Generalized bent functions and class group of imaginary quadratic fields

FENG Keqin (冯克勤)

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China (email: kfeng@math.tsinghua.edu.cn)

Received May 10, 2000

Abstract Several new results on non-existence of generalized bent functions are presented. The results are related to the class number of imaginary quadratic fields.

Keywords: generalized bent functions, imaginary quadratic fields.

1 Preliminaries

Let q and n be positive integers, $q \ge 2$, $\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}$, and $\zeta_q = e^{\frac{2\pi i}{q}}$. A function $f: \mathbb{Z}_q^n \rightarrow \mathbb{Z}_q$ is called a generalized bent function (GBF) if the equality

$$\left|\sum_{x\in\mathbb{Z}^{*}}\zeta_{q}^{f(x)-x\cdot y}\right| = q^{n/2}$$
(1.1)

holds for every $y \in \mathbb{Z}_q^n$ where $x \cdot y$ stands for the dot product. We call [n, q] the type of such GBF f. GBFs have been used in many fields such as code-division multiple-access communication systems and cryptography. For more background information of GBF and its applications, see ref. [1] and references therein.

Bent functions (for q = 2) are initiated by Rothaus^[2] in 1976 and generalized by Kumar et al.^[1] in 1985. For q = 2, Rothaus proved that there exists a bent function with type [n, 2] if and only if n is even. The GBFs with type [n, q] have been constructed in ref. [1] for even n or $q \neq 2 \pmod{4}$. From now on we assume that

(*) n is odd and $q = 2N, 2 N \ge 3$.

So far there is no GBF being constructed in the case (*), but several non-existence results of GBF have been presented under the following extra conditions:

 $(A)^{[1]}$ there exists an integer $s \ge 1$ such that

$$2^s \equiv -1 \pmod{N}, \tag{1.2}$$

 $(B)^{[3]}(n, q) = (1, 14),$

(C)^[4] n = 1 and $N = p^l$ where $l \ge 1$, p is a prime number such that $p \equiv 7 \pmod{8}$ and $p \ne 7$,

(D)^[5] n = 1, $N = p_{1}^{e_i} \cdots p_{g^e}^{e_i}$ where $g \ge 1$, p_1 , \cdots , p_g are distinct prime numbers, $e_i \ge 1$ ($1 \le i \le g$) and for each $i(1 \le i \le g)$ there exists $s_i \ge 1$ such that

$$p_{i^i}^{s_i} \equiv -1 \left(\mod \frac{N}{p_{i^i}^{e_i}} \right).$$

(D) is a generalization of (B) and (C). In this paper we present some new results on the non-existence of GBF with type [n, q] for $2 n \ge 3$.

To show that our results (Theorems 3.1 and 4.1) are new ones, we need a closed form of condition (1.2). Such a closed form was presented in ref. [4] as follows. Let

$$N = \prod_{i=1}^{r} p_{i}^{e_i}$$

be the decomposition of an odd integer N where $p_i (1 \le i \le l)$ are distinct prime numbers and $e_i \ge 1(1 \le i \le l)$. By the Chinese Remainder Theorem, condition (1.2) means that

$$2^{s} \equiv -1 \pmod{p_{i^{i}}^{e_{i}}} (1 \leq i \leq l).$$

$$(1.3)$$

We denote by I(p) the 2-part of the order of $2 \pmod{p}$. It is easy to see that condition (1.3) is equivalent to the condition that

$$I(p_i) \ (1 \le i \le l)$$
 are the same even integers. (1.4)

It is easy to see that $I(p^e) = 2, 4, 1$ for $p \equiv 3, 5, 7 \pmod{8}$, respectively, so that condition (1.2) contains exactly the following five cases:

(A₁) $N = \prod_{i=1}^{i} p_i^{e_i}, p_i \equiv 1 \pmod{8}$ ($1 \le i \le l$) and $I(p_i)$ ($1 \le i \le l$) are the same even

integers.

$$(A_{2}) N = \prod_{i=1}^{i} p_{i^{i}}^{e_{i}}, p_{i} \equiv 3 \pmod{8} (1 \leq i \leq l),$$

$$(A_{3}) N = \prod_{i=1}^{l} p_{i^{i}}^{e_{i}}, p_{i} \equiv 5 \pmod{8} (1 \leq i \leq l),$$

$$(A_{4}) N = \prod_{i=1}^{l} p_{i^{i}}^{e_{i}} \cdot \prod_{j=1}^{i} p_{j^{j}}^{\prime f_{j}}, p_{i} \equiv 3 \pmod{8} (1 \leq i \leq l), p_{j}^{\prime} \equiv 1 \pmod{8} \text{ and } I(p_{j}^{\prime})$$

$$= 2 (1 \le j \le s),$$

(A₅) $N = \prod_{i=1}^{l} p_{i}^{e_{i}} \cdot \prod_{i=1}^{s} p_{i}^{\prime f_{i}}, p_{i} \equiv 5 \pmod{8} (1 \le i \le l), p_{i}^{\prime} \equiv 1 \pmod{8} \text{ and } I(p_{i}^{\prime})$

= 4 (1 $\leq j \leq s$). In sec. 3 we will present some new results on the non-existence of GBF in the case of N =

In sec. 3 we will present some new results on the non-existence of GBF in the case of $N = p^e p'^{e'}$.

At the end of this section, we explain the meaning of algebraic number theory of condition (1.3). Let K be the cyclotomic number field $\mathbb{Q}(\zeta_N)$. The Galois group $G = \text{Gal}(K/\mathbb{Q})$ is isomorphic to $(\mathbb{Z}/N\mathbb{Z})^{\times}$ by

$$G \simeq (\mathbb{Z}/N\mathbb{Z})^{\times}, \ \sigma_a \mid \rightarrow a \pmod{N}, \ (a, N) = 1,$$
 (1.5)

where σ_a is the isomorphism determined by $\sigma_a(\zeta_N) = \zeta_N^a$. Let D be the decomposition field of 2 in K and $G_2 = \text{Gal}(K/D)$ be the decomposition group of 2 in K. Then G_2 is the cyclic subgroup of G generated by σ_2 . Therefore $f = |G_2| = [K:D]$ is the order of σ_2 in G or, by the isomorphism (1.5), f is the order of 2 (mod N). And $g = [D:\mathbb{Q}] = [K:\mathbb{Q}]/[K:D] = \frac{\varphi(N)}{f}$ where $\varphi(N)$ stands for the Euler function. For an algebraic number field F, we denote by O_F the ring of integers in F. Then 2 splits completely in $D:2O_D = \mathfrak{p}_1\cdots\mathfrak{p}_g$, and each \mathfrak{p}_i is inertia in K.

By isomorphism (1.5), condition (1.3) means that σ_{-1} (the complex conjugation) belongs to $G_2 = \langle \sigma_2 \rangle$ which is also equivalent to the fact that D is a real field. All the results in the next two sections belong to the case $\sigma^{-1} \notin G_2$.

$K = Q(\zeta_N)$	(1)	$P_1 \cdots P_g$
f		
D	$G_2 = \langle \sigma_2 \rangle$	$\mathfrak{p}_1\cdots\mathfrak{p}_g$
g		$\backslash \dots /$
Q	G	2

2 Two lemmas

In this and next two sections we fix the following notations.

n is an odd positive integer,

N is an odd positive integer, $N \ge 3$, q = 2N, $K = \mathbb{Q}(\zeta_N), \ \zeta_N = e^{\frac{2\pi i}{N}},$ $G = \text{Gal}(K/\mathbb{Q}) = \{\sigma_a : 1 \le a \le N-1, (a, N) = 1\},$ *D* is the decomposition field of 2 in *K*, $G_2 = \text{Gal}(K/D) = \langle \sigma_2 \rangle$ stands for the decomposition group of 2 in *K*, $f = [K:D] = |G_2|$ stands for the order of 2(mod *N*), O_F the ring of integers in an algebraic number field *F*, $g = [D:\mathbb{Q}] = \frac{\varphi(N)}{f}$ stands for the number of prime ideals in O_K above 2.

Suppose that there exists a GBF with type [n, q], q = 2N. Since N is odd, condition (1.1) implies that there exists $\xi \in O_K = \mathbb{Z}[\zeta_N]$ such that $\xi \overline{\xi} = q^n = 2^n N^n$ where $\overline{\xi} = \sigma_{-1}(\xi)$ is the complex conjugation of ξ . The first result we use in this paper is

Lemma 2.1^[5]. Let $N = \prod_{i=1}^{l} p_i^{e_i}$ where $l \ge 1$, p_1 , \cdots , p_l are distinct prime numbers, $e_i \ge 1$ $(1 \le i \le l)$, and for each i $(1 \le i \le l)$ there exists a positive integer s_i such that

$$p_{i^i}^s \equiv -1 \left(\mod \frac{N}{p_{i^i}^e} \right).$$

If we have $\xi \in O_K$ such that $\xi \overline{\xi} = 2^n N^n$, then we have $\alpha \in O_K$ such that $\alpha \overline{\alpha} = 2^n$.

Remark. The condition of Lemma 2.1 is trivial for l = 1 (so N is a power of an odd prime number). For $l \ge 2$, we denote by I_{ij} the 2-part of multiplicative order of $p_i \pmod{p_j}$. It is easy to see that the condition of Lemma 2.1 is equivalent to the saying that for each $i \ (1 \le i \le l)$, $I_{ij}(1 \le j \le l, j \ne i)$ are the same even integers (depending on i only).

The second result we need in this paper says that number α in Lemma 2.1 can be found in a smaller field.

Lemma 2.2. If $\alpha \overline{\alpha} = 2^n$ for some $\alpha \in O_K$, then there exists $\beta \in O_K$ such that $\beta^2 \in O_D$ and $\beta \overline{\beta} = 2^n$. Moreover, $\beta \in O_D$ if f is odd.

Proof. We follow the idea in the proof of the Lemma 2 in ref. [4], but make some simplifications. Since σ_2 fixes all prime ideals of O_K above 2, from $\alpha \overline{\alpha} = 2$ we know that

$$\alpha O_K = \sigma_2(\alpha O_K) = \sigma_2(\alpha) O_K.$$

Therefore $\sigma_2(\alpha) = \alpha \epsilon$ where $\epsilon \in U_k$ (the unit group of O_k). For each $\sigma \in G$,

$$(\alpha) \overline{\sigma(\alpha)} = \sigma(\alpha \overline{\alpha}) = 2^n, \quad \sigma \sigma_2(\alpha) = \sigma(\alpha \varepsilon) = \sigma(\alpha) \sigma(\varepsilon)$$

Thus

$$2^{n} = \sigma \sigma_{2}(\alpha) \overline{\sigma \sigma_{2}(\alpha)} = \sigma(\alpha) \sigma(\varepsilon) \overline{\sigma(\alpha) \sigma(\varepsilon)} = 2^{n} \sigma(\varepsilon) \overline{\sigma(\varepsilon)},$$

which means that $|\sigma(\varepsilon)| = 1$ for all $\sigma \in G$. Thus ε is a root of 1 in K, namely $\varepsilon = \pm \delta$ and $\delta = \zeta_N^i$ for some integer *i*. Let $\beta = \alpha \delta^{-1}$. Then $\beta \overline{\beta} = \alpha \overline{\alpha} = 2^n$ and

$$\sigma_2(\beta) = \sigma_2(\alpha)\sigma_2(\delta)^{-1} = \alpha\varepsilon\delta^{-2} = \pm \alpha\delta^{-1} = \pm \beta.$$

Therefore $\sigma_2(\beta^2) = \beta^2$ which means that $\beta^2 \in O_D$. Moreover, we have $D \subseteq D(\beta) \subseteq K$ and $[D(\beta):D] \leq 2$. If f = [K:D] is odd, then $D(\beta) = D$ so that $\beta \in O_D$. This completes the proof of Lemma 2.2.

3 Non-existence result for case $N = p^l$, $p \equiv 7 \pmod{8}$

Now we present some new result on non-existence of GBF for n > 1.

Theorem 3.1. Let $N = p^l$ where $l \ge 1$ $p \equiv 7 \pmod{8}$, let f be the order of $2 \pmod{p^l}$, $s = \frac{g}{2} \left(= \frac{\varphi(p^l)}{2f} \text{ is odd} \right)$, let m be the smallest odd integer such that $x^2 + py^2 = 2^{m+2}$ has integral solution (x, y), and let n be an odd positive integer. If n < m/s, then there is no GBF with type [n, p](q = 2N).

Proof. Suppose that there exists a GBF with type [n, p]. From (1.1) we know that $\beta \bar{\beta} = q^n = 2^n N^n = 2^n p^{ln}$ for some $\beta \in O_K$. By Lemmas 2.1 and 2.2 we know that $\beta \bar{\beta} = 2^n$ for some $\beta \in O_D$. Let $E = \mathbb{Q}(\sqrt{-p})$ be the unique quadratic subfield of D. Then $[D:E] = \frac{g}{2} = s$ is odd. Let $\gamma = N_{D/E}(\beta)$. Then $\gamma \bar{\gamma} = N_{D/E}(\beta \bar{\beta}) = 2^{sn}$ and $\gamma \in O_E$ so that $\gamma = \frac{1}{2}(A + B\sqrt{-p})$ where $A, B \in \mathbb{Z}$. Therefore we have $A^2 + pB^2 = 4\gamma \bar{\gamma} = 2^{sn+2}$. By the definition of m we know $m \leq sn$. Therefore there is no GBF with type [n, p] if m > sn. This completes the proof of Theorem 1.

Remark 1. Let p be a fixed odd prime number. For all $l \ge 1$, we denote by f_l the order of $2 \pmod{p^l}$ and $g_l = \varphi(p^l)/f_l$. It is easy to see that if $2^{p-1} \ne 1 \pmod{p^2}$, then $f_l = p^{l-1}f_1$ and $g_l = \frac{\varphi(p^l)}{f_l} = \frac{p^{l-1}(p-1)}{p^{l-1}f_1} = g_1$ for all $l \ge 1$. It is a well-known fact that the formula 2^{p-1} $\ne 1 \pmod{p^2}$ holds for all odd prime numbers $p < 6 \times 10^9$ except p = 1093 and 3511 (see Ribenboim's book^[6] for instance). Therefore we have $g_l = g_1$ for all $l \ge 1$ so that it is enough to compute $g = g_1$ for such a prime number p.

Remark 2. The definition of *m* is elementary; it has a clear algebraic number theory meaning. Since *m* is the smallest odd integer such that the equation $x^2 + py^2 = 2^{m+2}$ has integral solution (x, y) = (A, B), we know that both of *A* and *B* should be odd, so that $\delta = \frac{1}{2}(A + B\sqrt{-p}) \in O_E(E = \mathbb{Q}(\sqrt{-p}))$ and $\delta \overline{\delta} = 2^m$. We know that 2 splits in O_E as $2O_E = p\overline{p}$. The

σ

Vol. 44

minimum property of *m* implies that $\delta O_E = \mathfrak{p}^m$ or of \mathfrak{p}^m . Therefore \mathfrak{p}^m is a principal ideal, so that *m* is a factor of the class number h(-p) of $E = \mathbb{Q}(\sqrt{-p})$. By Gauss' genus theory we know that h(-p) is odd for $p \equiv 7 \pmod{8}$. On the other hand, we have $2^{m+2} = A^2 + pB^2 > p$ which gives a lower bound of *m*, $m > \frac{\log p}{\log 2} - 2$. Particularly we have $m \ge 3$ if $p \equiv 7 \pmod{8}$ and $p \ne 7$. Therefore if h(-p) is a prime number, then m = h(-p).

Example 1. There are 11 pirme numbers $p \equiv 7 \pmod{8}$ within 200. The following table shows the values of g, h(-p) and m for these primes.

P	7	23	31	47	71	79	103	127	151	191	199
g = 2s	2	2	6	2	2	2	2	18	10	2	2
h(-p)	1	3	3	5	7	5	5	5	. 7	13	9
m	1	3	3	5	7	5	5	5	7	13	0

For all $23 \le p \le 191$, $p \equiv 7 \pmod{8}$ and h(-p) are prime number so that m = h(-p). For p = 199, $m \mid 9 = h(-199)$ and $m > \frac{\log 199}{\log 2} - 2 > 3$; thus m = 9.

For p = 23, 47, 71, 79, 103, 191, we have $s = \frac{g}{2} = 1$, so that there is no GBF with type

 $[n, 2p^{l}]$ for all $l \ge 1$ if n is odd and less than m.

From the above observation Theorem 1 has following corollaries.

Corollary 1. Suppose that $p \equiv 7 \pmod{8}$, $p \ge 7$, $2^{p-1} \ne 1 \pmod{p^2}$ and the order f of $2 \pmod{p}$ is $\frac{p-1}{2}$. Then there is no GBF with type $[n, 2p^l]$ for all $l \ge 1$ if n is odd and less than m where m is defined in Theorem 1.

Corollary 2. Suppose that $p \equiv 7 \pmod{8}$, p > 7, $2^{p-1} \not\equiv 1 \pmod{p^2}$ and the class number h(-p) of $\mathbb{Q}(\sqrt{-p})$ is a prime number. Then there is no GBF with type $[n, 2p^l]$ for all $l \ge 1$ if n is odd and less than h(-p)/s where $s = \frac{p-1}{2f}$ and f is the order of 2 (mod p).

4 Non-existence result: $N = p^l p'^{l'}$

In this section we consider the case $N = p^l p'^{l'}$, where l, $l' \ge 1$, p and p' are distinct prime numbers, and do not belong to cases $(A_1) - (A_5)$ in sec. 1. But we assume that N satisfies the condition of Lemma 2.1; that is, there exist positive integers s and s' such that

 $p^{s} \equiv -1 \pmod{p^{\prime l'}}, \ p^{\prime s'} \equiv -1 \pmod{p^{l}}.$

It is easy to see that this condition is equivalent to the following condition:

(*) both of the order of $p \pmod{p'}$ and the order of $p' \pmod{p}$ are even.

Theorem 4.1. Suppose that $N = p^l p'^{l'}$ where $l, l' \ge 1$, $p \equiv 3 \pmod{4}$, $p' \equiv 5 \pmod{8}$, and primes p and p' satisfy condition (*) (which is equivalent to $\left(\frac{p}{p'}\right) = -1$). Let

f be the order of 2 (mod N), and $g = \frac{\varphi(N)}{f}$. Then g is even and s = g/2 is odd.

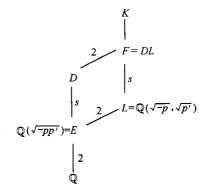
(1) In the case $p \equiv 3 \pmod{8}$. Let $E \equiv \mathbb{Q}(\sqrt{-pp'})$. Then $2O_E = P\overline{P}$ where P and \overline{P} are distinct prime ideals in O_E . Let m be the smallest positive integer such that the equation $p'y^2 + pz^2 = 2^{m+2}$ has an integral solution (y, z). Then m is odd and the order of ideal class [P] in the class group of E is 2m. Moreover, there is no GBF with type [n, 2N] if $2\dagger n < m/s$.

(2) In the case $p \equiv 7 \pmod{8}$. Let $E = \mathbb{Q}(\sqrt{-p})$. Then $2O_E = P\overline{P}$. Let *m* be the smallest odd integer such that the equation $x^2 + pz^2 = 2^{m+2}$ has an integral solution (x, z). Then *m* is the order of [P] in the class group of *E*. Moreover, there is no GBF with type [n, 2N] if $2\dagger n < m/s$.

Proof. Let t and t_1 be the orders of $2 \pmod{p^l}$ and $(\mod p'^{l'})$, respectively. From $p \equiv 3 \pmod{4}$ and $p' \equiv 5 \pmod{8}$ we know that $t_1 = 4t'$ where t' is odd. Therefore f = [t, 4t'] = 4a and a is odd, so that $s = \frac{g}{2} = \frac{\varphi(N)}{2f}$ is odd. Let D be the decomposition field of 2 in K $= \mathbb{Q}(\zeta_N)$. Then $[D:\mathbb{Q}] = g = 2s$.

Suppose that there exists GBF with type [n, 2N] where $2\dagger n \ge 1$. Then we have $\xi \in O_K$ such that $\xi \,\overline{\xi} = (2N)^n$. Since N satisfies condition (*), by Lemma 2.1 we have $\alpha \in O_K$ such that $\alpha \,\overline{\alpha} = 2^n$. Then by Lemma 2.2 we have $\beta \in O_K$ such that $\beta^2 \in O_D$ and $\beta \,\overline{\beta} = 2^n$.

(1) Consider the case $p \equiv 3 \pmod{8}$ first. Since $E = \mathbb{Q}(\sqrt{-pp'})$ is a subfield of K and 2 splits in E, we know that $E \subset D$ and [D:E] = s. From $\beta^2 \in O_D$ we know that β belongs to the unique quadratic extension F of D in K. By the Galois correspondence, $\operatorname{Gal}(K/F)$ is the cyclic subgroup of $G = \operatorname{Gal}(K/\mathbb{Q})$ generated by $\sigma_2^2 = \sigma_4$ from which we know that $L = \mathbb{Q}(\sqrt{-p}, \sqrt{p'})$ is a subfield of F and F = DL, [F:L] = s. Let $\gamma = N_{F/L}(\beta) \in O_L$. Then $\gamma \overline{\gamma} = N_{F/L}(\beta\overline{\beta}) = N_{F/L}(2^n) = 2^{ns}$ and $\gamma^2 = N_{F/L}(\beta^2) = N_{D/E}(\beta^2) \in O_E$.



It is well known that $\left\{1, \ \alpha = \frac{1+\sqrt{p'}}{2}, \ \beta = \frac{1+\sqrt{-p}}{2}, \ \alpha\beta\right\}$ is an integral basis of O_L (see exercise 42(d) of ref. [3], page 52 for instance). Therefore $\gamma = A + B\alpha + C\beta + D\alpha\beta$ (A, B, C, $D \in \mathbb{Z}$)

$$= \frac{1}{4} (X + Y\sqrt{p'} + Z\sqrt{-p} + W\sqrt{-pp'}),$$

where

$$X = 4A + 2B + 2C + D, \ Y = 2B + D, \ Z = 2C + D, \ W = D,$$

implying that $D = W$, $C = \frac{1}{2}(Z - W)$, $B = \frac{1}{2}(Y - W)$, $A = \frac{1}{4}(X - Y - Z + W)$ and
 $X \equiv Y \equiv Z \equiv W \pmod{2}, \ X + W \equiv Y + Z \pmod{4}.$ (4.1)
The equality $\overline{\gamma\gamma} = 2^{ns}$ becomes

$$2^{ns+4} = X^2 + p'Y^2 + pZ^2 + pp'W^2 + 2(XY + pZW)\sqrt{p'};$$

that is, (X, Y, Z, W) satisfies congruences (4.1) and equations

$$\begin{cases} X^{2} + p'Y^{2} + pZ^{2} + pp'W^{2} = 2^{ns+4}, \\ XY = -pZW. \end{cases}$$
(4.2)

Note that $\gamma^2 \in O_E = \mathbb{Z} + \left[\frac{1+\sqrt{-pp'}}{2}\right]\mathbb{Z}$. If $\gamma \in O_E$, then Y = Z = 0 and $X^2 + pp' W^2 = 2^{4+ns}$ which implies that $\left(\frac{2}{p}\right) = \left(\frac{2}{p}\right)^{4+ns} = 1$ since $2 \dagger ns$. But $\left(\frac{2}{p}\right) = -1$ for $p \equiv 3 \pmod{8}$. Therefore $\gamma \notin O_E$ and $\gamma \in O_L$, so that $L = E(\gamma) (\gamma^2 \in E)$. Let σ be the non-trivial automorphism in $\operatorname{Gal}(L/E)$. Then $\sigma(\gamma) = -\gamma$ which means that $X - Y\sqrt{p'} - Z\sqrt{-p} + W\sqrt{-pp'} = -X - Y\sqrt{p'} - Z\sqrt{-p} - W\sqrt{-pp'}$. So we have X = W = 0. And congruence (4.1) becomes $Y \equiv Z \equiv 0 \pmod{2}$, and (4.2) becomes $p'Y^2 + pZ^2 = 2^{4+ns}$. Let $\gamma = \frac{Y}{2} \in \mathbb{Z}$, $z = \frac{Z}{2} \in \mathbb{Z}$. Then

$$p'y^2 + pz^2 = 2^{ns+2}, y \equiv z \pmod{2}.$$
 (4.3)

Let *m* be the smallest positive integer such that the equation $p'y^2 + pz^2 = 2^{m+2}$ has integral solution (y, z) = (A, B). From $-1 = \left(\frac{p'}{p}\right) = \left(\frac{2}{p}\right)^m = (-1)^m$ we know that *m* is odd. The minimality of *m* implies that $2^{\dagger}AB$, and

$$2^{m}p = \left(\frac{Bp + A\sqrt{-pp'}}{2}\right)\left(\frac{Bp - A\sqrt{-pp'}}{2}\right).$$

We have $2O_E = P \overline{P}$ and $pO_E = P'^2$. From minimality of m we know that $\left(\frac{Bp + A\sqrt{-pp'}}{2}\right)O_E = P^mP'$ or \overline{P}^mP' . Therefore $[P]^m[P'] = 1$. It is well known that [P'] is an ideal class of order 2. Therefore the order of [P] is 2m. From (3.3) and the minimality of m we have $sn \ge m$. Therefore there is no GBF with type [n, 2N] if $2 \upharpoonright n < \frac{m}{s}$.

(2) Next we consider the case $p \equiv 7 \pmod{8}$. In this case we take $E = \mathbb{Q}(\sqrt{-p})$. By similar argument as in (1), we know that there exists

$$\gamma = \frac{1}{4} (X + Y\sqrt{p'} + Z\sqrt{-p} + W\sqrt{-pp'}) \in O_L,$$

$$\gamma^2 \in O_E = \mathbb{Z} + \left[\frac{1+\sqrt{-p}}{2}\right] \mathbb{Z}, \ \gamma\overline{\gamma} = 2^{ns}.$$

569

If $\gamma \notin O_E$, then $L = E(\gamma)$ ($\gamma^2 \in O_E$) and X = Z = 0. Therefore $\overline{\gamma \gamma} = 2^{ns}$ means that $2^{ns+4} =$ $p'(Y^2 + pW^2)$ which is impossible. Thus $\gamma \in O_E$ which implies Y = W = 0, $X^2 + pZ^2 = 2^{ns+4}$ and $X \equiv Z \equiv 0 \pmod{2}$. Let $x = \frac{X}{2} \in \mathbb{Z}$, $z = \frac{Z}{2} \in \mathbb{Z}$. Then $x^2 + pz^2 = 2^{ns+2}$. (4.4)

Let m be the smallest odd integer such that the equation $x^2 + pz^2 = 2^{m+2}$ has integral solution (x, z) = (A, C). Then $2 \dagger AC$ and $\left(\frac{A+C\sqrt{-p}}{2}\right) \left(\frac{A-C\sqrt{-p}}{2}\right) = 2^m$. From $2O_E = P\overline{P}$

and the minimality of m we have $\left(\frac{A+C\sqrt{-p}}{2}\right)O_E = P^m$ or \overline{P}^m so that m is the order of [P].

From (4.4) we know that $ns \ge m$. Therefore there is no GBF with type [n, 2N] if $2 n < \frac{m}{s}$. This completes the proof of Theorem 2.

We denote the class number of $Q(\sqrt{-d})$ by h(-d) (there is a big table in Remark. the ref. [2] for class number of imaginary quadratic fields). For $p \equiv 3 \pmod{8}$ we have h(-pp') = 2t, $2\dagger t$ and $m \mid t$. Particularly, if t is a prime number, then m = t = h(-pp')/22. For $p \equiv 7 \pmod{8}$ and p > 7, $m \mid h(-p)$, m > 1 and $2 \uparrow h(-p)$. If h(-p) is prime number, then m = h(-p).

Computation shows that all (p, p') in the following table satisfies conditions Example 2. (*) (which is equivalent to $\left(\frac{p'}{p}\right) = -1$) and $p \equiv 3 \pmod{8}$, $p' \equiv 5 \pmod{8}$. The values of s and h(-pp') are listed in the table. If h(-pp')/2 is prime, then m = h(-pp')/2. Otherwise m can be determined by definition and the fact that $m \mid h(-pp')/2$.

(p, p')	(67,5)	(83,5)	(11,13)	(59,13)	(67,13)	(83,13)	(11,29)	(19,29)	(43,29)	(19,37)
5	1	1	1	1	1	1	1	1	3	1
h(-pp')	18	10	10	22	22	34	10	26	26	14
m	9	5	5	11	11	17	5	13	13	7
(p,p')	(59,37)	(3,53)	(19,53)	(67,53) (83,5	3) (11,	.61) (43	3,61) (59,61)	(67,61)
s	1	1	1	1	1	1		3	1	1
h(-pp')	42	10	30	58	50	3	0	22	66	30
m	21	5	15	29	25	1	5	11	33	5

By Theorem 4.1 we know that there is no GBF with types $[3, 2\cdot 43^{l}\cdot 29^{l'}]$ and $[3, 2\cdot 43^{l}$ •61^{*l*}] for all l, $l' \ge 1$. For remaining cases in the table we have s = 1, so that there is no GBF with type [n, 2p'p''] if 2 n < m (for n = 1 the result is known^[5]).

Computation shows that all (p, p') $(p \equiv 7 \pmod{8}, p' \equiv 5 \pmod{8})$ in Example 3. the following table satisfy condition (*) (namely $\left(\frac{p'}{p}\right) = -1$). For all cases s = 1 and h(-p) is prime so that m = h(-p).

(p, p')	(47, 5) (47, 13) (47, 29)	(71, 13) (71,53) (71,61)	(79,29) (79,37) (79,53) (79,61)
m=h(-p)	5	7	5

By Theorem 4.1 we know that there is no GBF with type $[n, 2p^l p^{l'}]$ if 2 n < h(-p) and (p, p') belongs to the table (for n = 1 the result is known^[5]).

Acknowledgements This work was supported by the Fundamental Research Foundation of China (Grant No. G1999075101).

References

- 1. Kumar, P. V., Scholtz, R. A., Welch, L. R., Generalized bent functions and their properties, J. of Comb. Theory, Ser. A, 1985, 40: 90-107.
- 2. Rothaus, O. S., On bent functions, J. Comb. Theory, Ser. A, 1976, 20: 300-305.
- 3. Marcus, D. A., Number Fields, New York: Springer-Verlag, 1977.
- 4. Akyildiz, E., Guloglu, I. S., Ikeda, M., A note of generalized bent functions, Pure and Applied Alg., 1996, 106: 1.
- 5. Ikeda, M., A remark on the non-existence of generalized bent functions, Nunber Theory and Its Applications (Ankara 1996), 109-119, LN in Pure and Applied Math., 204, New York: Marcel Dekker, 1999.
- 6. Ribenboim, P., The Book of Prime Number Records, 2nd ed., New York: Springer-Verlag, 1989.