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results are related to the class number of imaginary quadratic fields.
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1 Preliminaries

Let ¢ and n be positive integers, ¢ =2, Z, =Z/qZ, and §, = e%. A function f: Z ;>
Z, is called a generalized bent function (GBF) if the equality
‘ Zgj;(x)—ry‘ = ¢ (1.1)
€5
holds for every y €Z; where x*y stands for the dot product. We call [n, q] the type of such
GBF f. GBFs have been used in many fields such as code-division multiple-access communica-
tion systems and cryptography. For more background information of GBF and its applications, see
ref. [1] and references therein.

Bent functions (for g =2) are initiated by Rothaus'®) in 1976 and generalized by Kumar et
al.!" in 1985. For g =2, Rothaus proved that there exists a bent function with type [n, 2] if
and only if n is even. The GBFs with type [ n, q] have been constructed in ref. [1] for even n
or g2 (mod 4) . From now on we assume that

(%) nisodd and ¢ =2N, 2}N=3.

So far there is no GBF being constructed in the case ( * ), but several non-existence results
of GBF have been presented under the following extra conditions:

(A)m there exists an integer s =1 such that

2=-1 (modN), (1.2)

(B)P(n, ¢)=(1, 14),

() n=1and N= p' where =1, p is a prime number such that p=7 (mod 8) and p
#=7,

(D)™ a=1, N= py ' py where g =1, p;, **, p, are distinct prime numbers, e, =1
(1<i<g) and for each i(1< i< g) there exists s; =1 such that

N
S =-1 (mod—;),
P py

(D) is a generalization of (B) and (C). In this paper we present some new results on the
non-existence of GBF with type [ n,q] for 2tn=3.
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To show that our results { Theorems 3.1 and 4.1) are new ones, we need a closed form of
condition (1.2). Such a closed form was presented in ref. [4] as follows. Let

1
N = pri

be the decomposition of an odd integer N where p;(1< i< ) are distinct prime numbers and e;
=1(1<i<!). By the Chinese Remainder Theorem, condition (1.2) means that
2 =-1(mod pji) (1 g i ). (1.3)
We denote by I(p) the 2-part of the order of 2(mod p) . It is easy to see that condition (1.3)
is equivalent to the condition that
I(p,) (1 < i < !) are the same even integers . (1.4)

It is easy to see that I(p°®) =2, 4, 1 for p=3,5, 7 (mod 8), respectively, so that condition
(1.2) contains exactly the following five cases:
{

(A)) N = HP?" p;i=1(mod8) (1<i<!) and I(p;) (1<ix!) are the same even
integers . )
!
(A2) N = pri, pi=3(mod 8) (Igix<l!),
¥
(A3) N = pru pi=5(mod 8) (1<is<!),
(A) N = Hpu-Hp, , pi=3(mod8) (1<i<!),p =1(mod8) and I(p})
=2(1 g = s)

(As) N = HPU’ . Hp’jff, pi=5(mod8) (1< ix<!),p} =1(mod8) and I(p})
j=1
4(1\ \s)

In sec. 3 we will present some new results on the non-existence of GBF in the case of N =
PP
At the end of this section, we explain the meaning of algebraic number theory of condition
(1.3). Let K be the cyclotomic number field Q( £y). The Galois group G = Gal( K/Q) is iso-
morphic to (Z/NZ)* by
~ (Z/NZ)*, 6, I a (mod N), (a, N) =1, (1.5)
where o, is the isomorphism determined by o,(&y) = {%. Let D be the decomposition field of 2
in K and G, = Gal( K/ D) be the decomposition group of 2 in K. Then G, is the cyclic subgroup
of G generated by 6,. Therefore f= | G, = [K: D] is the order of g, in G or, by the isomor-

phism (1.5), fis the order of 2 (mod N). And g =[D:Q]=[K:Ql/[K:D] =f£N—)

f

where @ (N) stands for the Euler function. For an algebraic number field F, we denote by Of
the ring of integers in F. Then 2 splits completely in D:20p = p,***p,, and each p; is inertia
in K.

By isomorphism (1.5), condition (1.3) means that o _,(the complex conjugation) belongs
to G, = (o,) which is also equivalent to the fact that D is a real field. All the results in the next

two sections belong to the case o ™' & G,.
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K= Q( §N)
/]
D

) Pl"‘P

(1
%2=<02> PPy
G

-4

‘|

2 Two lemmas

In this and next two sections we fix the following notations.
n is an odd positive integer,

N is an odd positive integer, N=3,

g=2N,

K=Q(§N)v §N=e%9

G=Gal(K/Q)=lo,:1sa<N-1, (a,N) =1},

D is the decomposition field of 2 in K,

G,=Gal(K/D) = (g,) stands for the decomposition group of 2 in K,
f= (K:D]= ‘ Gz\ stands for the order of 2(mod N),

Op the ring of integers in an algebraic number field F,

g= [D:Q] = SD(—N) stands for the number of prime ideals in Ok above 2.
f

Suppose that there exists a GBF with type [n, ¢], ¢ =2N. Since N is odd, condition
(1.1) implies that there exists § € Ok = Z[ ¢y ] such that £ £ = ¢" = 2"N" where £ =0 _,(£) is

the complex conjugation of &. The first result we use in this paper is

i
Lemma 2.1, LetN = pri where [ =1, p;, ***, p; are distinct prime numbers, e;
i=1

=1 (1<i<!), and for each i (1<i<) there exists a positive integer s; such that

ph=-1 (mod ﬂe)

If we have £€& O such that g£E=2"N" , then we have a € Og such that a a=2".

Remark. The condition of Lemma 2.1 is trivial for [ = 1 (so N is a power of an odd
prime number) . For [ =2, we denote by I;; the 2-part of multiplicative order of p;(mod pj). It
is easy to see that the condition of Lemma 2.1 is equivalent to the saying that for each i (1< i
<l!), Iq(lsjs 1, j# i) are the same even integers (depending on i only).

The second result we need in this paper says that number a in Lemma 2.1 can be found in
a smaller field.

Lemma 2.2. If aa =2" for some a € Ok, then there exists € Oy such that 32 € 0,
and 88 =2". Moreover, B€ Op if f is odd.

Proof. We follow the idea in the proof of the Lemma 2 in ref. [4], but make some sim-
plifications . Since o, fixes all prime ideals of Ok above 2, from a @ =2 we know that

aOg = Gz(aox) = Uz(a)ox-
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Therefore 6,(a) = ae where € € U, (the unit group of Og). For each ¢ € G,

o(a) o(a) = o(aa) = 2", ogo,(a) = o(ae) = a(a)ale).
Thus

2" = go,(a) g0,(a) = a(a)o(e) a(a)ale) = 2% (e) ale),
which means that ‘a(e)‘ =1forall 6€ G. Thus € isaroot of 1 in K, namely € = + & and &
= L for some integer i. Let = a8 ~'. Then 8= aa =2" and

0,(B) = 62(a)a,(8)" = aed™? =+ 87! = 2 B.

Therefore 6,( %) = 8 which means that 3* € 0. Moreover, we have D c D(B) c K and

[D(B):D]<2. If f=[K:D] is odd, then D(B) = D so that 3€ Op. This completes the
proof of Lemma 2.2,

3 Non-existence result for case N=p', p=7 (mod 8)
Now we present some new result on non-existence of GBF for n > 1.
Theorem 3.1. Let N = p' where [=1 p=7 (mod 8), let f be the order of 2(mod p'),

(p")
£ = LAty is odd|, let m be the smallest odd integer such that x* + py* = 2™*? has inte-

2 2
gral solution (j; , ¥), and let n be an odd positive integer. If n < m/s, then there is no GBF
with type [n, p](q =2N).

Proof. Suppose that there exists a GBF with type [n, p]. From (1.1) we know that 8
B=gq"=2"N" = 27" for some BE Og. By Lemmas 2.1 and 2.2 we know that 88 = 2" for

some B€ Op. Let E=Q(+ - p) be the unique quadratic subfield of D. Then [D:E] = g =

sis odd. Let ¥ = Np,z(B). Then 7 7 = ND,E(‘BE) =2" and ¥y € Og so that ¥ = %-(A +

B+ - p) where A, BE Z. Therefore we have A> + pB> =4y y =2**2, By the definition of
m we know m < sn. Therefore there is no GBF with type [n, p] if m > sn. This completes the
proof of Theorem 1.

Remark 1. Let p be a fixed odd prime number. For all /=1, we denote by f; the order

of 2(mod p') and g, = ¢(p')/f;. It is easy to see that if 2° "' 1(mod p?), then f; = P

() Pl p-1)
fi P

#1 (mod p?) holds for all odd prime numbers p <6 x 10° except p = 1093 and 3511 (see

Ribenboim s book!®! for instance) . Therefore we have g1 = gy for all =1 so that it is enough to

and g; = =g forall I=1. It is a well-known fact that the formula 2? -1

compute g = g for such a prime number p.
Remark 2. The definition of m is elementary; it has a clear algebraic number theory

meaning. Since m is the smallest odd integer such that the equation x> + py® = 2™ *? has integral
solution (x, y) = (A, B), we know that both of A and B should be odd, so that § = —é—(A +
BvV -p)EO0,(E=0Q(y -p) and 86 =2™. We know that 2 splits in O as 20 = pp. The
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minimum property of m implies that 0z = p™ or of p™. Therefore p™ is a principal ideal, so
that m is a factor of the class number A( — p) of E = Q(+/ - p). By Gauss’ genus theory we
know that A( ~ p) is odd for p=7 (mod 8). On the other hand, we have 2m*2 o A% 4 sz >
ogp

log 2
and p 7. Therefore if A( - p) is a prime number, then m = h( - p).
Example 1. There are 11 pirme numbers p =7 (mod 8) within 200. The following table
shows the values of g, h( - p) and m for these primes.

p which gives a lower bound of m, m > ~ 2. Particularly we have m =3 if p=7 (mod 8)

p 7 23 31 47 71 79 103 127 151 191 199
g=2s 2 "2 6 2 2 2 2 18 10 2 2
h(-p) 1 3 3 5 7 5 5 5 7 13

m 1 3 3 5 7 5 5 5 7 13

Forall 22<p<191, p=7 (mod 8) and h( ~ p) are prime number so that m = h( - p).
log199

o)

For p=199, m19=h(-199) and m > -2>3; thus m=9.

’

For p =23, 47, 71, 79, 103, 191, we have s = —i* =1, so that there is no GBF with typ=

[n, 2p'] for all I=1 if n is odd and less than m.
From the above observation Theorem 1 has following corollaries .
Corollary 1. Suppose that p=7 (mod 8), p=7, 2° " '%1 (mod p?) and the order f of

2 (mod p) is %1 Then there is no GBF with type [n, 2pl] for all I=1 if n is odd and less

than m where m is defined in Theorem 1.
Corollary 2.  Suppose that p=7 (mod 8), p>7, 22" "% 1 (mod p*) and the class

number h( - p) of Q(v/ - p) is a prime number. Then there is no GBF with type [ n, 2p'] for

all I=1 if n is odd and less than A ( — p)/s where s = p and f is the order of 2 (mod p) .

4 Non-existence result: N = p'p’”

In this section we consider the case N = plp’ll , where I, ' =1, p and p’ are distinct
prime numbers, and do not belong to cases (A;)—(As) in sec. 1. But we assume that NV satis-
fies the condition of Lemma 2.1; that is, there exist positive integers s and s’ such that

*=-1(mod p'"), p’ == 1 (mod p*).
It is easy to see that this condition is equivalent to the following condition:
( * ) both of the order of p (mod p’) and the order of p’ (mod p) are even.
Theorem4.1. Suppose that N = p'p'" where I, I’ =1, p=3 (mod 4), p' =5

(mod 8), and primes p and p’ satisfy condition ( * ) (which is equivalent to (E,) = -1). Let

P
o(N) ) i
f be the order of 2 (mod N), and g = *f— Then g is even and s = g/2 is odd.
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(1) In the case p=3 (mod 8). Let E = Q(/ = pp’). Then 205 = PP where P and P
are distinct prime ideals in Og. Let m be the smallest positive integer such that the equation
p'y*+ pz* =2™*? has an integral solution (y, z). Then m is odd and the order of ideal class
[ P] in the class group of E is 2m . Moreover, there is no GBF with type [n,2N]if2tn<m/
5.

(2) Inthe case p=7 (mod 8). Let E=Q(v/ = p). Then 205 = P P. Let m be the
smallest odd integer such that the equation x* + pz° = 2™*2 has an integral solution (x, z).

Then m is the order of [ P] in the class group of E. Moreover, there is no GBF with type [ n,
2N]if2tn<m/s.

Proof. Let ¢ and 1, be the orders of 2(mod p') and (mod p’* ), respectively. From p =
3 (mod 4) and p’ =5 (mod 8) we know that ¢, =4’ where ¢’ is odd. Therefore f=[¢, 4¢']

(N)
=4a and a is odd, so that s = éz’_ = (sz is odd. Let D be the decomposition field of 2 in K

=Q(gy). Then [D:Q] = g =2s.

Suppose that there exists GBF with type [ n, 2N ] where 2tn = 1. Then we have §€ O
such that & é = (2N)". Since N satisties condition ( * ), by Lemma 2.1 we have a € O such
that @ @ =2". Then by Lemma 2.2 we have SE€ Ok such that f2€ Op and 88 =2".

(1) Consider the case p =3 (mod 8) first. Since E = Q(«/——pF ) is a subfield of K and
2 splits in E, we know that EC D and [D:E] = s. From 8°€ 0, we know that 3 belongs to
the unique quadratic extension F of D in K. By the Galois correspondence, Gal( K/ F) is the
cyclic subgroup of G = Gal( K/Q) generated by o3 = o4 from which we know that L = Q(v/ - p,
V' p') is a subfield of F and F= DL, [F:L]=s. Let v = Np,, (B)E€ O,. Then y7 =
Nes(BB) = Np(27) = 2% and ¥* = Npi(F?) = Npsg(B?) € O,

K

|
2/ F=DL

D s
Py L=QUTF P
Q(V=pp")=E
‘2
Q
1 ! 1+ -
It is well known that {1, a = * 6 , B= al P , a‘g} is an integral basis of O
2 2

(see exercise 42(d) of ref. [3], page 52 for instance) . Therefore
Y =A+Ba+ Cl+Daf (A, B, C,DEZ)

1
=Z(X+ YV + ZV-p+ W= pp),
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where

X=4A+ZB+ZC+D, Y:23+D,Z=2C+D, W:D,
implying that D = W, C=%(Z— w), B=%(Y—W), A=%(X—Y—Z+ W) and
The equality 77 = 2™ becomes

2™+ = X2 4 p'Y2 4 pZ% + pp' WP + 2(XY + pZW) J/p' s
that is, (X,Y,Z, W) satisfies congruences (4.1) and equations

{X2 + pry2 + pZZ + PP’W2 - 2ns+4’ (4 2)
XY = - pZW. )
1 / — !
Note that Y>€ 05 =7 + Lz—lﬂ]z If Y€ 0p, then Y=Z=0and X2+ pp'W?>=2%*"
L 2 24 : 2
which implies that (;) = ;) =1 since 2tns. But ; = -1 for p=3 (mod 8).

Therefore ¥ ¢ Og and Y€ Oy, so that L = E(y) (¥*€ E). Let o be the non-trivial automor-
phism in Gal(L/E) . Then 6(7) = - 7 whichmeans that X - Y/p' = Z v/ = p+ W/ - pp’
=-X-YJp -Z/ -p-W —pp'. Sowehave X = W=0. And congruence (4.1) be-
comes Y=Z=0 (mod2), and (4.2) becomes p'Y? + pZ?> = 2**™ . Let y = -ZZGZ, z=§€
Z. Then

p'y* + pz* = 2™% y = z (mod 2). (4.3)

Let m be the smallest positive integer such that the equation p’y? + pz® = 2™ *? has integral solu-

tion (y, z) = (A, B). From - 1= (p_) = (%) = (- 1)™ we know that m is odd. The
p

minimality of m implies that 2+ AB, and
2y = [BP+A~/—pp'J(BP—A«/—pp’]

2 2
We have 20; = P P and pOp = P'’. From minimality of m we know that
B v - pp' —
( p + 4 pp JOE = P™P' or P"P'. Therefore [P]™[ P'] = 1. It is well known that
2 .

[ P'] is an ideal class of order 2. Therefore the order of [ P] is 2m. From (3.3) and the mini-
mality of m we have sn= m. Therefore there is no GBF with type [n, 2N] if 2}n < sﬂ

(2) Next we consider the case p=7 (mod 8). In this case we take E = Q(+/ - p). By
similar argument as in (1), we know that there exists

1
7=I(X+Y«/17+Zv—p+W«/—pp')EOL,

1 A =
7260E=Z+ +—2—*—£

]z, Yy = 2™.
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If ¥¢ Og, then L=E(y) (¥*€ 0g) and X = Z =0. Therefore 7Y = 2™ means that 2™ ** =
p’ (Y2 + pW?) which is impossible. Thus ¥ € O which implies Y = W =0, X?+ pZ?=2™**

and X=2Z=0 (mod 2). Let x=§EZ, z=§€Z. Then

2%+ pzt = 2™*2, (4.4)
Let m be the smallest odd integer such that the equation x> + pz® = 2™*? has integral solution

(x, z) =(A, C). Then 2tAC and[“CV ‘pJ[A'CV ‘P]=2m, From 20y = PP
2

2

A+Cv -p
2
From (4.4) we know that ns = m. Therefore there is no GBF with type [n, 2N] if 2}n < sﬂ

and the minimality of m we have [ JOE = P™ or P™ so that m is the order of [ P].

This completes the proof of Theorem 2.

Remark. We denote the class number of Q(v/ ~ d) by h( - d) (there is a big table in
the ref. [2] for class number of imaginary quadratic fields). For p =3 (mod 8) we have
h( - pp') =2t, 27t and m|¢. Particularly, if ¢ is a prime number, then m = t = h( - pp')/
2. For p=7 (mod 8) and p>7, mIh(-p), m>1and 2th(-p). If h( - p) is prime
number, then m = h( -~ p).

Example 2. Computation shows that all (p, p’) in the following table satisfies conditions

( * ) (which is equivalent to (p_) = -1)and p=3 (mod 8), p’ =5 (mod 8) . The values of
p
s and h( - pp’) are listed in the table. If #( ~ pp’)/2 is prime, then m = h( - pp’ }/2. Oth-

erwise m can be determined by definition and the fact that m | h( - pp’ )/2.

(p,p") (67,5) (83,5) (11,13) (59,13) (67,13) (83,13) (11,29) (19,29) (43,29) (19,37)
s 1 1 1 1 1 1 1 1 3 1
R(~pp') 18 10 10 22 22 34 10 26 26 14
m 9 5 5 11 11 17 5 13 13 7
(p,p) (59,37) (3,53) (19,53) (67,53) (83,53) (11,61) (43,61) (59,61) (67,61)
s | 1 1 1 1 1 3 1 1
R(-pp') 42 10 30 58 50 30 22 66 30
m 21 5 15 29 25 15 11 33 5

By Theorem 4.1 we know that there is no GBF with types [3, 2:43'+29" ] and [3, 2-43'
61" ] forall I, I’ >1. For remaining cases in the table we have s = 1, so that there is no GBF
with type [ n, 2p'p’" ] if 2¥n < m (for n =1 the result is known[51)

Example 3. Computation shows that all (p, p') (p=7 (mod 8), p’ =5 (mod 8)) in

the following table satisfy condition ( * ) (namely (p_) = - 1). For all cases s =1 and
p
h( - p) is prime so that m = h( -~ p).
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(p,p) | 47,5 (@1,13) (47,29 | (71, 13) (71,53) (71,61) | (79,29) (79,37) (19,53) (79,61)
m=h(-p) ' 5 | 7 I 5

By Theorem 4.1 we know that there is no GBF with type (n, 2plpl' lif2¥n< B( - p) and
(p, p') belongs to the table (for n = 1 the result is known[®?) .
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