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1 Prel iminaries  

2xi 
Let q and n be positive integers, q~>2,  ~q ~-Z/qT~, and ~q = e T .  A function f :  7~'--~ 

~q is called a generalized bent function (GBF)  if the equality 

~-~fq(X)-x.y = an~2 ( 1 . 1 )  

holds for every y E Z q where x ' y  stands for the dot product. We call [ n ,  q ] the type of such 
GBF f .  GBFs have been used in many fields such as code-division multiple-access communica- 
tion systems and cryptography. For more background information of GBF and its applications, see 
ref. [ 1 ] and references therein. 

Bent functions (for q = 2)  are initiated by Rothaus E2] in 1976 and generalized by Kumar et 

al. E13 in 1985. For q = 2,  Rothaus proved that there exists a bent function with type [ n ,  2]  if 
and only if n is even. The GBFs with type [ n ,  q ] have been constructed in ref. [ 1 ] for even n 
or q ~ 2 (rood 4 ) .  From now on we assume that 

( * ) n is odd and q = 2 N ,  2~,N~>3. 
So far there is no GBF being constructed in the case ( * ) ,  but several non-existence results 

of GBF have been presented under the following extra conditions: 

(A)  El] there exists an integer s >t 1 such that 

2 '  - -  1 ( m o d N ) ,  ( 1 . 2 )  

( B ) [ a ] ( n ,  q ) =  (1 ,  14 ) ,  

(C)  [43 n = 1 and N = f where 1 ~> 1, p is a prime number such that p - 7  (mod 8) and p 

~7, 

(1~< 

(D)  ~s] n = 1, N = p~ ....  p~, where g ~> 1, P l ,  "'", Pg are distinct prime numbers, ei ~ 1 

i ~< g ) and for each i ( 1 ~< i ~< g )  there exists si/> 1 such that 

l(mo  / 
pii l 

(D)  is a generalization of (B)  and ( C ) .  In this paper we present some new results on the 

non-existence of GBF with type [ n ,  q ] for 2"bn ~> 3. 
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To show that our results (Theorems 3.1 and 4 .1  ) are new ones, we need a closed form of 
condition ( 1 . 2 ) .  Such a closed form was presented in ref. [4] as follows. Let 

l 

i=l 

be the decomposition of an odd integer N where Pi ( 1 <~ i <~ l) are distinct prime numbers and ei 
>I 1 ( 1 ~< i ~< l ) .  By the Chinese Remainder Theorem, condition ( 1 .2)  means that 

2 s = -  1 (mod p~,) (1 ~< i ~< l ) .  (1 .3 )  

We denote by I (p)  the 2-part of the order of 2(mod p ) .  It is easy to see that condition (1 .3 )  
is equivalent to the condition that 

l(pi) (1 ~< i ~< l)  are the same even integers. (1 .4 )  

It is easy to see that I (pe )  = 2, 4,  1 for p m 3, 5, 7 (mod 8 ) ,  respectively, so that condition 
(1 .2 )  contains exactly the following five cases: 

l 

(A1) N = ~_p~,,pi=-I ( m o d 8 )  ( 1 ~ < i ~ / )  and I(pi) (1~<i~</)  are the same even 
i=1 

integers. 
l 

(Az) N = ]-[_p~,, pi=3 (mod 8) ( 1 ~ < i ~ < / ) ,  
i = l  

l 

(A3) N = l-[p",,, p , - 5  (mod 8) ( 1 ~ < i ~ < / ) ,  
i=1 

l s 

(A4) N = ]-[pT," ] ~ [ p ~ ,  p, -- 3 (mod 8) (1 ~< i ~ l ) ,  p; - 1 (mod 8) and I(p~) 
i=1 j = l  

= 2 ( 1  ~<j~< s ) ,  
l s 

(As) N = ]-[P~i'" ]-[P~, p i ~ 5  ( m o d 8 )  (1 <~ i<~ l ) , p ;  -- 1 ( m o d 8 )  a n d I ( p ~ )  
i l l  j r 1  

= 4 ( 1  ~<j~< s ) .  
In see. 3 we will present some new results on the non-existence of GBF in the ease of N = 

p~p,e,. 

At the end of this section, we explain the meaning of algebraic number theory of condition 
( 1 . 3 ) .  Let K be the cyclotomic number field Q(~N).  The Galois group G = Ga l (K/Q)  is iso- 

morphic to ( Z / N Z )  • by 

G _  ( ~ / N Z )  • aa I --~ a (mod N ) ,  ( a ,  N)  = 1, (1 .5 )  

where aa is the isomorphism determined by a~ (~'N) = [~v. Let D be the decomposition field of 2 
in K and G2 = G a l ( K / D )  be the decomposition group of 2 in K. Then G2 is the cyclic subgroup 
of G generated by a2. Therefore f =  I G21 = [K:  D]  is the order of a2 in G or, by the isomor- 

phism ( 1 . 5 ) ,  f i s  the order of 2 (mod N ) .  And g =  [ D : Q ]  = [ K : Q ] / [ K : D ] -  ~(N)  
f 

where 9 ( N )  stands for the Euler function. For an algebraic number field F ,  we denote by Or 
the ring of integers in F .  Then 2 splits completely in D : 2 0 0  = 101""13 z , and each Pi is inertia 
in K. 

By isomorphism ( 1 . 5 ) ,  condition ( 1 . 3 )  means that a _ l (the complex conjugation) belongs 
to G2 = (a2)  which is also equivalent to the fact that D is a real field. All the results in the next 

two sections belong to the case a -  1 ~ G2. 
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K = Q(~'N) (1) P, '"Ps  

f I"" 
O G2-- <0"2> ~ ' " i g  

I 
Q G 2 

2 Two lemmas 

In this and next two sections we fix the following notations. 

n is an odd positive integer, 

N is an odd positive integer, N I> 3,  

q=2N,  
2:,:i 

K = Q( ~N ) ,  ~N = e-~-, 

G=Gal(K/Q)= {a,~:l<~a<.N-1, ( a , N )  = 1 t ,  

D is the decomposition field of 2 in K ,  

G2 = GaI(K/D) = (a2)  stands for the decomposition group of 2 in K ,  

f = [ K:  D ] = I G2 [ stands for the order of 2 (mod N ) ,  

Or the ring of integers in an algebraic number field F ,  

g = [ D : Q ]  = 9 ( N )  stands for the number of prime ideals in OK above 2.  
f 

Suppose that there exists a GBF with type [ n ,  q ] ,  q = 2N.  Since N is odd, condition 

( 1.1 ) implies that there exists ~ E Or = Z [ ~v ] such that ~ # = qn = 2 nN ~ where ~ = a _ 1 (~ )  is 

the complex conjugation of $. The first result we use in this paper is 
t 

L e m m a 2 . 1  ~s]. L e t N  = ]-[pe,  where l ~ > l ,  P l ,  " " ,  pt are distinct prime numbers, el 
i = l  

I> 1 ( 1 ~< i ~< l ) ,  and for each i ( 1 ~< i ~< l ) there exists a positive integer si such that 

If we have ~ E  Or such that ~ = 2~N ~ , then we have a E Or such that a a -- 2 ~ . 

R e m a r k .  The condition of Lemma 2 . 1  is trivial for l = 1 (so N is a power of an odd 

prime number) .  For l I>2,  we denote by Io the 2-part of muhiplicative order of p; (m~ct p j ) .  It 

is easy to see that the condition of Lemma 2 .1  is equivalent to the saying that for each i (1 ~ i 

~ l ) ,  Iij(1 ~ j ~  l,  j r  i) are the same even integers (depending on i only).  

The second result we need in this paper says that number a in Lemma 2.1  can be found in 

a smaller field. 

Lenmaa 2 . 2 .  If a a- = 2 n for some a E Or ,  then there exists fl E OK such that f12 E Oo 

and fl fl = 2 ~ . Moreover, fl E OD if f is odd. 

Proof .  We follow the idea in the proof of the Lemma 2 in ref. [ 4 ] ,  but make some sim- 

plifications. Since a2 fixes all prime ideals of OK above 2,  from a a = 2 we know that 

= a2(aOK) = a 2 ( a ) O K .  
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Therefore a2 ( a ) = tzr where r E Uk (the unit group of OK). For each a E G, 

0"(0~) O'(t2) = O'(t2~) = 2 n, 0"0"2(~ ) -- 0'(0~) = O'(O~)O'(E). 

Thus 
2 n = aa2( ) = = 2 h a ( c )  a ( r  

which means that l a ( r  I = 1 for all a E  G. Thus r is a root of 1 in K ,  namely ~ = + ~ and 

= ~v for some integer i .  Let [3 = a~ - '  Then/3/~ = a a = 2" and 

a2( /3)  = a2(a)a2( ) -1 = = • = + / 3 .  

Therefore a2(/32) = /32 which means that /32E Oo. Moreover, we have D C_ D ( / 3 ) C  K and 

[ D (/3) : D ] ~ 2. If f = [ K : D ] is odd, then D (t3) = D so that /3 E 0 o .  This completes the 

proof of Lemma 2 . 2 .  

3 Non-exis tence  result for case N = p t ,  p _ 7 { mod 8)  

Now we present some new result on non-existence of GBF for n > 1. 

Theorem 3 . 1 .  Let N = pZ where l I> 1 p -- 7 (mod 8 ) ,  let f be the order of 2 (mod p t ) ,  

s = - ~-f is odd , let m be the smallest odd integer such that x 2 + py2 _- 2"  § 2 has inte- 

gral solution ( x ,  y ) ,  and let n be an odd positive integer. If n < re~s, then there is no GBF 

with type I n ,  p ] ( q = 2 N ) .  

Proof .  Suppose that there exists a GBF with type [ n,  p ] .  From ( 1 . 1 )  we know that/3 

= q n = 2 " N  = = 2 " p  l~ for some /3E OK. By Lemmas 2 .1  and 2 . 2  we know that / 3 f l = 2 "  for 

some /3E OD. Let E = Q(~/ - p )  be the unique quadratic subfield of O.  Then [ D :  E]  - g - 
2 

s is odd. Let ~' = No/~(/3) .  Then ~ ' ~ =  N o / t ( P f l )  = 2  'n and ~ 'E  Oe so that ~' = I ( A  + 

B ~ / -  p )  where A,  B E  Z. Therefore we have A 2 + pB 2 = 4~" ~ = 2 'n§ By the definition of 

m we know m <~ sn. Therefore there is no GBF with type [ n ,  p ] if m > sn. This completes the 

proof of Theorem 1. 

Remark  1. Let p be a fixed odd prime number. For all l ~> 1, we denote by j~ the order 

of 2(mod pl)  and gt = 9 ( P t ) / f t .  It is easy to see that if 2 P - 1 ~  l (mod  p2) ,  then j~ = p t - l f l  

9 ( p  t) p t - l ( R - l )  
and gz - - -  - - gl  for all l I> 1. It is a well-known fact that the formula 2 ~ - 

A p*- ' f ,  

~ 1  (mod p2)  holds for all odd prime numbers p < 6 x 10 9 except p = 1093 and 35!1 (see 

Ribenboim' s book I63 for instance).  Therefore we have gt = gl for all l >~ 1 so that it is enough to 

compute g = g~ for such a prime number p .  

Rem a rk  2.  The definition of m is elementary; it has a clear algebraic number theory 

meaning. Since m is the smallest odd integer such that the equation x 2 + py2 = 2"  +2 has integral 

solution ( x ,  y )  = ( A ,  B ) ,  we know that both of A and B should be odd, so that ~ = I ( A  + 

B . / -  p )  ~ O e ( E  = ~ ( . , / -  p )  and ~ g =  2 m . We know that 2 splits in O~ as 20~  = p~.  The 
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minimum property of m implies that ~O~ = 10 m or of ~ ' .  Therefore ~'~ is a principal ideal, so 

that m is a factor of the class number h ( - p ) of E = ~ ( ~ / -  p ) .  By Gauss' genus theory we 

know that h (  - p )  is odd for p =-7 (mod 8 ) .  On the other hand, we have 2 "~+z = A 2 + pB 2 > 

logp 
p which gives a lower bound of m ,  m > - 2. Particularly we have m/> 3 if p ~ 7 (mod 8) 

log 2 
and p # 7. Therefore if h ( - p ) is a prime number, then m = h ( - p ) .  

Example 1. There are 11 pirme numbers p _--- 7 (rood 8) within 200. The following table 

shows the values of g ,  h ( - p ) and m for these primes. 

p 7 23 31 47 71 79 103 127 151 191 199 

g = 2s 2 2 6 2 2 2 2 18 10 2 2 

h( - p)  1 3 3 5 7 5 5 5 7 13 9 

m 1 3 3 5 7 5 5 5 7 13 0 

For all 2 3 ~ p  ~< 191, p =-7 (mod 8) and h(  - p )  are prime number so that m = h(  - p ) .  

log199 
F o r p = 1 9 9 ,  m 1 9 =  h ( - 1 9 9 )  and m > - - - 2 > 3 ;  thus m = 9 .  

log2 
I 

g 
For p = 23,  47,  71,  79,  103, 191, we have s = - -  = 1, so that there is no GBF with type 

2 

[ n ,  2p t] for all l>~ 1 if n is odd and less than m.  

From the above observation Theorem 1 has following corollaries. 

Corol lary  1.  Suppose that p _-__ 7 (mod 8 ) ,  p I> 7,  2 p - 1 ~ 1 (mod p2) and the order f of 

2 (mod p ) is p - 1 Then there is no GBF with type [ n ,  2p ~ ] for all l t> 1 if n is odd and less 
2 " 

than m where m is defined in Theorem 1. 

Corol lary 2.  Suppose that p =- 7 (rood 8 ) ,  p > 7,  2 p - 1 ~ 1 (rood p2) and the class 

number h (  - p )  of ~ ( ~ / -  p )  is a prime number. Then there is no GBF with type I n ,  2p t ] for 

p - 1  
all l~>l  i f n  is odd and less than h ( - p ) / s  where s -  a n d f i s  the order of 2 (mod p ) .  

2f 

4 Non-existence result: N = plp , t '  

In this section we consider the case N = ptp,t', where l ,  l '  I> 1, p and p'  are distinct 

prime numbers, and do not belong to cases ( A 1 ) - - ( A s )  in sec. 1. But we assume that N satis- 

fies the condition of Lemma 2.1  ; that is, there exist positive integers s and s' such that 
p'  ----- 1 (mod p , t ' ) ,  p,S" = - -  1 (mod pt ) .  

It is easy to see that this condition is equivalent to the following condition: 

( * ) both of the order of p (mod p' ) and the order of p '  (mod p )  are even. 

Theorem 4 . 1 .  Suppose that N = ptp,t, where l ,  l' t> 1, p =- 3 ( mod 4 ) ,  p'  --- 5 

( m o d 8 ) ,  and primes p and p' s a t i s f y c o n d i t i o n ( * )  (which is equivalent to (pP) = - l ) .  Let 

r~(N) 
f be the order of 2 (mod N ) ,  and g - - -  . Then g is even and s = g / 2  is odd. 

f 
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(1) In the case p ~ 3  (mod 8 ) .  Let E = Q ( ~ / -  p p ' ) .  Then 2OE = P P  where P and -P 

are distinct prime ideals in OE. Let m be the smallest positive integer such that the equation 

p,y2 + pz 2 = 2m+2 has an integral solution ( y ,  z ) .  Then m is odd and the order of ideal class 

[ P ]  in the class group of E is 2m.  Moreover, there is no GBF with type [ n,  2N]  i f 2 t n  < m~ 

S .  

(2) In the case p = 7  (rood 8 ) .  Let E = Q ( 4  - p ) .  Then 2 O E =  P P .  Let m be the 

smallest odd integer such that the equation x 2 + pz 2 = 2 "§ 2 has an integral solution ( x ,  z ) .  

Then m is the order of [ P ] in the class group of E.  Moreover, there is no GBF with type [ n,  

2N]  if 2 i n  < m / s .  

Proof.  Let t and t 1 be the orders of 2 (rood pl ) and (mod p'l' ) ,  respectively. From p -- 

3 (mod 4) and p' - 5  (mod 8) we know that t~ = 4t '  where t' is odd. Therefore f =  [ t ,  4t '  ] 

g 
= 4a  and a is odd, so that s - - - -  is odd. Let D be the decomposition field of 2 in K 

2 2 f  
= Q(~N).  Then [ D: Q] = g = 2s .  

Suppose that there exists GBF with type [ n,  2N]  where 2 t n  I> 1. Then we have ~ E  OK 

such that $ ~ = ( 2 N ) a .  Since N satisties condition ( * ) ,  by Lemma 2.1 we have a E OK such 

that a a = 2 =. Then by Lemma 2 .2  we have /3E OK such that fl2E Oo and p/~ = 2". 

(1) Consider the case p---=3 (mod 8) first. Since E = Q ( _ j T ~ )  is a subfield of K and 

2 splits in E ,  we know that E C D and [ D : E ] = s. From /32 E Ov we know that /3 belongs to 

the unique quadratic extension F of D in K. By the Galois correspondence, G a l ( K / F )  is the 

cyclic subgroup of G = Ga l (K/Q)  generated by az z = a4 from which we know that L = Q ( ~  - p ,  

) is a subfield of F and F =  DL,  I F : L ]  = s.  Let ~ =  N v / L ( / 3 ) E  OL. T h e n ) ' ~  = 

NF/L(/3~) = NF/L(2 n) = 2 ns and ~,2= NF/L(/32) = N D / E ( / 3 2 ) E  OE. 

K 
I 

2 J  F=DL 
J 

D s 

s ...~... L = Q (4-=y, ,/-h-r) 

Q ( -p,/=b-U)=E 

Q 

t 1 +,/p--; l + ~ , / - p  a/3t is an integral basis of OL It is well known that 1, a - - - ,  /3-  , 
t 2 2 l 

(see exercise 42(d)  of ref. [31 ,  page 52 for instance). Therefore 

), =A + B a +  C/3+ Da/3 ( a ,  B, C, D E g )  
1 

+ r C-p + z , / -  p + _JZ pp, 
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where 

X = 4A + 2 B  + 2 C +  D,  Y = 2B + D,  Z = 2 C +  D,  W = D,  

1 ~ (  1 
implying that D =  W, C =  ( Z -  W),  B =  1 Y - W ) ,  A = ~ ( X - Y - Z + W )  and 

X = Y =  Z = W (mod 2 ) ,  X +  W - -  Y +  Z ( m o d 4 ) .  (4 .1 )  

The equality )9' = 2 "s beeomes 

2ns+4  = X 2 + p, y2 + pZ  2 + pp, W 2 + 2( XY  + pZW)  ~ ; 

that is, ( X,  Y, Z ,  W) satisfies congruences (4 .1 )  and equations 
X + p,y2 + pZ  2 + pp,W 2 = 2~+4 
XY = - pZW.  ' (4 .2 )  

N o t e t h a t Y 2 E O e = Z + [ l + ~ - 9 - P P ' l z .  ff 7 E O E ,  then r = Z = O a n d X 2 + p p ' W 2 = 2 4 + " ~  

1 

which implies that ( 2 )  ( 2 ]  4+~ ( p )  = = 1 since 2 ins .  But 2 = - 1 for p = 3  (rood 8 ) .  
p /  

Therefore ~' ~ OE and ~' E OL, so that L = E (~') ( ?'2E E ) .  Let a be the non-trivial automor- 

phism in Gal( L / E ) .  Then a (~ ' )  = - ~' which means that X - Y ~p'  - Z ~ / -  p + W ~ / -  pp' 

= - X -  Y ~ - Z ~ / - p -  W ~ / - p p ' .  So we h a v e X =  W = 0 .  And congruence (4 .1 )  be- 

Y Z 
comes Y =  Z- -O (mod 2 ) ,  and (4 .2 )  becomes p 'Y 2 + pZ 2 = 2 4 + a s .  Let y = ~ - E Z ,  z = ~-E 
Z. Then 

p,y2 + pz 2 = 2~+2, Y = z (mod 2) .  (4 .3 )  

Let m be the smallest positive integer such that the equation p,y2 + pz 2 = 2 m +2 has integral solu- 

( )  ( 2 )  m 
tion ( y ,  z) = ( A ,  B ) .  From - 1 = p-  = = ( -- 1)m we know that m is odd. The 

P 
minimality of m implies that 2 t A B ,  and 

We have 20E = P P and pOe = p,2.  From minimality of m we know that 

f B p + A - ~ / - ~ - ~ ] O E =  pmp, orP--mp,. Therefore [ P ] m [ P ' ] = I .  It is well known that 
~, 

[ P'  ] is an ideal class of order 2. Therefore the order of [ P ] is 2 m. From (3 .3 )  and the mini- 

mality of m we have sn >I m.  Therefore there is no GBF with type [ n,  2N]  if 2~'n < m .  
S 

(2) Next we consider the case p 5 7  (mod 8 ) .  In this case we take E = Q(~/ - p ) .  By 

similar argument as in ( 1 ) ,  we know that there exists 

r = + ( x +  r4 p' + z , / - p  + w,/-z- pp') E o , ,  

[1 + ~ / - p ]  2, ~ ~ '2E Oe = ~ + ~,  ~'~ = �9 
2 
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If 7 ~ OE, then L = E ( 7 )  ( 7 2 E 0 E ) and X = Z = O. Therefore 77 = 2 "~ means that 2 '~ § 4 = 

p, ( y2 + p W  2) which is impossible. Thus 7 E  Oe which implies Y = W = 0,  X 2 + pZ  2 = 2 '~§ 

X Z 
and X - - Z - 0  ( m o d 2 ) .  Let x = ~ - E Z ,  z = ~ - E Z .  Then 

X 2 + pz 2 = 2 ru+2 ( 4 . 4 )  

Let m be the smallest odd integer such that the equation x 2 +  pz2= 2 "+2 has integral solution 

<x z :<A The  ,A  n fA+   fA 
f ~ f N 

~. ) ~. 2 

and the minimality of m we have ( A + C ~ Oe = P "  or P----~ so that m is the order of [ P ] .  
2 

m 
From ( 4 . 4 )  we know that ns I> m.  Therefore there is no GBF with type [ n ,  2 N ]  if 2~n < - - .  

$ 

This eompletes the proof of Theorem 2.  

R e m a r k .  We denote the class number of Q ( ~ / -  d ) by h ( - d ) (there is a big table in 

the ref. [ 2 ] for elass number of imaginary quadratic f ie lds) .  For p =--3 (rood 8 ) we have 

h (  - pp' ) = 2 t ,  2 t t  and m l t .  Particularly, if t is a prime number, then m = t = h (  - pp' ) /  

2. F o r p - = 7  ( m o d 8 )  a n d p > 7 ,  m l h ( - p ) ,  m >  1 a n d 2 t h ( - p ) .  If h ( - p )  is prime 

number, then m = h ( - p ) .  

Example  2 .  Computation shows that all ( p ,  p '  ) in the following table satisfies conditions 

( * ) ( w h i c h i s e q u i v a l e n t t o -  - ( P - - ) = - I ) a n d p _ - - 3  ( m o d 8 ) ,  p ' - 5  ( r o o d 8 ) .  The valuesof  
x J p 

s and h (  - p p ' )  are listed in the table. If h (  - pp' ) / 2  is prime, then m = h (  - pp' ) / 2 .  Oth- 

erwise m can be determined by definition and the fact that m l h ( - pp' ) / 2 .  

(p,p')  (67 ,5)  (83 ,5)  (11,13)  (59,13)  (67,13)  (83,13)  (11,29)  (19,29)  (43,29)  (19,37)  

s 1 1 1 1 1 1 1 1 3 1 

h( -pp ' )  18 10 10 22 22 34 10 26 26 14 

m 9 5 5 11 11 17 5 13 13 7 

(p,p ')  (59,37)  (3 ,53)  (19,53)  (67,53)  (83,53)  (11,61)  (43,61)  (59,61) (67,61)  

s 1 1 1 1 1 1 3 1 1 

h( -pp ' )  42 10 30 58 50 30 22 66 30 

m 21 5 15 29 25 15 11 33 5 

By Theorem 4 .1  we know that there is no GBF with types [3 ,  2"43 z '29 l' ] and [3 ,  2"43 l 

�9 61r ] for all l ,  l' >I 1. For remaining cases in the table we have s = 1, so that there is no GBF 

with type [ n ,  2pip 'r ] if 2"~'n < m (for n = 1 the result is known ES] ) .  

Example  3 .  Computation shows that all ( p ,  p '  ) (p  ~_ 7 (mod 8 ) ,  p '  ~ 5 (rood 8)  ) in 

the following table satisfy condition ( * )  (namely --(P--) = - 1 ) .  For all cases s = 1 and 
x / p 

h ( - p )  is prime so that m =  h ( - p ) .  
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(p ,  p ' )  (47, 5) (47, 13) (47,29) (71, 13) (71,53) (71,61) I (79,29) (79,37) (79,53) (79,61) 

m = h( - p) 5 7 I 5 

By Theorem 4 . 1  we know that there is no GBF with type [ n ,  2pZp l' ] if 2~-n < h ( - p ) and 

( p ,  p ' )  belongs to the table (for n = 1 the result is knownE53). 
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