 0.15947 0.11649
0.32926 0.29796 0.22916 0.44132 ( 6)
0.62803 0.99752 (17) 0.31525 0.18557
0.12225 (—25) 0.32113 0.42546 0.81337 ( 5)
0.24388 0.98512 (16) 0.604 62 0.30554
0.504 82 0.28114 0.86907 0.10972
0.10167 (—24) 0.83177 (15) 0.11511 (—19) 0.49188 ( 4)
0.21131 0.22945 0.16982 0.16012
0.41646 0.68301 (14) 0.23018 0.65947 ( 3)
0.59275 0.36072 0.28384 0.35622
0.83511 0.19288 0.39324 0.13567
0.12099 (—23) 0.97270 (13) 0.62299 0.34264 (  2)
0.16981 0.51634 0.89994 0.11280
0.23970 0.26897 0.13308 (—18) 0.34256 ( 1)
0.33954 0.13793 0.17540 0.14690
0.47549 0.71634 (12) 0.23445 0.60034 ( 0)
0.667 84 0.36616 0.31848 0.23227
0.96257 0.17571 0.90396 0.88358 (— 2)
0.13112 (—22) 0.93451 (11) 0.16743 (—17) 0.12526
0.18736 0.44516 0.441 82 0.56269 (— 4)
0.26009 0.22238 0.15196 (— 16) 0.10415 (— 5)
0.35922 0.11092 0.14331 (—15) 0.68469 (— 9)
0.50818 0.561810 (10) 0.12911 (—13) 0.23937 (—15)
0.71593 0.24065

The numbers in parentheses are the powers of ten associated with the entries.

atom. Some preliminary calculations show that for atomic numbers of the
order of 30 the lower limit of validity of the new model could be of some 102,

The first work in this field was carried out by JENSEN [12], following a sug-
gestion of StATER and KRUTTER [49], and, some years later, by FEYNMAN,
MeTroPOLIS and TELLER [39]. In more recent works, GILVARRY [50] and
MARCcH [51] have put the results into a form which should represent accurately
the predictions of the Thomas-Fermi theory over the entire range of pressures.
Gilvarry’s procedure consists in examining the limiting forms of the equation
of state at very high and very low pressures.
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An approximate form is then found which is correct in these limits and which
fits the available numerical data with fair accuracy in the intermediate region.
The high-pressure case is very interesting for our purposes and we shall briefly
consider it here. On a purely intuitive basis, with remarkable intuition, GIL-
VARRY argues that, at sufficiently high pressures, the results, for an element
with atomic number Z, must coincide with the appropriate ones for a free-
electron gas, with density corresponding to Z electrons in the atomic vol-
ume v. Then the equation of state may be immediately written as

R { 3\PZF
11 =— (=Y =
(1) P = 5m (875) vk

and this corresponds to a value of @, at the boundary of the atomic sphere of
radius ux,, given by

(12) Bg) = .
MAarcH [62] has algo studied how this result follows from the properties of the

dimensionless Thomas-Fermi equation, obtaining a further term in a series
development of the boundary value D(x,)

(13) @(xo):%ﬁ[l_f%—l—...] ,

leading to the equation of state

L3743 2
(14) — (3) i[l-*?”me (4Zo)t - ] .

 Bm\8x) ot h?

The first term is, of course, independent from the electronic charge; the second,
involving e2, shows the way in which the equation of state is modified at the
highest pressures including the electron-nucleus and the electron-electron
interactions by means of the Thomas-Fermi theory. Such an equation of
state was assumed, on purely intuitive grounds, by KoTHART [53], in his
works on the mass-radius relation for the planets. At low pressures, using
an asymptotic solution of the Thomas-Fermi equation, the boundary wvalue
for @(x) is

(15) D(x,) = 296.70/27 .

A fitting function for @(z,), yielding the correct asymptotic forms, ean be
written as

(16) D(s,) = { iAnx;”z}_l

Nl

29 — Rivisia del Nuovo Cimento.
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if the coefficients 4,, 4, are chosen to agree with the corresponding coefficients
in the asymptotic forms (12) and (15) respectively. Gilvarry’s values for the
remaining coefficients, chosen to obtain a good fit with the available numerical
data, were slightly modified by MARCH in order that (16) should reproduce (13)
for small x,. The values of 4, thus obtained are recorded in Table V. The

TABLE V. — COoefficients in fitted functions for () (from [52]).

\
A, = 4.8075-101

A= 0

A, = 6.934 -102
Ag=9.700 -10-3

Ag= 3.3704-10-3 i

resulting expression for @(x,) then fits the existing numerical data to better
than 19,. Thus a convenient Thomas-Fermi equation of state, sufficiently
accurate for most purposes, is

R 6 3y \(n+2ls _ (Z2e2 )1?
on 3 ()] (o)

3'3. Equations of state from the Thomas-Fermi-Dirac model. — Equation (9)
determines the equation of state in the Thomas-Fermi-Dirac approximation.
In terms of the boundary value @(r;), found by solving the Thomas-Fermi-Dirac
equation, we may write

(18) oo Ezzezxg[{@w“)}%Jr och [1— {————5“/4 ] .

T 15 Z, B(@y)[70}* + o

Figure 8 shows the graphic representation of (18) for various values of Z;
no means of expressing this equation of state in a form applicable to all elements
has been found.

The general form for the equation of state at the highest pressures, to the
same order of accuracy as that given in eq. (14), is

he (3\¥Zs 2nme? 107rme?
— 2V E— o)t — Y H i
(19) Y o (87‘6) 17§[1 i (4Zv) TYE (4Zv) oc—l—...]
The term
10nme?

which appears in (19) is simply the free-electron exchange term for Z electrons
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Fig. 8. — Pressure-volume relationship for the TFD model.

in a volume ». Equation (19) or the corresponding equation for the boundary
value

‘ S 3 2
(21) @(wo)zg[l—m%—?&%‘iﬂ--]

T T T T

4 5 7 3
10 10 10 10 10 10

—10/3

Fig. 9. — Comparison of experimental pressure-volume data reduced from ALTSHULER
et al. with TF and TFD theoretical values for comparable atomic numbers.
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should be useful in any attempt to set up analytical functions to fit the nu-
merieal data for the Thomas-Fermi-Dirac equation.

A comparison of the Thomas-Fermi-Dirac results with the experimental
data of Altshuler et al. [6] shows that the Thomas-Fermi-Dirac equation of
state is reasonably close to the experimental situation and will be accurate at
a pressure not far above the range of experimental pressures (Fig. 9).

3'4. Thomas-Fermi equations of state for the case of incomplete degeneracy. —
Thus far it has been assumed that the electrons form a complete degenerate
gas. Of course such an assumption is often not permissible. We now examine
the special case of low temperature (incomplete degeneracy). In the next
Subsection we shall study the general case of any temperature (arbitrary
degeneracy).

GILVARRY [50] has shown that

(22) p*=p[1+ 3 (o + 27) L(kT)],

where p* is the pressure in the case of incomplete degeneracy while p is the
abgolute-zero value of pressure,

_ e
. 4 872’
("3) B % )2
= (¢(m0) ’
(24) o= D Yxy) D> Cpay .

In the summation n= 3, 4.215, 5. Table VI gives the values of C,.

TaBLE VI. — Coeffictents O, in equation (24).

n Cn
3 —3.205-1071
4.215 —2.331-102
5 —2.519-10-3

The results obtained can be used whenever the temperature is low with
respect to the maximum kinetic energy of the electrons near the boundary sur-
face of the atomic sphere, namely when the inequality

(25) kT<<Z—e2(%) ,
#o\ T
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GILVARRY has also given an empirical expression of the various thermo-
dynamic functions.
The internal energy is
) Tk T 15 D) >
(26) U* = U+ - pv(o + 27 + 30){(kT)?,
where U is the absolute-zero value. The entropy is

217) S =15po(o + 27 + 3w) T .

The enthalpy is

(28) H* = H + 3 po(do + 87 + 9)S(kT)?

where H is the absolute-zero value.
The Helmoltz funetion is

(29) F = (7—%5(0+2r+3(/))§(7cT)2 .

The Gibbs function is

(30) G :H—g(za+4r + 9w) Lk T2 .

The parameter o, which appears in those expressions, is defined by the relation
(31) w =y CD(J“O)“%{Z meE’”}_ :

where m = 0.2288, 0.7400, 2. The values of D, are given in Table VII.

TaBLE VII. — Coefficients D, in equation (31).

ne Dm
0.2288 — 5.805-10-3
0.7400 —1.925-101
2 —3.120

Kxoprorr and Mac DonarLp [7] have derived from these considerations a
parameter analogous to the Griineisen ratio

32 _ 1 (dp
(32) yﬁng ar/,’

where (dp/dT), is the temperature coefficient of pressure and ¢ is the density.
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20 ! From the above expressions it is seen that to the

lowest order of temperature, the Griineisen ratio,

19+ even for the model, is independent of temperature, a
conclusion inferred from the Debye model.

185 Figure 10 shows the numerical calculations made

~ by Kxoprorr and Mac Dowarp. The remarkable

feature of this computation is that the numerical
values of the Griineisen ratio are a very slowly chang-
ing parameter over the entire range of pressures.

L { i L

Sc¢ 5 8 6 10n 12 Fig. 10. — Pressure-Griineisen’s ratio relationship for the

log PZ—m/3 TF model.

3'5. Generalized Thomas-Fermi theory for arbitrary degeneracy. — MARCH [52]
has studied the case of arbitrary degeneracy in the following manner.

Consider N free electrons enclosed in a volume v at a temperature I. The
thermodynamic functions for this case are well known and may be written
as follows:

kinetic or internal energy:

3 kT\?
(33) EerWT(—)@wu
2 . &

. hr (3N\%
60—% 8nv

and 7 is defined by the equation

where

3 (kT\¢
(34) 1= () non
entropy:
5
(35) § = (5 aa/m —n) e
free energy:
(36) F=FE—T8=NkT(y—3{I/L}}.

The I, are integrals of the Fermi-Dirac form

" d
lum=f Y2V
0

1+exply—n]”
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Taking the free energy per unit volume from the free-electron theory, adding
the usual electrostatic-potential energy terms and making the density p a func-
tion of position, the free energy in the generalized Thomas-Fermi theory may
be written

(37) F= ng[n—%{I*/Ik}]dt—%efgvedr—ef@Vth,

where V, and V, are the electrostatic potentials due to the electrons and
nuclei respectively. Now we require ' to be stationary with respect to variations
in g, subject to the normalization requirement that

fn dr = const,

where n is the number of electrons per unit volume. It may be seen from (34)
that it is equivalent and more convenient to withe the variation of F with
respect to %, so that

on on ., on
(38) SF_fa—nanBndr~efa—nISndr+eV0fé—7—78ndr,

where V, has the meaning of a Lagrange multiplier, and

V=V,+V,.
The requirement
3F =0
gives
V=V,
(39) =T

From (34) and (39) it follows that

(40) o= 2mkT 1y (eV eV")

ET

Combining (40) with Poisson’s equation, we have the generalized Thomas-
Fermi equation:

- 167%e 17 6V0
(41) ViV = = @mkT) I (kT kT)'
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Fig. 11. — Pressure as a function of the volume for fixed temperatures (from [43]).
The values of kT/Z% for the unlabeled curves follow the sequence shown in the upper
right-hand corner.
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In the sphere approximation the boundary conditions are the usual ones. In
the present model the pressure may be calculated either by considering the
rate of transfer of momentum between the electrons and the surface of the
atomic sphere [39] or from the thermodynamic relation

o
o ().

However the result is

%
p—3h3

(43)

(2ka)’§kTI§ (617(7'0) GVO) ]

kKT kT

Figure 11 shows results obtained by LATTER [43]. Equation (43) is needed to
study the ionization of gas mixtures in stellar interiors [54].

4. — Relation of the Thomas-Fermi equations of state to Bridgman’s measurements.

By means of Bridgman’s technique, it is possible to reach, in laboratory,
pressures of 101, Such experimental data are represented in the left parts of
Fig. 12,13, 14. In the right part of these Figures there are the results obtained
by means of the Thomas-Fermi-Dirac model at absolute zero. The Thomas-
Fermi-Dirac curves are extrapolated down to pressures 10! despite the fact
that the model is valid only for pressures greater than 10 [39]. But, taking
into account that the model is more realistic for higher atomic numbers, one
can think that the limit of validity increases, by a factor 10, for the light
elements and decreases, by the same amount, for the heavier elements.

The theoretical curves show a steady increase of density with increasing
atomie number for a given pressure. Such a correlation of density with atomic
number appears fair, but not complete from Bridgman’s data. On the basis
of these curves ELsASSER [28] suggests that an interpolation between experi-
mental data at low pressures and theoretical values at high pressures gives
an estimate of the density in the intermediate range with an indetermination
less than 209,.

But let us examine some special cases, to see the difficulties and ambiguities
which are present in this procedure.

If we consider the case Z = 92, from Fig. 14, we find a density of 11.9
at a pressure of 0.2-10'2. Such a density is much lower than the actual uranium
density for every value of pressure. From the same Figure we can see that,
for uranium, it is not possible to join smoothly the experimental curve with the
theoretical curve. Let us now consider copper (Z = 29): its density at pres-
sure zero i 8.9, while the theoretical value at a pressure of 1.4-102 is only 8.4.
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Fig. 12. — Pressure-density relationships. Curves on left-hand side: experimental

results of BrRIDGMAN. Curves on right-hand side: results of TFD theory. (From [28].)
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EQUATIONS OF STATE AT HIGH PRESSURE

11
10+
QL
o Z=1
!
0.2 1l0 l 111 l 1I2 [ 13
log p
Fig. 13. — Pressure-density relationships. Curves on left-hand side: experimental
results of BripemaN. Curves on right-hand side: results of TFD theory. (From [28].)
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Moreover the theoretical density curves of the lightest elements do not
jump as the pressure increases, corresponding to the breaking-down of the
inner shells. This should continue until every atom is completely broken down,
the electrons then forming an imperfect degenerate Fermi gas. From this point
of view the results of the Thomas-Fermi-Dirac theory, even at extremely high
pressures, can at best only give an average account of what would seem to be
a complicated discontinuous relation between p and p for the heavier elements.
Of course when the atoms are entirely broken down, the Thomas-Fermi-Dirac
model is completely valid. For the heavier elements the pressures required
to reach this circumstance are very high. A crude estimate by RAMSEY [22]
gives for the critical pressure p

P~ Z%-10".

For Z ~10% we obtain p ~10%. Pressures of this order and greater are
found in the white dwarf stars, while, in the planets, the maximum pressure
is about 10** and this would seem to break completely down only the lightest
elements.

5. — Equation of state derived from the theory of finite strain.

The theory of finite strain developed by MURNAGHAN [5D, 56] and
BrroH [34, 537] is a rigorous development of the theory of elasticity in which no
restriction is imposed on the magnitude of the strain. The theory is formally
exact, but, in practice limitations arise from ignorance of the coefficients of
order higher than the second which appear in the development of the strain-
energy as a function of the strains. 1lu the usual theory, only the coefficients
of the second-order terms are retained in the strain-energy function; the strains
are treated as small and their squares and products systematically discarded.
1t tnrns out, however, that even when only the known second-order coefficients
in the strain-energy are retained, the theory of finite strain gives an excellent
account of the compression of many materials, including those for which the
greatest compressions have been observed: the alkali metals. It appears [57]
that the third-order coefficient which occurs in the compressibility is in fact
small in relation to the second-order term for a large number of materials,
and, to a good approximation, may often be neglected. The complete form of
the theory is required for the discussion of the effect of pressure upon indivi-
dual elastic constants and velocities, but the relation between hydrostatic
pressure and volume may be obtained from the thermodynamic relation

(44) P (E_E) ,

o
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where F' is the Helmholtz free energy and v the volume, per unit mass. In the
ordinary theory of elasticity, the free energy is equated to the strain energy
and expressed as a quadratic function of the strain components, higher powers
being neglected. The coefficients of the second-order combinations of the strain
components are the elastic constants, which depend upon the temperature.
These will be termed the second-order elastic constants. Let x,, ¥, be the po-
sition vectors of a particle respectively after and before the deformation. The
strain components will be referred to the strain state.

Differential relationships between adjacent particles before and after defor-
mation are given by

Y
4 =2 da, .
(45) dy, awjdw,

The square lengths of a curve element before and after deformation are
related by

oY 5 OY:
2 = . == — . 7 .
(46) d2s, = dy,dy, 5, da; . day,

In the special case

ds_ = ds

Ed v
for every undeformed curve, we can rewrite

oy: Oy;
*7) ox; 0% O -

(e;z), the strain matrix, is defined by

(48) sjk:%(ayi Wi s ) _

- k
dx; 0wy

The element of volume after deformation, is related to that before deforma-
tion by

_ 0y:
(49) dv, = dv, Det ( am,.) .

Hence for the density

0. dv, ’ayi)
e =1 .
(50) Qz/ de et (axa

Let us consider the case of a hydrostatic strain of linear magnification o of
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a medium of isotropic or cubic symmetry. Then,

(51) &=y + ay.,

where o< 0 means compression.

Then,
ox;
2 = .
(52) L
(53) & =1 4o,
Oy
1
(54) Ejp = 3[(1 + ) — l] 0 =20y y
where ¢ 0 if x=0.
Thus,
o_0_ Cx__ H
(55) b UREDLE

where ¢ is the hydrostatie strain and the subscript zero refers to zero pressure.
To derive a pressure-density relation BIRcH [34] supposes that, for hydro-
static pressure alone, the total strain energy may be expressed in the form

«©
E=Ya,e,

=2
where the coefficients a, are functions only of the temperature. Then,

B

oL

)ds L1 k28 S nayenr

rdv 37, o

(56) |

Introducing the isothermal incompressibility at zero pressure

dp 2 a,

&7 T T 97

and taking into account also (55), we obtain

s i (n 4 2) s

3
(38) =5 Kalelo® X5, 7 (el — 13,

or

P = 2 EK,[(0/00)% — (0o/0)¥1{1 + £l(0/0o)® — 11+ ..},
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where
3a,
&= 2a,’
K, and £ are functions of the temperature only. The convergence of the series
depends on the amount of compression ¢, or p/g, and on the magnitude of the
coefficients of higher powers of e. In the Earth, ¢ does not exceed about 0.3;
which corresponds to g/g, &~ 2; in the mantle it is less than 0.13.
£ is related to experimental quantities by [34]}

£=—3[K,—4],

where

oK
K, =[— 0.
° (ap)r » L

BircH [34] plotted the experimental values of p(K,, p/o,) from the above
formula and found that, for alkali metals at least, which themselves have large
compressibilities, the data to 10! of pressure correspond very closely to a value
of the second-order coefficient

3a; < 2a, (or £«1)

and in fact this is so for a number of other materials. Hence the theory of
finite strain leads to the semi-empirical expression

(59) = §K,[(0/00)% — (e/00)?] .

Equation (59) is obtained expressing the free energy as a single parabolic
potential-energy term. If higher-order terms in the potential energy are
retained, the equation of state becomes

¢

(60) p =5 Elele 3 “llefent — 17

=1 C1

Strain here is not defined in terms of the change in dimension of an element of
length as in the case of infinitesimal strain but in terms of the relative expansion
or contraction of an element of area. Thus the strain tensor ¢,;; is defined by

1 aui_}_auj 8uk%
©1 =3 o, T ow, T dx, om,|’

where

U= Ty —Ys -
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The quadratic strain reduces to the linear strain

%(u” 4+ ;)

for small strains.

Kw~ororr [58] remarks that the construction of a quadratic strain is by
no means unique. Therefore it is possible to define other quantities which are
also tensors of rank two and which reduce to the proper relationship for small
gtrains. The tensor functional

MNii — f(é"z'f) ’

where

=1 at r=0,

satisfies this condition. As an example of this funetional KNOPOFF considers
the expansion

Nis = €5 T Qo€ Eyj + WgEix €1 €15 + o,

where ¢,; is the quadratic strain tensor given above.
In this case, for hydrostatic strain, the new strain tensor has diagonal
components

p=—oa+ (§ + o) &+ (—a;— 3a,—2)&® + ...,

where « is the linear strain as before. If the series is truncated then we can
invert the relationship to solve for «(z) with an approximate expression of
the type

m—2

1—{—oc:(1~zcnn“)

nel

b
?

where ¢, and b are to be determined as functions of the a@,. Since the strain
energy is written as a function of the invariants of the strain, a strain energy
written as a function of # is sufficient and an equation of state can be obtained
as before. As an example consider the case

n=—a+ (§+a)az.
This can be inverted to yield

(1 + o) =[1 + (2 + 2a;) e

30 — Rivista del Nuovo Cimento.
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and the volume change is given by (53), which is rather different from the value
which one would obtain by discarding the square of the strain.
Assuming, further, a single-term energy funetion

B = b,
as before, the equation of state thus derived is

3

(61) p= 2_+2_az Ko{[(g/go)(ﬂ-laz)la_ (Q/@O)(s-bzaz)/s] + } ,

which reduces to the Birch equation of state if a,=0. Evidently the deri-
vation of an equation of state based on the theory of finite strain can be criti-
cized [58] on several grounds. Since the equations of state so derived depend
upon the existence of the quadratic terms in the definition of the strain tensor,
the strains must be unambigunously defined so that the quadratic, and perhaps
higher-order terms, are unique. Sinece tensor-invariant functions of the displace-
ment can be written which have ambiguous quadratic and higher-order terms
in the linear magnification, and yet reduce to the appropriate behaviour at
infinitesimal strains, an appropriate theory of finite strain must await a defi-
nition of the strain itself. Sinee the free energy may depend significantly upon
the existence of terms of order higher than those which are quadratic in the
strain, the pressure in the equation of state may be expanded in a series of
ascending powers of o/g,. If m =2 the expansion is in powers of (o/g,)} — 1;
if m =3 it is in powers of {g/g,)**2*/*—1. The validity of the use of quad-
ratic expressions can be shown by direct experimental measurements. The
equation of state derived on the basis of the theory of finite strain becomes
akin to that of an interpolation formula; extrapolation to values of g/g, signif-
ieantly higher than those in the range of laboratory compressibility measure-
ments is questionable because of the problem of the influence of higher powers
of 0/o,. .

Over small ranges of compression it may be that it is not directly possible
to distinguish between two models of the equation of state.

Consider for example the two models

I

(62) p =3 EK,{(0/00)¥ — (0/00)¥} {1 + &l(0/00)* — 1T},

3
__ (7+4a,)/8 (5+2a,)/3
5 13, Tellele) (0/a) *+*+"%} .

(63) P
Given a measurement of K, at p =0 and a value of p at some high value of
¢/, then, because of a limited range of compressibilities in the laboratory
the two expressions may be equal within the limits of experimental accuracy
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for a certain choice of £ and a, to fit the slope and go through the required
point. What is required here are very accurate experimental data on compres-
sibility and, in addition, experimental data extending to large compressibilities.

6. — Murnaghan’s equation of state.

MURNAGHAN [59], by means of the assumption that the isothermal bulk
modulus

satisfies the relation

(64) K(p, T)= E(T) + E(T)p,
where K;(T) = (cK/cp), as p — 0, obtained the following equation of state:

(T ,
(65) ple, T) = oo (el 13

Equation (65) is, experimentally, nearly indistinguishable from the Birch-
Murnaghan equation over a considerable range of compression. This fact may
be understood on the basis of the uniqueness of the Taylor expansion {60].

7. — Equations of state derived from inter-atomic forces.

The inter-atomic forees can be divided into two main groups: forces of at-
traction and forces of repulsion. Moreover the forces of attraction can be
divided into three types:

a) Coulomb forces,
b) Van der Waals forces,

¢) exchange forces.

a) Coulomb forces. The potential energy ¥,
7, is given by

for two charges, at a distance

‘oul

If one or both charges are replaced by dipoles or higher multipoles, the potential
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energy can be derived from this basic equation, resulting in a term proportional
to r~™(m = integer).

b) Van der Waals forces. The Van der Waals energy between two particles
is proportional to r—¢. There are three mechanisms which give rise to Van der
Waals energy, distinguished as « dispersion effect», «induction effect» and
¢ orientation effect ».

The moving electrons in the first atom induce rapidly changing dipole mo-
ments in the second atom; these are proportional to the polarizability «. The
mutually disturbed electrons could attract each other on the average with a
potential energy:

o K,

6

3
yId‘mp = - I

I

where E, is an energy value characteristic of the atom under consideration, lying
between the lowest excitation energy and the ionization energy.

If one of the atoms carries a permanent dipole moment p, this will induce
another dipole in the second atom proportional to ap. Primary and secondary
dipoles will exert on one another forces which may be repulsive or attractive,

Pia
Tinduct =—2 F ’

but averaged over all mutual orientations they will be attractive.
Thirdly, two permanent dipoles will also exert forces, which again, when
averaged over all possible orientations, will be attractive:

2pt
onﬂenh —_ gkﬂﬁ .

In most cases the dispersion effect is the greatest of the three, but for very
high permanent dipole moments the orientation effect may predominate. The
induction effect is never the most important [44].

¢) Exchange forces. — Exchange energy, of which homopolar chemical
binding by valenecy forces is an example, is a typical quantum effect. Some-
times the energy is positive (repulsive) for all distances; in other cases a minimum
energy occurs at small distances.
As a rule valency forces work only at very small distances. Since binding
energy is due to a pair of valency electrons originating from the participating
atoms, valency forces show saturation, if valency electrons are not available.

Besides the forces of attraction there must also be forces of repulsion, so
that atoms (ions) attain equilibrium positions at a distance apart. This is
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accomplished by the mutual repulsion of electron clouds as soon as atoms
try to inter-penetrate. The numerical calculation of these forces is extremely
complicated and should take place on a quantum-mechanical basis. The
results [62-64], cannot as a rule be expressed by simple formulae, dependence
on the distance being neither a power nor an exponential function.

The inter-atomic forces active within metals present a rather difficult prob-
lem. To account for good electrical conductivity it is assumed that electrons
can move more or less freely throughout the whole volume, thus passing from
one atom to its neighbours. Such free exchange of electrons makes it neces-
sary to apply Pauli’s rule. It follows that many electrons must possess a high
kinetic energy. In general this excess energy is called Fermi energy; since it
is positive it has to be added to the other repulsive potentials.

The cohesion may be due to the forces of attraction between the positive
ions and the negative electrons.

The hypothesis that migrating electrons temporarily help to form a chemical
bond between two metal atoms, these bounds continuously shifting from one
neighbour to another, might also be made [65, 66].

In reality the metal does not correspond to either of the preceding hy-
potheses but its behaviour is somewhere in between the two. Theoretical cal-
culations are made as approximations from either side. The homopolar bond
theory will give good results for those metals which behave more or less as
amphoteric elements, 7.e. germanium, tin and bismuth. The free-electron
theory [67-72] will give the best results in those cases where the electrons are
only loosely bound, as in the case of the alkali metals [73].

Since energy calculations start from free ions and free electrons, a correc-
tion for ionization energy must be made in order to determine the cohesive
energy. The agreement between the calculated and the observed values is
most satisfactory considering that the theoretical end result is obtained as a
difference between two large numbers, both of which are liable to error.

The large negative term in the energy equation is mainly due to Counlomb
forces and varies theoretically as 1/r. The repulsive Fermi energy varies theo-
retically as 1/r%

In the case of potassium, if the caleculations are made on the same basis
ag those for lithium and sodium, the agreement iy far worse.

GouMBAs [70], starting from somewhat different assumptions, was able to
account quantitatively for the cohesive energy of potassium. Although his
caleulations are to be handled with some care, they give the impression that the
underlying physical mechanism is right and that only the mathematical dif-
ficulties are so great as to make good agreement impossible in all cases. The
theory is well enough founded to make it possible to prediet that metallic
hydrogen cannot exist, since the lattice energy of molecular hydrogen is far
more negative than that of ionic hydrogen.
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Following the suggestion of MIE [74] we may represent the mutual potential
energy of two atoms or ions by the binomial expression

a b

(66) W(T):—ﬁ +F”

where the first term refers to the attractive forces, the second to the repulsive
forces; m and » are constants, n being greater than m.

This expression is not, of course, more than a rough approximation; both
attractive and repulsive energies may be far more complicated functions of
the mutual distance r, and the saturation and orientation character of valency
energy is not expressed by Mie’s equation. We can see that m will have the
value 1 for ionic lattices (Coulomb energy) and we may tentatively equate it
to 1 for alkaline metals; it will be 6 for molecular lattices (Van der Waals
energy).

Not much can be predicted theoretically about the value of n. Rough
theoretical estimations put it at about 9 for ionic lattices and about 2 for alkali
metal lattices (Fermi energy). It can, however, be determined experimentally
from the bulk modulus [75]. Assuming that

__ 92’)
p_ av 1”

we obtain the following equation of state:

3K,

(67) p=— (Q/Qo)n/aﬂ_g(g/go)m/sﬂ .
n—m b

Using the potential function

4 B C
» Ry

derived on somewhat different grounds, BARDEEN [71] obtains

(68) p = (0/0)*[(0)00)* — 11{3 K, + D[(0/0)* —11} ,

where D is a constant to be determined empirically. However it has been noted
that all these relations have the limitation that they cannot be extended across
polymorphic transitions. This is true also for the theory of finite strain. More-
over, the potential functions used are an unsatistactory description of the ac-
tual inter-atomic potentials if extended over a wide range of pressures.
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8. — Griineisen’s equation of state.

It is assumed that the thermal energy of a metal erystal is described ade-
quately as the sum of the energies of a set of simple harmonic oscillators (the
normal modes of the dynamical system) whose frequencies », are functions
only of the volume. The total mean internal energy K of the crystal (according
to the statistics of quantum theory and neglecting electronic contributions)
is given by (e.g. see [76])

(69) +§1 exp [hva/kT]”"l

p(v) is the potential energy of the crystal with the atoms at rest in their
equilibrium positions, the summation is over the 3§ normal modes of the crystal,
N being the total number of atoms and v the specific volume. The Helmholtz
free energy for such a system is given by

o=l

(70) 4 = g(v) +kT§1n(1—exp[ Z”;])

The external pressure is then

) p=—(5)-—E+i2 i

v )y v 217“ exp [y [kT]—1"
where y, is the dimensionless variable

dinwv,

2 = diny,
(72) 4 dinv’

called Griineisen ratio for an individual oscillator.

We assume, as did GRUNEISEN [77], that the v, are independent of the tem-
perature but are density-dependent and further that all the y, are equal to each
other, i.e. that the frequencies of all normal modes change proportionally to
the volume in the same manner. SLATER [76] points out that this implies a
relationship v, = ¢, v—y.

By such an assumption eq. (71) reduces to the Griineisen equation of state

__dp |y
(73) P*—*(E +;Evib7
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where K, is the vibrational contribution to the internal energy

3N hVo;

Bo 221 exp [ha/kT]—1°

For later use it is convenient to write this equation of state in one of the fol-
lowing forms:

(74) r—m=L@E-8),
or

_7
(75) P_PH—E(E“EH%

where p, and FE, are the pressure and internal energy as functions of volume
at 0 °K, and p, and ¥, are the pressure and internal energy along the Hugo-
niot curve considered as a function of the volume only. Griineisen’s ratio y
can be expressed in terms of other thermodynamic quantities by differentiating
eq. (74) with respect to & at constant ». Since y is a function only of volume,

one obtains

op op op\ (ov op\ v
76 — | =_— =_
@) v= (aE) v(aT),, (av) aT), (av aT)
80 that at zero pressure y can be evaluated from experimental data for the bulk
modulus, thermal expansion and specific heat. The equation of state (74)
was derived by assuming that all the logarithmic derivatives of the eigen-
frequencies are equal. It will be noted that this assumption is not necessary
for high temperatures for in the classical limit the energy of each oscillator
approches KT, and the eq. (71) reduces to

(77) P—Pp=

3NRT e
v [BN zy“]

=1
This equation is identical to (74) except for the different result for Griinei-
sen’s ratio, which now is an average value of the logarithmic derivatives. The
approximation is a valid one for nearly all metals at room temperature and
above, since in these cases specific-heat measurements indicate that the clas-
gical limit has been attained.

Let o be the volume coefficient of thermal expansion. Then,

=3 (7~ % (28).
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where K is the bulk modulus:

This expression, called Griineisen’s relation [75] has a number of properties
that can be investigated from experimental data. y appears to be substantiaily
independent of the temperature and is indeed volume-dependent. The volume
dependence was first determined by SrLATER [76], who obtained the expression

(78) p=—

for an isotropic elastic continuum with constant Poisson’s ratio.
The result follows from the usual relations:

(79) 0, =Voly,
(80) 0,= )@,

= dp  On+ 20,
(81) K=—vg =0,

where O, and C, are the longitudinal and transverse wave velocities, K is the
bulk modulus and Oy, C;, are the two first-order elastic constants of the iso-
tropic medium. For constant Poisson’s ratio (Cy,/C,,), the relation

¥, = ¢[A;,
where A, varies as o}, then leads (from (79) and (80) for the sound velocity) to

B diny,
YiT T Qine

which are equal for all modes of vibration. In particular, for a longitudinal
mode,

1
(82) y——rdinCa 1
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Equation (81), for constant Poisson’s ratio, may be rewritten
d

(83) ”?1% — (const) - Cyy -

Eliminating €}, from (82), by means of (83), then yields the Slater’s formula (78).

GILVARRY [78] showed that the expression also follows from Murnaghan’s
theory of finite strain, which is also based on the two assnmptions mentioned
above,

Both SLATER [76, 79] and GILVARRY [78], using values of first and second
derivatives at zero pressure obtained from Brigdman’s compressibility data,
have made extensive comparisons of the y calculated from (78) and the values
obtained from the thermodynamic definition (eq. (76) above).

DuGpALE and Mac DoNALD [80] modified the Slater relation to

v opoh)font 1
&4) L dphjdv 3’

assuming that the thermal expansion is zero in the case of Hooke’s law inter-
atomic forces. This assumption was later proved erroneous by GILVARRY [78]
and BArrON [81, 82]. However (84) is in excellent agreement with zero-pres-
sure tests.

In a recent paper KNOPOFF and SHAPIRO [83] have compared the various
methods of computing Griineisen’s parameter. They have also attempted to
bring them into closer agreement by taking into account the elastic moduli,
the erystalline anisotropy, the effects of melting and of fluidity.

9. — Equation of state from Debye theory.

The thermal energy of a crystal is

U 24 hy;
(85) =2 el =1

DEBYE [84] assumed that all frequencies of vibration are bounded by some
maximum value v,,, i.e.

v, <wv, forall i,

and replaced in (85) the sum by an integral:

_ hvf
(86) f exp [hv/kT] -1’
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where f(v) is the number of frequencies between v and » + dv. In an elastic
solid

Yp?
fv) =— Ny,

Ym

where N, is the number of atoms per unit volume. The thermal energy is then

oN, [ W
87 == =
(87) U» Ve J exp[hv/kT]—1
0

Introducing the Debye temperature

and the following relation connecting the Helmholtz free energy F to the inter-

F:TfUd(%),

nal energy U:

we find

Up dln &
(88) o= dno
If we set

_ dln@_i dinv,
YT T dme T dne’

we see that we obtain the same expression for the thermal pressure on the basis
of Debye theory and on the basis of the Griineisen theory. The thermal pres-
sure is related to the pressure at absolute zero p, and the measured pressure p by

P =D+ Pp -
P, is given in explicit form by
INkTyp 1 - £rdé
(89) Po——37 ;J =
0
with

x=0|T,
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where p is the density, N is Avogadro’s number and M is the atomic weight.
Accurate tables of the integral which appearsin (89) can be found in LANDOLDT-
BORNSTEIN [85] or in KNoPOFF [58]. From the knowledge of y and @, by means
of (89) it is possible to estimate p,, at any given temperature. @ can be deter-
mined from a measurement of the specific heat at constant volume:

o—(29) - 50 F e
" \oT), oT +i ) exp [M/kT]—1"’
0

or by means of

ON k[ EetdE
(90) Cp="3 f(ef—l)z'

0

Another manner to estimate the Debye temperature is to use the following
relation of easy demonstration:

9Np (1 2\t
1 3 = — — —

where V, and V, are infinite medium velocities of compressional motion and
shear waves respectively. The estimate of © based on (91) differs somewhat
from that based on (90). This is very likely due to the fact that the usual meas-
urements of the elastic-wave velocities are made at frequenecies less than »,,:
10. — Equation of melting.

An equation of melting was first developed by LINDEMANN [86] on the basis
of classical physics. Actually when the temperature 7',, at which the melting
point occurs satisfies the inequality

T.>0,
the internal energy ean be written in the classical form

(92) E = 3kT,, .

Moreover the classical frequency of a harmonic oscillator is given by

1 [E\*
93) »= 52z ()
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where E and m are the total energy and the mass of the oscillator, 4 is the am-
plitude of the oseillator. LINDEMANN assumed that, at melting, the collisions
between neighbouring atoms induce a break-up of the erystal structure when
the value of A approaches the lattice dimensions. Since 4 is proprortional to
o}, where v is the volume per atom, expressing E of (93) by (92), we obtain

T\ 1
94 = t =) =.
(94) ¥ = CONS (m) p

The frequency obtained by the Lindemann equation and the maximum fre-
quency of oscillation calculated by Debye specific-heat equation are in excel-
lent agreement, at least for metals [87].

In order to fit observed melting-point data for some materials, SIMON [88-90]
has given the following empirical equation for the melting point of solids:

(95) Pt p,=al’,

where p, is the pressure at absolute zero and b, ¢ are constants.

It is possible to derive (95) assuming that the Lindemann law and the
Griineisen equation of state hold. If T, > @, it is possible to replace the
thermal energy U, by the Boltzmann energy 3NkT,y, obtaining

NET,,
(96) Pn— Py =",

where N is the number of atoms in the volume at the melting »,. Sinece v is

constant,

Yy, == const- (v,,)77 .

The Lindemann law gives for the maximum frequency

T.\F 1
(97) Vi = const-(-;n—) v?,,’
substituting (97) in (96), we have

Tey+1
(98) Pm— Po = eonst-6 =

0"

From (98) it is possible to obtain the Griineisen ratio. Assuming that p, and
(6y + 1)/(6y — 2) are slowly varying functions of the thermodynamic variables,
we obtain

d2p,, 3 1
P oot (6y +1)

(%9) ars, ~ O gy —2p

8 W6y—2))—2
T{@r+niGy-2)-2
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and from (98) and (99)

1 dp,/dT.

1 I TAmTem
(100) Y ST, drpaln

1

+ 3

This formula is not restricted to application at zero pressure. Since Griineisen’s
ratio is dependent upon the volume, it will not be constant over a melting curve
and will therefore, in general, differ from the value at zero pressure. The above
formula allows one to compute Griineisen’s ratio at any temperature and
pressure along the melting curve; the only assumption that is present in the
derivation of this expression is that Griineisen’s ratio is a slowly varying
function of temperature and pressure.

11. — Compression of solids by strong shock waves.

Detonation waves in which the pressure is of the order of some 10'! are
common to modern high-explosive experimentation. When such a detonation
wave interacts with an explosive-solid interface, a shock wave is transmitted
into the solid. It is also possible to obtain pressures greater than 10!? by some
modification of the simple in-contact explosive-solid geometry mentioned above.
The problem is to derive from the experimental data so obtained the pressure-
compression (density) relation. For such a purpose we shall derive the hydro-
dynamic relation and discuss the thermodynamic interpretation of experimental
data. Generally in this interpretation two assumptions are made:

a) the measured p, v, E states are states of thermodynamic equilibrium;

b) the compression, for a given presure, is the same as that which would
be produced by a hydrostatic pressure of the same magnitude.

The condition @) is satisfied if thermodynamic equilibrium is attained in 107§
or less [91]. The condition ) is probably not exactly fulfilled since the shock-
wave compressions are one-dimensional. However the shock-wave results,
in most cases, connect smoothly with the hydrostatic Bridgman’s results at
lower pressures.

To derive the hydrodynamic relations useful in the treatment of the shock-
wave phenomena, let us consider a continuous flow. Then, indicating the density
and mass velocity by p and u respectively, time and space by ¢ and z, in one-
dimensional flow the relation

dp oo ou
(101) 5Z+“é?c 9—8—3—0—0
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expresses the fact that the time rate of increase of mass, in an element of
volume dx and unit cross-section, must equal the net flux.

Since the material in consideration is treated as a perfect fluid, the forces
on an element of mass are those arising from the pressure gradient and possible
body forces, such as gravity. In the present considerations the latter is neg-
ligible so that a net force

A

¢
,\—pdx,
ox

causes the mass pdx to experience an acceleration, so that, by the second law
of dynamies, we can write

e

% cu

a_w =P,

where p is the pressure. Assuming no energy transport between mass elements,
the entropy 8, of each mass element remaing constant and the same for all
the elements. Then specific internal energy and pressure are given by the
following adiabatic relations:

(103) dE = —pdo=—{f(p, S,)dv,

where v is the specific volume. Let us, now, consider a semi-infinite (z > 0)
homogeneous mass (pressure p,, density g, and zero particle velocity) for which
the surface (¢ = 0) pressure is reduced to some lower value p,. Let us assume
that the surface pressure may be relieved either istantaneously or continuously.
The former case may be associated with some interface effects in one-dimen-
sional flow. The latter may be achieved by a piston accelerating in the —
direction.

We want to determine the flow arising from the pressure release wave which
propagates into the undisturbed material.

From (103) we have

op 810) do
104 °p _ [Py ce.
(104) dx (89 sor’

(105) ¢(o) = (E‘)_'p)s
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and adding and subtracting the final equation to (101), we get

0p oo , ofou o]
(106) §+(“+c)a_x+2 52—{“(“4—0)59;—0’
co do ofcu ou]
Equation (106) implies
(108) dg—}-gd%=0 along d—x=u+c,
¢ dit
and equation (107) implies
(109) do—2du=0  alon do_
e—du= ong Fri c.

Both differential equations in @, equations of sonic disturbances propagating
in the + # and — & directions, have a class (€™ and €~ respectively) of solu-
tions. These solutions are called characteristics. Every characteristic in the
(», t)-plane must transform to either a point or a curve in the (u, g)-plane.
Along the leading C* characteristic, corresponding to the first sonic disturbance
into the rest state, the material is described in the plane by the point =0,
@ = 0, corresponding to the rest state. This characteristic is the straight line

dx
FTR (o) -

Since it corresponds to a wave initiating at =0, t=0, it is intersected by
all ¢~ characteristics which initiate at ¢ = 0. Hence the boundary conditions
=10, g =g, are the same for each € characteristic. Thus the second pair
of characteristic equations may be integrated, along da/dt= u—c¢, to give

fod
w=| 2%,
0

(110)

[

Now any 2, t point within the flow may be reached by a € characteristic ini-
tiating at ¢ = 0. Hence (110) gives the mass velocity at any point, as a func-
tion only of the density at that point, since € depends only on g. It follows
that the value of the integral is independent of the w, ¢ path along which the
integration is performed. The image of each CF characteristic is a point in
the (#, g)-plane which lies on the curve defined by (110). Since %, ¢ and, hence,
¢ are constants on each C* characteristic, it follows that the family of €™ char-



EQUATIONS OF STATE AT HIGH PRESSURE AND THE EARTH’S INTERIOR 489
acteristics are straight lines, as indicated in Fig. 15. Taking into account

the equation of a (" characteristic and that w (eq. (110)) and ¢ both decrease
as density decreases for a normal equation of state, it is apparent that density

‘|

steady| state
N

decreasing

\ pressure

partic(V -

path /

~ /
{

Fig. 15. — Distance-time plot of flow in a simple rarefaction wave.

or pressure decrease monotically with dz/df, as indicated in Fig. 15. The tail
C* characteristic, where the material attains the surface pressure p,, is given by

@y

dx [’cdo (ap)
111 M AL ,
( ) a J o 00/ 5,90,

Qa

For this characteristic, da/d¢ is often positive; dwx/d¢t —wu, the velocity rela-
tive to the material, is always positive since

Summarizing, a mass point is undisturbed until its position is intersected by
the leading C* charaeteristic. It then falls through the monotonically decreasing
pressure gradient between the head and tail €™ characteristics. Its velocity
in this region is given by (110). The condition for monotonic behaviour, com-

31 - Rivista del Nuovo Cimento,
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bined with the condition p = p, on the material surface, requires that pres-
sure, and hence the density and mass velocity, be uniform between the tail
characteristic and the material surface. The velocity in this region is given by

€1 Dy
edp "( av)*
112 w=| == =} |—=} dp .
{ ) ¢ R op/s P

Q Do

The last integral in (112) is obtained from the first by use of (103) and (105)
and the relation g = 1/v.

Let ug agsume now that a piston moves into the semi-infinite mass in con-
sideration, the velocity of the surface particles increasing with time. Since »
increases along the piston path, the slopes de/dt =« + ¢ increase along the
piston path (see Fig. 16). The eventual crossing has the physically impossible

piston path

particle path
/
/
/
/ ¢

/¢

O

steady state

I
|

l X

—

Fig. 16. — Distance-time plot of flow in a simple compression wave.

implication that more than one value of % and of g is obtained for a given point
in the (#, #)-plane. At times before the characteristics cross, the foregoing anal-
ysis yields a flow in which the pressure gradient increases with time. Actually
the gradients increase until effects such as fluid viscosity, heat conduction, and
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thermal nonequilibrium, all neglected above, play an important role in the
flow. The ultimate pressure profile, which is time-dependent for fixed initial
and final pressures, is called a shock front. In most applications, the shock
front ig sufficiently thin that it is convenient to
regard it as a discontinuity. In the flow illustrated

in Fig. 17, the disturbance corresponding to the
shock front is propagated with a velocity u, into

an undisturbed state defined by pressure p,, den- T
sity ¢, and mass velocity zero. The shock front is +°
assumed to congist of a time-independent pressure
profile. The pressure, density and mass velocity
behind the front will be denoted by p,, ¢, and

%,, respectively. The relation

(113) 00 s = 01 (% — 1ty) Fig. 17. — A shock front
(py, v;) 18 propagated with
expresses the condition that the mass flux in and velocity u, into an undis-
out of the shock front must be equal. The net turbed state (py, o).
force on a unit cross-section of the material be-
tween =4 and ¢ =B (see Fig. 17) is p,—p,. The time rate of change
of momentum for this material is the mass flux g,u,, throngh the shock
multiplied by the associated velocity change u,. Hence,

(114) Pr— Do == QoUsUy -

The power input to a unit cross-section of material between A and B, p,u,,
must equal the time rate of change of energy for the enclosed material; that is,

uz
(115) pat, = et () + ol B~ Bo).
Here E, and E, are the specific internal energies ahead of and behind the shock

wave, respectively. Since, by combination of (113) and (114),

P1— Do
11 - f1- o
(116) Us — Uy V”o o,
and
(117) Up = \/(pl — Do) (Ve —1y) ,

the velocities may be eliminated from the energy equation to give

(118) E,— E,= L (p, -+ po) (0 — 1)



492 E. BOSCHI and M. CAPUTO

Equations (113), (114) and (118), expressing the conservation relations for a
shock wave, were first derived by RANKINE and HuGconNIoT. Since the specific
internal energy of a material is a function of its pressure and volume, eq. (118)
may be regarded as the locus of all p,, v, states attainable by propagating a
shock wave into a fixed initial state p,, v,. Thislocus is defined as the Hugoniot
curve centred at p,, v,.

12, — Interpretation of shock-wave data.
We have already obtained the basic shock-wave equations relating the

directly measured quantity u, (particle velocity) and «, (shock velocity) to
the shock pressure p, and energy per unit mass E,:

_ /P2 — Pao
116' e =0 f o
(116) w = [
(1177) w, =V (P — Po)(0s—0) ,
(118" By = Egy+ §(Pg+ Pa)(0,— ),

where v, and v denote the specific volume of the sample before and during the
shock. E,, v, and p, are the quantities corresponding to the state before the pas-
sage of the shock front and may be taken at room conditions. Equations (116'),
(117", (118') allow us to determine the pressure and energy in the shocked
material ag a function of the volume. However, in almost all cases, u, and
U, are related linearly:

(119) u;= Gy + Au,

where O, and 4 are characteristics of the material considered. Equations (116'),
(117) and (118) lead directly to a two-parameter equation for the Hugoniot
curve:

Og(vo‘“ v)
[y — A(vy — v)]? '

(120) Pr = Pro +
To remove the temperature effect, i.e. to obtain the 0 °K isothermal equation

of state, TAKEUCKI and KANAMORI [92] introduce Griineisen’s equation of
state

(21) Pr—px=" (Ba—Hy),

where y is Griineisen’s ratio and p, is the pressure necessary for compres-
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sing, at 0 °K, a material to a state having the same specific volume v as that
under shock compression. K, is the internal energy for the 0 °K isothermal
compression and is related to p, by

oly
(122) pK——(av )T.
Equations (118') and (121) lead to
v(pz — Px)
123 — ) o
= YT Ma -+ pao)(v—0) + By — B

The volume dependence of y is given by the Slater relation
(124) y=—o 2

or by the Dugdale-Mac Donald relation

or __vepehjort 1
(125) TR e fer 37

Equations (122), (123) and (124) or (125) are the basic equations determining
the 0 °K isothermal p-v relation of the material.

Another method of reduction of the shock-wave equations of state to iso-
thermal equations of state has been recently presented by SHAPIRO and KNo-
POFF [83]. It is similar to that of TAkmucont and KANAMORI, but it is mathe-
matically simpler and more readily adapted to numerical calculations. Moreover,
unlike other treatments of shock-wave data, no extrapolations to zero temper-
ature is required.

SHAPIRO and KXoproFF [83] reduce the adiabatic quantities to isothermal
ones, remarking that, although the Hugoniot equation is the sum of an elastic
or zero-temperature energy and the thermal contribution, the Hugoniot pressure
can be considered as the sum of the elastic pressure and a term proportional to
the thermal energy density; the proportionality constant is p. Thus,

v

3RT 2] .7
(126) Ey— Egy= (Hg— Ego) -+ (Er— Ep) = J‘ c(l’)dv+[—_f ( g)))] ’
=300

2y vav,

IR O1)

(127) Pg= Po -+ Pr= Pe(v) + o M T

Here ¢ and T denote cold and thermal quantities, B is the gas constant and f



494 E. BOSCHI and M. CAPUTO

is the Debye function. Equations (126) and (127) are derived on the assumption
that the usual theory of atomic lattice vibrations applies, and terms giving
the contributions of electrons to the energies have been neglected. However
SHAPIRO and KNoOPOFF give also the corrections for electronic pressures and
energies. Moreover the volume dependence is given by

InH
and [78]

K. (v\}
P ()

where K, is the isothermal pulse modulus, K., is the bulk modulus contribution
from the nonthermal part only.

This method had been tested using the shock data of BAKANOVA et al. [93]
for lithium. Columns 2 and 3 of Table VIII compare the theoretical results
with those of BAXANOVA ef al. The discrepancies arise from two sources. First,
the Russian authors prefer Dugdale-Mac Donald formulation for y, which
generally gives smaller values of ¢ and therefore larger values for p,. A more

TasLe VIII. — Comparison of the theoretical results of SHAPIRO and KNOPOFF with experi-
mental values of BAKANOVA et al. (from [83]).

p.-10° |
BagANOVA DuGpALE-

/v et al. SLATER MacDoONALD
1.0 —3.18 —2.91 —2.91
1.1 9.65 8.32 8.67
1.2 24.5 20.8 22.0
1.3 41.3 35.0 37.2
1.4 59.9 51.5 54.7
1.5 80.3 X 70.4 74.4
1.6 102.4 E 91.9 96.5
1.7 126.1 115.7 120.8
1.8 151.4 j, 141.5 147.3
1.9 178.3 169.3 175.8
2.0 206.6 198.7 206.3
2.1 236.4 229.8 238.5
2.2 272.3 262.2 272.4
2.3 300.2 296.0 307.9
2.4 334.1 331.1 345.0
2.5 361.9 367.3 383.4
2.6 406.0 404.5 423.3
2.7 443.9 442.8 464.5
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important point is, however, that the earlier solution represents a parametric
fit with the parameter chosen in such a way that a funetional form for y is
selected which guarantees a best fit to the experimental Hugoniot curve. The
justification for the use of such a method can lie only in its simplicity.

The procedure of SHAPTRO and KNoPOFF is modified only slighly if the Dug-
dale-Mac Donald formula is used instead of the Slater formula. Column 3 of
Table VIII shows the results for lithium using Dugdale-MacDonald formula.
However a significant disagreement with the solution of BAKANOVA ef al. remains.
The method here described can also be used for materials for which (129) does
not hold.

13. — Relation of Thomas-Fermi equations of state to shock-wave measurements.

ALTSHULER et al. [6] have measured the compressibility of several metals
to a pressure of the order of 4-10'2 using the technique of shock waves. In
order to make a proper interpretation, the equation of state so determined was
reduced to a reference temperature by Knororr and Mac DoNALD [7], using [6]

0/
1

1
(130)  pe=—57elef* fph(w)(w — k) Az —5 y(e/os — k) palele)

1

where p. is the pressure at absolute zero, p, is the density at zero pressure,
h=2Jy +1, and y is taken to be constant over the pressure range of interest.
The reduction of the data depends very critically upon the value of . The
Griineisen ratio has been measured only
for iron obtaining a value about 1.6 a 20
pressure of 1012,

Knoprorr and MAc DoNALD have com-
puted the value of y for the materials, for
which no experimental measurement ex-
ists, on the basis of the Thomas-Fermi 181
equation of state. The results obtained
have been corrected using the experi-
mental determination of p for iron. The

Fig. 18. — The variation of Griineisen’s ratio as Fe N\

a function of pressure for the Thomas-Fermi

model of lead, cadmium and iron. The experi-

mental determination by ALTSHULER et al. ' 10 12 14 16 18
ig shown as a point. (From [7].) log P
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L t 1
10 1 12 13 14 15
log P

Fig. 19. — Experimentally determined equation of state of nine elements (open circles)

reduced to absolute zero, compared with the Thomas-Fermi equation of state at

absolute zero (full cireles) and the equation of state for the Earth in Bullen’s model

(triangles). Extrapolation of the experimental data (dashes) is obtained by integration
of the velocity equation of state. (From [7].)
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quantum-mechanical calculation for y yields values, in the pressure range
where the quantum-mechanical model becomes significant, of the order of the
values of v determined experimentally at low pressures (Fig. 18).

The values of y used fall in the range 1.3 to 1.6. The experimental equations
of state at absolute zero have been drawn as the lines with open circles in Fig. 19.
In order to interpolate between 5 S
the experimental data and their | <
quantum-mechanical asymptotes 1% | 23-48 2/
KxorPorr and Mac DONALD use .
a velocity equation of state relat-
ing to pressure in the fluid state
of the metal. Velocities derived
from the Thomas-Fermi model
are then compared with those
obtained from the reduced data of
shock-wave measurements. From
Fig. 20 one can see that the ve-
locity equations of state deter-
mined from experimental veloc-
ity data approach the quantum-
mechanical equations of state at
pressures much lower than those
at which the corresponding den-
sity equations of state approach
their quantum-mechanical asymp-
totes. The velocity distribution ‘
in the Earth can also be com- |
pared with the experimental de- (T
terminations of the velocities since ‘ l
the pressure range is similar ‘ '
(Fig. 22). In Fig. 22 an expan-

Vikm/s)

1 1 1 1 L
sion of the region pertinent to 1 2 3 4 5 878810
12
the core has been made. The ve- p-10
locity distribution in the core is in Fig. 20. — Velocity of sound in the fluid state
excess of the experimental values at core pressures (from [7]).

of the velocity in iron at absolute

zero and is roughly identical to the Thomas-Fermi values of the velocity in
iron. The velocity of seismie waves in the core is about 0.4 km/s higher than
the experimental values for metallic iron. If there are no corrections for tem-
perature, it iy very likely that the velocity in the core is more appropriate to
the material having atomic number 23 than to iron. The density of the core re-
sults, from experimental velocity data and the density equation of state, less than



1 L¥ R I L

- N
9 10 1 12 13 14
log- P

Fig. 21. — The variation with pressure of the velocity of sound in the fluid state.

Velocities derived from the Thomas-Fermi model (full cireles) are compared with those

obtained from the reduced data of shock-wave measurements (solid curves). The

seismic velocity distribution given by BuULLEN (triangles) is also shown by compar-

ison. The dashed curves represent the extrapolation to the zero-pressure value of
V= (a2—%p*)}. (From [7].)
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that of iron. This can be seen in Fig, 21, where at absolute zero experimental
equations of state of nine metals are compared with the density equation of
state of the Earth. Without cor-
rections iron density is of about
1.8 g/cm?® larger than that for the
core. Also from these considera-
tions the core must have an atomic
number smaller than that for the
iron if no corrections are applied
(Fig. 20). Knororr and Mac
DonALp have shown that these
differences can be reduced but /4: Cuy
still exist even when corrections 0r 5w/
are made to the experimental 7 fre re
data to allow for the thermal ex- V4 g
pansion of iron to the tempera- -//
tures of the core and for the vol-
ume change upon melting. The 8 7S/
discrepancy can only be resolved i 7 )
if the core is not pure iron but |
contains significant amounts of 7:
elements of lower atomic number. ‘ /.;f ;o
Furthermore, any nickel alloyed ‘/'/' ,/ /./'
with iron would increase the dis- /'/° ,/ 7
crepancy since the density of pure : ;
nickel is 8.6 g/em® at room con- // ./'/ /
ditions, and the density of nickel y 7 A ;
is greater than that of iron at : / /'
extremely high pressure. e 5 T i 5 5 7809
TAKEUCHT and KANAMORI [92] n-10"
have numerically integrated their Fig. 22. - Equation of state for iron, copper.
equations for Fe, Cu, Zn, Ag, gzinc and a hypothetical material of atomic
Cd, Au and Pb using the experi- number 23, atomic weight 48 in the core pres-
mental data of ALTSHULER ef Sure range. The values. derived from shogk-
(6] The cquations of state at 7 PSS (o e compond v
0 °K so calenlated are compared (full circles). Bullen’s density distribution is
with the Murnaghan-Birch and shown for comparison (triangles). (From [7].)
Thomas-Fermi-Dirac equations of
state. The Murnaghan-Birch equations of state are calculated for £ —=—1, 0, L.
The Thomas-Fermi-Dirac data are those obtained by METROPOLIS and REITZ [94].
From Fig. 23-29 it can be seen that at lower pressures the Murnaghan-Birch
curves with £ =0, a1 fit the p-p relations of all the metals except titanium,
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10
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shock wave
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i “E=—1/2
- 0 M~=B equation
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01 0.2 03 04 45 1 2 3 4 6

efe, 1

Fig. 23. — Isotherms of silver at 0 °K based on shock-wave data, Murnaghan-Birch
model and Thomas-Fermi-Dirac model (from [92]).
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Fig. 24. — Isotherms of gold at 0 °K (from [92]).
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10
10° L 0 °K isotherm
shock wave
o L
5
2 L = —1/2
@ M—B equation
e L of state
= 1/2
10}2 L
‘|()]1 L 1 L I - i I I 1
0.1 0.2 03 04 0.6 1 2 3 4

efo,—1

Fig. 25. — Isotherms of cadmium at 0 °K (from [92]).
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Fig. 26. — Isotherms of copper at 0 °K (from [92]).
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Fig. 27. — Isotherms of iron at 0 °K (from [92]).
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Tig. 28. — Isotherms of lead at 0 °K (from [92]).

32 — Rivista del Nuovo Cimento.
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Fig. 29. — Isotherms of zinc at 0 °K (from [92]).
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Fig. 30. — Comparison of density and incompressibility curves for iron with those for
the Earth’s core. Density distribution is based on Birch’s solution I. (From [93].)
K, — o
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for which the p-p curve is approximated by a Murnaghan-Birch curve with
&£=1. In other words, although the Murnaghan-Birch equation of state with
£ =0 does not approximate the equations of state of all the metals studied
as it does for a number of alkali metals [34], the equation of state having a
small second-order coe‘ficient & is quite appropriate for most of them. This
second-order coefficient £ may vary from one metal to another, and it can be
said that the equation of state of a metal can essentially be determined by the
two material constants, K, and £ For some metals, such as Ag, Cr and Fe,
it can be seen that the 0 °K isotherm would deviate from the Murnaghan-Birch
curve and merge into the Thomas-Fermi-Dirac curve at pressures a little higher
than 104, In Fig. 30, the calculated density and incompressibility of iron are

TABLE 1X. — Incompressibilities of metals (-10'2).

Py
Metal

0 1012 4-1012

e . _ . i
ALTSHULER et al. [6]
Ag 1.14 5.35 16.2
Au 1.92 6.69 16.8
Cd 0.61 4.36 13.9
Cu 1.36 5.35 15.5
Fe 1.14 5.52 16.8
Pb 0.60 3.65 10.9
Zn 0.73 4.44 13.8
McQueeN and MARcH [95]
Ag 1.10 5.47 16.8
Au 1.82 6.13 17.9
Cd 0.52 5.00 16.3
Co 1.99 5.65 14.8
Cr 1.93 6.14 16.6
Cu 1.39 5.60 16.1
Mo 2.71 6.14 14.6
Ni 1.91 5.98 16.3
Pb 0.47 4.29 13.9
Sn (gray) 0.51 4.21 13.4
Sn (white) 0.51 4.23 13.4
Th 0.53 3.55 10.7
Ti 1.03 3.62 9.51
Tl 0.41 4.21 13.7
\% 1.59 4.77 12.4
W 3.07 6.64 15.6
Zn 0.66 4.76 15.2
(Z(Kmnx—Kmin)

B = Ko 4 K. 1.53 0.61 0.61
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compared with those of the Earth’s core. Three density curves are caleulated
for the temperatures of 0 °K, 3000 °K and 6000 °K. The temperature effect
becomes small with increasing pressure. This Figure shows that the density
of the Earth’s core is 1 to 1.5 times smaller than that of iron at the pres-
sure and temperature prevailing in the Earth’s core. The incompressibility
curve of iron at 0 °K is almost parallel to the incompressibility curve of the
core. These results support the view of KNoroFF and Mac DoxNaLD. TAKE-
vcHr and KANAMORI have also tested the incompressibility-pressure hypothesis
advanced by BurLLEN [29]. In Table IX are listed the values of the incompres-
sibility of the metals at 0 °K and at the pressures of 0, 1012, 4-10'2. The range
of variation of the values of incompressibility among the metals studied here
can be expressed by

2 (Kmax - Kmin)

R =
I(max + Kmin ’

where K, and K, are the maximum and minimum values of of incompres-
sibility. R decreases very rapidly from 1.33 to 0.61 when the pressure increases
from 0 to 10'2. However, E does not change appreciably at pressures higher
than 1012, Consequently it is expected that the incompressibility might differ
from one material to another by at least 609, even at 4-10'2, which is approxi-
mately the pressure at the Earth’s centre. The incompressibility-pressure hy-
pothesis might not be true in a strict sense, but one of the most important
conclusion derived from the hypothesis, namely that a solid inner core ac-
counts for the 109, increase in compressional wave velocity at the inner-core
boundary, might still be valid for the following reason. If the inner core is
not solid, its incompressibility should be about 209, larger than that of
the outer core. Since incompressibility of the oufer core is, as mentioned
earlier, close to the incompressibility of iron, the incompressibility of the inner
core should be about 209, larger than that of iron. As shown in Table IX it
is rather difficult to find a metal that satisfies this requirement, and this
could make it impossible for the inner core to be liquid.

From the analysis of the works published till now, it would seem interesting
to extend to high pressures the experiments, so to reach those pressures for
which the equations of state studied till now are valid. However, by modifying
the assumptions on which the equation of state is based, i.e. the pressure
distribution within the atom, we calculate that for atomic numbers of the order
of 30, the lower limit of validity is lowered to some 102

From this, the validity of at least one theoretical model is assured. Therefore
it seems more interesting to improve our experimental knowledge by extending
the temperature range at which the high pressure experiments are made. Also
other considerations indicate that the experimental extension of the tempera-
ture range instead of the pressure range is recommended.
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