Distribution of 0 and 1 in the highest level of primitive sequences over $\mathbb{Z}/(2^e)^*$

QI Wenfeng (戚文峰) and ZHOU Jinjun (周锦君)

(Department of Applied Mathematics, Zhengzhou Information Engineering Institute, Zhengzhou 450002, China)

Received December 2, 1996

Abstract The distribution of 0 and 1 is studied in the highest level a_{e-1} of primitive sequences over $\mathbb{Z}/(2^e)$, and the upper and lower bounds on the ratio of the number of 0 to the number of 1 in one period of a_{e-1} are obtained. It is revealed that the larger e is, the closer to 1 the ratio will be.

Keywords: linear recurring sequence, primitive sequence, highest level sequence, distribution of 0 and 1.

Let \mathbb{Z} be the ring of integers, and let $\mathbb{Z}/(2^{\epsilon})$ be the residue ring of \mathbb{Z} modulo 2^{ϵ} . Let $f(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_0$ be a monic polynomial with coefficients in $\mathbb{Z}/(2^{\epsilon})$. We say that the sequence $a = (a_0, a_1, a_2, \cdots)$ over $\mathbb{Z}/(2^{\epsilon})$ satisfying the linear recursion

 $a_{i+n} = -(c_0 a_i + c_1 a_{i+1} + \dots + c_{n-1} a_{i+n-1}), i = 0, 1, 2, \dots$ (1)

is a linear recurring sequence generated by f(x), and f(x) is called a characteristic polynomial of a. $G(f(x))_e$ denotes the set of all sequences over $\mathbb{Z}/(2^e)$ generated by f(x).

Remark. Recursion (1) is equivalent to $f(x) = 0 = (0, 0, 0, \dots)$, where x is the left-shift operator; that is, $xa = (a_1, a_2, a_3, \dots)$.

For each element b in $\mathbb{Z}/(2^{e})$, there exists a unique binary decomposition

 $b = b_0 + b_1 2 + \dots + b_{e-1} 2^{e-1},$

where $b_i = 0$ or 1, and b_i is called the *i*th level bit of *b*.

Similarly, the sequence a over $\mathbb{Z}/(2^{\epsilon})$ has a unique binary decomposition

$$a = a_0 + a_1 2 + \dots + a_{e^{-1}} 2^{e^{-1}},$$

where $a_i = (a_{i0}, a_{i1}, a_{i2}, \cdots)$ is binary sequences with $a_{ij} = 0$ or 1, a_i is called the *i*th level sequence of a, and $a_{e^{-1}}$ is called the highest level of a.

For a monic polynomial f(x) over $\mathbb{Z}/(2^e)$, if f(0) (i.e. c_0) is an invertible element, then there exists a positive integer T such that f(x) divides $x^T - 1$ over $\mathbb{Z}/(2^e)$, and the smallest Tis called the period of f(x) over $\mathbb{Z}/(2^e)$, denoted by $per(f(x))_e$. By ref. [1], $per(f(x))_e \leq 2^{e^{-1}}(2^n-1)$, where $n = \deg f(x)$. If $per(f(x)) = 2^{e^{-1}}(2^n-1)$, f(x) is called a primitive polynomial over $\mathbb{Z}/(2^e)$ with degree n. Ref. [2] provides a coefficient criterion for primitiveness of polynomials over $\mathbb{Z}/(2^e)$. The sequences generated by a primitive polynomial are called primi-

^{*} Project supported by the State Key Laboratory of Information Security, Graduate School of Chinese Academy of Sciences.

tive sequences over $\mathbb{Z}/(2^{\epsilon})$. Ref. [3] has shown the following entropy-preservation theorem with significance of cryptography.

Let f(x) be a primitive polynomial over $\mathbb{Z}/(2^{e})$ and $a, b \in G(f(x))_{e}$. Then a = b if and only if $a_{e-1} = b_{e-1}$.

Reference [4] presented the lower bounds on linear complexity of a_{e-1} and ref. [5] studied the minimal polynomial of a_{e-1} . These results have shown the prospects for application of the highest level sequences as cryptographic sequences.

For another problem of cryptographic sequences, we shall study the distribution of 0 and 1 in a_{e-1} . The results show that if e is sufficiently large, the ratio of the number of 0 to the number of 1 in one period of a_{e-1} is close to 1.

The distribution of 0 and 1 in a_{e-1} 1

We always let f(x) be a primitive polynomial of degree n over $\mathbb{Z}/(2^{e})$, $a \in G(f(x))$, and $a \not\equiv 0 \mod 2$, i.e. $a_0 \neq 0$. By ref. [5], the period per (a_k) of k th level sequence a_k of a is $2^k T$, where $T = 2^n - 1$. By refs. [1, 5], for $1 \le k \le e - 1$, over $\mathbb{Z}/(2^e)$ we have $x^{2^{k-1}}$

$$2^{k+1} - 1 \equiv 2^k h_k(x) \mod f(x).$$

where $h_k(x)$ is a polynomial over $\mathbb{Z}/(2^r)$ with degree less than n and $h_k(x) \not\equiv 0 \mod 2$.

Set $d = \lfloor e/2 \rfloor$ and set $s \equiv h(x)a \pmod{2^d}$ to be a sequence over $\mathbb{Z}/(2^d)$, where

$$h(x) = \begin{cases} h_d(x), & e = 2d, \\ h_{d+1}(x), & e = 2d + 1. \end{cases}$$
(2)

(i) $s \in G(f(x))_d$ and $s \not\equiv 0 \mod 2$. Remark.

i

(ii) While a (mod 2^d) takes over all sequences with $a_0 \neq 0$ in $G(f(x))_d$, s takes over all sequences with $s_0 \neq 0$ in $G(f(x))_d$ too.

(iii) The period per(s)_d of s over $\mathbb{Z}/(2^d)$ is $2^{d-1}T$.

N(s,0) denotes the number of 0 in one period of s, N(a_{e-1} , 0) and N(a_{e-1} , 1) denote the numbers of 0 and 1 in a period of a_{e-1} . We obtain the following result of the distribution of 0 and 1.

Theorem 1. Let f(x) be a primitive polynomial of degree n over $\mathbb{Z}/(2^{\epsilon})$, $d = \lfloor e/2 \rfloor$, T $=2^n-1$, $a \in G(f(x))_e$ and $a_0 \not\equiv 0$, $s \equiv h(x)a \mod 2^d$, where h(x) is defined by (2). Then $\frac{2^{d-1}T - N(s,0)}{2^{d-1}T + N(s,0)} \leq \frac{N(a_{e-1},0)}{N(a_{e-1},1)} \leq \frac{2^{d-1}T + N(s,0)}{2^{d-1}T - N(s,0)}$

To prove Theorem 1, we first introduce the following lemma.

Let $u, v \in \mathbb{Z}/(2^d)$ and $v \neq 0$. Set Lemma 1. $S(i) = \{k \in \mathbb{Z}/(2^d) \mid the \ (d-1)th \ level \ of \ u + kv \ is \ i\},\$ i=0,1. Then $|S(0)| = |S(1)| = 2^{d-1}$.

Proof. Since $v \neq 0$, we let the binary decomposition of v be

$$v = v_j 2^j + v_{j+1} 2^{j+1} + \cdots + v_{d-1} 2^{d-1},$$

where $0 \leq j \leq d - 1$, $v_j = 1$.

Set $v' = v_j + v_{j+1}2 + \dots + v_{d-1}2^{d-j-1}$. Then $v = v'2^j$. Since $v_j = 1$, v' is an invertible element in $\mathbb{Z}/(2^d)$, i.e. there exists $s \in \mathbb{Z}/(2^d)$ such that v's = 1. We have $vs = 2^j$. Then for any $t \in \mathbb{Z}/(2^d)$ and $t \equiv 0 \mod 2^j$, there exists $w \in \mathbb{Z}/(2^d)$ such that t = vw. And for any $w' \equiv w \mod 2^{d-j}$, vw' = vw = t.

So while k takes over all elements in $\mathbb{Z}/(2^d)$, kv takes over all elements with the form $2^j t$ in $\mathbb{Z}/(2^d)$ and every such element occurs 2^j times. Let

$$u = u_0 + u_1 2 + \dots + u_{j-1} 2^{j-1} + u_j 2^j + \dots + u_{d-1} 2^{d-1},$$

and let $u' = u_0 + u_1 2 + \dots + u_{j-1} 2^{j-1}$. Then while k takes over all elements in $\mathbb{Z}/(2^d)$, u + kv takes over all elements with form $u' + 2^j t$ in $\mathbb{Z}/(2^d)$ and every such element occurs 2^j times. It is easy to get |S(0)| = |S(1)|. Since

$$|S(0)| + |S(1)| = 2^{d}$$

we have

$$|S(0)| = |S(1)| = 2^{d-1}$$

Proof of Theorem 1. First let e = 2d. Since $x^{2^{d-1}T} - 1 \equiv 2^d h(x) \mod f(x)$, over $\mathbb{Z}/(2^e)$ we have

$$(x^{2^{d-1}T} - 1)a = 2^{d}h(x)a.$$

By $a = a_0 + a_1 2 + \dots + a_{e-1} 2^{e-1}$ and per $(a_i) = 2^{i-1} T$, over $\mathbb{Z}/(2^e)$ we have

$$(x^{2^{d-1}} - 1)(a_d + a_{d+1}2 + \dots + a_{e-1}2^{d-1})2^d = h(x)(a_0 + a_12 + \dots + a_{d-1}2^{d-1})2^d.$$

So over $\mathbb{Z}/(2^a)$ we get

$$(x^{2^{d-1}r} - 1)(a_d + a_{d+1}2 + \cdots + a_{e-1}2^{d-1}) = h(x)(a_0 + a_12 + \cdots + a_{d-1}2^{d-1}).$$
(3)

Set
$$t = a_d + a_{d+1}2 + \dots + a_{e-1}2^{d-1} = (t_0, t_1, t_2, \dots), t_i \in \mathbb{Z}/(2^d), i = 0, 1, 2, \dots$$
 Then by (3)
 $(x^{2^{d-1}T} - 1)t = s.$ (4)

Let $s = (s_0, s_1, s_2, \cdots)$, and set $R = 2^{d-1}T$. Then by (4), for any integer $i \ge 0$, $t_{i+R} = t_i + s_i$. So for any positive integer k,

$$t_{i+kR} = t_{i+(k-1)R} + s_{i+(k-1)R}$$

Since per(s)_d = R; that is $s_{i+R} = s_i$, we have

$$t_{i+kR} = t_i + ks_i.$$
⁽⁵⁾

While *i* takes over 0 to R - 1 and *k* takes over 0 to $2^d - 1$, t_{i+kR} exactly takes over first period of *t*.

For a fixed $i, 0 \le i \le R-1$, if $s_i \ne 0$, then while k takes over 0 to $2^d - 1$ and by Lemma 1, the (d-1)th level bit of t_{i+kR} takes 0 and $1 2^{d-1}$ times, respectively. If $s_i = 0$, then while k takes over 0 to $2^d - 1$, the (d-1)th level bit of t_{i+kR} always takes the (d-1)th level bit of t_i . If N(s, 0) denotes the number of 0 in one period of s, then the number of nonzero in one period of s is $2^{d-1}T - N(s, 0)$. So the number $N(t_{d-1}, 0)$ of 0 in one period of the (d-1)th level component of t satisfies

$$(2^{d-1}T - N(s,0))2^{d-1} \leq N(t_{d-1},0) \leq (2^{d-1}T - N(s,0))2^{d-1} + N(s,0)2^{d},$$

Similarly

 $(2^{d-1}T - N(s,0))2^{d-1} \leq N(t_{d-1},1) \leq (2^{d-1}T - N(s,0))2^{d-1} + N(s,0)2^{d}$. Since $t_{d-1} = a_{e-1}$, we get

$$M \leqslant \frac{\mathrm{N}(a_{e^{-1}},0)}{\mathrm{N}(a_{e^{-1}},1)} \leqslant \frac{1}{M},$$

where

$$M = \frac{(2^{d-1}T - N(s,0))2^{d-1}}{(2^{d-1}T - N(s,0))2^{d-1} + N(s,0)2^{d}} = \frac{2^{d-1}T - N(s,0)}{2^{d-1}T + N(s,0)}$$

So when e = 2d, Theorem 1 holds.

Next suppose e = 2d + 1. Since $x^{2^{d_T}} - 1 \equiv 2^{d+1}h(x) \mod f(x)$, over $\mathbb{Z}/(2^e)$ we have $(x^{2^{d_T}} - 1)a = 2^{d+1}h(x)a$;

 $(x^{2^{d_T}} - 1)(a_{d+1} + a_{d+2}2 + \dots + a_{e-1}2^{d+1})2^{d+1} = h(x)(a_0 + a_12 + \dots + a_{d-1}2^{d-1})2^{d+1}.$ So over $\mathbb{Z}/(2^d)$

$$(x^{2^{d_T}} - 1)(a_{d+1} + a_{d+2}2 + \dots + a_{e-1}2^{d-1}) = h(x)(a_0 + a_12 + \dots + a_{d-1}2^{d-1}).$$

Applying the proof method in case e = 2d, we can get

$$\frac{2^{d-1}T - N(s,0)}{2^{d-1}T + N(s,0)} \leqslant \frac{N(a_{e-1},0)}{N(a_{e-1},1)} \leqslant \frac{2^{d-1}T + N(s,0)}{2^{d-1}T - N(s,0)}.$$

Remark. Let s be a random variable taken from $G(f(x))_d$ with $s_0 \neq 0$. Then by the following Lemma 2, the average of N(s,0) is $2^{n-1}-1$, where $n = \deg f(x)$. If the average could substitute for N(s,0) in Theorem 1, we could get estimates of $\frac{N(a_{e-1},0)}{N(a_{e-1},1)}$ in

$$\frac{2^d-1}{2^d+1} < \frac{N(a_{e-1},0)}{N(a_{e-1},1)} < \frac{2^d+1}{2^d-1}.$$

When e is sufficiently large, the ratio $\frac{N(a_{e-1}, 0)}{N(a_{e-1}, 1)}$ is close to 1. This would be a good distribution of 0 and 1. But now there are no good estimates of upper bound of N(s, 0). It is not known if there exists a primitive sequence which contains a lot of zero. If such a sequence exists, then using Theorem 1 we cannot deduce whether the distribution is good or bad.

The upper bound of N(s, 0) has not been solved. However, we shall show that when e is sufficiently large, there are few a of which $\frac{N(a_{e-1}, 0)}{N(a_{e-1}, 1)}$ is not close to 1.

Lemma 2. Let
$$f(x)$$
 be a primitive polynomial of degree n over $\mathbb{Z}/(2^d)$. Set $G'(f(x))_d = \{s \in G(f(x))_d \mid s_0 \neq 0\}$.

For $s, t \in G'(f(x))_d$, if there exists a non-negative integer i such that $s = x^i t$, then s is shiftequivalent to t. $G'(f(x))_d$ can be classified by shift-equivalence. Then

(i) There are $2^{(n-1)(d-1)}$ shift-equivalent classes in $G'(f(x))_d$ and each class has $2^{d-1}T$ sequences, where $T = 2^n - 1$.

(ii) Let $s_{(1)}, s_{(2)}, \dots, s_{(w)}$ be the representatives of all classes, where $w = 2^{(n-1)(d-1)}$. Then

$$\sum_{i=1}^{w} N(s_{(i)}, 0) = w(2^{n-1} - 1) = 2^{(n-1)(d-1)}(2^{n-1} - 1).$$

Proof. (i) For a state $u = (u_0, u_1, \dots, u_{n-1}), u_i \in \mathbb{Z}/(2^d)$, if $u \not\equiv 0 = (0, \dots, 0) \mod 2$, then u must be a state of one and only one sequence in $\{s_{(1)}, \dots, s_{(w)}\}$. Conversely, each state u of some sequence in $\{s_{(i)}, \dots, s_{(w)}\}$ must satisfy $u \not\equiv 0 \mod 2$. Since the number of states over $\mathbb{Z}/(2^d)$ with $u \not\equiv 0 \mod 2$ is

$$2^{nd} - 2^{n(d-1)} = 2^{n(d-1)}(2^n - 1) = 2^{n(d-1)}T,$$

and each $s_{(i)}$ has $2^{d-1}T$ states, the number of equivalent classes is $\frac{2^{n(d-1)}T}{2^{d-1}T} = 2^{(n-1)(d-1)}$.

(ii) By the process in the proof of (i), $\sum_{i=1}^{w} N(s_{(i)}, 0)$ is the number $|U_0|$ of elements in the

set:

$$U_0 = \{u = (0, u_1, \dots, u_{n-1}) \mid u_i \in \mathbb{Z}/(2^d), \text{ and } u \not\equiv 0 \mod 2\}$$

Since

$$| U_0 | = 2^{d-1} 2^{d(n-2)} + 2^{2(d-1)} 2^{d(n-3)} + \dots + 2^{(d-1)i} 2^{d(n-i-1)} + \dots + 2^{(d-1)(n-1)}$$

= 2^{(d-1)(n-1)}(2ⁿ - 1),

where $2^{(d-1)i}2^{d(n-i-1)}$ is the number of $u = (0, u_1, \dots, u_{n-1})$ which satisfies the condition that u_1, \dots, u_{i-1} are zero divisors and u_i is an invertible element in $\mathbb{Z}/(2^d)$, $1 \le i \le n-1$, we have

$$\sum_{i=1}^{w} N(s_{(i)}, 0) = w(2^{n-1} - 1) = 2^{(n-1)(d-1)}(2^{n-1} - 1):$$

Lemma 3. Let $0 \le k \le d-1$. Then the number of sequences in $\Omega = \{s_{(1)}, \dots, s_{(w)}\}$ with $N(s_{(i)}, 0) \ge 2^k (2^{n-1}-1)$ is $2^{(d-1)(n-1)-k}$ at most.

Proof. Let S be the number of sequences $s_{(i)}$ in Ω with $N(s_{(i)}, 0) \ge 2^k (2^{n-1} - 1)$. Then $S2^k (2^{n-1} - 1) \le 2^{(d-1)(n-1)} (2^{n-1} - 1)$.

So $S \leq 2^{(d-1)(n-1)-k}$.

Remark. By Lemma 3, the proportion of the number S to $|\Omega| = w$ is $1/2^k$ at most. So the proportion of sequences s with $N(s,0) \ge 2^k (2^{n-1}-1)$ in $G'(f(x))_d$ is $1/2^k$ at most; that is, the proportion of sequences s with $N(s,0) < 2^k (2^{n-1}-1)$ in $G'(f(x))_d$ is $(2^k - 1)/2^k$, at least.

Theorem 2. The condition is the same as that in Theorem 1. Then in $G'(f(x))_e$ the proportion of sequences with

$$\frac{2^{d-k}-1}{2^{d-k}+1} < \frac{N(a_{e-1},0)}{N(a_{e-1},1)} < \frac{2^{d-k}+1}{2^{d-k}-1}$$

is $(2^k - 1)/2^k$ at least.

Proof. Let $a \in G'(f(x))_e$, $s \equiv h(x)a \mod 2^d$. If $N(s,0) < 2^k(2^{n-1}-1)$, then by Theorem 1,

$$\frac{2^{d-1}(2^n-1)-2^k(2^{n-1}-1)}{2^{d-1}(2^n-1)+2^k(2^{n-1}-1)} \leqslant \frac{N(a_{e-1},0)}{N(a_{e-1},1)} \leqslant \frac{2^{d-1}(2^n-1)+2^k(2^{n-1}-1)}{2^{d-1}(2^n-1)-2^k(2^{n-1}-1)};$$

that is,

$$\frac{2^{d-k-1}(2^n-1)-(2^{n-1}-1)}{2^{d-k-1}(2^n-1)+(2^{n-1}-1)} \leqslant \frac{N(a_{e-1},0)}{N(a_{e-1},1)} \leqslant \frac{2^{d-k-1}(2^n-1)+(2^{n-1}-1)}{2^{d-k-1}(2^n-1)-(2^{n-1}-1)}.$$

So

$$\frac{2^{d-k}-1}{2^{d-k}+1} < \frac{N(a_{e-1},0)}{N(a_{e-1},1)} < \frac{2^{d-k}+1}{2^{d-k}-1}.$$

By Lemmas 2 and 3 and the above remark, the result is true.

Now we give examples for some e and examine the distribution of 0 and 1 in a_{e-1} .

(i) Set
$$e = 32$$
, $d = 16$, and take $k = 8$. Then

$$\frac{2^{d-k} - 1}{2^{d-k} + 1} = \frac{2^8 - 1}{2^8 + 1} > 0.9922, \qquad \frac{2^{d-k} + 1}{2^{d-k} - 1} = \frac{2^8 + 1}{2^8 - 1} < 1.0078,$$

$$\frac{2^k - 1}{2^k} = \frac{2^8 - 1}{2^8} = 99.6\%.$$

So for any primitive polynomial of degree n over $\mathbb{Z}/(2^e)$, in $G'(f(x))_e$ the proportion of sequences with

$$0.9922 < \frac{N(a_{e^{-1}}, 0)}{N(a_{e^{-1}}, 1)} < 1.0078$$

is at least 99.6%.

(ii) Set
$$e = 64$$
, $d = 32$, and take $k = 16$. Then

$$\frac{2^{d-k}-1}{2^{d-k}+1} = \frac{2^{16}-1}{2^{16}+1} > 0.999\ 969\ 48, \qquad \frac{2^{d-k}+1}{2^{d-k}-1} = \frac{2^{16}+1}{2^{16}-1} < 1.000\ 030\ 52,$$

$$\frac{2^{k}-1}{2^{k}} = \frac{2^{16}-1}{2^{16}} > 99.998\ 474\%.$$

So for any primitive polynomial of degree n over $\mathbb{Z}/(2^e)$, in $G'(f(x))_e$ the proportion of sequences with

$$0.99996948 < \frac{N(a_{e-1}, 0)}{N(a_{e-1}, 1)} < 1.00003052$$

is at least 99.998 474%.

So if e is sufficiently large and a is taken at random from $G'(f(x))_e$, then the distribution of 0 and 1 in a_{e-1} is very good.

References

- 1 Ward, M., The arithmetical theory of linear recurring sequences, Trans. Amer. Math. Soc., 1933, 35(6):600.
- 2 Dai Zongduo, Huang Minqing, A criterion for primitiveness of polynomials over 2 mod 2^d, Chinese Science Bulletin, 1990, 36(11):892.
- 3 Huang Minqiang, Dai Zongduo, Projective maps of linear recurring sequences with maximal p-adic periods, Fibonacci Quart., 1992, 30(2):139.
- 4 Dai Zongduo, Beth, T., Gollman, D., Lower bounds for the linear complexity of sequences over residue rings, in Advances in Cryptology, Eurocrypt '90, Lncs, Vol. 473, Berlin: Springer-Verlag, 1991, 189-195.
- 5 Dai Zongduo, Binary sequences derived from ML-sequences over rings I: periods and minimal polynomials, Journal of Cryptology, 1990, 5(2), 193.