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Distribution of 0 and 1 in the highest level
of primitive sequences over 7 /(2¢) "
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Abstract The distribution of 0 and 1 is studied in the highest level «, . | of primitive sequences over 7 /(2°),
and the upper and lower bounds on the ratio of the number of 0 to the number of 1 in one period of «, - are obtained.
It is revealed that the larger e is, the closer to 1 the ratio will be.
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Let Z be the ring of integers, and let Z /(2°) be the residue ring of Z modulo 2°. Let f(x)
=x"+ ¢, ;1" '+ + ¢y be a monic polynomial with coefficients in Z /(2¢). We say that the
sequence a = (ag, ays as, **+) over Z /(2°) satisfying the linear recursion

ajvg == (coa; + crair + 0+ cu1@ia01),i = 0,1,2, (1)
is a linear recurring sequence generated by f(x), and f(x) is called a characteristic polynomial

of a. G(f(x)),. denotes the set of all sequences over Z /(2¢) generated by f(x).

Remark. Recursion (1) is equivalent to f(x) « =0=(0,0,0, --*), where z is the left-
shift operator; that is, xa = (ay, az, a3, ).

For each element & in Z /(2°), there exists a unique binary decomposition
b= b+ b2+ + 6,271,
where b; =0 or 1, and b; is called the ith level bit of 4.

Similarly, the sequence a over Z /(2¢) has a unique binary decomposition
a = ag+ a2+ +a,_2°,
where a; = (a,o, a;1» ai2, ***) is binary sequences with a; =0 or 1, q; is called the ith level se-
quence of a, and a, _; is called the highest level of a.

For a monic polynomial f(x) over Z /(2°), if £{0) (i.e. ¢g) is an invertible element, then
there exists a positive integer T such that f(x) divides 27 — 1 over Z /(2¢), and the smallest T
is called the period of f(x) over Z /(2¢), denoted by per( f(x)),. By ref.[1], per( f(x)), <
2°71(2" - 1), where n=degf(x). If per(f(z)) =2°"1(2" - 1), f(=x) is called a primitive
polynomial over Z /(2°) with degree n. Ref.[2] provides a coefficient criterion for primitiveness

of polynomials over Z /(2¢). The sequences generated by a primitive polynomial are called primi-
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tive sequences over 7, /(2¢). Ref.[3] has shown the following entropy-preservation theorem with
significance of cryptography.

Let f(x) be a primitive polynomial over 7, /(2¢) and a, € G(f(x)),. Then a = & if and
onlyif ¢, ;=5,-y.

Reference [4] presented the lower bounds on linear complexity of a,_; and ref.[5] studied
the minimal polynomial of a, ;. These results have shown the prospects for application of the
highest level sequences as cryptographic sequences.

For another problem of cryptographic sequences, we shall study the distribution of 0 and 1 in
a,_ 1. The results show that if e is sufficiently large, the ratio of the number of 0 to the number

of 1 in one period of @, is close to 1.

1 The distribution of 0 and 1 in a, -,

We always let f(x) be a primitive polynomial of degree n over Z /(2°),a € G(f(x)), and
a70 mod 2,i.e. ao70. By ref.[5], the period per (a;) of kth level sequence a; of a is 28T,
where T=2"—1. By refs.[1,5], for 1<{k<Ce —1, over Z/(2°) we have

2T 1=2,(2) mod f(x),

where h,(zx) is a polynomial over Z /(2¢) with degree less than n and k,(x )70 mod 2.

Set d =[e/2] and set s=h(z)a (mod 2¢) to be a sequence over Z /(2%), where
hd(-r), e = Zd,
h(z) = (2)
hdJrI(I), e = 2d + 1
Remark. (i) s€ G(f(x)), and s7Z0 mod 2.

(ii) While ¢ (mod 2¢) takes over all sequences with ag70 in G(f(x)),, s takes over all
sequences with 5,70 in G(f(x)), too.

(iii) The period per(s)  of s over Z /(2%) is 271 T.

N(s,0) denotes the number of 0 in one period of 5, N(a, ,0) and N(a,_;,1) denote the

numbers of 0 and 1 in a period of a, ;. We obtain the following result of the distribution of 0 and
1.

Theorem 1. Let f(x) be a primitive polynomial of degree n over Z./(2°), d=1[e/2], T
=2"-1, a € G(f(z)),and ayZ0, s=h(x)a mod 2%, where h(x) is defined by (2). Then
297'T = N(5,0) _ N(aey,0) 297" T + N(5,0)

2971 + N(5,0) — N(a,-1,1) 7~ 2¢7'T = N(5,0)°

To prove Theorem 1, we first introduce the following lemma.

Lemmal. Letu, v€7Z /(29 and v#0. Set
S(i) =1k € Z/29 | the (d = V)thlevel of u + kv isil,
i=0,1. Then 1S(0)|=1S(1)|=29"",
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Proof. Since v#0, we let the binary decomposition of v be
v = v2 + ijZJH + oo+ gy 2970
where 0<(j<<d - 1, v; = 1.

Set v’ =v;+ v, 2+ + vy 1297771 Then v=v"2’. Since v;=1, v’ is an invertible ele-
ment in Z /(29), i.e. there exists s €Z /(29) such that v's =1. We have vs =2’. Then for any
t€7Z/(29) and t=0 mod 2/, there exists w & Z /(24) such that ¢ = vw. And for any w'=w

mod 2977, vw' =vw=1.

So while % takes over all elements in Z /(29), kv takes over all elements with the form 2’¢

in Z /(24) and every such element occurs 2’ times. Let
u = ugt+ w2+ o+ u}--lzj‘l + uj2j o ouy 2978
and let u” = wg+ w2+ + uj-12j‘1. Then while & takes over all elements in Z /(2¢4), u + kv
takes over all elements with form «” + 2t in Z /(29) and every such element occurs 2/ times. It is
easy to get | S(0) 1 =1 S(1) 1. Since
1 S(0) 1+1 S(1) | = 24,

we have

1 S(0) =1 S(1) I =241,

Proof of Theorem 1. First let e =2d. Since IZ‘HT - 1= 29%(x) mod f(zx), over
7 /(2°) we have

297 d
(z —1)a = 2% (x)a.
Bya = ag+ a2+ +a,12° " and per (a;)=2""'T, over Z/(2°) we have

d-1

(22 T =1)(ay + ag. 2+ + a, 129729 = h(zx)(ag + a2 + ~ray2¢71)27%.
So over Z /(27) we get

d-1 .

(.232( - 1)(ad + ad+12 + "'a‘,_IZd'l) = h(l’)(ao + a12 + e 4+ ad,12d“1). (3)
Set t = [2%] + ad+12+ vee + ue-lzd"l - (to, tl’ t2, "'), Z,‘ 6 Z/(Zd), i = 0, 1,2, RN Then by (3)
(J:Z(HT -1)t = 5. (4)

Lets = (sg, 51,52, ),and set R = 297 T. Then by (4), for any integer i=20, t,, g = ¢t;
+ 5;. So for any positive integer &,
LivkR = Liv(k-1DR T Siv(A-DR-
Since per(s); = R; thatis 5,4+ g = s;, we have
tivkr = bt ks, (5)
While i takes over 0 to R — 1 and & takes over 0 to 2¢ — 1, t,, 4z exactly takes over first period of
t.

For a fixed i,0 < i << R -1, if 5; # 0, then while £ takes over 0 to 2¢ —1 and by Lemma
1, the (d — 1)th level bit of ¢z, ;5 takes 0 and 1 29 ! times, respectively. If s; =0, then while £
takes over 0 to 2¢ — 1, the (d — 1)th level bit of ¢;, & always takes the (d —1)th level bit of ¢;.
If N(s,0) denotes the number of 0 in one period of s, then the number of nonzero in one period
of s is29 ' T~N(s,0). So the number N(z,_1,0) of 0 in one period of the (d = 1)th level com-
ponent of ¢ satisfies

(24T — N(5,0))2¢7 <IN(2,.1,0) << (27T = N(5,0) )29 + N(5,0)27,
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Similarly
(29777 = N(5,0)0)29 P <INty , 1) < (2971T = N(5,0))277" + N(5,0)27.
Since t;_, = a,_;, we get
N(a,_1,0) 1
M< N(a,-y,1) < M’

where

M = (2971 T - N(s,0))2¢7! _ 2971 - N(5,0)

(2971 T = N(5,0))2¢ + N(5,0)2¢ 297! T + N(s,0)°
So when ¢ =2d, Theorem 1 holds.

Next suppose e = 2d + 1 . Since 2T 1= 29" h (2) mod f(x), over Z /(2°) we have
(J:ZdT - Da =2 (x)a;

(22T - D agey + agea2 + =+ a, 1297127 = h(x)(ag + a12 + =+ + ag-2971)2%,
So over Z /(2%)

(12dT = Dagi + g2+ + a,1277") = h(x)(ap+ ar2 + = + ag12971).
Applying the proof method in case e =2d, we can get
297'T — N(5,0) _ N(a,-1,0) _ 297" T + N(s,0)
24717 + N(5,0) — N(a,.1,1) 72971 T - N(5,0)°
Remark. let s be a random variable taken from G( f(x)), with 57%0. Then by the fol-
lowing Lemma 2, the average of N(s,0) is 2" "' —1, where n =degf(z). If the average could
N(ae~1’0) .
N(a, , )™

substitute for N(s,0) in Theorem 1, we could get estimates of

24 -1 _N(a,1,0) 279+1
24 +1 < N(a,-1,1) < 29 - 1°

N(a, 1,0
When e is sufficiently large, the ratio N%% is close to 1. This would be a good distribution
e—1s

of 0 and 1. But now there are no good estimates of upper bound of N(s,0). It is not known if
there exists a primitive sequence which contains a lot of zero. If such a sequence exists, then using
Theorem 1 we cannot deduce whether the distribution is good or bad.

The upper bound of N(s,0) has not been solved. However, we shall show that when e is

N(ae-l’o) .

sufficiently large, there are few a of which m is not close to 1.

Lemma 2. Let f(x) be a primitive polynomial of degree n over 7, /(29). Set
G'(f(x))g = |s € G(f(x))a | 59 # 0}
For s,t € G (f(x))4, if there exists a non-negative integer i such that s = x't, then s is shift-
equivalent tot. G (f(x)),can be classified by shift-equivalence. Then

(i) There are 2" V=Y shift equivalent classes in G’ ( f(x)),and each class has 24 ' T
sequences, where T=2"—1.

(i) Let s(1ys S(2)s s S(w) be the representatives of all classes, where w = PALERR A
Then
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D NG, 0) = w(277h = 1) = 207D it ),
i=1

Proof. (i) Forastate u = (ugyuis =y uy_1)su; € /24, if w0 = (0,-+,0)mod
2, then u must be a state of one and only one sequence in {s(;y,***, s(w)! . Conversely, each
state u of some sequence in {5, ***, 5(,) | must satisfy «70 mod 2. Since the number of states
over Z /(2%) with ©#0 mod 2 is
2nd _ 2n(d-l) — 2n(d—1)(2n _ 1) — 2n(d~1)T’
onld-D T

&« 1 _ Aln-D(d-1)
2d—1T =2 .

and each s(;) has 297! T states, the number of equivalent classes is

(ii) By the process in the proof of (i), ZN( s(iy»0) is the number | Uyl of elements in the

i=1

set:
Uy = lu =0, uy,vuy, ) u;, € 2/(29), and u 2 0 mod 21.
Since
| Uol =2d-19d(n-2) 4 22d=-Dpd(n=3) , ... 4 o(d-Digdlu—i-1) 4 ... 4 p(d-D(n-1)
:2(d*1)(n~1)(2n - 1),
where 204711240771 45 the number of « = (0, u;, ***» u,_,) which satisfies the condition that

Uy, s u;_; are zero divisors and u; is an invertible element in Z /(29), 1 << i << n — 1, we have

ZN(S(i)’O) — w(zn—l -1) = 2(71*1)((1’1)(27!'1 _ 1)-
i=1

Lemma 3. Let 0<Xk<Cd — 1. Then the number of sequences in 2= {51y, "**» S(w) | with
N(s¢iy, 0)=24 (2" 1 =1) is 2497V D "% 44 most .

Proof. Let S be the number of sequences s(;y in £ with N(s¢;,0)=2%(2" "1 =1). Then
szk(zn-l . 1) < 2(d-1)(n‘-l)(2n—1 _ 1)
So S g 2(d—l)(nAl)—k.

Remark. By Lemma 3, the proportion of the number S to | 21| = w is 1/2* at most. So
the proportion of sequences s with N(s5,0) =>2%(2""' ~ 1) in G'(f(x))4 is 1/2* at most; that
is, the proportion of sequences s with N(s,0) < 28(2"71 = 1) in G'(f(x)),is (2% — 1)/2F, at

least.

Theorem 2. The condition is the same as that in Theorem 1. Then in G (f(x)). the pro-
portion of sequences with
2% -1 _ Na,1,0) _297*% +1
27 1 S Nlae, D) S 297 -

is (2% = 1)/2% at least .

Proof. Leta € G'(f(x)),,s = h(x)a mod 2¢. If N(s5,0) < 2*(2"7' = 1), then by
Theorem 1,
2471 (2n 1) ~2*2" ' - 1) _ Na,,0) 297127 — 1) + 282" '~ 1)
27N 2" =) + 2827 - 1) T N(ae, 1) T 2972 — 1) - 282" - )
that is,
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2;1'&' 1(211_1)_(211*1_1) N(ae_l’()) 211"/:—-1(211_1)+(2n*l_1)
2(/ k l(2n _ 1) + (2n [ - 1) = N((l,, 1’1) = 2(/ k*l(zn _ 1) — (27171 _ 1)

2d-k _ 1 < N(a,.;,0) _ 2¢47% 41
247k 11 Y N(a,.1,1) T 247% -1

By Lemmas 2 and 3 and the above remark, the result is true.

Now we give examples for some ¢ and examine the distribution of 0 and 1 in a, ;.

(i) Set ¢ =32, d =16, and take £ =8. Then

24k -1 28 -1 247+ 1 28 +1
2d*k+1“28+1>0'9922’ 2d*k_1_28_1<1'0078’
28 -1 28 -1
Zk = 28 :996%

So for any primitive polynomial of degree n over Z/(2°), in G’ (f(x)), the proportion of se-

quences with
N( Ae—1s 0)

0.9922 < wN(aF_l,l)

< 1.0078
is at least 99.6% .

(ii) Set ¢ =64, d =32, and take £=16. Then

d-k _ 16 d-k 16
;H - =§16 —1 > 0.999 96948, ;,k fi - ;6 * i < 1.000 030 52,
2t 1 2

- i L > 99.998 474% .

So for any primitive polynomial of degree n over Z /(2¢) , in G'(f(x)), the proportion of se-
quences with

N( Ae—1> 0)

0.999 969 48 < N(a, 1, 1)

< 1.000030 52
is at least 99.998 474 % .

So if e is sufficiently large and a is taken at random from G’ (f(x)),, then the distribution
of 0 and 1 in a, . is very good.
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