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Abstract. We prove the existence of a positive solution of the following problem 

- A u =  f(r,u) inD 

u > 0  

u = 0, on c~D 

where D is the unit disc m ~2 and f is a superlinear function with critical growth. 
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1. Introduction 

Let D be the unit disc in R 2. We are looking for positive radial solutions of the 
following problem: Find u in C2(D)c~C~ such that 

- A u =  f(r,u) inD 

u > 0  

u = 0 ,  on0D 

(1.1) 

where f is superlinear, f(r, O) = O, (Of/Ot)(r, 0) < 21 with 21 being the first eigenvalue 
of the Dirichlet problem. For  n/> 3 and f of critical growth, Brezis-Nirenberg [4] 
studied the existence and non-existence of solutions of problem (1.1). For  n = 2, the 
critical growth is of exponential type whereas in the case of n/> 3, it is of polynomial 
type and the method adopted for n/> 3 fails in the case of n = 2. 

Carleson-Chang [5] obtained a positive solution for f(u)=2uexp(;~u 2) with 
0 < 2 < ;t 1 via a variational method. For  growths of typef(u) = u m exp (bu2), Atkinson- 
Peletier [3] used the shooting argument to obtain a solution of (1.1). They assumed 
that log f is strictly convex for large u. 

In this paper we relax the conditions on f and use a variational method to obtain 
a solution of (1.1). Since we are interested in radial solutions, (1.1) is equivalent to 
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finding an u in C2(D)nC~ with u radial and satisfying 

L1 u = - (ru')' = f(r,  u)r in [0, 1) 

u > O  in [0,1) 

u'(O) = u ( 1 )  = o .  

(1.2) 

where u' = du/dr. 
The idea of the method is to approximate the energy functional by functionals 

satisfying Palais-Smale conditions. Then obtain the critical points of these approximate 
functionals by a constrained minimization problem similar to that of Zeev-  
Nehari [8] and then pass to the limit. The method of the proof is in the spirit of 
Brezis-Nirenberg [4]. Here, we also get a constant "a" which is strictly less than the 
best possible constant and thereby the existence of solutions of (1.2) is guaranteed. 

In [1] we also prove the existence of infinitely many solutions of (1.1) when f is 
odd and of critical growth. Also in [2] we prove the existence of solutions of (1.1) if 
D is replaced by an arbitrary smooth domain. 

2. Statements 

Let E = {uECI[O, 1];u(1)= 0}. For 0 ~< ~t ~< 1 and u in E define 

lul2 = Jo u2(r)r~dr 

J] u ]l 2 = f j  u'(r)2r~dr. 

Let H~ be the completion of E with respect to []'l]~. Define the operator L~ by 

L~= r ' d r \  dr]" (2.1) 

Let (2~, tp~) be the first eigenvalue and the corresponding first eigenvector with tp~(0) = 1 
of the following eigenvalue problem. 

L ~  = 2~b in [0, 1] 
(2.2) 

~b'(0) = ~b(1) = 0. 

DEFINITION 2.1 

Let f : [0 ,  1] x [0, oo)-~ [0, oo) be a Cl-function. We say f is of class A if 

(i) f(r,  O) = O. 
(ii) There exists a 60 > 0 and for (r, t)eQ6o - [0, 60] x [0, oo)(Of/Or)(r, t) >10. 
(iii) There exists a t o > 0 such that f(r,  t)< 21 t for all (r,t)e[0, 1] x [0, to]. 
(iv) There exist constants tx > 0, fl > 2 such that [3F(r, t) <~ f(r,  t)t for all (r, t)e[0, 1] x 
[tx, oo) where F(r, t) = Sof(r, s) ds. 
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Let 

? f  > f  } A'= f e A ; ~  T i n [ 0 ' l ] x ( 0 ' ~ 1 7 6  . 

We consider the following three types of functions in our discussions. 

Sub-critical: f in A is said to be sub-critical if there exists a 6 > 0 and for every ~ > 0 

sup f(r, t)exp(-et 2) < oo (2.3) 
( t , t ) ~ [ O A ]  x [ 0 , o o )  

Critical: f i n  A' is said to be critical if there exists 61 > 0 such that 

(i) f(r,t) = h(r,t)exp(b(r)t 2) V(r,t)EQ~, = [0,61] x [0, oo) 
(ii) Ve > 0, 

sup h(r,t)exp(-et 2) < oo (2.4) 
(r, tJeQ~ 1 

(iii) For every e > 0, h(0, t)exp(et2)--+ ~ as t--* oo. 

Super critical: f e w  is said to be super critical if for every c > 0 

sup f l f ( r ,  cw)wrdr=oo. (2.5) 
[Fwll I = 1 

For f e A ,  0 ~< ~ ~< 1, let ~ be the set of C2-solutions of the following problem 

L~u = f(r ,  u) in [0, 1] 

u > 0 (2.6) 

u'(0)  = u ( 1 )  = o.  

DEFINITION 2.2 

u in HA(D ) is said to be a weak solution of (1.2) if 

(i) u > 0  in[0,1) 

t~ f(r, u)ur dr < oo (2.7) (ii) 

(iii) V4~eC2[0, 1] with q~(1) = 0 

floU'L14~)rdr=flof(r,u)4~rdr. 

Since we are interested in only positive solutions of (1.2) and hence extending f for 
t ~< 0 is irrelevent. Therefore we make the following conventions. 

1) Whenever we say f is in A, then we extend f by f(r, t )=  0 for t ~< 0 and re[0,  1]. 
2) Whenever we say f is in A', then we extend f by f(r, t) = - f (r ,  - t) for t ~ 0. (2.8) 
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For  u in H~, define 

r . ( u ) ' 2 f '  ~ =:llull~ - F(r,u) r'dr. 

l, = inf L .  
E, 

Then we have 

(2.9) 

Theorem 2.1. Let f be in A. Then there exists an ~o < 1 such that for every Cto ~ ~ < 1, 
Z~ is non-empty and {1,} is bounded. Let l = l i m , _ . l l  ,. Suppose there exists b > 0 ,  
M > 0 such that 

(i) f (r ,  t) ~< M exp (bt 2) for all (r, t)e[0, 6] x [0, ~ )  
(ii) bl < 1. (2.10) 

Then there exists a solution u of (1.2). 

C O R O L L A R Y  2.1 

I f  f is sub-critical, then there exists a solution. 

Proof. If f is sub-critical, we can take b as small as we want and satisfying (i) and 
(ii) of Theorem (2.1). Hence the solution exists. 

Criterion to satisfy (2.10). Let f be in A satisfying (i) of Theorem (2.1). Suppose there 
exists an m > 0 such that 

f / / 2F( r ,2 ) rdr>>-2m2 .  

(2.11) 
2m2 b < 1 

Then f satisfies (ii) of Theorem (2.1). 
For  f in A 1 and for 0 ~< ~ < 1, define 

{ fo } B , =  ueH~k{O}; llull~ ~< f(r,u)ur~dr 

OB.={u~B.;u>>-O;llull~=f~f(r,u)ur'dr} 

fo B1 = ueH~ng~176 Ilull~ ~< f (r ,u)urdr  

{ fo } B'~ = usIt~\{O};u is non-increasing, Ilull~ ~< f (r ,u)urdr 

Bol = {ueB1; u is constant in a nhd of zero}. 

OBo, = {u~Bol;u>.O. ,lu,l~ = f/ f(r,u)urdr} 
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For  0 ~< a ~< 1, f e W ,  u in H~, define 

'fo I,(u) = ~ f (r ,  u)ur" dr - F(r, u)r ~ dr (2.13) 

since f e W ;  f(r ,  t)t - 2F(r, t) >10 for all (r, t )e[0,  1] x R, hence I,(u) >10. Define a ,  by 

2 

as  = inf l , .  (2.14) 
2 L 

Theorem 2.2. Let  f be in A'. Then there exists an ot o < 1 such that for ct o <~ ~ < 1, ~ 
is non-empty and {a,} is bounded and satisfyin9 

2 

a__, = i n f l , ( u ) =  infix(u). (2.15) 
2 ~, OB, 

Case I. If f is super critical then lim~_, 1 a~ = 0. 

Case 2. If f is critical and suppose there exists a t 2 > 0 such that  

(2.16) 
e x p ( - t 2 ) < 6 1  [see (2.4)] 

then lim,~ t a,  = a exists and is non-zero. Moreover  there exists u satisfying (1.2) such 
that  

a2 = inf 11 = infI1 = inf 11 (2.17) 
11(u) = 5 -  B,~B~ Bo, ~o, 

Remark 2.1. Suppose there exists a sequence t,--* oo such that h(O,t,)t,--* 0o, then 
(2.16) is satisfied. 

Examples 

1. Carleson-Chan O. Let fx(t  ) = 2t exp (2t 2) for 0 < 2 < 21 . Then fa  is m A' and satisfies 
(2.16). Hence (1.1) has a solution. 

2. A tkinson-Peletier, f ( t )  = t m exp (bt2), m > 1, b > 0. Then f is in A' satisfying (2.16). 
Hence (1.1) has a solution. 

3. f ( t )  = 2tmexp(bt 2 + sint2), b/> 1 

m = l ,  0 < 2 < 2 1  , 

m > l ,  2 > 0 .  

Then f is in A' and satisfying (2.16). Hence (1.1) has a solution. Here l o g f  is not  
convex for large t. 
4. Let b(r) be a C ~-function on [0, 1] such that  0 ~< b(r) ~< 1, b(r) - 1 in a ne ighbourhood 
of zero. Let  f ( r ,  t) = t = exp(b(r)t 2 + (1 - b(r))exp(t)). Then f is in A' satisfying (2.16). 
Hence (1.1) has a solution. 
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3. Proofs of theorems (2.1) and (2.2) 

Lemma 3.1. For 0 ~ ot < 1, we have 

(i) H~ is compactly embedded in C[O, 1]. 
(ii) 2=<21 and 2=---,21 as ~--*1 
(iii) u in Hi,  rl < r2, 

lu(rl ) - u(r2)[ 2 ~ II u II 2 log r--2 . 
r l  

Proof. Let rl ~< r2 and u is in H~. Then by integration by parts 

(;.)' lu(r2) - u(rl)l 2 = , u'(r)dr 

;/ ~< Ilull~ r-=dr 
1 

r 1 - =  _ r I - =  2 2 

= Ilulr= T 

Hence (i) follows from (3.1) and Arzela-Ascoli's theorem. Let u is in H i ,  then 

(t", \2 lu(r2)--u(r,),2= J. u'(r)dr) 

":(f;'r- ) II u 1 dr 

= [lul[21og re. 
rl 

This proves (iii). 
We have 

- (r~;)' = ,z, ~=r - (I - ~)r 

- -  ( r ~ b ' l ) '  = ~.1 ~1 r. 
Hence 

i.e. 

2~ f~  ~dp~rdr= - f~  (rO'~)'dp~dr 

= - ~ (r~) '~  dr 

fo =2= q~=~blr dr - (I - a )  q~'=~bl dr. 

fo' fo (21 -2=) ~ld~=rdr= - ( 1  - e )  d~'=~lrlr. 

(3.1) 

(3.2) 
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Since q~', ~< 0 and hence 2, ~< 2: and 2, ~ 21 as ~--, 1. This proves (ii). 

Lemma 3,2. Let f be in A, then there exists an ~t o < 1 such that for ~o <<- ~ < 1, 

i) I-, satisfies the Palais-Smale condition. 
ii) Let m > 0 be such that 

f[F(r,- )rdr Zm2 (3.3, 

[Such a m exists because of the condition (iv) of definition (2.1)]. 
Then there exists a u~ in C2[0, 1] satisfyin9 

L,u, = f(r, u,) in [0, I) 

u, > 0 (3.4) 

u;(O) = u . 0 )  = o. 
and 

/',(u,) ~< 2m 2. 

Proof. Proof  of this lemma is standard (see I-7]). For the sake of completeness we 
will prove it. 

Step I. Let u, in H~, be a sequence such that 

I]-~(u,)l ~< M 
(3.5) 

f'~(u.)~O as n-~ or. 

flr~(u.) - (L(u.), u.) 

=(~- l ) ; u'.(r)Zr'dr- fj [l~F(r,u.)- f(r,u.'u.]r'dr 

>-'(~- l ) ; u'.(r)Zr'dr- f,..,~., [BF(r,u.'- f(r,u.'u.] r'dr 

> ~ ( ~ -  l ) ;  u'.(r)2r'dr +C, (3.6) 

where C is a constant  depending only on F. Since fl > 2, (3.5) and (3.6) imply { I1 u, I1,} 
is bounded. Let u, converge to u weakly in H~ and strongly in C[0, 1]. 

( I  (Un), U, -- U) = u'n(r)2r~dr -- u',(r)u'(r)r~dr 

- f ~  f (r ,  U.)(Un -- u)r ~ dr (3.7) 

(3.5) and (3.7) imply 

f ~ u',(r)2r~ dr-~ ; u'(r)2r" dr. 
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Hence un converges strongly to u and this proves (i). 

Step 2. From (ii) of Lemma (3.l) and (iii) of Definition (2.1) there exists an 0% < 1 and 
a 2 > 0 such that 

,~t 2 ,~,~t 2 
F(r,t)<~--2-<~- for all rel-0,1], 0 < l t l < t  o. (3.8) 

Let u in H~ be such that 

[I u I[ 2 ~< ~ - ~  t 2. (3 .9)  

From (3.1) and (3.9) we have 

]u(r)t 2 ~< t 2. (3.10) 

Hence (3.8) and (3.10) give 

2u(r) 2 
F(r, u(r)) <~ ~ (3.11) 

= �89 Ii u I1~ - ff  F(r, u)r ~ r,(u) dr 

 fo 
>~�89  

= � 8 9  It u II~. (3.12) 

Hence zero is a local minima. 

Step 3. Define Uo in Ho ~ by 

~ m  

uo(r) = ~- 
Ira(1 - r )  

Then 

0~r<�89 

� 8 9  

T,(Uo)=~fll/2m2r'dr-f/F(r, Uo) r'dr 

m 2 

- - J o  m (1) 
~< 1 -- ~ - -  d --2m2 < 0  

(3.13) 

(3.14) 
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and for 0~<t~< 1, 

t 2 
-f,(tUo) <. T II Uo I1~ 

~< 1 - ~ - g  ~ 2m 2 (3.15) 

Hence ]', satisfies all the hypotheses of Mounta in  pass theorem and hence there exists 
a critical point u, of  ] ,  such that 

T.(u.) ~< sup L(tUo). 
ts[0,1 ] 

Now from (3.15) it follows that 

]~(u,) <~ 2m 2 

and u, satisfies (3.4). 

Lemma 3.3. Let f be in A', then there exists % < I such that for all ~o <<- ~ < I, ~ is 
non-empty and an u,~ ~., satisfyin9 

~ =  I~(u~) = inf I~(u) = inf I~(u) (3.16) 
u 6 0 B  a u~iB a 

and for all w in H~, II w I1~ = 1, 

f~  f(r,a~w)wr ~ <<. a~. (3. 7) dr 1 

Proof. Let u be in B~. Define y ~< 1 such that  

I1 u II ~ = f(r, yu)ur ~ dr. (3.18) 

Such a ~ exists because f(r, t)/t is an increasing function and u is in B~ and If(r, t) l < 2~1 t l 
for I t l < t o ;  ~o~<~< 1. 

Define v = yu, then 

tl v I1~ = ~2 II u I1~ = ~ f(r, yu)(Tu)r ~ dr 

~ f(r, v)v: dr. 

Hence v is in OB~ and since ~ ~< 1, and f e A ' ,  we have 

this together with OB, c B, imply that 

d, = in f l ,  = in f l , .  
aB a 8~ 

(3.19) 

(3.20) 
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Let u, in c~B, be a sequence such that u,/> 0 and 1 , (u , )~d , .  Such a sequence exists 
because for u in OB, implies [u[ is in c~B~ and l~(u) = l~(lul). 

We claim that { 11 u, 11,} is bounded. Let N be such that for all n t> N, 

d, <~ l~,(u,,) ~< d,, + 1 (3.21) 

'fo d~+ 1 ~> l~(u.) = ~  [ f ( r ,u . )u , -2F(r ,u . ) ] r~dr  

'fo = ~ [f(r, u.)u, - flF(r, u.)]r ~ dr 

From (iv) of Definition (2.1), there exists a constant C depending only on f such that 
for all v in I-I~, 

] [f(r, v)v - flF(r, v)]r'dr >1 C. (3.23) 

From (3.22) and (3.23) there exists a constant C, independent of n such that 

f ]  F(r, u,)r" C 1 . (3.24) dr <~ 

From (3.21) and (3.24) we have 

;o Ilull~ = 2I~(u.) + 2 F(r,u.)r 'dr 

~< 2(d~ + 1)+ 2C~ 

and this proves the claim. 
Let u~ = weak limit of u. and eo be as in Lemma (3.2). We claim that for eo ~< e < 1, 

u~e~2~ satisfying (3.16). 
First we will show that u~ is non-zero. Suppose u~ - 0, then from Lemma (3.1). u. 

converges to 0 in C[0, 1]. Let N be an integer such that 

u,(r) < to for all n/> N, re[0,  1]. 

Then from (iii) of Definition (2.1) and the choice of ct o, 

f(r,  u,(r)) < 2~u,(r). 

Since u, eOB,, we have from (3.26) 

[tu, lt 2 = ~ j  f(r'u")u"r~dr 

<,Lf]u.(r)~r'dr~ ' II u,, I[,, 2 

(3.25) 

(3.26) 
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which is a contradiction and hence u~ ~ 0 and 

ls(u~) = l i m  I~(u.) = d~ 
n...~ oo  

f~  (3.27) Ilusl[~-< lim Ilu.ll~ = f(r, us)u~r~dr, 
n - c O 0  

us is in aBe. If not, then by (3.27) we can choose a ? < 1 such that 

II us tl 2 = ~ f(r, yu,)usr" dr. 

Then ?us is in dB, and 

d~ ~ l(?us) < l(us) = d.. 

This proves that us is in dB~. Since u~ is a minimizer and hence there exists a real 
number p such that for all ~b in H~, 

f~ u'~(r)q~'(r):dr- f~ f(r,u~)qb:dr 

rl dr 
=P{2;~u's(r)4/(r)rSdr-f:f(r,u~)dp:dr-Jo~t(r,u,)usq~r'drl'. 

(3.28) 

Putting ~b = u~ in (3.28) and using the fact that us~c3B~, we have 

P{2f:u 's(r)Zr 'dr- f : f (r ,u~)u:Sdr- f :~[(r ,  uDu~(r)Z:dr} =0. 

Since u~ is in dB~, we have 

Pf: Ff(r'-L-us)k us d~(r'u')lus(r)2r'dr=O" 
Since f is in A', and u is not zero, it implies that p = 0. Hence from (3.28) and by 
regularity of elliptic operator, it follows that us is in Z~ and l~(us) = d~. Since Z ,  c 8Bs, 
we have a2/2 = in fL l  s = l,(us) = d, and this proves (3.16). Let II w I1~ = 1. Choose y > 0 
such that 

1 = f(r, ?w)wr ~ dr. (3.29) 

Then ?w is in OBs. Hence 

a 2 .2 w [1~2 t ,2 
<. ,s( ,w) <. rl = 

Z Z 
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implies a~ ~< 7. Since f is in A', we have 

a ;o f(r,  a~ w)wr ~ dr <~ - f(r ,  yw)wr ~ dr = 1 
7 

i . e .  

f /  f(r,a~w)wr ~ ~a~ dr 

proving (3.17). 

Lemma 3.4. Let f be in A' and % is as in Lemma (3.3). Then {a~} is bounded on [~o, 1). 

Let a = lim~. 1 a~. Then for all weH~ with Ilwllx = 1. we have 

f ~  f (r, aw)wr dr <<. (3.30) a.  

Proof. From Lemma (3.2) and (3.3) we have l~ = a~/2 and l~ ~< 2m z. Hence {a~} is 
bounded on [:to, l). Let ct. be a sequence such that  a ~ a  as 0t.--, 1 and w be in E 
with II w II1 = 1. Let t,. = will w I1~.. Then from (3.17) we have 

f ~  f(r ,  a~ v.)v.r~dr a~ . <~ 

Letting ~t.~ 1, Vn~W, a ~ a ,  we get 

f 2  f(r,  aw)wrdr ~ (3.31) a .  

Since f is odd, and hence by Fatou's  (3.31) holds for all w in Ho ~ . 

Lemma 3.5. Let f be in A, 0 <~ ~ < 1, 0 <<. ~ <<. 1, and u in ~.~. Then we have 

= - - - -  f ( t ,  u(t))t ~ dt + t ~ 1 - ~ o i----~ f ( t ,  u(t)) dt (3.32) 

fo �89 2 =(1 +~t) F(r'u)r~dr + Jo t3r (r'u)r*+~dr 

+ ~ -  J o u'(r)2r~ dr - ~i + ~F(~, u~)). (3.33) 

Proof. If v(r) is the right hand side of (3.32), then by differentiating twice, v satisfies 

L~v = f (r ,u)  (3.34) 

if(0) = v(1) = 0. 

Hence by uniqueness, v = u. This proves (3.32). u is in Z~, hence 

(r~u') ' = - f (r ,  u(r))r ~. (3.35) 
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multiply (3.35) by ru'(r) and integrate from 0 to e we get 

f~(r=u'(r))'u'(r)rdr= - fs f(r,u)u'rl +~dr. 

Since (dF/dr)(r, u(r)) = (dF/dr)(r, u(r)) + f(r, u(r))u'(r), we have 

(1-- f d rl+=dr frdFr1+=dr � 8 9  - - - - ~  u'(r)2r=dr = -- Jo -~r + Jo dr 

Hence 

61 

(3.36) 

= -F(e,u(e))el+~+(l+g) F(r,u)r=dr 

f~dFrl+~dr" 
+ Jo Or 

�89 =(1 d-Or) F(r'u)r=dr + jo gr r!+=dr +~--JoU'(r)2r~dr 

- -  F(/~, U(/~))/~ 1 +a. 

This proves (3.33). 

Lemma 3.6. Let f be in A, ~. ~ 1, u. is in ~.~. and a constant M independent of n such that 

(i) II u. I1=. <~ M 
(3.37) 

(ii) lira u'.(1)= t/r 
n ~ o o  

Then there exists a subsequence (still denoted by or.) such that the weak limit u of u. 
in HA is a weak solution of (1.2). Furthermore 

lim I1F(r,u.)r='dr= f~  F(r,u)rdr. (3.38) 
n ~ o o  d O  

Proof. II u, II1 ~ tl u, I1=. ~ M, hence by going to a subsequence the weak limit u of u. 
in HA exists. From (iii) of Lemma (3.1), u. converges to u uniformly on compact 
subsets of (0, 1]. We claim u is not identically zero. For, if u = 0, then, since u. in ~=., 
we have for 0 < r ~< 1, 

r~"u'.(r) = u'.(l) + f(r, u,)r =" dr. (3.39) 

From (ii) of (3.37) and (3.39) and using u . ~ 0  on [r, 1] uniformly 

r lim u'.(r) = t/. (3.40) 

Hence by Fatou's lemma, and (3.40) 

__ 2 f l  rdr f~  o o - r /  Jo - ~ - <  .4| 
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which is a contradiction. Hence u ~ 0 and u satisfies 

in (0, I] -- (ru')' = f(r,  u)r 
u(1) =0 .  

Now by Fatous, we have 

Hence 

f~ f(r, u)ur dr <~ lim f j  f(r, un)un r ~ dr <~ M. 

(3.41) 

(3.42) 

f j  f(r,u)rdr <~ fu.<lf(r,u)rdr + fu>lf(r,u)urdr < oo. (3.43) 

For  any 0 < r ~< 1, integrating (3.41) from r to 1, we get 

f; ru'(r) = u'(1) + f(t,u)tdt. (3.44) 

(3.44) gives ru'(r) is mono tone  and hence limit r--* 0 exists. We claim that 

lira ru'(r) = O. (3.45) 
r-*O 

For, iflim,~oru'(r ) = C < 0, then there exists e > 0 such that -u'(r) >I C/r for 0 < r ~< ~. 
Hence 

oo=C2fordrr--r<<, f~ru'(r)2dr<oo. 

Hence (3.45) is true. Using (3.44) and (3.45) we get 

u'(1) = - f~ f(t, u)t dr. (3.46) 

Let ~b be in C2[0, l]  with ~b(1) = 0. Multiply ~b' to (3.44) and integrate from 0 to I, 
and using (3.46) we have 

f:u'(r)qb'(r)rdr=u'(1)((a(1)-qb(O))+~jq~'(r)fff(t,u)tdtdr 

= u'(l)(q~(1) - dp(O)) + f j  f(t, u)q~(t)t dt 
L 

- t ~ ( 0 )  f~  f(t ,  u)t dt 

= f~ f(t, u)q~(t)t dt 

and hence u is a weak solution of  (1.2). 
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From (3.33) and (3.37) we have 

{ f o  ~tOFrl+~"dr}=�89 (3.47) lim (1 + ctm) F(r, u,)r ~" dr + Jo Or 
n.--~ OD 

Now multiply ru'(r) to (3.41) and integrate from r to 1, we have 

-�89 2 + �89 ~ = - dt + ~ - t 2 d t  

f l f / O F  = F(r, u(r))r 2 + 2 F(t, u)t + ~ -  t 2 dt. (3.48) 

Since ru'(r)~O, S*oF(t,u)tdt < oo, OF/Or > 0 in [0,~o] and SJo(OF/Ot)t2dt < oo, we 
conclude that l im, ,  o F(r, u(r))r 2 exists and claim that 

lim F(r, u(r))r 2 = 0. (3.49) 
r "~  0 

If not, there exists a constant C > 0 and e > 0 such that 

F(r, u(r))r 2 >t C for all 0 < r < e. 
Hence 

f: oo = dr ~ F(r, u(r))r dr < oo 

which is a contradiction. 
Now using (3.49), (3.48) becomes 

fo �89 2 = 2 F(r, u)r dr + (r, u)r 2 dr. (3.50) 

Since u'(1) = lim,~ ~ u',(1), and hence from (3.47) and (3.50) we have 

2 f ~ F ( r , u ) r d r + ~ r ( r , u ) r 2 d r  

{ ;o '+.} = lim (1 +~ . )  F(r ,u , )r"dr+ -~r(r,u,)r dr . (3.51) 

By Fatou's and using (ii) of Definition (2.1) we have 

fo 2 F(r, u)r dr <~ lira (1 + e . )  F(r, u.)r" dr 

f2~r(r ,u)r2d r ["OF + (3.52) ~<limJo -~r (r,u.)r~" *dr. 

By going to a subsequence, we conclude from (3.51) and (3.52) that 

f: ;o lim (1 + ~.) F(r,u.)r"dr = 2 F(r,u)rdr 
n - - ~  O0 
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and 

('l OF ~.+ Il O: (r,u)r2dr. lira I --(r,u,)r i dr= 
,--+ Jo Or Jo or 

Lemma 3.7. Let f in A' be critical. Then 

b(0)=sup c2; sup f(r, cw)wrdr<oo 
II~lh ~ l 

(3.53) 

Proof. f = h(r, t)exp [b(r)t 2] for (r, t) in Q6,. 
Let 

Cg=sup{c2;llSl~Plf]f(r, cw) wrdr<c~ } 
Step I. Cg :~ 21b(O). 
If not, then choose e > O, c > 0 and a 6 < (~x, 6o) such that 

2 
b(o) < c2 < (c + e)2 < Co 2. (3.54) 

For roe[0, 61], define 

1 
log - 

r 
W'~ = [ 1 \x/2 for r 0 ~< r ~ 1 

{ I \I/2 (3.55) 
+.o~r)= t,O~o ) for O <. , <. ,o 

Then J[ w,o I[1 = 1. Since (Of/Or)(r, t) >i 0 in Q6o, we have 

h(0, t) exp [b(0)t 2] ~< h(r, t) exp [b(r)t 2] in Q6o- 

Now (c + e) 2 < Co 2 implies that there exists an absolute constant M depending only 
on (c + e) and f such that 

M >: f~ f(r,(c + ~)W,o)W,ordr >~ f~ f(r,(c + ~)W,o)W,ordr 

If~ ( { 1\'/2\{ l'U2 
>: s o,~++t,O+:o ) )t,O.~o) ... 

=~t'~ ++t'~ )eI'L'~~ o. 
1 '  1\1/2h(0,(C /: 1 \ l / 2 \ e x p [ E 2 ( l o g ~  ] 

~t'~ ++t'~ ) , o ,~++ 
#.(~"b(O) - II ' 

a s  ro --, O. 
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Hence C 2 ~< 2/b(0). 

Step 2. C2o = 2/b(0). 
Suppose not, then choose 6 > 0, 6 > 0 such that 6 <~ rain (61,60) and for all r in [0, 6], 

2 - 6  
b(r) " 

Co ~ < (Co + 6) 2 < -  

Let II w IIx ~< 1, then 

f~ f ( r , (Co+e)w)wrdr=f~+f~  �9 

Since Ilwlll = 1 implies from l.emma (3.1) 

1 

Iw(r) l ~< log r '  

hence there exists a constant M l such that 

sup 11 f(r,(Co + 6)w)wrdr <<. Mx 
I lwl l i i l  I ,76 

and 

f f (r,(C o + 6)w)wrdr <<. I~ h(r,(Co + 6)w)lexp(Co + 6)2b(r)w2]wrdr 

<<. f~ h(r,(Co + 6)w)[exp(2 - 6)w2]wrdr 

~< M2 f~  [exp(2 - 6/2)w2]r dr 

(3.56) 

(3.57) 

M2 f ~  r~/2 - 1 dr ~< M 3 

where 
6 2 M 2 =  sup h(r , t ) t exp-~t .  

(r,O~Qa 

This implies Co > (Co + 6) which is a contradiction. Hence C 2 = 2/b(0). 

Lemma 3.8. Let f in A' be critical and suppose there exists a to > 0 satisfyino 

exp - to 2 < 6t 

/ / 2 "~1/2'~ / 2 '~t/2 

,to, 

(3.58) 

(3.59) 
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Let a >I 0 such that 

fo sup f(r, aw)wr dr ~ a (3.60) 
Ilwlh ~ 1 

then a 2 < 2/b(0). 

Proof. From Lemma (3.7), a 2 ~< 2/b(0). Suppose a 2 = 2/b(0), then take ro = exp - t o  2, 
W,o as in (3.55) and from (3.60) we have 

~(~ ] = a >~ f(r, aW,o)W, or dr 

fo ~ >~ f (O, aW, o)W, o dr 

=f(O,  ato)to ~ 

.(. 1 \ 4  
: ,oh(O, a to )e ,p  IOg~0 ) -  2 - 

=�89176 2 \t/2 ,~ [, 2 "~112 

which is a contradiction. Hence the result. 

Lemma 3.9. For any e > O, 0 ~ a < 1, 

sup r~(  l - r l - = ' ~  1 
o~,.<, i--~- )~<7 

(3.61) 

Proof. Let g(r) = r~(l - r  I -=/1 - ~). Then #(0) ~ g(1) -- 0. Let 0 < ro < 1 such that 

0( to)= sup g(r) 
0~<r~l  

then 

Hence 

Therefore  

[1-4-=~ ~,-= 
0 = g'(ro)= ~o -1 \ 7::~ ) -  o - 

1 - ~ - =  = 4  -= 
1- -~  

g(r)<~g(ro)~ 
1 -r  1 ro 

g s 
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Lemma 3.10. Let f in  A' be critical, then 

inf 11 = inf 11 = i n f l  1 (3.62) 

Proof u is in B 1 wB* implies [u] also in B 1 u B ] '  and Ii(u)= ll(lul). Let ueB x wB*; 
choose a ~, < 1 such that  

'fo II u II 12 = ~ f(r, ~,u)ur dr. 

Then 7u is in O(B1 wB'~) and I~(~u)<~ l~(u). Hence 

inf 1 1 =  inf 11. 
s1~8~' e~nl~B*) 

N o w  let u i> 0 is in d(Bt uB*). Since f is critical, we have for any s > 1 

f / f  (r, su)ur < ~ .  dr 

Let v = su, then 

11 VII 12 = s2 l] U ]l 2 = S 2 ~ f (r, u)ur dr 

; = s f r, vr dr < f(r, v)vr dr (3.63) 

because s > 1 and f(r, 03 is increasing. 
Choose an t o > 0 such that for any 0 < e < to 

II v II 12 < f(r, v)vr dr <<. f(r, v)vr dr (3.64) 

and define 

= ~'v(t) if 0 ~< r ~< e (3.65) 
v~ ( v(r) i fe~<r<~l ."  

Then from (3.64) v, is in B01. 
Now we claim that Ii(v,)~Ii(v) as e ~ 0 .  

Case I. Ifv is in B 1 , then II v~ II oo ~ II v I[ oo and hence by dominated convergence theorem 
ll(v~)~ ll(v). 

Case 2. If v is in B~', then v~ T v and hence by Mono tone  convergence theorem, 
11(v,) o11(v). Hence 

in f l l  <~ll(v~)--*ll(v) as ~--*0. (3.66) 
BOl 
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f is critical and is in A', we have for 1 ~< s ~< 2 

f(r, su)su - 2F(r, su) <~ 2f(r, 2u)u - 2F(r, 2u) 

and is in L 1. Hence by dominated convergence theorem, 

ll(v)-*ll(u) as s--,1. (3.67) 

Combining (3.66) and (3.67) we have 

infll~< inf I 1 ~<infll 
Bol ~ B l ~ e  ~) Bol 

and hence the result. 

Proof of theorem (2.1). From Lemma (3.2), there exists % < 1 such that Y.~ is 
non-empty for % ~< ~ < 1 and {1~} is bounded by 2m" where m is given by (3.3). Let 
1 = lim~_. 11~.  

Let f satisfies (2.10). Let ~/> O, 7 > O, ~q ~ 1, u~ in ~ ,  such that 

(i) l ~ l  a s ~ q ~ l  

(ii) l , .~ ' i - , . (u , )<( l , .+2) .  (3.68) 

(iii) (l,. + r/)b ~< y < 1. 

We claim that 

lim, _. 1 u',(1) # 0. (3.69) 

If not, then u~,(1)~0. Since u,~Y.~,, we have 

- f~  f(r,  u.)r ~ dr ~ 0 as a, ~ 1. U~(I) 

Since for any 0 ~< r ~< 1 we have 

r'u'~(r) = u'.(1) + f(t ,  u.)t ~ dt 

we have 

sup [r~u',(r) t ~ 0 as a,--* 1. 
~[0,1 ] 

This shows for any 0 < r o ~< 1, 

sup [u~,(r)[--*O as~. - - , l .  
ro~<r~ < 1 

This in turn implies 

f; sup lu.(r)l ~< [u'.(t)ldt~O 
to~<r~ 1 o 

(3.70) 

as ~t, ~ 1. (3.71) 
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From (ii) of definition (2.1) and (3.33) we have 

2 2/ioU.(~o) --(I +cq) F(r,u.)r~"dr+ (r,u.)&+"dr 

(1 - ~t) ao _ 6 6 - ' " F ( t ~ o , U , , ( t ~ o ) )  + - - ~ f l  u"(r)2r~"dr 

I> ( I  + ct) f ~  F(r, u.)r'" dr - 6~ + "F(6 o, u.(6o)) 

Hence by (3.70) and (3.72) we have 

~~176 as ~,-~1. 

From (3.71) and by dominated convergence theorem 

fa t F(r,u,,)&"dr-~O as ~t.~ 1. 
o 

Combining (3.73) and (3.74) we have 

~F(r,u,)r~"dr~O as o t .~l .  

Let No be such that for all n >/No, 

F(r, u,)r ~" dr < ~. 

From (ii) and (iii) of (3.68) and (3.76) 

�89 u. II,Z. = F,.(u.) + f~ F(r, u.)r" dr 

< (/,,. + 2 )  + ~ -- (I,.,, -t- r/) 

7 ~<~. 
Hence 

1 
lu,(r)l 2 ~< Ilull21og - 

? 

< 2(l,. + ,7)log 1 
Y 

69 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 
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From (3.32), (3.70) and (3.77) we have 

u.(O)= f~ e.( 1-t~-'"\ i=-~ )f(t ,u.)dt 

=~2, (l-V-.-\ ' -t'-'-, 

~< M t ~" )exp(bu2.)dt + M1 

f2 ( ) ~<M t ~"-2~ 1 - t l - ~ "  dt+Mx 

Now choose e > 0 such that 

e, > 27 - 1 + e for all n, large. 

Then from (3.61) and (3.78) we have 

u.(O) <~ M f 2' t~.- 2,-~/2t~/2 ( l - ?-~" ] - ~ - ~  ) d t  + M,  

1' 

(3.78) 

Hence 
4M 

II u .  II | = u . ( 0 )  ~< -~ -  + M 1 . 

Since u, is in ~ , ,  and { II u. Iloo } is bounded and hence u, converges strongly in C[0, 1] 
and in Ho 1 to a function u. From (3.71) u,(r)~O as ~, ~ ~ for every r # 0, we have 
u = 0 and hence u,(0)--* 0. Now choose N large such that II u. II | ~< to for all n ~> N. 
From (iii) of Definition (2.1) we have 

fo 2,,. u,,~b,, r ' "d r  = - (t a ~b,,.)u,,dr 

f ~  atn I I = -  (r u.) ~b,~ dr 

~=.~ u.4,=.r"dr= - f~ (r=".u'.)'O=.dr 

f ~ atn r = f(r,u.)4, r d 

fo "~ < 2~, u,d~ r dr. 

2M 4M 
~< 2 )  + M2 ~<-~-- + MI" (3.79) 

e ( ~ . - 2 ~ +  1 -  
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and hence a contradict ion.  This proves the claim. Hence by going to a subsequence, 
we assume that 

lim u'.(l) 3 0  

�9 .~1 (3.80) 
I=. ~< [=.(u,) < 21~. ~< 4m 2. 

Now 

4 m 2 >  1_ f 1 
2 Jo [f(r,u.)u. - 2F(r,u.)]r~"dr 

2 [ f ( r , u . ) u _ f l F ( r , u . ) ] : . d r + ~ _  2 f l  = - 2 Jo F ( r , u . ) : " d r  

>>- Ml +(B-~) f~ F(r,u.):"dr 

where M 1 is constant  independent of n. Hence ] M  2 > 0 such that  

f /  F(r, u,)r ~" <~ Mz dr 

f~ (3.81) �89 u, 11=~ --/-~,(u,) + F(r,u,)r~"dr~4m2+M2. 

Hence { II u.ll~.} is uniformly bounded. Hence from (3.80) and Lemma (3.6), u, 
converges weakly to a non-zero solution u of (1.2). 

From condit ion (i) of Theorem (2.1), we have for every 1 <~ p < ~ ,  f(u)~LP(D) (see 
M oser [6]). Hence by regularity of elliptic operators,  u e w2'~(D) and hence by Sobolev 
imbedding u is in CI(D) ' and hence in C2(/)). This proves the result. 

Remark 3.1. From the proof  of Theorem (2.1) it follows that if m > 0  is satisfying 
(2.11), then from Lemma (3.2) l~ ~< 2m 2 and hence I ~ 2m 2. Therefore if2m2b < 1 implies 
Ib < 1. This proves the criterion (2.10). 

Proof of Theorem 2.2. From Lemma (3.2) there exists ct o < 1 such that  ~ is non-empty  
and {a~} is bounded for ct o ~< at < 1. Lemma (3.3) gives (2.15). 

Case (I). Let f be super critical and lim~_~ 1 a~ = a :/: 0. Then from Lemma (3.4) we have 

sup I 1 f(r, aw)wrdr <<. a. 
IIw[h ~< I do 

contradicting the fact that f is super critical. Hence a = 0. 

Case 2. l f f  is critical, let a = l im~.l  a~. Then  from (3.30) it follows that 

sup ff(r, aw)wr dr <~ a 
Ilwlh = 1 d 
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and from Lemma (3.8), 

~ b(0) < 1. (3.82) 

Now choose an e and 8 positive such that 

(i) f(r,  t) <<. M exp [(b(0) + e)t 2] for all (r, t)~Q6. 

a 2 (3.83) 
(ii) -~-(b(0) + e) < 1. 

Such a choice is possible because of (3.82) and the condition that f is critical. 
Since a2/2 = l~, and hence f satisfies (2.10) of Theorem (2.1) with b replaced by 

(b(0) + e) and hence there exists a sequence u, in ~ ,  and a weak solution u of (1.2) 

a2 
(iii) l , . ( u , ) ~  2 as ~t,--*l 

(iv) u.--* u in Hi .  (3.84) 

(v) . -~l imf~F(r 'u")r~dr=f~F(r 'u)rdr"  

In fact (iii) follows from Lemma (3,6). From weak lower semicontinuity of the norm 
we have 

I1 u II 12 ~< lira I1 u.  I1~,. 
�9 n"* 1 

and hence from (iii) we have 

a 2 

11(u) ~ lira (3.85) 
, _. 1 , . (u , )= T �9 

Let w be in Bo~. Choose ~,, such that 

'Io II w I1• = ~ f(r, y, w)wr" dr. 

Such a ?~ exists and lim~_.t 7~ =71 exists and is ~< 1 because w is in Bo~ and ?~w is 
in B~. Hence 

2 

as  ~< l(~,w). 
2 

Taking the lira as ~t-~ 1, we get 

a 2 

--~ <~ l i (~w) <<. l l (w ) 

such that 
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This implies 

a 2 
-~- ~< infl  I . (3.86) 

BO 1 

From Lemma (3.10), (3.85) and (3.86) and using the fact that u is in B*, we get 

a 2 
inf l l  11 (u) = ~- = ao, 

and a 6:0 because u ~ 0. This proves Theorem (2.2). 

Remark 3.2. Suppose f(r, t) <~ 0 for re[0, 1] and 0 ~< t ~< to and satisfying all other 
hypothesis on.f, then also the Theorems (2.1) and (2.2) are valid. 
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