Proc. Indian Acad. Sci. (Math. Sci.), Vol. 99, No. 1, April 1989, pp. 49-73. 9 Printed in India.

Positive solutions of the semilinear Dirichlet problem with critical growth in the unit disc in \mathbb{R}^2

ADIMURTHI

TIFR Centre, P.B. No. 1234, Bangalore 560012, India

MS received 28 June 1988

Abstract. We prove the existence of a positive solution of the following problem

 $-\Delta u = f(r, u)$ in D $u>0$ $u = 0$, on ∂D

where D is the unit disc in \mathbb{R}^2 and f is a superlinear function with critical growth.

Keywords. Sub-critical growth, critical growth, super critical growth; Laplacian; Palais-Smale condition; Semilinear Dirichlet problem; unit disc.

1. Introduction

Let D be the unit disc in \mathbb{R}^2 . We are looking for positive radial solutions of the following problem: Find u in $C^2(D) \cap C^0(\overline{D})$ such that

$$
-\Delta u = f(r, u) \quad \text{in } D
$$

u > 0
u = 0, on ∂D (1.1)

where f is superlinear, $f(r, 0) = 0$, $(\partial f/\partial t)(r, 0) < \lambda_1$ with λ_1 being the first eigenvalue of the Dirichlet problem. For $n \ge 3$ and f of critical growth, Brezis-Nirenberg [4] studied the existence and non-existence of solutions of problem (1.1). For $n = 2$, the critical growth is of exponential type whereas in the case of $n \geq 3$, it is of polynomial type and the method adopted for $n \ge 3$ fails in the case of $n = 2$.

Carleson-Chang [5] obtained a positive solution for $f(u) = \lambda u \exp(\lambda u^2)$ with $0 < \lambda < \lambda_1$ via a variational method. For growths of type $f(u) = u^m \exp(bu^2)$, Atkinson-Peletier [3] used the shooting argument to obtain a solution of (1.1). They assumed that $\log f$ is strictly convex for large u .

In this paper we relax the conditions on f and use a variational method to obtain a solution of (1.1) . Since we are interested in radial solutions, (1.1) is equivalent to finding an u in $C^2(D) \cap C^0(\overline{D})$ with u radial and satisfying

$$
L_1 u \equiv -(ru')' = f(r, u)r \text{ in } [0, 1)
$$

u > 0 in [0, 1)

$$
u'(0) = u(1) = 0.
$$
 (1.2)

where $u' = \frac{du}{dr}$.

The idea of the method is to approximate the energy functional by functionals satisfying Palais-Smale conditions. Then obtain the critical points of these approximate functionals by a constrained minimization problem similar to that of Zeev-Nehari [8] and then pass to the limit. The method of the proof is in the spirit of Brezis-Nirenberg $[4]$. Here, we also get a constant "a" which is strictly less than the best possible constant and thereby the existence of solutions of (1.2) is guaranteed.

In $[1]$ we also prove the existence of infinitely many solutions of (1.1) when f is odd and of critical growth. Also in $[2]$ we prove the existence of solutions of (1.1) if D is replaced by an arbitrary smooth domain.

2. Statements

Let $E = \{u \in C^1[0, 1]; u(1) = 0\}$. For $0 \le \alpha \le 1$ and u in E define

$$
|u|_{\alpha}^{2} = \int_{0}^{1} u^{2}(r)r^{\alpha} dr
$$

$$
||u||_{\alpha}^{2} = \int_{0}^{1} u'(r)^{2}r^{\alpha} dr.
$$

Let H_0^{α} be the completion of E with respect to $\|\cdot\|_{\alpha}$. Define the operator L_{α} by

$$
L_{\alpha} = -\frac{1}{r^{\alpha}} \frac{d}{dr} \left(r^{\alpha} \frac{d}{dr} \right). \tag{2.1}
$$

Let (λ_a, ϕ_a) be the first eigenvalue and the corresponding first eigenvector with $\phi_a(0) = 1$ of the following eigenvalue problem.

$$
L_{\alpha}\phi = \lambda\phi \quad \text{in [0, 1]}
$$

$$
\phi'(0) = \phi(1) = 0.
$$
 (2.2)

DEFINITION 2.1

Let $f:[0,1] \times [0,\infty) \rightarrow [0,\infty)$ be a C¹-function. We say f is of class A if

(i) $f(r, 0) = 0$.

- (ii) There exists a $\delta_0 > 0$ and for $(r, t) \in Q_{\delta_0} \equiv [0, \delta_0] \times [0, \infty) (\partial f / \partial r)(r, t) \ge 0$.
- (iii) There exists a $t_0 > 0$ such that $f(r, t) < \lambda_1 t$ for all $(r, t) \in [0, 1] \times [0, t_0]$.
- (iv) There exist constants $t_1 > 0$, $\beta > 2$ such that $\beta F(r, t) \leq f(r, t)t$ for all $(r, t) \in [0, 1] \times$ $[t_1, \infty)$ where $F(r, t) = \int_0^t f(r, s) ds$.

Let

$$
A' = \left\{ f \in A; \frac{\partial f}{\partial t} > \frac{f}{t} \text{ in } [0,1] \times (0,\infty) \right\}.
$$

We consider the following three types of functions in our discussions.

Sub-critical: f in A is said to be sub-critical if there exists a $\delta > 0$ and for every $\varepsilon > 0$

$$
\sup_{(r,t)\in[0,\delta]\times[0,\infty)}f(r,t)\exp(-\varepsilon t^2)<\infty\tag{2.3}
$$

Critical: f in A' is said to be critical if there exists $\delta_1 > 0$ such that

(i) $f(r, t) = h(r, t) \exp(b(r) t^2) \quad \forall (r, t) \in Q_{\delta_1} \equiv [0, \delta_1] \times [0, \infty)$ (ii) $\forall \varepsilon > 0$,

$$
\sup_{(r,t)\in Q_{\delta_1}} h(r,t)\exp(-\varepsilon t^2) < \infty \tag{2.4}
$$

(iii) For every $\varepsilon > 0$, $h(0, t) \exp(\varepsilon t^2) \to \infty$ as $t \to \infty$.

Super critical: $f \in A'$ is said to be super critical if for every $c > 0$

$$
\sup_{\|\mathbf{w}\|_1=1} \int_0^1 f(\mathbf{r}, c\mathbf{w}) \mathbf{w}\mathbf{r} \, \mathrm{d}\mathbf{r} = \infty. \tag{2.5}
$$

For $f \in A$, $0 \le \alpha \le 1$, let \sum_{α} be the set of C^2 -solutions of the following problem

$$
L_{\alpha}u = f(r, u) \quad \text{in } [0, 1]
$$

$$
u > 0
$$

$$
u'(0) = u(1) = 0.
$$
 (2.6)

DEFINITION 2.2

u in $H_0^1(D)$ is said to be a weak solution of (1.2) if

(i)
$$
u > 0
$$
 in [0,1)
\n(ii) $\int_0^1 f(r, u)ur dr < \infty$
\n(iii) $\forall \phi \in C^2[0, 1]$ with $\phi(1) = 0$
\n
$$
\int_0^1 u(L_1 \phi) r dr = \int_0^1 f(r, u) dr dr.
$$
\n(2.7)

Since we are interested in only positive solutions of (1.2) and hence extending f for $t \leq 0$ is irrelevent. Therefore we make the following conventions.

1) Whenever we say f is in A, then we extend f by $f(r, t) = 0$ for $t \le 0$ and $r \in [0, 1]$. 2) Whenever we say f is in A', then we extend f by $f(r, t) = -f(r, -t)$ for $t \le 0$. (2.8) For u in H_0^{α} , define

$$
\overline{I}_{\alpha}(u) = \frac{1}{2} ||u||_{\alpha}^{2} - \int_{0}^{1} F(r, u)r^{\alpha} dr.
$$
\n
$$
I_{\alpha} = \inf_{\Sigma_{\alpha}} \overline{I}_{\alpha}.
$$
\n(2.9)

Then we have

Theorem 2.1. Let f be in A. Then there exists an $\alpha_0 < 1$ such that for every $\alpha_0 \le \alpha < 1$, \sum_{α} *is non-empty and* $\{l_{\alpha}\}\$ *is bounded. Let* $l=\lim_{\alpha\to 1}l_{\alpha}$. *Suppose there exists b* > 0, *M > 0 such that*

(i)
$$
f(r, t) \le M \exp(bt^2)
$$
 for all $(r, t) \in [0, \delta] \times [0, \infty)$
(ii) $bl < 1$. (2.10)

Then there exists a solution u of (1.2).

COROLLARY 2.1

If f is sub-critical, then there exists a solution.

Proof. If f is sub-critical, we can take b as small as we want and satisfying (i) and (ii) of Theorem (2.1). Hence the solution exists.

Criterion to satisfy (2.10). Let f be in A satisfying (i) of Theorem (2.1). Suppose there exists an $m > 0$ such that

$$
\int_0^{1/2} F\left(r, \frac{m}{2}\right) r \,dr \ge 2m^2.
$$
\n
$$
2m^2 b < 1 \tag{2.11}
$$

Then f satisfies (ii) of Theorem (2.1).

For f in A^1 and for $0 \le \alpha < 1$, define

$$
B_{\alpha} = \left\{ u \in H_0^{\alpha} \setminus \{0\}; \, \|u\|_{\alpha}^{2} \leq \int_0^1 f(r, u) u r^{\alpha} \, dr \right\}
$$

\n
$$
\partial B_{\alpha} = \left\{ u \in B_{\alpha}; u \geq 0; \, \|u\|_{\alpha}^{2} = \int_0^1 f(r, u) u r^{\alpha} \, dr \right\}
$$

\n
$$
B_1 = \left\{ u \in H_0^1 \cap L^{\infty} \setminus \{0\}; \|u\|_{1}^{2} \leq \int_0^1 f(r, u) u r \, dr \right\}
$$

\n
$$
B_1^* = \left\{ u \in H_0^1 \setminus \{0\}; u \text{ is non-increasing, } \|u\|_{1}^{2} \leq \int_0^1 f(r, u) u r \, dr \right\}
$$

\n
$$
\partial (B_1 \cup B_1^*) = \left\{ u \in B_1 \cup B_1^*; u \geq 0; \|u\|_{1}^{2} = \int_0^1 f(r, u) u r \, dr \right\}
$$

\n
$$
B_{01} = \left\{ u \in B_1; u \text{ is constant in a and of zero} \right\}.
$$

\n
$$
\partial B_{01} = \left\{ u \in B_{01}; u \geq 0, \|u\|_{1}^{2} = \int_0^1 f(r, u) u r \, dr \right\}
$$

For $0 \le \alpha \le 1$, $f \in A'$, u in H_0^{α} , define

$$
I_{\alpha}(u) = \frac{1}{2} \int_0^1 f(r, u) u r^{\alpha} dr - \int_0^1 F(r, u) r^{\alpha} dr \qquad (2.13)
$$

since $f \in A'$; $f(r, t)t - 2F(r, t) \ge 0$ for all $(r, t) \in [0, 1] \times \mathbb{R}$, hence $I_{\alpha}(u) \ge 0$. Define a_{α} by

$$
\frac{a_{\alpha}^2}{2} = \inf_{\sum_{\alpha}} I_{\alpha}.
$$
 (2.14)

Theorem 2.2. Let f be in A'. Then there exists an $\alpha_0 < 1$ such that for $\alpha_0 \le \alpha < 1$, \sum_{α} *is non-empty and* ${a_n}$ *is bounded and satisfying*

$$
\frac{a_{\alpha}^2}{2} = \inf_{B_{\alpha}} I_{\alpha}(u) = \inf_{\partial B_{\alpha}} I_{\alpha}(u). \tag{2.15}
$$

Case 1. If f is super critical then $\lim_{\alpha \to 1} a_{\alpha} = 0$.

Case 2. If f is critical and suppose there exists a $t_2 > 0$ such that

$$
t_2 h\left(0, \left(\frac{2}{b(0)}\right)^{1/2} t_2\right) > 2\left(\frac{2}{b(0)}\right)^{1/2}
$$

exp $(-t_2)$ $\lt \delta_1$ [see (2.4)] (2.16)

then $\lim_{\alpha \to 1} a_{\alpha} = a$ exists and is non-zero. Moreover there exists u satisfying (1.2) such that

$$
I_1(u) = \frac{a^2}{2} = \inf_{B_1 \cup B_1^*} I_1 = \inf_{B_{01}} I_1 = \inf_{\partial B_{01}} I_1
$$
 (2.17)

Remark 2.1. Suppose there exists a sequence $t_n \to \infty$ such that $h(0, t_n)t_n \to \infty$, then (2.16) is satisfied.

Examples

1. *Carleson–Chang.* Let $f_{\lambda}(t) = \lambda t \exp(\lambda t^2)$ for $0 < \lambda < \lambda_1$. Then f_{λ} is λ and satisfies (2.16) . Hence (1.1) has a solution.

2. Atkinson–Peletier. $f(t) = t^m \exp(bt^2)$, $m > 1$, $b > 0$. Then f is in A' satisfying (2.16). Hence (1.1) has a solution.

3.
$$
f(t) = \lambda t^{m} \exp(bt^{2} + \sin t^{2}), \quad b \ge 1
$$

\n
$$
m = 1, \quad 0 < \lambda < \lambda_{1},
$$

\n
$$
m > 1, \quad \lambda > 0.
$$

Then f is in A' and satisfying (2.16). Hence (1.1) has a solution. Here $\log f$ is not convex for large t.

4. Let $b(r)$ be a C¹-function on [0, 1] such that $0 \leq b(r) \leq 1$, $b(r) \equiv 1$ in a neighbourhood of zero. Let $f(r, t) = t^m \exp(b(r)t^2 + (1 - b(r))\exp(t)$. Then f is in A' satisfying (2.16). Hence (1.1) has a solution.

54 *Adimurthi*

3. Proofs of theorems (2.1) and (2.2)

Lemma 3.1. For $0 \le \alpha < 1$ *, we have*

(i) H_0^{α} is compactly embedded in C[0, 1]. (ii) $\lambda_{\alpha} < \lambda_1$ and $\lambda_{\alpha} \rightarrow \lambda_1$ as $\alpha \rightarrow 1$ (iii) *u* in H_0^1 , $r_1 < r_2$,

$$
|u(r_1)-u(r_2)|^2\leqslant ||u||_1^2\log\frac{r_2}{r_1}.
$$

Proof. Let $r_1 \le r_2$ and u is in H_0^{α} . Then by integration by parts

$$
|u(r_2) - u(r_1)|^2 = \left(\int_{r_1}^{r_2} u'(r) dr\right)^2
$$

\n
$$
\leq \|u\|_{\alpha}^2 \int_{r_1}^{r_2} r^{-\alpha} dr
$$

\n
$$
= \|u\|_{\alpha}^2 \frac{r_2^{1-\alpha} - r_1^{1-\alpha}}{1-\alpha}.
$$
\n(3.1)

Hence (i) follows from (3.1) and Arzela-Ascoli's theorem. Let u is in H_0^1 , then

$$
|u(r_2) - u(r_1)|^2 = \left(\int_{r_1}^{r_2} u'(r) dr\right)^2
$$

\n
$$
\leq \|u\|_1^2 \left(\int_{r_1}^{r_2} r^{-1} dr\right)
$$

\n
$$
= \|u\|_1^2 \log \frac{r_2}{r_1}.
$$
 (3.2)

This proves (iii).

We have

$$
-(r\phi'_\alpha)' = \lambda_\alpha \phi_\alpha r - (1-\alpha)\phi'_\alpha
$$

$$
-(r\phi'_1)' = \lambda_1 \phi_1 r.
$$

Hence

$$
\lambda_1 \int_0^1 \phi_1 \phi_a r \, dr = - \int_0^1 (r \phi'_1)' \phi_a dr
$$

= $-\int_0^1 (r \phi'_1)' \phi_a dr$
= $\lambda_a \int_0^1 \phi_a \phi_1 r dr - (1 - \alpha) \int_0^1 \phi'_a \phi_1 dr.$

i.e.

$$
(\lambda_1 - \lambda_\alpha) \int_0^1 \phi_1 \phi_\alpha r \, dr = -(1 - \alpha) \int_0^1 \phi'_\alpha \phi_1 \, dr.
$$

Since $\phi'_\alpha \leq 0$ and hence $\lambda_\alpha \leq \lambda_1$ and $\lambda_\alpha \rightarrow \lambda_1$ as $\alpha \rightarrow 1$. This proves (ii).

Lemma 3.2. Let f be in A, then there exists an $\alpha_0 < 1$ such that for $\alpha_0 \le \alpha < 1$,

- i) \overline{I}_α satisfies the Palais-Smale condition.
- ii) *Let m > 0 be such that*

$$
\int_0^{1/2} F\left(r, \frac{m}{2}\right) r \, \mathrm{d}r \geqslant 2m^2 \tag{3.3}
$$

[Such a m exists because of the condition (iv) *of definition* (2.1)].

Then there exists a u_a *in* $C^2[0, 1]$ *satisfying*

$$
L_{\alpha}u_{\alpha} = f(r, u_{\alpha}) \quad \text{in } [0, 1)
$$

\n
$$
u_{\alpha} > 0
$$

\n
$$
u'_{\alpha}(0) = u_{\alpha}(1) = 0.
$$

\n
$$
\overline{I}_{\alpha}(u_{\alpha}) \le 2m^{2}.
$$

\n(3.4)

and

Proof. Proof of this lemma is standard (see [7]). For the sake of completeness we **will prove it.**

Step 1. Let u_n in H_0^{α} be a sequence such that

$$
\begin{split}\n|\bar{I}_{\alpha}(u_{n})| &\leq M \\
\bar{I}_{\alpha}'(u_{n}) &\to 0 \quad \text{as } n \to \infty.\n\end{split}
$$
\n
$$
\begin{split}\n\bar{I}_{\alpha}'(u_{n}) &\to 0 \quad \text{as } n \to \infty.\n\end{split}
$$
\n
$$
\begin{split}\n&\beta \bar{I}_{\alpha}(u_{n}) - \langle \bar{I}_{\alpha}'(u_{n}), u_{n} \rangle \\
&= \left(\frac{\beta}{2} - 1\right) \int_{0}^{1} u_{n}'(r)^{2} r^{a} dr - \int_{|u_{n}| \leq t_{1}}^{1} [\beta F(r, u_{n}) - f(r, u_{n}) u_{n}] r^{a} dr \\
&\geqslant \left(\frac{\beta}{2} - 1\right) \int_{0}^{1} u_{n}'(r)^{2} r^{a} dr - \int_{|u_{n}| \leq t_{1}} [\beta F(r, u_{n}) - f(r, u_{n}) u_{n}] r^{a} dr \\
&\geqslant \left(\frac{\beta}{2} - 1\right) \int_{0}^{1} u_{n}'(r)^{2} r^{a} dr + C,\n\end{split}
$$
\n(3.6)

where C is a constant depending only on F. Since $\beta > 2$, (3.5) and (3.6) imply $\{\|u_n\|_{\alpha}\}\$ is bounded. Let u_n converge to u weakly in H_0^{α} and strongly in C[0, 1].

$$
\langle \overline{I}'(u_n), u_n - u \rangle = \int_0^1 u'_n(r)^2 r^{\alpha} dr - \int_0^1 u'_n(r) u'(r) r^{\alpha} dr - \int_0^1 f(r, u_n) (u_n - u) r^{\alpha} dr \qquad (3.7)
$$

(3.5) and (3.7) imply

$$
\int_0^1 u'_n(r)^2 r^{\alpha} dr \rightarrow \int_0^1 u'(r)^2 r^{\alpha} dr.
$$

56 *Adimurthi*

Hence u_n converges strongly to u and this proves (i).

Step 2. From (ii) of Lemma (3.1) and (iii) of Definition (2.1) there exists an $\alpha_0 < 1$ and a $\lambda > 0$ such that

$$
F(r,t) \le \frac{\lambda t^2}{2} < \frac{\lambda_{\alpha} t^2}{2} \quad \text{for all } r \in [0,1], \quad 0 < |t| < t_0. \tag{3.8}
$$

Let u in H_0^{α} be such that

$$
||u||_{\alpha}^{2} \leqslant \frac{(1-\alpha)}{2}t_{0}^{2}.
$$
\n(3.9)

From (3.1) and (3.9) we have

$$
|u(r)|^2 \leq t_0^2. \tag{3.10}
$$

Hence (3.8) and (3.10) give

$$
F(r, u(r)) \leqslant \frac{\lambda u(r)^2}{2} \tag{3.11}
$$

$$
\overline{I}_{\alpha}(u) = \frac{1}{2} ||u||_{\alpha}^{2} - \int_{0}^{1} F(r, u)r^{\alpha} dr
$$
\n
$$
\geq \frac{1}{2} ||u||_{\alpha}^{2} - \frac{\lambda}{2} \int_{0}^{1} u(r)^{2}r^{\alpha} dr
$$
\n
$$
\geq \frac{1}{2} \left[||u||_{\alpha}^{2} - \frac{\lambda}{\lambda_{\alpha}} ||u||_{\alpha}^{2} \right]
$$
\n
$$
= \frac{1}{2} \left(1 - \frac{\lambda}{\lambda_{\alpha}} \right) ||u||_{\alpha}^{2}.
$$
\n(3.12)

Hence zero is a local minima.

Step 3. Define u_0 in H_0^0 by

$$
u_0(r) = \begin{cases} \frac{m}{2} & 0 \le r < \frac{1}{2} \\ m(1-r) & \frac{1}{2} \le r \le 1 \end{cases} \tag{3.13}
$$

Then

$$
\overline{I}_{\alpha}(u_{0}) = \frac{1}{2} \int_{1/2}^{1} m^{2} r^{\alpha} dr - \int_{0}^{1} F(r, u_{0}) r^{\alpha} dr
$$
\n
$$
\leq \frac{m^{2}}{2(1+\alpha)} \left(1 - \frac{1}{2^{1+\alpha}}\right) - \int_{0}^{1/2} F(r, u_{0}) r^{\alpha} dr
$$
\n
$$
\leq \frac{m^{2}}{2(1+\alpha)} \left(1 - \frac{1}{2^{1+\alpha}}\right) - \int_{0}^{1/2} F\left(r, \frac{m}{2}\right) r^{\alpha} dr
$$
\n
$$
\leq \frac{m^{2}}{2(1+\alpha)} \left(1 - \frac{1}{2^{1+\alpha}}\right) - 2m^{2} < 0
$$
\n(3.14)

and for $0 \le t \le 1$,

$$
\overline{I}_\alpha(tu_0) \leqslant \frac{t^2}{2} \|u_0\|_\alpha^2
$$
\n
$$
\leqslant \frac{m^2}{2(1+\alpha)} \bigg(1 - \frac{1}{2^{1+\alpha}}\bigg) \leqslant 2m^2
$$
\n(3.15)

Hence \overline{I}_α satisfies all the hypotheses of Mountain pass theorem and hence there exists a critical point u_{α} of \overline{I}_{α} such that

$$
\overline{I}_{\alpha}(u_{\alpha}) \leqslant \sup_{t \in [0,1]} \overline{I}_{\alpha}(tu_{0}).
$$

Now from (3.15) it follows that

$$
\overline{I}_{\alpha}(u_{\alpha}) \leqslant 2m^2
$$

and u_{α} satisfies (3.4).

Lemma 3.3. Let f be in A', then there exists $\alpha_0 < 1$ such that for all $\alpha_0 \le \alpha < 1$, \sum_{α} is *non-empty and an* $u_{\alpha} \in \sum_{\alpha}$ satisfying

$$
\frac{a_{\alpha}^{2}}{2} = I_{\alpha}(u_{\alpha}) = \inf_{u \in \partial B_{\alpha}} I_{\alpha}(u) = \inf_{u \in B_{\alpha}} I_{\alpha}(u)
$$
\n(3.16)

and for all w in H_0^{α} , $||w||_{\alpha} = 1$,

$$
\int_0^1 f(r, a_\alpha w) wr^\alpha dr \leq a_\alpha. \tag{3.17}
$$

Proof. Let u be in B_{α} . Define $\gamma \leq 1$ such that

$$
||u||_{\alpha}^{2} = \frac{1}{\gamma} \int_{0}^{1} f(r, \gamma u) u r^{\alpha} dr.
$$
 (3.18)

Such a γ exists because $f(r, t)/t$ is an increasing function and u is in B_{α} and $|f(r, t)| < \lambda_{\alpha} |t|$ for $|t| < t_0$; $\alpha_0 \le \alpha < 1$.

Define $v = \gamma u$, then

$$
||v||_a^2 = \gamma^2 ||u||_a^2 = \int_0^1 f(r, \gamma u)(\gamma u) r^a dr
$$

=
$$
\int_0^1 f(r, v) v r^a dr.
$$
 (3.19)

Hence v is in ∂B_{α} and since $\gamma \leq 1$, and $f \in A'$, we have

$$
I_{\alpha}(v)=I_{\alpha}(\gamma u)\leqslant I_{\alpha}(u).
$$

this together with $\partial B_{\alpha} \subset B_{\alpha}$ imply that

$$
d_a = \inf_{\partial B_a} I_a = \inf_{B_a} I_a. \tag{3.20}
$$

58 *Adimurthi*

Let u_n in ∂B_α be a sequence such that $u_n \ge 0$ and $I_\alpha(u_n) \to d_\alpha$. Such a sequence exists because for u in ∂B_{α} implies |u| is in ∂B_{α} and $I_{\alpha}(u) = I_{\alpha}(|u|)$.

We claim that $\{ ||u_n||_{\alpha} \}$ is bounded. Let N be such that for all $n \ge N$,

$$
d_{\alpha} \le I_{\alpha}(u_{n}) \le d_{\alpha} + 1
$$
\n(3.21)
\n
$$
d_{\alpha} + 1 \ge I_{\alpha}(u_{n}) = \frac{1}{2} \int_{0}^{1} [f(r, u_{n})u_{n} - 2F(r, u_{n})]r^{\alpha} dr
$$
\n
$$
= \frac{1}{2} \int_{0}^{1} [f(r, u_{n})u_{n} - \beta F(r, u_{n})]r^{\alpha} dr
$$
\n
$$
+ \left(\frac{\beta}{2} - 1\right) \int_{0}^{1} F(r, u_{n})r^{\alpha} dr.
$$
\n(3.22)

From (iv) of Definition (2.1), there exists a constant C depending only on f such that for all v in H_0^{α} ,

$$
\int_0^1 [f(r,v)v - \beta F(r,v)]r^{\alpha} dr \geqslant C. \tag{3.23}
$$

From (3.22) and (3.23) there exists a constant C_1 independent of n such that

$$
\int_0^1 F(r, u_n)r^{\alpha} dr \leqslant C_1.
$$
 (3.24)

From (3.21) and (3.24) we have

$$
||u||_{\alpha}^{2} = 2I_{\alpha}(u_{n}) + 2\int_{0}^{1} F(r, u_{n})r^{\alpha} dr
$$

$$
\leq 2(d_{\alpha} + 1) + 2C_{1}
$$

and this proves the claim.

Let u_{α} = weak limit of u_n and α_0 be as in Lemma (3.2). We claim that for $\alpha_0 \le \alpha < 1$, $u_{\alpha} \in \sum_{\alpha}$ satisfying (3.16).

First we will show that u_{α} is non-zero. Suppose $u_{\alpha} \equiv 0$, then from Lemma (3.1). u_n converges to 0 in $C[0, 1]$. Let N be an integer such that

$$
u_n(r) < t_0 \quad \text{for all } n \geqslant N, \, r \in [0, 1]. \tag{3.25}
$$

Then from (iii) of Definition (2.1) and the choice of α_0 ,

$$
f(r, u_n(r)) < \lambda_\alpha u_n(r). \tag{3.26}
$$

Since $u_n \in \partial B_\alpha$, we have from (3.26)

$$
\|u_n\|_{\alpha}^2 = \int_0^1 f(r, u_n) u_n r^{\alpha} dr
$$

$$
< \lambda_{\alpha} \int_0^1 u_n(r)^2 r^{\alpha} dr \leq \|u_n\|_{\alpha}^2
$$

which is a contradiction and hence $u_{\alpha} \neq 0$ and

$$
I_{\alpha}(u_{\alpha}) = \lim_{n \to \infty} I_{\alpha}(u_{n}) = d_{\alpha}
$$

$$
||u_{\alpha}||_{\alpha}^{2} \le \lim_{n \to \infty} ||u_{n}||_{\alpha}^{2} = \int_{0}^{1} f(r, u_{\alpha}) u_{\alpha} r^{\alpha} dr,
$$
 (3.27)

 u_{α} is in ∂B_{α} . If not, then by (3.27) we can choose a $\gamma < 1$ such that

$$
||u_{\alpha}||^2 = \frac{1}{\gamma} \int_0^1 f(r, \gamma u_{\alpha}) u_{\alpha} r^{\alpha} dr.
$$

Then γu_{α} is in ∂B_{α} and

$$
d_{\alpha} \leqslant I(\gamma u_{\alpha}) < I(u_{\alpha}) = d_{\alpha}.
$$

This proves that u_{α} is in ∂B_{α} . Since u_{α} is a minimizer and hence there exists a real number ρ such that for all ϕ in H_0^{α} ,

$$
\int_0^1 u'_\alpha(r)\phi'(r)r^\alpha dr - \int_0^1 f(r, u_\alpha)\phi r^\alpha dr
$$

= $\rho \left\{ 2 \int_0^1 u'_\alpha(r)\phi'(r)r^\alpha dr - \int_0^1 f(r, u_\alpha)\phi r^\alpha dr - \int_0^1 \frac{\partial f}{\partial t}(r, u_\alpha)u_\alpha \phi r^\alpha dr \right\}.$ (3.28)

Putting $\phi = u_{\alpha}$ in (3.28) and using the fact that $u_{\alpha} \in \partial B_{\alpha}$, we have

$$
\rho\left\{2\int_0^1 u'_\alpha(r)^2r^\alpha dr-\int_0^1 f(r,u_\alpha)u_\alpha r^\alpha dr-\int_0^1\frac{\partial f}{\partial t}(r,u_\alpha)u_\alpha(r)^2r^\alpha dr\right\}=0.
$$

Since u_{α} is in ∂B_{α} , we have

$$
\rho \int_0^1 \left[\frac{f(r, u_\alpha)}{u_\alpha} - \frac{\partial f}{\partial t}(r, u_\alpha) \right] u_\alpha(r)^2 r^\alpha dr = 0.
$$

Since f is in A', and u is not zero, it implies that $\rho = 0$. Hence from (3.28) and by regularity of elliptic operator, it follows that u_{α} is in \sum_{α} and $I_{\alpha}(u_{\alpha}) = d_{\alpha}$. Since $\sum_{\alpha} \subset \partial B_{\alpha}$, we have $a_{\alpha}^2/2 = \inf_{\sum_{\alpha} I_{\alpha}} = I_{\alpha}(u_{\alpha}) = d_{\alpha}$ and this proves (3.16). Let $||w||_{\alpha} = 1$. Choose $\gamma > 0$ such that

$$
1 = \frac{1}{\gamma} \int_0^1 f(r, \gamma w) w r^{\alpha} dr.
$$
 (3.29)

Then γw is in ∂B_{α} . Hence

$$
\frac{a_{\alpha}^2}{2} \leqslant I_{\alpha}(\gamma w) \leqslant \frac{\gamma^2}{2} \parallel w \parallel_{\alpha}^2 = \frac{\gamma^2}{2}
$$

implies $a_{\alpha} \leq \gamma$. Since f is in A', we have

$$
\frac{1}{a_{\alpha}} \int_0^1 f(r, a_{\alpha}w)wr^{\alpha} dr \le \frac{1}{\gamma} \int_0^1 f(r, \gamma w)wr^{\alpha} dr = 1
$$

$$
\int_0^1 f(r, a_{\alpha}w)wr^{\alpha} dr \le a_{\alpha}
$$

proving (3.17).

i.e.

Lemma 3.4. Let f be in A' and α_0 *is as in Lemma* (3.3). *Then* $\{a_{\alpha}\}\$ *is bounded on* $[\alpha_0, 1]$ *. Let a* = $\overline{\lim_{n\to 1}} a_n$. *Then for all* $w \in H_0^1$ with $||w||_1 = 1$, we have

$$
\int_0^1 f(r, aw) wr \, dr \leq a. \tag{3.30}
$$

Proof. From Lemma (3.2) and (3.3) we have $l_{\alpha} = a_{\alpha}^2/2$ and $l_{\alpha} \leq 2m^2$. Hence $\{a_{\alpha}\}\$ is bounded on $[\alpha_0, 1]$. Let α_n be a sequence such that $a_{\alpha_n} \to a$ as $\alpha_n \to 1$ and w be in E with $||w||_1 = 1$. Let $v_n = w/||w||_{\alpha_n}$. Then from (3.17) we have

$$
\int_0^1 f(r, a_{\alpha_n} v_n) v_n r^{\alpha} dr \leq a_{\alpha_n}.
$$

Letting $\alpha_n \rightarrow 1$, $v_n \rightarrow w$, $a_{\alpha_n} \rightarrow a$, we get

$$
\int_0^1 f(r, aw) wr \, dr \leqslant a. \tag{3.31}
$$

Since f is odd, and hence by Fatou's (3.31) holds for all w in H_0^1 .

Lemma 3.5. Let f be in A, $0 \le \alpha < 1$, $0 \le \epsilon \le 1$, and u in \sum_{α} . Then we have

$$
u(r) = \frac{1 - r^{1 - \alpha}}{1 - \alpha} \int_0^r f(t, u(t)) t^{\alpha} dt + \int_r^1 t^{\alpha} \left(\frac{1 - t^{1 - \alpha}}{1 - \alpha} \right) f(t, u(t)) dt \qquad (3.32)
$$

$$
\frac{1}{2}\varepsilon^{1+\alpha}u'(\varepsilon)^2 = (1+\alpha)\int_0^\varepsilon F(r,u)r^\alpha dr + \int_0^\varepsilon \frac{\partial F}{\partial r}(r,u)r^{1+\alpha} dr \n+ \frac{1-\alpha}{2}\int_0^\varepsilon u'(r)^2r^\alpha dr - \varepsilon^{1+\alpha}F(\varepsilon, u(\varepsilon)).
$$
\n(3.33)

Proof. If $v(r)$ is the right hand side of (3.32), then by differentiating twice, v satisfies

$$
L_a v = f(r, u)
$$

\n
$$
v'(0) = v(1) = 0.
$$
\n(3.34)

Hence by uniqueness, $v = u$. This proves (3.32). u is in Σ_a , hence

$$
(r^{\alpha}u^{\prime})^{\prime} = -f(r, u(r))r^{\alpha}.
$$
\n
$$
(3.35)
$$

multiply (3.35) by $ru'(r)$ and integrate from 0 to ε we get

$$
\int_0^{\epsilon} (r^{\alpha} u'(r))^{\prime} u'(r) r dr = - \int_0^{\epsilon} f(r, u) u' r^{1 + \alpha} dr.
$$
 (3.36)

Since $(dF/dr)(r, u(r)) = (\partial F/\partial r)(r, u(r)) + f(r, u(r))u'(r)$, we have

$$
\frac{1}{2}\varepsilon^{1+\alpha}u'(\varepsilon)^{2} - \frac{(1-\alpha)}{2}\int_{0}^{\varepsilon} u'(r)^{2}r^{\alpha} dr = -\int_{0}^{\varepsilon} \frac{dF}{dr}r^{1+\alpha} dr + \int_{0}^{\varepsilon} \frac{\partial F}{\partial r}r^{1+\alpha} dr
$$

$$
= -F(\varepsilon, u(\varepsilon))\varepsilon^{1+\alpha} + (1+\alpha)\int_{0}^{\varepsilon} F(r, u)r^{\alpha} dr
$$

$$
+ \int_{0}^{\varepsilon} \frac{\partial F}{\partial r}r^{1+\alpha} dr.
$$

Hence

$$
\frac{1}{2}\varepsilon^{1+\alpha}u'(\varepsilon)^2 = (1+\alpha)\int_0^{\varepsilon} F(r,u)r^{\alpha}\,dr + \int_0^{\varepsilon} \frac{\partial F}{\partial r}r^{1+\alpha}\,dr + \frac{1-\alpha}{2}\int_0^{\varepsilon} u'(r)^2r^{\alpha}\,dr - F(\varepsilon, u(\varepsilon))\varepsilon^{1+\alpha}.
$$

This proves (3.33).

Lemma 3.6. Let f be in A, $\alpha_n \rightarrow 1$ *,* μ_n *is in* \sum_{α_n} *and a constant M independent of n such that*

(i)
$$
\|u_n\|_{\alpha_n} \le M
$$

\n(ii)
$$
\lim_{n \to \infty} u'_n(1) = \eta \ne 0.
$$
\n(3.37)

Then there exists a subsequence (still denoted by α_n *) such that the weak limit u of* u_n *in* H_0^1 *is a weak solution of (1.2). Furthermore*

$$
\lim_{n \to \infty} \int_0^1 F(r, u_n) r^{\alpha_n} dr = \int_0^1 F(r, u) r dr.
$$
 (3.38)

Proof. $||u_n||_1 \le ||u_n||_{\alpha_n} \le M$, hence by going to a subsequence the weak limit u of u_n in H_0^1 exists. From (iii) of Lemma (3.1), u_n converges to u uniformly on compact subsets of (0, 1]. We claim u is not identically zero. For, if $u \equiv 0$, then, since u_n in \sum_{α_n} , we have for $0 < r \leq 1$,

$$
r^{a_n}u'_n(r) = u'_n(1) + \int_r^1 f(r, u_n)r^{a_n} dr.
$$
 (3.39)

From (ii) of (3.37) and (3.39) and using $u_n \to 0$ on [r, 1] uniformly

$$
r \lim_{n \to \infty} u'_n(r) = \eta. \tag{3.40}
$$

Hence by Fatou's lemma, and (3.40)

$$
\infty = \eta^2 \int_0^1 \frac{r dr}{r^2} < \int_0^1 \lim_{n \to \infty} u'_n(r)^2 r^{a_n} dr \leqslant \lim_{n \to \infty} ||u_n||_{a_n}^2 \leqslant M
$$

which is a contradiction. Hence $u \neq 0$ and u satisfies

$$
-(ru')' = f(r, u)r \quad \text{in (0, 1]}
$$

$$
u(1) = 0.
$$
 (3.41)

Now by Fatous, we have

$$
\int_0^1 f(r, u)ur \, dr \leqslant \underline{\lim} \int_0^1 f(r, u_n) u_n r^{\alpha} \, dr \leqslant M. \tag{3.42}
$$

Hence

$$
\int_0^1 f(r, u)r \, dr \leq \int_{u \leq 1} f(r, u)r \, dr + \int_{u > 1} f(r, u)ur \, dr < \infty. \tag{3.43}
$$

For any $0 < r \le 1$, integrating (3.41) from r to 1, we get

$$
ru'(r) = u'(1) + \int_{r}^{1} f(t, u)t \, \mathrm{d}t. \tag{3.44}
$$

(3.44) gives $ru'(r)$ is monotone and hence limit $r \rightarrow 0$ exists. We claim that

$$
\lim_{r \to 0} ru'(r) = 0. \tag{3.45}
$$

For, if $\lim_{r\to 0}ru'(r) = C < 0$, then there exists $\varepsilon > 0$ such that $-u'(r) \ge C/r$ for $0 < r \le \varepsilon$. Hence

$$
\infty = C^2 \int_0^t \frac{r \, dr}{r^2} \leqslant \int_0^t r u'(r)^2 \, dr < \infty.
$$

Hence (3.45) is true. Using (3.44) and (3.45) we get

$$
u'(1) = -\int_0^1 f(t, u)t \, \mathrm{d}t. \tag{3.46}
$$

Let ϕ be in $C^2[0, 1]$ with $\phi(1) = 0$. Multiply ϕ' to (3.44) and integrate from 0 to 1, and using (3.46) we have

$$
\int_0^1 u'(r)\phi'(r)r dr = u'(1)(\phi(1) - \phi(0)) + \int_0^1 \phi'(r) \int_r^1 f(t, u)t dt dr
$$

= $u'(1)(\phi(1) - \phi(0)) + \int_0^1 f(t, u)\phi(t)t dt$
 $- \phi(0) \int_0^1 f(t, u)t dt$
= $\int_0^1 f(t, u)\phi(t)t dt$

and hence u is a weak solution of (1.2) .

From (3.33) and (3.37) we have

$$
\lim_{n\to\infty}\left\{(1+\alpha_m)\int_0^1 F(r,u_n)r^{\alpha_n}\,\mathrm{d}r+\int_0^1\frac{\partial F}{\partial r}r^{1+\alpha_n}\,\mathrm{d}r\right\}=\frac{1}{2}\eta^2\tag{3.47}
$$

Now multiply *ru'(r)* to (3.41) and integrate from r to 1, we have

$$
-\frac{1}{2}r^2u'(r)^2 + \frac{1}{2}u'(1)^2 = -\int_r^1 \frac{dF}{dt}t^2 dt + \int_{r_1}^1 \frac{\partial F}{\partial t}t^2 dt
$$

= $F(r, u(r))r^2 + 2\int_r^1 F(t, u)t + \int_r^1 \frac{\partial F}{\partial t}t^2 dt.$ (3.48)

Since $ru'(r) \to 0$, $\int_0^1 F(t, u)t dt < \infty$, $\partial F/\partial r > 0$ in $[0, \delta_0]$ and $\int_{\delta_0}^1 (\partial F/\partial t)t^2 dt < \infty$, we conclude that $\lim_{r\to 0} F(r, u(r))r^2$ exists and claim that

$$
\lim_{r \to 0} F(r, u(r))r^2 = 0. \tag{3.49}
$$

If not, there exists a constant $C > 0$ and $\varepsilon > 0$ such that

Hence

$$
F(r, u(r))r^2 \geq C \quad \text{for all } 0 < r < \varepsilon.
$$
\n
$$
\infty = \int_0^\varepsilon \frac{C}{r} \, \mathrm{d}r \leqslant \int_0^\varepsilon F(r, u(r)) r \, \mathrm{d}r < \infty
$$

which is a contradiction.

Now using (3.49), (3.48) becomes

$$
\frac{1}{2}u'(1)^2 = 2\int_0^1 F(r, u)r\,\mathrm{d}r + \int_0^1 \frac{\partial F}{\partial r}(r, u)r^2\,\mathrm{d}r. \tag{3.50}
$$

Since $u'(1) = \lim_{n \to \infty} u'_n(1)$, and hence from (3.47) and (3.50) we have

$$
2\int_0^1 F(r, u)r dr + \int_0^1 \frac{\partial F}{\partial r}(r, u)r^2 dr
$$

=
$$
\lim_{n \to \infty} \left\{ (1 + \alpha_n) \int_0^1 F(r, u_n)r^{\alpha_n} dr + \int_0^1 \frac{\partial F}{\partial r}(r, u_n)r^{1 + \alpha_n} dr \right\}.
$$
 (3.51)

By Fatou's and using (ii) of Definition (2.1) we have

$$
2\int_0^1 F(r, u)r \,dr \leq \underline{\lim}_{n=0} (1 + \alpha_n) \int_0^1 F(r, u_n)r^{a_n} \,dr
$$

$$
\int_0^1 \frac{\partial F}{\partial r}(r, u)r^2 \,dr \leq \underline{\lim}_{n=0} \int_0^1 \frac{\partial F}{\partial r}(r, u_n)r^{a_n+1} \,dr.
$$
 (3.52)

By going to a subsequence, we conclude from (3.51) and (3.52) that

$$
\lim_{n\to\infty} (1+\alpha_n) \int_0^1 F(r,u_n) r^{a_n} dr = 2 \int_0^1 F(r,u) r dr
$$

64 Adimurthi

and

$$
\lim_{n\to\infty}\int_0^1\frac{\partial F}{\partial r}(r,u_n)r^{\alpha_n+1}\,\mathrm{d}r=\int_0^1\frac{\partial F}{\partial r}(r,u)r^2\,\mathrm{d}r.
$$

Lemma 3.7. Let f in A' be critical. Then

$$
\frac{2}{b(0)} = \sup \left\{ c^2; \sup_{\|w\|_1 \leq 1} \int_0^1 f(r, cw) wr \, dr < \infty \right\} \tag{3.53}
$$

Proof. $f = h(r, t) \exp [b(r)t^2]$ for (r, t) in Q_{δ_1} . Let

$$
C_0^2 = \sup \left\{ c^2; \sup_{\|w\|_1 \leq 1} \int_0^1 f(r, cw) wr \, dr < \infty \right\}
$$

Step 1. $C_0^2 \ge 2/b(0)$.

If not, then choose $\varepsilon > 0$, $c > 0$ and a $\delta < (\delta_1, \delta_0)$ such that

$$
\frac{2}{b(0)} < c^2 < (c + \varepsilon)^2 < C_0^2. \tag{3.54}
$$

For $r_0 \in [0, \delta_1]$, define

$$
W_{r_0}(r) = \frac{\log \frac{1}{r}}{\left(\log \frac{1}{r_0}\right)^{1/2}} \quad \text{for } r_0 \le r \le 1
$$

$$
W_{r_0}(r) = \left(\log \frac{1}{r_0}\right)^{1/2} \quad \text{for } 0 \le r \le r_0.
$$
 (3.55)

Then $|| w_{r_0} ||_1 = 1$. Since $(\partial f / \partial r)(r, t) \ge 0$ in Q_{δ_0} , we have

$$
h(0, t) \exp [b(0)t^2] \leq h(r, t) \exp [b(r)t^2] \quad \text{in } Q_{b_0}.
$$

Now $(c + \varepsilon)^2 < C_0^2$ implies that there exists an absolute constant M depending only on $(c + \varepsilon)$ and f such that

$$
M \ge \int_0^1 f(r, (c + \varepsilon) w_{r_0}) w_{r_0} r \, dr \ge \int_0^{\delta} f(r, (c + \varepsilon) w_{r_0}) w_{r_0} r \, dr
$$

\n
$$
\ge \int_0^{r_0} f\left(0, (c + \varepsilon) \left(\log \frac{1}{r_0}\right)^{1/2}\right) \left(\log \frac{1}{r_0}\right)^{1/2} r \, dr
$$

\n
$$
= \frac{1}{2} \left(\log \frac{1}{r_0}\right)^{1/2} h\left(0, (c + \varepsilon) \left(\log \frac{1}{r_0}\right)^{1/2}\right) \exp\left[b(0)(c + \varepsilon)^2 \log \frac{1}{r_0}\right] r_0^2
$$

\n
$$
\ge \frac{\frac{1}{2} \left(\log \frac{1}{r_0}\right)^{1/2} h\left(0, (c + \varepsilon) \left(\log \frac{1}{r_0}\right)^{1/2}\right) \exp\left[\varepsilon^2 \left(\log \frac{1}{r_0}\right)\right]}{r_0^{\varepsilon^2 b(0) - 2}}
$$

as $r_0 \rightarrow 0$.

Hence $C_0^2 \leq 2/b(0)$.

Step 2. $C_0^2 = 2/b(0)$.

Suppose not, then choose $\varepsilon > 0$, $\delta > 0$ such that $\delta \leq \min(\delta_1, \delta_0)$ and for all r in [0, δ],

$$
C_0^2 < (C_0 + \varepsilon)^2 < \frac{2 - \varepsilon}{b(r)}.
$$

Let $||w||_1 \le 1$, then

$$
\int_0^1 f(r, (C_0 + \varepsilon)w)wr dr = \int_0^{\delta} + \int_{\delta}^1.
$$
\n(3.56)

Since $||w||_1 = 1$ implies from Lemma (3.1)

$$
|w(r)| \leqslant \log \frac{1}{r},
$$

hence there exists a constant M_1 such that

$$
\sup_{\|w\|_1 \le 1} \int_{\delta}^1 f(r, (C_0 + \varepsilon)w)wr dr \le M_1
$$
\n(3.57)

and

$$
\int_0^{\delta} f(r, (C_0 + \varepsilon)w)wr dr \leq \int_0^{\delta} h(r, (C_0 + \varepsilon)w)[\exp(C_0 + \varepsilon)^2 b(r)w^2] wr dr
$$

$$
\leq \int_0^{\delta} h(r, (C_0 + \varepsilon)w)[\exp(2 - \varepsilon)w^2] wr dr
$$

$$
\leq M_2 \int_0^{\delta} [\exp(2 - \varepsilon/2)w^2] r dr
$$

$$
\leq M_2 \int_0^{\delta} r^{\varepsilon/2 - 1} dr \leq M_3
$$
 (3.58)

where

$$
M_2 = \sup_{(r,t)\in Q_\delta} h(r,t)t \exp{-\frac{\varepsilon}{2}t^2}.
$$

This implies C_0 > $(C_0 + \varepsilon)$ which is a contradiction. Hence $C_0^2 = 2/b(0)$.

Lemma 3.8. Let f in A' be critical and suppose there exists a t₀ > 0 satisfying

$$
\exp - t_0^2 < \delta_1
$$
\n
$$
h \left(0, \left(\frac{2}{b(0)} \right)^{1/2} \right) t_0 > 2 \left(\frac{2}{b(0)} \right)^{1/2} \tag{3.59}
$$

Let $a \geq 0$ such that

$$
\sup_{\|w\|_1 \leq 1} \int_0^1 f(r, aw) wr \, dr \leq a \tag{3.60}
$$

then $a^2 < 2/b(0)$.

Proof. From Lemma (3.7), $a^2 \le 2/b(0)$. Suppose $a^2 = 2/b(0)$, then take $r_0 = \exp(-t_0^2)$, w_{r_0} as in (3.55) and from (3.60) we have

$$
\left(\frac{2}{b(0)}\right)^{1/2} = a \ge \int_0^{r_0} f(r, aw_{r_0})w_{r_0}r \, dr
$$

\n
$$
\ge \int_0^{r_0} f(0, aw_{r_0})w_{r_0} \, dr
$$

\n
$$
= f(0, at_0)t_0 \frac{r_0^2}{2}
$$

\n
$$
= t_0 h(0, at_0) \exp 2\left(\log \frac{1}{r_0}\right) \frac{r_0^2}{2}
$$

\n
$$
= \frac{1}{2} t_0 h\left(0, \left(\frac{2}{b(0)}\right)^{1/2} t_0\right) > \left(\frac{2}{b(0)}\right)^{1/2}
$$

which is a contradiction. Hence the result.

Lemma 3.9. For any $\varepsilon > 0$, $0 \le \alpha < 1$,

$$
\sup_{0 \le r \le 1} r^{\varepsilon} \left(\frac{1 - r^{1 - \alpha}}{1 - \alpha} \right) \le \frac{1}{\varepsilon}.
$$
\n(3.61)

Proof. Let $g(r) = r^{e}(1 - r^{1 - \alpha}/1 - \alpha)$. Then $g(0) = g(1) = 0$. Let $0 < r_0 < 1$ such that

$$
g(r_0) = \sup_{0 \le r \le 1} g(r)
$$

then

$$
0 = g'(r_0) = \varepsilon r_0^{\varepsilon - 1} \left(\frac{1 - r_0^{1 - \alpha}}{1 - \alpha} \right) - r_0^{\varepsilon - \alpha}.
$$

Hence

$$
\frac{1-r_0^{1-\alpha}}{1-\alpha}=\frac{r_0^{1-\alpha}}{\epsilon}.
$$

Therefore

$$
g(r) \leqslant g(r_0) \leqslant \frac{r_0^{1-\alpha+\epsilon}}{\epsilon} \leqslant \frac{1}{\epsilon}.
$$

Lemma 3.10. Let fin A' be critical, then

$$
\inf_{B_1 \cup B_1^*} I_1 = \inf_{\partial B_1 \cup B_1^*} I_1 = \inf_{B_{01}} I_1
$$
\n(3.62)

Proof. u is in $B_1 \cup B_1^*$ implies |*u*| also in $B_1 \cup B_1^*$ and $I_1(u) = I_1(|u|)$. Let $u \in B_1 \cup B_1^*$; choose a γ < 1 such that

$$
||u||_1^2 = \frac{1}{\gamma} \int_0^1 f(r, \gamma u) u r \, dr.
$$

Then yu is in $\partial (B_1 \cup B_1^*)$ and $I_1(\gamma u) \leq I_1(u)$. Hence

$$
\inf_{B_1\cup B_1^*} I_1 = \inf_{\partial(B_1\cup B_1^*)} I_1.
$$

Now let $u \ge 0$ is in $\partial (B_1 \cup B_1^*)$. Since f is critical, we have for any $s > 1$

$$
\int_0^1 f(r,su)ur\,dr < \infty.
$$

Let $v = su$, then

$$
||v||_1^2 = s^2 ||u||_1^2 = s^2 \int_0^1 f(r, u)ur \, dr
$$

= $s \int_0^1 f(r, \frac{v}{s}) vr \, dr < \int_0^1 f(r, v)vr \, dr$ (3.63)

because $s > 1$ and $f(r, t)/t$ is increasing.

Choose an $\varepsilon_0 > 0$ such that for any $0 < \varepsilon < \varepsilon_0$

$$
||v||_1^2 < \int_{\varepsilon}^1 f(r, v) v r \, dr \le \int_0^1 f(r, v) v r \, dr \tag{3.64}
$$

and define

$$
v_{\varepsilon} = \begin{cases} v(\varepsilon) & \text{if } 0 \le r \le \varepsilon \\ v(r) & \text{if } \varepsilon \le r \le 1. \end{cases} \tag{3.65}
$$

Then from (3.64) v_{ϵ} is in $B₀₁$.

Now we claim that $I_1(v_\varepsilon) \to I_1(v)$ as $\varepsilon \to 0$.

Case 1. If v is in B_1 , then $||v_e||_{\infty} \le ||v||_{\infty}$ and hence by dominated convergence theorem $I_1(v_\varepsilon) \to I_1(v)$.

Case 2. If v is in B_1^* , then $v_{\varepsilon} \uparrow v$ and hence by Monotone convergence theorem, $I_1(v_{\varepsilon}) \rightarrow I_1(v)$. Hence

$$
\inf I_1 \leqslant I_1(v_\varepsilon) \to I_1(v) \quad \text{as } \varepsilon \to 0. \tag{3.66}
$$

f is critical and is in A', we have for $1 \le s \le 2$

$$
f(r, su)su-2F(r, su)\leq 2f(r, 2u)u-2F(r, 2u)
$$

and is in L^1 . Hence by dominated convergence theorem,

$$
I_1(v) \to I_1(u) \quad \text{as } s \to 1. \tag{3.67}
$$

Combining (3.66) and (3.67) we have

$$
\inf_{B_{01}} I_1 \leqslant \inf_{\partial(B_1 \cup B_1^{\#})} I_1 \leqslant \inf_{B_{01}} I_1
$$

and hence the result.

Proof of theorem (2.1). From Lemma (3.2), there exists $\alpha_0 < 1$ such that Σ_{α} is non-empty for $\alpha_0 \le \alpha < 1$ and $\{l_\alpha\}$ is bounded by $2m^2$ where m is given by (3.3). Let $l = \lim_{\alpha \to 1} l_{\alpha}.$

Let f satisfies (2.10). Let $\eta > 0$, $\gamma > 0$, $\alpha_n \to 1$, u_n in Σ_{α_n} such that

(i)
$$
l_{\alpha_n} \to l
$$
 as $\alpha_n \to 1$
\n(ii) $l_{\alpha_n} \le \overline{I}_{\alpha_n}(u_n) < \left(l_{\alpha_n} + \frac{\eta}{2}\right)$.
\n(iii) $(l_{\alpha_n} + \eta)b \le \gamma < 1$.

We claim that

$$
\lim_{a_n \to 1} u'_n(1) \neq 0. \tag{3.69}
$$

If not, then $u'_n(1) \rightarrow 0$. Since $u_n \in \Sigma_{\alpha_n}$, we have

$$
u'_n(1) = -\int_0^1 f(r, u_n)r^{\alpha_n} dr \to 0 \quad \text{as } \alpha_n \to 1.
$$

Since for any $0 \le r \le 1$ we have

$$
r^{\alpha}u'_n(r) = u'_n(1) + \int_r^1 f(t, u_n)t^{\alpha_n} dt
$$

we have

$$
\sup_{r\in[0,1]}|r^{\alpha}u'_n(r)|\to 0 \quad \text{as } \alpha_n\to 1.
$$

This shows for any $0 < r_0 \leq 1$,

$$
\sup_{r_0 \le r \le 1} |u'_n(r)| \to 0 \quad \text{as } \alpha_n \to 1. \tag{3.70}
$$

This in turn implies

$$
\sup_{r_0 \le r \le 1} |u_n(r)| \le \int_{r_0}^1 |u'_n(t)| \, \mathrm{d}t \to 0 \quad \text{as } \alpha_n \to 1. \tag{3.71}
$$

From (ii) of definition (2.1) and (3.33) we have

$$
\frac{1}{2}\delta_0^2 u'_n(\delta_0)^2 = (1 + \alpha_n) \int_0^{\delta_0} F(r, u_n) r^{a_n} dr + \int_0^{\delta_0} \frac{\partial F}{\partial r} (r, u_n) r^{1 + \alpha_n} dr \n+ \frac{(1 - \alpha)}{2} \int_0^{\delta_0} u'_n(r)^2 r^{a_n} dr - \delta_0^{1 - \alpha_n} F(\delta_0, u_n(\delta_0)) \n\ge (1 + \alpha) \int_0^{\delta_0} F(r, u_n) r^{a_n} dr - \delta_0^{1 + \alpha_n} F(\delta_0, u_n(\delta_0))
$$
\n(3.72)

Hence by (3.70) and (3.72) we have

$$
\int_0^{\delta_0} F(r, u_n) r^{\alpha_n} dr \to 0 \quad \text{as } \alpha_n \to 1.
$$
 (3.73)

From (3.71) and by dominated convergence theorem

$$
\int_{\delta_0}^1 F(r, u_n) r^{\alpha_n} dr \to 0 \quad \text{as } \alpha_n \to 1.
$$
 (3.74)

Combining (3.73) and (3.74) we have

$$
\int_0^1 F(r, u_n)r^{\alpha_n} dr \to 0 \quad \text{as } \alpha_n \to 1.
$$
 (3.75)

Let N_0 be such that for all $n \ge N_0$,

$$
\int_0^1 F(r, u_n)r^{\alpha_n}\,\mathrm{d}r < \frac{\eta}{2}.\tag{3.76}
$$

From (ii) and (iii) of (3.68) and (3.76)

$$
\frac{1}{2} ||u_n||_{\alpha_n}^2 = \overline{I}_{\alpha_n}(u_n) + \int_0^1 F(r, u_n) r^{\alpha_n} dr
$$

$$
< \left(l_{\alpha_n} + \frac{\eta}{2} \right) + \frac{\eta}{2} = (l_{\alpha_n} + \eta)
$$

$$
\leq \frac{\gamma}{b}.
$$

Hence

$$
|u_n(r)|^2 \le ||u||_1^2 \log \frac{1}{r}
$$

$$
< 2(l_{\alpha_n} + \eta) \log \frac{1}{r}
$$

$$
\le \frac{2\gamma}{b} \log \frac{1}{r}.
$$
 (3.77)

From (3.32), (3.70) and (3.77) we have

$$
u_n(0) = \int_0^1 t^{a_n} \left(\frac{1 - t^{1 - a_n}}{1 - \alpha_n} \right) f(t, u_n) dt
$$

\n
$$
= \int_0^{\delta_1} t^{a_n} \left(\frac{1 - t^{1 - a_n}}{1 - \alpha_n} \right) f(t, u_n) dt + \int_{\delta_1}^1 t^{a_n} \left(\frac{1 - t^{1 - a_n}}{1 - \alpha_n} \right) f(t, u_n) dt
$$

\n
$$
\leq M \int_0^{\delta_1} t^{a_n} \left(\frac{1 - t^{1 - a_n}}{1 - \alpha_n} \right) \exp(bu_n^2) dt + M_1
$$

\n
$$
\leq M \int_0^{\delta_1} t^{a_n} \left(\frac{1 - t^{1 - a_n}}{1 - \alpha_n} \right) \exp\left(2\gamma \log \frac{1}{t} \right) dt + M_1
$$

\n
$$
\leq M \int_0^{\delta_1} t^{a_n - 2\gamma} \left(\frac{1 - t^{1 - a_n}}{1 - \alpha_n} \right) dt + M_1
$$
 (3.78)

Now choose $\varepsilon > 0$ such that

 $\alpha_n > 2\gamma - 1 + \varepsilon$ for all *n*, large.

Then from (3.61) and (3.78) we have

$$
u_n(0) \leqslant M \int_0^{\delta_1} t^{\alpha_n - 2\gamma - \varepsilon/2} t^{\varepsilon/2} \left(\frac{1 - t^{1 - \alpha_n}}{1 - \alpha_n} \right) dt + M_1
$$

$$
\leqslant \frac{2M}{\varepsilon} \frac{1}{\left(\alpha_n - 2\gamma + 1 - \frac{\varepsilon}{2} \right)} + M_2 \leqslant \frac{4M}{\varepsilon^2} + M_1.
$$
 (3.79)

Hence

$$
||u_n||_{\infty} = u_n(0) \leq \frac{4M}{\varepsilon^2} + M_1.
$$

Since u_n is in \sum_{α_n} and $\{||u_n||_{\infty}\}$ is bounded and hence u_n converges strongly in C[0, 1] and in H_0^1 to a function u. From (3.71) $u_n(r) \to 0$ as $\alpha_n \to \infty$ for every $r \neq 0$, we have $u \equiv 0$ and hence $u_n(0) \to 0$. Now choose N large such that $||u_n||_{\infty} \le t_0$ for all $n \ge N$. From (iii) of Definition (2.1) we have

$$
\lambda_{\alpha_n} \int_0^1 u_n \phi_{\alpha_n} r^{\alpha_n} dr = - \int_0^1 (r^{\alpha_n} \phi_{\alpha_n}') u_n dr
$$

$$
= - \int_0^1 (r^{\alpha_n} u_n')' \phi_{\alpha_n} dr
$$

$$
\lambda_{\alpha_n} \int_0^1 u_n \phi_{\alpha_n} r^{\alpha_n} dr = - \int_0^1 (r^{\alpha_n} u_n')' \phi_{\alpha_n} dr
$$

$$
= \int_0^1 f(r, u_n) \phi_{\alpha_n} r^{\alpha_n} dr
$$

$$
< \lambda_{\alpha_n} \int_0^1 u_n \phi_{\alpha_n} r^{\alpha_n} dr.
$$

and hence a contradiction. This proves the claim. Hence by going to a subsequence, we assume that

$$
\lim_{a_n \to 1} u'_n(1) \neq 0
$$

\n
$$
l_{a_n} \le \bar{I}_{a_n}(u_n) < 2l_{a_n} \le 4m^2.
$$
\n(3.80)

Now

$$
4m^{2} \geq \frac{1}{2} \int_{0}^{1} [f(r, u_{n})u_{n} - 2F(r, u_{n})] r^{a_{n}} dr
$$

\n
$$
= \frac{1}{2} \int_{0}^{1} [f(r, u_{n})u_{n} - \beta F(r, u_{n})] r^{a_{n}} dr + \frac{\beta - 2}{2} \int_{0}^{1} F(r, u_{n}) r^{a_{n}} dr
$$

\n
$$
\geq M_{1} + \left(\frac{\beta - 2}{2}\right) \int_{0}^{1} F(r, u_{n}) r^{a_{n}} dr
$$

where M_1 is constant independent of n. Hence $\exists M_2 > 0$ such that

$$
\int_0^1 F(r, u_n) r^{\alpha_n} dr \leq M_2
$$

$$
\frac{1}{2} ||u_n||_{\alpha_n}^2 = \overline{I}_{\alpha_n}(u_n) + \int_0^1 F(r, u_n) r^{\alpha_n} dr \leq 4m^2 + M_2.
$$
 (3.81)

Hence $\{\|u_n\|_{\alpha,n}\}$ is uniformly bounded. Hence from (3.80) and Lemma (3.6), u_n converges weakly to a non-zero solution u of (1.2).

From condition (i) of Theorem (2.1), we have for every $1 \leq p < \infty$, $f(u) \in L^p(D)$ (see Moser [6]). Hence by regularity of elliptic operators, $u \in w^{2,p}(D)$ and hence by Sobolev imbedding u is in $C^1(\overline{D})'$ and hence in $C^2(\overline{D})$. This proves the result.

Remark 3.1. From the proof of Theorem (2.1) it follows that if $m > 0$ is satisfying (2.11), then from Lemma (3.2) $l_a \leq 2m^2$ and hence $l \leq 2m^2$. Therefore if $2m^2b < 1$ implies $lb < 1$. This proves the criterion (2.10) .

Proof of Theorem 2.2. From Lemma (3.2) there exists $\alpha_0 < 1$ such that \sum_{α} is non-empty and $\{a_{\alpha}\}\$ is bounded for $\alpha_0 \le \alpha < 1$. Lemma (3.3) gives (2.15).

Case (1). Let f be super critical and $\overline{\lim}_{\alpha \to 1} a_{\alpha} = a \neq 0$. Then from Lemma (3.4) we have

$$
\sup_{\|w\|_1\leq 1}\int_0^1 f(r, aw)wr dr \leq a.
$$

contradicting the fact that f is super critical. Hence $a = 0$.

Case 2. If f is critical, let $a = \overline{\lim}_{a \to 1} a_a$. Then from (3.30) it follows that

$$
\sup_{\|w\|_1 = 1} \int f(r, aw)wr dr \leq a
$$

and from Lemma (3.8),

$$
\frac{a^2}{2}b(0) < 1. \tag{3.82}
$$

Now choose an ε and δ positive such that

(i)
$$
f(r, t) \le M \exp[(b(0) + \varepsilon)t^2]
$$
 for all $(r, t) \in Q_\delta$.
\n(ii) $\frac{a^2}{2}(b(0) + \varepsilon) < 1$. (3.83)

Such a choice is possible because of (3.82) and the condition that f is critical.

Since $a_{\alpha}^2/2 = l_{\alpha}$, and hence f satisfies (2.10) of Theorem (2.1) with b replaced by $(b(0) + \varepsilon)$ and hence there exists a sequence u_n in \sum_{α_n} and a weak solution u of (1.2) such that

(iii)
$$
I_{\alpha_n}(u_n) \to \frac{a^2}{2}
$$
 as $\alpha_n \to 1$
(iv) $u_n \to u$ in H_0^1 .
(v) $\lim_{n \to \infty} \int_0^1 F(r, u_n)r^n dr = \int_0^1 F(r, u)r dr$. (3.84)

In fact (iii) follows from Lemma (3,6). From weak lower semicontinuity of the norm we have

$$
||u||_1^2 \leq \lim_{\alpha_n \to 1} ||u_n||_{\alpha_n}.
$$

and hence from (iii) we have

$$
I_1(u) \le \lim_{\alpha_n \to 1} I_{\alpha_n}(u_n) = \frac{a^2}{2}.
$$
 (3.85)

Let w be in B_{01} . Choose γ_{α} such that

$$
\|w\|_{\alpha}^2=\frac{1}{\gamma_{\alpha}}\int_0^1f(r,\gamma_{\alpha}w)wr^{\alpha}dr.
$$

Such a γ_{α} exists and $\lim_{\alpha \to 1} \gamma_{\alpha} = \gamma_1$ exists and is ≤ 1 because w is in B_{01} and $\gamma_{\alpha} w$ is in B_{α} . Hence

$$
\frac{a_{\alpha}^2}{2} \leqslant I(\gamma_{\alpha} w).
$$

Taking the $\overline{\lim}$ as $\alpha \rightarrow 1$, we get

$$
\frac{a^2}{2} \leqslant I_1(\gamma w) \leqslant I_1(w)
$$

This implies

$$
\frac{a^2}{2} \le \inf_{B_{01}} I_1.
$$
 (3.86)

From Lemma (3.10), (3.85) and (3.86) and using the fact that u is in B_1^* , we get

$$
I_1(u) = \frac{a^2}{2} = \inf_{B_{01}} I_1
$$

and $a \neq 0$ because $u \neq 0$. This proves Theorem (2.2).

Remark 3.2. Suppose $f(r, t) \le 0$ for $r \in [0, 1]$ and $0 \le t \le t_0$ and satisfying all other hypothesis on.f, then also the Theorems (2.1) and *(2.2)* are valid.

Acknowledgements

I am extremely thankful to Dr P N Srikanth for having many helpful discussions and also providing me the useful references. I also thank Professor Mancini for many helpful discussions.

References

- I-I] Adimurthi, Infinite number of solutions of semilinear Dirichlet problem with critical growths in the unit disc in \mathbb{R}^2 (in Preparation)
- [2] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian (preprint)
- [3] Atkinson F V and Peletier L A, Ground state and Dirichlet problems for $-\Delta u = f(u)$ in \mathbb{R}^2 , *Arch. Ration. Mech. Anal. 96* (1986) 147-165
- [4] Brezis H and Nirenberg L, Positive solutions of nonlinear elliptic equations involving critical exponents, *Comm. Pure Appl. Math. 36* (1983) 437-477
- [5] Carleson L and Chang A, On the existence of an extremal function for an inequality of J Moser, *Bull. Sc. Math. 2 ~ Serie* i!0 (1986) 113-127
- [6] Moser J, A sharp form of an inequality by N Trudinger, *Indiana Univ. Math. J. 20* (1971) 1077-1092
- ['7] Rabinowitz P H, Minimax methods in critical point theory with applications to differential equations, *Regional Conference Series in Mathematics* (AMS) Vol. 65
- **[8]** Zeev-Nehari, On a class of nonlinear second order differential equations, *Trans. AMS 95* (1960) 101-123