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Conclusion 
There can be l i t t le  doubt tha t  m a g n e t i s m  plays  a key role 
in the  phase  equi l ibr ia  of systems conta in ing  magnet ic  
components.  Apprec ia t ion  of th is  fact has,  however, only 
emerged in re la t ive ly  recent  t imes,  as shown by the da tes  
of the  references to th is  article.  This  curious fact can be 
a t t r ibu ted  in no smal l  measure  to the  "fl iron" debate,  
which took place a lmost  100 years  ago and was even tua l ly  
set t led in favor of"/3 iron being jus t  the  pa r amagne t i c  form 
of a iron" [42]. This formulat ion sat is f ied the  protagonis ts  
a t  the t ime but  completely ignored the  fact t ha t  a magnet ic  
t rans format ion  is energet ica l ly  as s ignif icant  as an ordi- 
na ry  phase t ransformat ion!  

It  is a sobering thought  tha t  the  phrase ,  "It 's  jus t  a mag-  
netic t ransformat ion" ,  effectively bur ied  the  importance 
of magnet ic  t ransformat ions ,  toge ther  wi th  the  demise of 
fl iron, for more t han  ha l f  a century. 
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The Effect of Continuous Transformations 
on Phase Diagrams 

By Gerhard Inden 
Max-Planck-lnstitut for Eisenforschung GmbH 
Max-Planck-Strasse 1, D-4000 Dfisseldorf 

Alloy phase  d i ag rams  usua l ly  r ep resen t  the  most s table 
s tates  of al loys at  constant  p ressure  in a t empera tu re -  
versus-composi t ion diagram.  The most  impor t an t  informa- 
tion to be t a k e n  from such d i ag rams  is whe ther  the s table 
s tates  a re  homogeneous or heterogeneous.  Phase  bound- 
aries subdivide these  d i ag rams  into single- and mul t i -  
phase  regions .  T rans fo rma t ions  from one s ingle-phase  
s tate  to ano ther  genera l ly  occur t h rough  in te rmedia te  het- 
erogeneous mu l t i phase  states.  However ,  there  are  also 
t ransformat ions  t ha t  may,  but  need not, occur th rough  
heterogeneous equi l ibr ia ,  e.g., a tomic  and magnet ic  order- 
disorder  t ransformat ions .  The dubious  charac te r  of t ha t  
k ind of t r ans fo rmat ion  has  led to an  inadequa te  represen-  
ta t ion in phase  d iagrams.  The cr i t ical  t empera tu re s  of 
these t r ans format ions  are  d rawn e i the r  as broken l ines 

( thus t r ea t ing  them on the  same level as unre l i ab le  phase 
boundaries ,  e.g., Cur ie  t empera tu re s  in fe r romagnet ic  sys- 
tems such as Co-Ni and Fe-Si  [1]) or as a pa i r  of broken 
l ines ( thereby tac i t ly  p resuming  heterogeneous equi l ibr ia  
for these transformat. ions,  too; e.g., Co-Fe and Fe-Si  [1]). I t  
is the  a im of th is  contr ibut ion  to suggest  an  appropr ia te  
represen ta t ion  of these  order-disorder  t ransformat ions  in 
phase  d i ag rams ,  the  necess i ty  of which  becomes con- 
spicuous by the  occurrence  of u n u s u a l  he te rogeneous  
phase  equil ibr ia .  

These unusua l  phase  equi l ib r ia  are  sharp ly  closing mis- 
cibi l i ty gaps ex tend ing  e i ther  along a cr i t ical  t empe ra tu r e  
l ine of continuous t rans format ions  (thus opening and clos- 
ing a t  th is  line) or s t a r t i ng  at  the  cri t ical  t e m p e r a t u r e  and 
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opening toward lower temperatures.  The temperature/  
composition point at which the gap sharply closes and 
from which the critical temperature  line continues is 
called a tricritical point [2]. The conditions for the oc- 
currence of such tricritical points have been discussed 
in general by Landau [3]. Part icular  cases for atomic 
and magnetic ordering have been treated in [4-7] and 
[8-12], respectively. 

For the sake of simplicity, this discussion will be confined 
to binary alloys. The results, however, remain valid for 
higher component systems, and the transposition to these 
situations is straightforward. 

General Viewpoints 
The phase state of an alloy is defined by its physical prop- 
erties, such as crystal structure, composition, density, 
viscosity, etc. If these properties do not only apply to the 
alloy as a whole but also to every subdivision of it, the 
state of the alloy is homogeneous. The state of the alloy is 
heterogeneous if there are subdivisions of the alloy with 
differing physical properties.  By this definition, any 
change of physical properties produces a change of the 
state of the alloy. 

Among the infinite var ie ty  of states, the equilibrium 
states at fixed values of the var iables--pressure ,  tem- 
perature,  and composit ion--are of part icular  interest. 
Changes of these variables produce transformations of the 
equilibrium states. It  is very useful to attribute a common 
denomination to all those states that  t ransform con- 
tinuously into each other: they all belong to the same 
phase state (or simply phase). The discontinuity in the 
physical properties is, by definition, a prerequisite for the 
distinction of phases. Heating a crystalline alloy changes 
its physical properties, (e.g., the volume by thermal ex- 
pansion); however, as long as these changes take place 
continuously, the contracted state at low temperatures 
and the expanded state at higher temperatures are not 
designated as different phases. Consequently,  homo- 
geneous states of an alloy must be single-phase states. 
Heterogeneous states of an alloy with continuously vary- 
ing physical properties, e.g., produced by a concentration 
gradient, are single-phase states. Heterogeneous states 
with discontinuously varying properties are multiphase 
states,  and each subdivision of the alloy exhibi t ing 
homogeneous properties is usually identified with the cor- 
responding phase. 

The physical properties of an alloy can be expressed as 
derivatives of the molar Gibbs energy,* G; e.g., entropy, 

OG OG S = --ST [p; volume, V = - ~  [r; or specific heat capacity, 

02G c; = - - ~ - ~ .  This immediately suggests classification of 

the phase  t r ans fo rmat ions  according to Ehren fes t ' s  
scheme [13]: a transformation is of n th  order if G and its 
( n -  1)-order derivatives are continuous and the n th order 
derivatives change discontinuously at the transformation. 
A typical second-order transformation would, thus, pro- 
duce a finite jump of cp at the transformation. 

Model calculations of atomic (bcc, [4, 5]; fcc, [6, 7]) and 
magnetic [12, 14] order-disorder transformations in alloys 
predict first- and second-order transformations. In real 
systems, however, it seems to be accepted that  c; does not 
take finite values at the transformation. At least for mag- 

netic transformations, this effect has been established ex- 
perimental ly (see [15]). At the Curie temperature ,  cv 
shows a logarithmic singularity. The same behavior can be 
expected for atomic ordering reactions at the critical tem- 
perature of long-range order. In these instances, it is more 
difficult to decide by experiments whether or not cp takes 
finite values at the critical temperature.  Ordering reac- 
tions are diffusion controlled, and it is difficult to ascertain 
that  equilibrium states are in fact established during 
the c~ measurements. However, a rise of cp to infinity for 
atomic ordering reactions at the critical temperature has 
been found most recently by Monte Carlo simulations 
[16]. These "computer experiments" come closest to an 
ideal experiment. Consequently, Ehrenfest 's classification 
is not applicable to the most general order-disorder trans- 
formations, and one should have recourse to a more gener- 
al classification, such as the one proposed by Tisza [17, 18]. 

Fortunately, it is not necessary to distinghish second- 
order from higher-order transformations in phase diagram 
calculations and representations, because they all produce 
qualitatively similar contributions to the Gibbs energy. 
Therefore, it is often sufficient to classify the t rans-  
formations into discontinuous (first-order) and continuous 
(second- or higher-order) phase transformations, the 
continuity or discontinuity being associated only with 
the physical properties that derive from G by first-order 
derivatives. 

Phase Transformations Under Constraint of Homoge- 
neity. Before considering heterogeneous equilibria, it is 
very helpful to consider first the equilibria under the con- 
straint of homogeneity. In this instance, each state can be 
associated with a single phase. The temperature vs. com- 
position diagram indicating the ranges where a given 
phase is the equilibrium state is called the configuration 
diagram. Different single-phase regions are separated by 
transformation lines which should be drawn as solid lines 
for first-order transformations and hatched lines** for 
higher-order transformations (see Fig. 2). 
At first, atomic ordering in a binary alloy A~ xBx should be 
considered. The state of order is defined by two different 
sets of parameters: 

�9 The short-range order (sro) parameters  p ~ ,  which are 
defined as the ratio of A-B bonds between k-th neigh- 
bors to the to ta l  a m o u n t  of bonds in the  al loy,  

~T (k~ 

<~' = ~ , * * *  where z ~k~ is the coordination number p A B  
2~ l V L  

of the k-th shell and NL is Avogadro's number (1 mole 
of alloy). 

�9 The long-range order (lro) parameters  pL, which de- 
scribe the lro by means of the fraction p~ of B-atoms on 
appropriately chosen sublattices, L (see, e.g., [4] and 
Fig. 1 for bcc and [6] for fcc lattices). 

With constant pressure, the equilibrium states minimize 
Gibbs energy. Because we also maintain the composition 

*In this article, all thermodynamic entities will be considered for 1 mole of 
substance. Therefore, it is not necessary to introduce a special notation for 
these quantities. 

**A hachure for indicating higher-order transformations was first sug- 
gested by Swann, Duff, and Fischer in their TEM-work on the ordering in 
Fe-Al alloys [19]. 

***p~ takes the value 2x(1-x) in the random alloy. Instead o f p ~ ,  the 
isotropic "Cowley-Warren short-range order parameters" ~ often are in- 
troduced. They are defined as the deviation from the random state: 
p ~  = 2x(1--x)(1--ak). 
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Fig. 1 Ordered Atomic Arrangements in bcc Alloys 
I 

I i / 

I 
, I _ / _  I 

I I  I 

/ 

A2 B2 DO 3 
Shown here for a composition Ao.75Bo.25. (a) Subdivision of the bcc lattice into four fcc sublattices with parameter twice that of the bcc 
unit cell. The various long-range ordered structures differ by the occupation of the sublattice positions by A and B. The random alloy with 
equally occupied sublattices is represented�9 The filling of the circles indicates the fraction of A (black) and B (white) atoms on each 
position. (b) Ordering between nearest neighbors (superstructure B2); no ordering between second nearest neighbors�9 This super- 
structure admits a stoichiometric composition at x = 0.5. (c) Ordering between first and second nearest neighbors (superstructure D03). 
This superstructure is stoichiometric at x = 0.25, which is detectable from this figure by the complete filling of the sublattice positions I, 
II, and III by A and IV by B. 

constant,  the  m i n i m u m  search of G = G(T, x, p~, p ~ )  
need only to be done wi th  respect  to the  order  parameters .  
This y ie lds  the  necessary  and sufficient  conditions: 

aG 
ap~ = 0 L = 1, 2 . . .  (Eq 1) 

aG 
a p ~  - 0 k = 1, 2 . . .  (Eq 2) 

d2G > 0 (Eq 3) 

At  high t empera tu res ,  Eq 1 admi t s  only the  t r iv ia l  solu- 
t ion p~ = x, whereas  Eq 2 gives the  amount  of short - range 
order in dependence on T. The shor t - range  order varies  
cont inuously wi th  t empera ture ;  therefore,  no phase t rans-  
formation should be associated wi th  these  changes. At  
lower t empera tu res ,  two s i tua t ions  a re  possible and are  
obtained in model  calculations:  

�9 Below a cer ta in  t empera tu re  there  exists  a t empera tu re  
range  where  Eq 1 and 2 admi t  two solutions: e.g., one 
solut ion wi th  no lro but  some sro and a second solution 
with  lro and the corresponding sro. The two solutions 
correspond to two min ima  of Gibbs energy;  one solution 
is metas tab le ,  the  other  stable.  Then,  a t empera ture ,  To, 
can be defined a t  which the Gibbs energies  of both solu- 
tions are  equal  (this is the  t r ans i t ion  t empera tu re  of a 
f i rs t -order  t r ans i t ion  in the conf igurat ion diagram).  At  
this  t empera tu re ,  the  proper ty  of s tab i l i ty  or metas ta -  
b i l i ty  reverses  and a phase change  wi th  discontinuous 
changes in the  degree of lro and sro (and, consequently,  
also in en tha lpy  and entropy) t akes  place.* 

*This, in fact, holds only for the equilibrium states considered here. In 
reality, some undercooling below T o will be necessary to start the trans- 
formation by nucleation and growth. 

�9 At  t empera tu re  To, called the  cri t ical  t empe ra tu r e  of 
lro, one gets d2G = O. Below this  t empera tu re ,  Eq 1 
and 2 aga in  admi t  two solutions,  one s table  (d2G >0), 
wi th  lro, and the  second one uns table  (d2G <0), wi th  no 
lro. The l a t t e r  one corresponds to a local m a x i m u m  of 
Gibbs energy in the  order  p a r a m e t e r  space. Below the 
cri t ical  t empe ra tu r e  of lro Tc = T ~ . . . . .  , the  degree of 
lro cont inuously increases,  whereas  above Tc no lro, but  
sro, exists. I t  is th is  onset  of lro at  Tc and its continuous 
i n c r e a s e  be low Tc t h a t  is  i n d i c a t e d  by  m e a n s  of 
the  hachure  of the  Tc l ine on the low- tempera ture  side 
(see Fig. 2). The cont inuous change of lro and sro a t  Tc 
imp l i e s  a c o n t i n u o u s  c h a n g e  of the  e n t h a l p y  and 
the entropy. 

At  this  point, an example  is presented,  in which the order- 
ing react ions in bcc Fe-Si  al loys will  be considered. I t  is 
known by exper iments  [20, 21] tha t  ordered atomic ar- 
rangements  occur in th is  sys tem between first  and second 
neares t  neighbors  (k = 1, 2). These are denomina ted  as 
B 2 and D 03. The geometr ic  a r r angemen t s  of Fe  and Si 
a toms in fully ordered s t ruc tures  of these types  are  shown 
in Fig. 1 for an al loy wi th  composition x = 0.25. In  order 
to obtain the  conf igurat ion d i ag ram by means  of Eq 1 to 3, 
the  Gibbs energy mus t  be known in dependence on psi 
and p~3si. For  the  p resen t  purpose of i l lus t ra t ion ,  i t  is 
sufficient to consider a h igh ly  simplif ied expression of G as 
furnished by the Bragg-Wi l l i ams-Gorsky  model  because 
this  model a l ready  yields  the  impor tan t  fea tures  under  
considerat ion and, fur thermore ,  a l ready  provides a sur- 
p r i s i n g l y  good d e s c r i p t i o n  of  the  e x p e r i m e n t a l  f ind- 
ings [22]. 

In this  model, the  order ing  tendency between the Fe-Si 
a toms is t aken  into account by means  of the  numer ica l  
values  of the  in te rchange  energies  ,k~ WFesi between first  and 
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Fig. 2 Calculated Configuration Diagram of 
Nonmagnetic bcc Fe-Si Alloys 

A2 

B2 

DO 3 

0 ~ 
0 0.25 0.5 

Fe mole fraction Si 

Most stable atomic configurations under the constraint of 
homogeneity calculated with the Bragg-Williams model, 
taking first and second nearest neighbor interactions into 
account. The critical temperatures of continuous trans- 
formations (second order in this model) are indicated by a 
hachure. First-order transformations are indicated by a solid 
line. In this instance, discontinuous transformations are 
obtained at Xs, < 0.125 for the transformation D03 ~- B2. 

second nearest neighbors* determined in [23]. The typical 
approximation and simplification of this model is to re- 
p lace  the short-range order parameters p~'si by terms of 
long-range order parameters pLe or pLi.** This necessarily 
means that no sro is considered in those temperature 
ranges where lro does not occur, i.e., above the uppermost 
critical temperature.*** The consequences of this have 
been discussed in [24]. 

The minimization of G = G ( T ,  x ,  p~g~, W~3si) at a given 
temperature and composition yields the configuration 
diagram that is shown in Fig. 2. It turns out that the 
transformation A 2 ~ B2 is second order at all com- 
positions. The transformation B 2 ~ D03 shows two kinds 
of transformations: (a) first-order transformation for 
0 -< Xs~ -< 0.124, and (b) a second-order transformation 
for 0.124 < Xs~ -< 0.5, as indicated in Fig. 2 by the solid 
and hatched lines. Of course, in this diagram only bcc 
states are  r e p r e s e n t e d  even up to 2000 K because other 
phases, such as the liquid, have not been considered in 
the calculation. 

Let us now consider magnetic ordering. It is generally 
accepted that magnetic order-disorder transformations are  
of second order in pure elements and also in homogeneous 
alloys. Therefore, the critical temperatures oflro should be 
r e p r e s e n t e d  by hatched lines in the configuration dia- 
grams. This holds for the Curie temperature, To (ferro- 
magnetic ordering), and for the N6el temperature, TN, 
as well. 

Calculation of the Ordering Contributions to the Gibbs 
Energy. Before removing the constraint of homogeneity, a 
very simple and accurate method of calculating the lro and 
sro contributions to the Gibbs energy of homogeneous al- 
loys should be presented. This method is based on an em- 
pirically derived expression of the ordering contributions 
to the specific heat capacity. The advantage of this method 
over physical models is that no minimization procedure in 
the order parameter space is required. 

The magnetic transformation is particularly appropriate 
to study the long-range and also the short-range order  
contributions to the specific heat capacity, cp, because 
these transformations are not sluggish as can be the 
atomic ordering reactions. It could be shown in [12] that 
the magnetic contribution to c, can be described below 
and above T~ by: 

in 1 + z 3 T C ~  ~r~ ~ f o r r  =Tee -< 1 (Eq4) 

, l + r  5 
cp r~ = K ~r~ �9 R �9 In 1 _- - : - -~  for T > 1 (Eq 5) 

w h e r e  R is the gas constant, and the coefficients K ~~ K ~~ 
can be evaluated for fcc and bcc structures if the total 
magnetic entropy, ~ m a g ,  is knownf [12]. This quantity 
can be derived from the saturation moment per atom of 
the alloy [25]. The magnetic enthalpy, entropy, and thus, 
Gibbs energy are obtained from Cp directly by inte- 
gration [12].tf 

The advantage of this empirically developed treatment of 
the magnetic order-disorder contribution to the thermo- 
dynamic functions is that both lro and sro contributions 
can be evaluated easily and accurately. However, the criti- 
cal temperature and the saturation moment per atom 
must be known in advance. 

This treatment also can be applied to atomic ordering, as 
pointed out in [12]. Again, the critical temperature of lro 

* W~si is defined as a difference of bond energies  
%*" wl~s~ _ ~k, . . = 2VFesi + V~e~Fe + V ~ i  

** In t roduc ing  the  four fcc sublat t ices ,  L I, II, III, IV (see [4] and  Fig. 1), 
one sets approximate ly :  

(1) a a] + iv)  PFeSi = ~ [ (p ie  + PFe) (Psi PSi + (P~i + Psi)  ( p F e I I  Ill + PFe)IV ] 

_ 1 [ ~ I  ~ I I  I II III IV nI IV 
P~e~Si - 2 /'Fe/'Si + PsiPFe + PFePsi + Ps, PFe] 

(1) *** In this  situation, p~Fe = XF~ and p~si = Xsi, and consequently PFesi -- PFeSil21 
-- 2XFeXSl, which  is the value  for the  completely r andom alloy. 

12 A 
mag 3 A S  " ~ "  " V 

r 1 7 6  R Ksr~176 R B _ V ( B _ 3 A ,  

where V = 0.4 for bcc alloys; V = 0.28 for fcc a l loys ;A = 0.64527561; and  
B = 0.59787726. 

f t  The in teg ra t ion  of Eq 4 and  5 yields a complicated expression wi th  
t r anscenden ta l  functions.  In order  to s t ick wi th  a power series represen-  
tat ion,  M. Hi l le r t  has  proposed to expand  Eq 4 and  5 by a t runca ted  Taylor  
series [53]. 
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and the total entropy of transformation /~LS ~176 

must be known in advance. 

It can be concluded, therefore, that once the critical tem- 
peratures of lro are known, the Gibbs energy contributions 
should be calculated by means of the cp-formalism. The 
critical temperatures of lro can be taken from experiments 
if available, or from model calculations such as those 
presented in [4-7].  It is the merit of model calculations 
such as those used previously that they allow the predic- 
tion (or interpolation or extrapolation) of critical tem- 
peratures. Thus, both methods are complementary. 

Transformations Without Constraint of Homogeneity 
(Phase Diagrams). Having so far considered the most sta- 
ble states of an alloy with the constraint of homogeneity, 
the removal of this constraint will allow heterogeneous 
states to occur if they are more stable. Each of the different 
phases which then are in equilibrium with each other 
must, of course, be in their most stable state under the 
constraint of homogeneity. This situation arises if Gibbs 
energy is concave with respect to composition in a com- 
position interval, and the contact points of the tangent to 
the Gibbs energy yield the compositions xl and x2 of the 
two phases in equilibrium. 

The compositions xl and x2 indicate the boundary of het- 
erogeneous equilibria. Outside these composition ranges, 
the most stable states of the alloy ave the same as those 
obtained under the constraint of homogeneity. 

Therefore, the phase diagrams are identical with the con- 
figuration diagrams in those temperature and composition 
ranges where single-phase states are most stable. The 
critical temperatures should be indicated in the same fash- 
ion in both diagrams. In the regions of heterogeneous 
equilibria, the critical temperatures must be replaced by 
phase boundaries in the phase diagram. A first-order 
transformation occurring under the constraint of homo- 
geneity always implies heterogeneous equilibria when the 
constraint is removed. Therefore, in phase diagrams, only 
phase boundaries of heterogeneous equilibria and critical 
temperatures of continuous transformations will appear. 
The inverse is not true: heterogeneous equilibria are not 
exclusively induced by first-order transformations; they 
also can be induced by higher-order continuous trans- 
formations, which already has been pointed out long ago 
by Landau [3]. This will now be illustrated with three 
examples, one for atomic and two for magnetic ordering. 

"In Phase Transformations Under Constraint of Homo- 
geneity", the atomic ordering in bcc Fe-Si alloys has 
been treated with the Bragg-Williams model. The Gibbs 
energy of the most stable homogeneous states has been 
obtained with dependence on temperature  and com- 
position. Let us now remove the constraint. The result of 
the shape analysis of Gibbs energy yields the phase dia- 
gram in Fig. 3. Comparing this with Fig. 2, it can be seen 
that the two-phase field B 2 + D 03 in the phase diagram 
extends beyond the temperature range of discontinuous 
transformations shown in the configuration diagram. The 
miscibility gap ends at a sharp point, from which the 
second-order critical temperature starts as continuation. 
This unusual closing of a miscibility gap is typically pro- 
duced by higher-order transformations. Fundamental  
thermodynamic rules would be violated if the second-order 
transformation were not indicated in the phase diagram. 

This peculiarity can be even better illustrated by means of 
a magnetic transformation. Let us consider a binary fcc 

Fig. 3 Ca lcu la ted  Phase  D iagram of Non-  
magnet ic  bcc Fe-Si Al loys 

2000 

IO0( 

0 
0 0.25 0.5 

Fe mole fraction Si 
Most stable states without constraint of homogeneity, derived 
from the same calculations as in Fig. 2. Heterogeneous equi- 
libria appear not only along the first-order transformation line 
in Fig. 2 but also along its second-order continuation. The 
miscibility gap B2 + D03 terminates at a sharp critical point. 
Such sharply closing miscibility gaps were not consistent with 
thermodynamic rules if the second-order transformation line 
were omitted. The shaded area indicates the temperature and 
composition ranges where bcc equilibria cannot be observed 
experimentally. 

system with a ferromagnetic component A and a non- 
magnetic component B. The Curie temperature is as- 
sumed to vary linearly from a value 1000 K for A to 0 K 
at B. Similarly, we presume a linear decrease of the mean 
atomic moment from 2/.L B at A to 0/zs at B. Finally, no 
preferential atomic bonds between like or unlike atom 
pairs are presumed, i.e., an ideal solid solution. The config- 
uration diagram is very simple, showing only the critical 
temperature Tc of magnetic lro, Fig. 4(a). The Gibbs en- 
ergy of the homogeneous alloy consists of two parts, the 
ideal solution part and the magnetic part, which can be 
evaluated with the Cp-method mentioned in "Calculation 
of the Ordering Contributions to the Gibbs Energy". The 
analysis of the shape of the resulting Gibbs energy func- 
tion yields the phase diagram in Fig. 4(b), which shows 
a magnetically induced' miscibility gap. Here, a ferro- 
magnetic and a paramagnetic phase with different compo- 
sitions are in equilibrium with each other. Again, the very 
typical closure of the miscibility gap is obtained. 

A second example with two ferromagnetic components 
might be of interest, too. Again, a binary fcc system with 
ideal solution behavior of the chemical terms is consid- 
ered, the Curie temperature is assumed to vary linearly, 
with composition, as shown in the configuration diagram 
(Fig. 5a), and the mean magnetic moment per atom is 
assumed to vary linearly from 2/z8 in A to 1 /zB in B. The 
resulting phase diagram is shown in Fig. 5(b). In a limited 
composition range, the magnetic transformation produces 
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Fig. 4 Configuration and Phase Diagram of 
Component A and Nonmagnetic Component B 
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The alloy is assumed to be an ideal solution with respect to the atomic interactions. The fcc crystal structure (A 1) is assumed at all 
compositions. (a) Configuration diagram showing the assumed continuous magnetic transformation. The inset shows the assumed 
composition variation of the mean magnetic moment per atom. (b) Phase diagram showing a magnetically induced miscibility gap; a 
ferromagnetic and a paramagnetic phase are in equilibrium with each other for compositions and temperatures within the heterogeneous 
phase field. 

Fig. 5 
at  A l l  Compositions 

configuration diagram 

(a) 

Configuration and Phase Diagram of Hypothetical Alloy A.B with Ferromagnetic Properties 
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An ideal solution, with respect to the atomic interactions, and the fcc crystal structure (A 1) at all compositions are assumed. 
(a) Configuration diagram showing the assumed continuous magnetic transformation. The inset shows the assumed composition variation 
of the mean magnetic moment per atom. (b) Phase diagram showing a heterogeneous transformation in the range of the Curie 
temperature. 
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Fig. 6 Calculated Phase Diagram of bcc Fe-Si Alloys with Xx, -< 0.25 
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The calculation has been made with the Bragg-Williams model, taking into account chemical interactions between first and second nearest 
neighbors and magnetic interactions between nearest neighbors. Spin 1 was assumed for the Fe-atoms and no magnetic moment for the 
Si-atoms. Magnetic interactions were considered between first nearest neighbors. 

heterogeneous equilibria just like the liquid/solid trans- 
formation in alloys, although the transformation is of 
higher order under the constraint of homogeneity. 

Of course, these findings depend on the particular physical 
properties of the alloy system, which have been presumed 
here. At this stage, it should not be discussed whether or 
not these assumptions are realistic, i.e., applicable to a 
real alloy system. However, these examples clearly show 
that higher-order transformations in homogeneous alloys 
can produce quite the same heterogeneous equilibria as 
first-order transformations. 

Applications 
The preceding discussion was essentially based on calcu- 
lations of phase equilibria. Experimental results have 
been discarded so far. This was intentional. It is the advan- 
tage of the model calculations that there is no doubt about 
the character of the transformations in homogeneous 
alloys and that the equilibrium state can be defined pre- 
cisely, whereas in experiments it can happen that meta- 
stable instead of stable states are observed. The choice of 
the Bragg-Williams model was not purely a matter of con- 
venience. This rather simple model is applicable to compli- 
cated systems, and it already provides a very accurate 
description of the experimental findings if appropriate cor- 
rections for sro effects are applied [24]. In practical situ- 
ations, it may turn out to be difficult to distinguish a very 

narrow two-phase field from a homogeneous second- or 
higher-order transformation. Then it will be of great help 
to know whether or not the model calculations predict first 
order, or whether or not a higher-order transformation 
should produce heterogeneous equilibria. Such circum- 
stances will now be considered. 

The bcc equilibria in Fe-Si alloys already have been dis- 
cussed in the previous section, with respect to atomic or- 
dering. In the real system, magnetic interactions also need 
to be considered, because the alloys are ferromagnetic. The 
Curie temperature, To, crosses the critical temperatures 
of lro T D~ and T B2-A2, leading to mutual influence of 
atomic on magnetic ordering, and vice versa. It has been 
shown in [12] and [26] that such mutual influences can be 
treated with the Bragg-Williams model. In order to get a 
guide line for the equilibria in this system, the calculation 
of the phase diagram has been made, which is shown in 
Fig. 6, for the composition range 0 -< Xsi -< 0.25.* The 
experimental results are shown in Fig. 7. Both diagrams 
agree surprisingly well. The most striking discrepancy is 
with concern to the transformation D 03~ B 2 at tempera- 

* This d iagram differs slightly from the one in [26], which was calculated �9 
using spin 1/2 for the Fe atoms. The present d iagram was calculated taking 
into account spin 1 for Fe and a small  magnet ic  energy contribution from 
Fe-Si pairs. The energy parameters  were: 

W~Fle)Si = 2830 k, W~si = 1410 k, x - 0.71 

J~e'Fe = - 2 4 4  k, J~'s~ = - 4 5  k, /z  = 0.8 
For notation and units, see [12]. 
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Fig. 7 Experimentally Determined Phase Diagram of bcc Fe-Si Alloys with Xsj -< 0.25 
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tures above To, where the model predicts heterogeneous 
equilibria, whereas careful electron microscopic obser- 
vations [21, 27] have shown that, above the Curie tem- 
perature, the transformation D03 ~ B 2 is homogeneous 
(therefore, the hatched transformation line in the experi- 
mental diagram). At temperatures below To, a miscibility 
gap with B 2 and D 03 ordered phases in equilibrium has 
been found. In [22], the magnitude of the thermodynamic 
driving force for the phase separation has been evaluated 
with the model calculations. Above To, this driving force 
turns out fairly small, probably too small* to supply the 
inev i tab le  coherency s t r a in  and in ter face  energ ies  
required for the incipient process of a heterogeneous 
microstructure formation. Below Te, the driving force is 
nearly doubled by the magnetic contributions. There, the 
predicted heterogeneous equilibria could be confirmed 

*In [22], this discussion was performed assuming spin 1/2 for the Fe atoms. 
A repetition of the calculations with spin 1 did produce slightly modified 
values, but the conclusions remain valid. 

experimentally. In [2], this is discussed in detail for the 
very similar alloy system Fe-A1. 

The full phase diagram, based on experimental results, is 
shown in Fig. 8. The non-bcc equilibria have been taken 
from the l i terature [29]. Recent findings on a further 
transformation within the D03 phase field [30] have not 
been incorporated in this diagram, because the trans- 
formation needs further elucidation; this transformation 
could not be identified in high-temperature diffraction 
experiments [20]. Furthermore, the very similar find- 
ings reported for Fe-A1 alloys [31] could not be identi- 
fied in high-temperature diffraction experiments or in 
cp-measurements [32], although heat effects should be 
detectable near  the transformation temperatures [31], 
whereas the expected effects due to atomic disordering 
could clearly be detected in these experiments. Therefore, 
these reported transformations are probably not related to 
atomic ordering effects, and their identification requires 
further experiments. 
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Fig. 8 Complete Phase Diagram ofthe Fe-Si System 
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The bcc Equilibria in Fe-AI Alloys. In the bcc Fe-A1 alloys, 
the ordering reactions between first and second nearest 
neighbors are very similar to those in Fe-Si alloys; the 
critical temperatures are roughly a factor of two lower. In 
Fig. 9, the phase diagram is shown up to xnl = 0.5. It is 
based on selected data out of the experimental work in [19] 
and [31-37]. Particularly in the range where the Curie 
temperature crosses the critical temperatures of atomic 
lro, there is considerable scatter in the To-data. It is not 
well established whether or not Tc reaches the miscibility 
gap A 2 + B2 at the tr icri t ical  point. From Bragg- 
Williams calculations [38, 39], it has been concluded that 
the two-phase field A 2 + B 2 is produced by magnetic 
effects, and therefore, Tc passes through the tricritical 
point in these calculations. This argument need not be 
wrong if, in reality, Tc reaches the two-phase field below 
the tricritical point (as drawn in Fig. 9 according to [31], 
because magnetic sro also produces magnetic effects above 
T~. The two-phase field A 2 + B 2 reported in [33] has been 
adopted instead of the smaller one reported in [19] 
because, according to the arguments outlined in [2], the 

equilibria obtained in [33] are the stable ones, whereas in 
[19] metastable equilibria have been observed. 

Further transformations within the B 2 field have been 
reported in [31]. On the basis of the reported data, these 
additional transformations should be continuous. They 
have not yet been incorporated in Fig. 9 for reasons al- 
ready outlined in "The bcc Equilibria in Fe-Si Alloys". 

The bcc Equilibria in Fe-Co Alloys. In Fig. 10, the phase 
diagram for Fe-Co is shown. In the bcc phase field, the 
ordering reaction A 2 m B2 has been observed experi- 
mentally [41, 42]. The experiments indicate a continuous 
transformation. The .same result follows from model calcu- 
lations [43, 44]. Therefore, the critical temperature should 
be indicated accordingly. 

The fcc Equilibria in Co-Ni Alloys. The analysis of hetero- 
geneous equilibria in the vicinity of the Curie tempera- 
tures outlined in "Transformations Without Constraint of 
Homogeneity" has been performed on a hypothetical alloy 
system with ideal solution behavior. The Co-Ni system is 
an example that behaves like an ideal solution and ex- 
hibits composition-dependent magnetic properties. 
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Fig. 9 Eclectic Phase Diagram of bcc Fe-AI 
Alloys with XAI --< 0.5 
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In Co-rich alloys, a transformation from the fcc structure (A 1 ) 
to the cph structure (A3) is observed. The calculation of the 
magnetic effects does not predict heterogeneous equilibria at 
the Curie temperature. 

~Fig. 10 Phase Diagram of Fe-Co Alloys 
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II, ,k, �9 --- Experimental, taken from [40-42]. 

The ideal solution behavior can be derived from the combi- 
nation of two experimental facts:* 
�9 The vanishing enthalpy of formation of Co-Ni alloys as 

represented in the lower part of Fig. 11. 
�9 No atomic long-range order is observed in this system 

[46- 49]. 

Assuming a linear variation of the mean atomic moment 
from 1.7 t~B for Co to 0.6 tLB for Ni {51], the calculation 
yields no heterogeneous equilibria in the range of the 
Curie temperatures, as shown in Fig. 11. The magnetic 
contributions do not vary enough across the system to 
produce concave shapes of the Gibbs energy at tempera- 
tures close to To. 

The fcc Equilibria in Co-V Alloys. In the Co-V system, a 
very strong decrease of the Curie temperature is observed, 

*It has  been shown in [50] t h a t  a v a n i s h i n g  en tha lpy  of format ion  is a 
necessary  bu t  usua l ly  insufficient  condit ion for ideal solut ion behavior .  
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Fig. 12 Magnetically Induced Heterogene- 
ous Equilibria Predicted in the Vicinity of the 
Curie Temperature in Random fcc (A1) Co-V 
Alloys 
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A linear decrease of the Curie temperature with increas- 
ing V-content, and the linear decrease of the mean magnetic 
moment per atom shown in the inset, are presumed in the 
calculation. 

leading to a strong var ia t ion of the magnet ic  contribu- 
tions across the system. In the paramagne t ic  state, the 
random fcc Co-V alloys can be t rea ted  as a regular  solu- 
tion [12]. Assuming the composition dependence of Tc as 
Tc = 1377 - 4040 �9 Xv [K] and a l inear  var ia t ion  of the 
mean magnet ic  moment  per a tom tL = 1.7 "Xco [t~B], the 
calculations yield the phase d iagram in Fig. 12. In this 
instance, heterogeneous equi l ibr ia  tu rn  out of the calcu- 
lations. Fi rs t  exper imental  indications of the existence of 
such heterogeneous equil ibria have  been reported in [12] 
and [52]. 
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