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Abstract. We prove the existence of a positive solution of the following problem

—Au= f(r,u) inD
u>0

u=0, onéb
where D is the unit disc n R? and f is a superlinear function with critical growth.
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1. Introduction

Let D be the unit disc in R?. We are looking for positive radial solutions of the
following problem: Find u in C%(D)n C%D) such that

—Au= f(r,u) inD
u>0 (1.1)
u=0, ondD

where f is superlinear, f(r,0) =0, (f/0t)(r,0) < 4, with 1, being the first eigenvalue
of the Dirichlet problem. For n>3 and f of critical growth, Brezis—Nirenberg [4]
studied the existence and non-existence of sotutions of problem (1-1). For n =2, the
critical growth is of exponential type whereas in the case of n > 3, it is of polynomial
type and the method adopted for n > 3 fails in the case of n=2.

Carleson-Chang [5] obtained a positive solution for f(u)= Auexp(iu?) with
0 < A < A, via a variational method. For growths of type f(u) = u™ exp (bu?), Atkinson—
Peletier [3] used the shooting argument to obtain a solution of (1.1). They assumed
that log f is strictly convex for large u.

In this paper we relax the conditions on f and use a variational method to obtain
a solution of (1.1). Since we are interested in radial solutions, (1.1} is equivalent to
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50 Adimurthi
finding an u in C*(D)n C%D) with u radial and satisfying

Liu= —(@uY = f(r,w)r in[0,1)
u>0 in[0,1) (1.2)
Y(0)=u(1)=0.

where u’ = du/dr.

The idea of the method is to approximate the energy functional by functionals
satisfying Palais—Smale conditions. Then obtain the critical points of these approximate
functionals by a constrained minimization problem similar to that of Zeev-
Nehari [8] and then pass to the limit. The method of the proof is in the spirit of
Brezis—Nirenberg [4]. Here, we also get a constant “q” which is strictly less than the
best possible constant and thereby the existence of solutions of (1.2) is guaranteed.

In [1] we also prove the existence of infinitely many solutions of (1.1) when f is
odd and of critical growth. Also in [2] we prove the existence of solutions of (1.1) if
D is replaced by an arbitrary smooth domain.

2. Statements

Let E = {ueC'[0,1];u(1) =0}. For 0<a <1 and u in E define

1
(ul2 = f w*(r)rdr

0

hul? = f W

0o

Let Hf be the completion of E with respect to ||-|,. Define the operator L, by

L,= ! i(r" d ) 2.1

T rdr dr

Let(/,, ¢,)be the first eigenvalue and the corresponding first eigenvector with ¢,(0) = 1
of the following eigenvalue problem.

Lp=4d in[0,1]
#'(0)=¢(1)=0.

DEFINITION 2.1
Let f:[0,1] x [0, c0)— [0, o0) be a C!-function. We say f is of class A if

) f(r,0)=0.

(ii) There exists a 6, >0 and for (r,1)eQ,, = [0,d,] x [0, c0)(@f/dr)(r,2) = 0.

(iii) There exists a t, > 0 such that f(r,t) < A, ¢ for all (r,1)e[0,1] x [0,¢,].

(iv) There exist constants ¢, > 0, § > 2 such that F(r,t) < f(r, t)t for all (r, )e[0, 1] x
[t1, o) where F(r,2) = (i, f(r,s)ds.

2.2)
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Let

A’={feA;g>§in [0,1] x(O,oo)}.

We consider the following three types of functions in our discussions.

Sub-critical: fin A is said to be sub-critical if there exists a 4 > 0 and for every ¢ >0

sup fr.H)exp(—et?) < oo 2.3)
(r.)e[0,8] x[0,00)

Critical: fin A’ is said to be critical if there exists 6, > 0 such that

(i) f(r,) = h(r,t)exp(b(Nt?) V(r,0)eQ;, =[0,5,] x [0, )
(i) Ve>0,

sup h(r,t)exp(—st?) < o 249
(r.NeQy,

(iii) For every &> 0, h(0,t)exp (et2)— oo as t — co.
Super critical: feA’ is said to be super critical if for every ¢ >0

sup Jl f(r,ew)wr dr = oo. (2.5)
0

Iwiy =1
For feA, 0<a <1, let 3, be the set of C2-solutions of the foliowing problem

Lu=f(r,u) in[0,1]
u>0 (2.6)
W(0)=u(l)=0.

DEFINITION 2.2

u in HY(D) is said to be a weak solution of (1.2) if

(i) u>0 in[0,1)

(i1) J\l S(r,wurdr < co 2.7)
(iii) \:d;eCZ[O,l] with ¢(1)=0

J.l u(L, ¢)rdr= jl [{r,u)prdr.

Since we are interested in only positive solutions of (1.2) and hernce extending f for
t <0 is irrelevent. Therefore we make the following conventions.

1) Whenever we say f is in A4, then we extend f by f(r,t) =0 for t <0 and ref0, 1].
2) Whenever we say f is in A’, then we extend f by f(r,t)= —f(r, —1) for t<0. (2.8)
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For u in H}, define

i
I“a(u)=%llu||3—j F(r,u)r*dr. (2.9)
0
I,=infI,.
Za

Then we have

Theorem 2.1, Let f be in A. Then there exists an ay < 1 such that for every ap <a <1,
>, is non-empty and {l,} is bounded. Let | =lim,_,l,. Suppose there exists b>0,
M > 0 such that

(@) f(r,t) < Mexp (bt?) for all (r,1)e[0, 8] x [0, )
@) bl < 1. (2.10)

Then there exists a solution u of (1.2).

COROLLARY 2.1

If f is sub-critical, then there exists a solution.

Proof. If f is sub-critical, we can take b as small as we want and satisfying (i) and
(ii) of Theorem (2.1). Hence the solution exists.

Criterion to satisfy (2.10). Let f be in A satisfying (i) of Theorem (2.1). Suppose there
exists an m > 0 such that

1/2
f F<r,ﬂ>rdr>2m2.
0 2

2m*b <1

Then f satisfies (ii) of Theorem (2.1).
For f in A' and for 0 < x < 1, define

@.11)

1
B,= {ueHﬁ\{O}; Nul? < f f, u)ur“dr}
0
0B, = {uGBaW?O; llul2= J‘lf("au)“"ad’}
0
B, = {ueH})mL‘”\{O}; lul?< flf(r, u)urdr}
0

Bt

1
{ueH(‘,\{O};u is non-increasing, | u|? sf f, u)urdr}
V]

1
d(B,uB¥)= {ueB1 UB¥uz=0;ul?= f 1, u)urdr}
o
By, = {ueBy; u is constant in a nhd of zero}.

1
0By, = {ueBm;uZO. lul? = f f(r,u)urdr}
0
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For0<a<], feA', uin H}, define

1 1
1,(w) =%f f(r,w)urtdr — J F(r,wr*dr (2.13)
0 0
since feA'; f(r,t)t — 2F(r,t) = 0 for all (r,t)e[0,1] x R, hence I,(u) = 0. Define a, by
2
% _ inf1,. (2.14)
2 s

Theorem 2.2, Let f be in A'. Then there exists an oy < 1 such that for ag <a <1, Y,
is non-empty and {a,} is bounded and satisfying

2
«

LY

= inf1,(u) = inf 1, (x). (2.15)

2 (] 0B,
Case 1. If f is super critical then lim,_, a,=0.

Case 2. If f is critical and suppose there exists a ¢, > 0 such that

2 1/2 N 2 i/2
tzh(°’(5@) 12) > 2(%5)

exp(—ty)<d, [see(2.4)]

(2.16)

then lim, ., , a, = a exists and is non-zero. Moreover there exists u satisfying (1.2) such
that

2
Lw=2% = inf I,=infl, = inf I, .17)

2 ByuB} By, 8By

Remark 2.1. Suppose there exists a sequence t,— oo such that h(0,t,)t, — co, then
(2.16) is satisfied.

Examples

1. Carleson-Chang. Let f,(t) = Arexp(At?)for 0 < A < 4,. Then f, is 1n A" and satisfies
(2.16). Hence (1.1) has a solution.

2. Atkinson—Peletier. f(t) = t"exp(bt?), m> 1, b >0, Then f is in A’ satisfying (2.16).
Hence (1.1) has a solution.
3. f(t)=At"exp(bt® +sint?), b>1

m=1, 0<i<i,,

m>1, 1>0.
Then f is in A’ and satisfying (2.16). Hence (1.1) has a solution. Here log f is not
convex for large t.
4. Let b(r) be a C*-function on [0, 1] such that 0 < b(r) < 1, b(r) = 1 in a neighbourhood

of zero. Let f'(r,t) = t"exp(b(r)t*> + (1 — b(r))exp(t)). Then fis in A’ satisfying (2.16).
Hence (1.1) has a solution.
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3. Proofs of theorems (2.1) and (2.2)

Lemma 3.1. For 0<a< 1, we have

(i) H? is compactly embedded in C[0,1].
(i) A, <A, and A,—> A, as a—1
(i) win Hy, ry <r,,

r
Julry) — u(r;)P? < uliflog 2.
1

Proof. Let r, <r, and u is in H%. Then by integration by parts

r2 2
lu(ry) — “("1)'2 = <J u’(’)‘”)

rz2
< Ilullff rotdr

r

rl—a rl—a
272 1
“ u ”a

1—a

Hence (i) follows from (3.1) and Arzela-Ascoli’s theorem. Let u is in H}, then

lu(r) — ulry)|? = ( f " u'(r)dr)2
< llullf(fnr'1 dr)

.
= |luj?log-2.
ry

This proves (iii).
We have

—(r¢s) = 4,0, — (1 — ),
~(rdy) =4, ¢,

Hence

1 1
11‘[ 1@ rdr= ‘j (roy) ¢, dr
0 0
1
= — f (r¢y) ¢ dr
0

=iaJ1 ¢, rdr—(1 —a)jl ¢, ¢ dr.
0 0o

ie.

s —za)fl¢1¢ardr= —a —a)f¢;¢1dr.
0 0

(.1)

(3.2)
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Since ¢, <0 and hence 4, <4, and 4,— 4, as @ — 1. This proves (ii).

Lemma 3.2. Let f be in A, then there exists an ay < 1 such that for ay <o <1,

i) T, satisfies the Palais—Smale condition.
i) Let m > 0 be such that

12 m
J F(r, —)rdr >2m? (3.3)
0 2

[Such a m exists because of the condition (iv) of definition (2.1)].
Then there exists a u, in C2[0,1] satisfying
Lu,=f(r,u;) in[0,1)
u,>0 (3.4)

u,(0) =u,(1)=0.
and
I,(u,) < 2m?.

Proof. Proof of this lemma is standard (see [7]). For the sake of completeness we
will prove it.

Step 1. Let u, in H be a sequence such that

T ) <M
! 3.5)
I (u,)>0 asn- 0.
Bl_a(un) - <I_;(un)9 un>
_ (g_ 1) i dr— f L8R () — ()1 dr
JO 0
> (f’- - 1) [ e ar - f LBF(r,uy) — f(r, 0, ), 1 dr
2 Jo [unj <ty
> ("i - 1) urdr (36)
2 Jo

where C is a constant depending only on F. Since > 2, (3.5) and (3.6) imply { [ u,ll,}
is bounded. Let u, converge to u weakly in H} and strongly in C[0, 1].

1

(), 4, —u) = f l u,(r)?r*dr — f ul (N (r)r*dr
0

0
- Jl f(rsu)(u, — uyr*dr 3.7
0
(3.5) and (3.7) imply

1 1
J u,(ry*redr— f w'(r)?r*dr.

0 o
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Hence u, converges strongly to u and this proves (i).

Step 2. From (ii) of Lemma (3.1) and (iii) of Definition (2.1) there exists an a, < | and
a 4> 0 such that

Atz 2

F(r,t)<7< “2 for all re[0,1], 0<|t| <t,. (3.8)
Let u in Hj be such that

<2, 69)
From (3.1) and (3.9) we have

lu(r)* < 3. (3.10)
Hence (3.8) and (3.10) give

,1 2
Fir,ur) < 240 (.11

1

I_a(u)=lliullf—f F(r,uyr*dr

0

1 2 A ! 2.
SHulz =5 | utyredr
0

2
A
>4 bz L iz

A
%<1"7> fully. (3.12)

(-4

Hence zero is a local minima.

Step 3. Define u, in H by

m
Holr) =4 2 (3.13)

Then
_ 1 1 1
I,(u0)=§j mzr“dr—f F(r,uq)r*dr

0

m2 1 1/2
< - - s ad
2(1+a)(1 21“) L F(r,uy)r*dr

m? 1 112 m
< - - F 3y ud
2(1+a)<1 21“) L <r2)' ’

<M (] 2m? <0 (3.14)
\2(1+CZ) 21l+a .
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and for 0 <1,

_ t? )
1, (tug) < ) uo i

m? 1
< 1- <2m? .
2(1+a)< 2”“) 2m (3.13)

Hence T satisfies all the hypotheses of Mountain pass theorem and hence there exists
a critical point u, of I, such that

T(u,) < sup I,(tuy).
1e(0,1]

Now from (3.15) it follows that
I(u,) <2m?
and u, satisfies (3.4).

Lemma 3.3. Let f be in A', then there exists ay < 1 such that for all sy <a <1, , is
non-empty and an u,ey’, satisfying

% _ 1,(u,) = inf I,(u)= inf I,(u) (3.16)

2 uedB, ueB,

and for all win Hf, |w|,=1,
1
J. Sf(r,a,w)wr*dr € a,. (3.17)
V]
Proof. Let u be in B,. Define y <1 such that

juj2 =1 J S, yuurtdr. (3.18)
YJo

Such a y exists because f(r, t)/t is an increasing function and uis in B, and | f(r, t)| < A,]¢|
for |t| <ty dp<a< 1.
Define v = yu, then

ol =»*llulll = L Sy (yuyr* dr

1
= J f(r,v)vr*dr. (3.19)
L]
Hence v is in 8B, and since y < 1, and feA’, we have
1,(v) = L(yu) < I (u).
this together with B, = B, imply that
d,=infl, = infl,. (3.20)

o8, B,
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Let u, in 0B, be a sequence such that u, >0 and I,(u,) - d,. Such a sequence exists
because for u in 0B, implies |u| is in B, and I,(u) = I,(ju).
We claim that {| u,ll,} is bounded. Let N be such that for all n > N,

dy <I(u,)<d, +1 (3.21)
1 1
%+1>umkﬁf[ﬂmmm~HMwnﬂw
0

=1J\1 [f(rs un)un_ ﬂF(", un)]radr
2Je
#(3-1)], resrar 622
2 0

From (iv) of Definition (2.1), there exists a constant C depending only on f such that
for all v in Hg,
1
J Lf(r,v)o— BF(r,0)]r*dr > C. (3.23)
0

From (3.22) and (3.23) there exists a constant C, independent of # such that

1
ermwmscp (3.24)

0

From (3.21) and (3.24) we have

1

lullz = 21,(u,) + 2.[ F(r,u,)r*dr
0

<2d,+1)+2C,

and this proves the claim.

Let u, = weak limit of u, and a4 be as in Lemma (3.2). We claim that for ay Sa < 1,
u,ey., satisfying (3.16).

First we will show that u, is non-zero. Suppose u, =0, then from Lemma (3.1). u,
converges to 0 in C[0,1]. Let N be an integer such that

u,(ry<ty, forallnz= N, re[0,1]. (3.25)
Then from (iii) of Definition (2.1) and the choice of «,,
S, un(r)) < A uy(r). (3.26)

Since u,edB,, we have from (3.26)

fu, 2 = f flrou)u,r*dr

0

1
< i,j up(r)?r dr < flu, |12
0
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which is a contradiction and hence u, # 0 and

L(u,) = lim I,(u,) = d,

L , (3.27)
llugllz < Lim [fu, |z = J S(r,ug)u,r*dr,
0

n—w

u, is in dB,. If not, then by (3.27) we can choose a y < 1 such that

1
AL =% f £, puugrdr.
0

Then yu, is in 0B, and
d, < I(yu,) < I(u,) = d,.

This proves that u, is in 0B,. Since u, is a minimizer and hence there exists a real
number p such that for all ¢ in Hj,

0

fl u (r)¢’(r)r*dr — J‘l f(r,u)pr*dr
0

1 1 laf 3
=p{2 j u, (¢’ (rredr — f f(r,u,)q‘)r“dr—j ——(r,u,)u,d)r“dr;.
0 0 o 6t
(3.28)

Putting ¢ = u, in (3.28) and using the fact that u,e0B,, we have

1 1 Xaf
p {2[ w,(r)*r*dr— J frouu,r*dr — J (1, U U, (r)*r* dr} =0.
0 o Ot

0

Since u, is in 0B,, we have
Hfru) of 2.
pL I:T_E(r’ u,)]u,(r) r*dr=0.

Since fis in A’, and u is not zero, it implies that p =0. Hence from (3.28) and by
regularity of elliptic operator, it follows that u, isin 3", and I,(4,) = d,. Since 3", < 0B,,
we have a2/2 = infg 1, = I,(u,) =d, and this proves (3.16). Let ||w], = 1. Choose y >0
such that

1 =1f1f(r, yw)wr® dr. (3.29)
YJo

Then yw is in 6B,. Hence
2

2

2
y
Iwls ==

2

=]

'}’2
< Ia(yw) < ?
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implies a, < y. Since f is in A’, we have

1! 1!
— | flr,a,wywrtdr <- f f(r,yw)wr*dr =1
. a4 Jo YJo

ie.

1
j f(r,a,w)wr*dr < a,

4]
proving (3.17).
Lemma 3.4. Let f be in A’ and o is as in Lemma (3.3). Then {a,} is bounded on [a,,1).

Let a=1lim,_,, a,. Then for all we H} with |w]l, = 1. we have

fl f(r,awm)wrdr <a. (3.30)
0

Proof. From Lemma (3.2) and (3.3) we have I, = a2/2 and I, <2m*. Hence {a,} is
bounded on [, 1). Let «, be a sequence such that a, —a as a,—1 and w be in E
with |wl|l; = 1. Let v, = w/||w||,,. Then from (3.17) we have

1
j flroa, v)v,r*dr<a, .
0
Letting a,— 1, v,> w, g, —a, we get

jl flr,awwrdr<a. (3.31)

0

Since f is odd, and hence by Fatou’s (3.31) holds for all w in Hj.

Lemma 3.5. Let fbein A,0<a<1,0<¢e<1,and uin Y, Then we have

1_r1'¢ r 1 l_tl—a
u(r) =T L f(t,u(t))e*de + j t"( ) S{t,u(r))dr (3.32)

~0 1—a

e e =(1+ a)J. F(ryuyr*dr + f oF (ryu)r* *odr
0 o Or

+ —I—_z_—aJ W'(r)2ridr — et **F(e, ulg)). (3.33)
0

Proof. If v(r) is the right hand side of (3.32), then by differentiating twice, v satisfies

Lo = fir,u)
v'(0) = v(1) = 0.

(3.34)

Hence by uniqueness, v = u. This proves (3.32). u is in 2, hence

'y = — f(r,u(r))r. (3.35)
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multiply (3.35) by ru/(r) and integrate from 0 to ¢ we get
r(r“u’(r))’u’(r)r dr=— J: flr,wu'r* todr. (3.36)
0
Since (dF/dr)(r, u(r)) = (0F/or)(r,u(r)) + f(r,u(r)'(r), we have

(1—a)f* ¢dF ¢oF
1+a, /()2 ()2 5 = — _ 1+a 1+a
e T (g) 3 L u'(r)’r*dr L i dr + L o dr

NP

= —F(gu(e)e! **+ (1 + rx)J.eF(r, wredr
0

aaF 1+a
+J\oﬁr dr.

€ £ 1-— €
et el =01+a | Firurdr+ a—Frl T w(r)*r*dr
o o Or 2 Jo

Hence

— F(g,u(g))e* *°.
This proves (3.33).
Lemma 3.6. Let fbein A, a,— L,u,isin3., and aconstant M independent of n such that

@) lu,lla, <M
(i) lim u,(1)=n #0.

n—aw

(337

Then there exists a subsequence (still denoted by a,) such that the weak limit u of u,
in HY is a weak solution of (1.2). Furthermore

lim fl F(ru)r*~dr = jl F(r,u)rdr. (3.38)

n— o (4] (4]

Proof. |lu,|; < |lu,ll., <M, hence by going to a subsequence the weak limit u of u,
in Hj exists. From (iii) of Lemma (3.1), u, converges to u uniformly on compact
subsets of (0, 1]. We claim u is not identically zero. For, if u =0, then, since u,in 3, ,
we have for0<r<1,

1
rrun(r) = ul (1) + f S(rou)r*~dr. (3.39)
From (ii) of (3.37) and (3.39) and using u,— 0 on [r, 1] uniformly
r lim u:,(r) =1, (340)

Hence by Fatou’s lemma, and (3.40)

1 1
rdr . .
o =12 f < f lim ()2 dr < lim | u, 2, < M

n—*w
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which is a contradiction. Hence u # 0 and u satisfies

— ('Y = flr,uyr in(0,1]

(3.41)
u(l) =0.
Now by Fatous, we have
1 1
j flr,wurdr < l_lmf S(r,u)u,r*dr< M. (3.42)
0 0
Hence
1
j flr,wrdr< j f(r.wyrdr+ J Sf(r,u)urdr < co0. (3.43)
0 ug! u>1
For any 0 <r < 1, integrating (3.41) from r to 1, we get
1
ru'(ry=u'(1) + f S, u)tde. (3.44)
(3.44) gives ru'(r) is monotone and hence limit r — 0 exists. We claim that
limru'(r)=0. (3.45)

r—+0

For, iflim, o ru'(r) = C <0, then there exists ¢ > O such that —~u/'(r) 2> C/rforO<r<e.
Hence

0= Czj Eiz_r_s J ri'(r)* dr < co.
o T 0
Hence (3.45) is true. Using (3.44) and (3.45) we get
1
W)= — J f(t,u)edt. (3.46)
1]

Let ¢ be in C2[0,1] with ¢(1)=0. Multiply ¢’ to (3.44) and integrate from O to 1,
and using (3.46) we have

1 1 1
L w(r)¢'(r)rdr =/ (1)(¢(1) — ¢(0)) + L ¢’(r)J S, u)tdedr
=u(1)(¢(1) - $(0)) + L S, we)tde
—¢(0) r St wedt
0

= j l St wyp(r)edt

and hence u is a weak solution of (1.2).
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From (3.33) and (3.37) we have

n— o 0

1 1
lim {(1 + a,,,)f F(r,u,)r*ndr + J. g—fr”“"dr} =4in? (3.47)
(4]

Now multiply ru'(r) to (3.41) and integrate from r to 1, we have

tdF 1 9F
— L2021/ (1)2 = — g2 Y2
1r*d'(r)* + 3u'(1) f,dttdt_{hj‘,‘&ttdt

= F(r,u(r))r* + 2 Il F(t,u)t + J’l %Iti t2de. (3.48)

r

Since ru'(r) -0, {5 F(t,u)tdt < 0o, 8F/6r>0 in [0,6,] and [} (9F/on)t* dt < o0, we
conclude that lim,_, o F(r, u(r))r? exists and claim that

lim F(r, u(r))r® = 0. (3.49)

r—0
If not, there exists a constant C > 0 and &> 0 such that

Fru)r’=C forallO<r<e.
Hence

0 = f gdrs J F(r,u(r))rdr < o

0 0

which is a contradiction.
Now using (3.49), (3.48) becomes

1

w1’ =2 J: F(r,uwrdr+ f %Irj(r, wr2dr. (3.50)

0

Since #/(1) = lim,,_, , 4, (1), and hence from (3.47) and (3.50) we have

1 1
2'[ F(r,wrdr + '[ glri(r, wrtdr
0 or

1}

n— o 0

1 1 aF

= lim {(1 +oc,,)f F(r,u,)r*~dr + J Er—(r, u,,)r”‘"dr}. (3.51)
0

By Fatou’s and using (ii) of Definition (2.1) we have

1 1
ZJ F(r,u)rdr <lim(1 +az,,)J‘ F(r,u,)r*dr
0 0

1 1 3.52
J a_F(r, wr? drSli_m_J .aa_f(r, u)r**1dr. (3.52)
0

o Or

By going to a subsequence, we conclude from (3.51) and (3.52) that

1 1
lim (1 + a,,)f F(r,u,)r*~dr = 2J‘ F(r,uyrdr
0 4]

n—+aw
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and
: ! aF an+1 ! aF 2
,.IT:, fo 5?(r,u,,)r dr= L E;(r, u)r-dr.

Lemma 3.7. Let f in A’ be critical. Then

TGN |
——=sup<c*; su r,ewywrdr < (3.53)
b(0) p{ il Jo St ew)

Proof. f = h(r,t)exp [b(r)t*] for (r,t) in Q.
Let

1

C3 =sup {c’; sup f(r,ew)wrdr < oo}

lIwilh <1 Jo

Step 1. C3 % 2/b(0).
If not, then choose ¢ >0, ¢ >0 and a § <(d;,d,) such that

2 2 2 2
poy <€ <t <Co (3.5
For roe[()"sl], deﬁne
log1
VV,O(r)=-—————1—-T/7 for rosr<i
(log };)
1\ (3.55)
Wro(’)=(1°8;—) forO<r<r,.
(1]

Then [w,,|l; = 1. Since (3f/or)(r,t) 2 0 in Q,,, we have

h(0, ) exp [b(0)t*] < h(r,t)exp [b(r)t?] in Q,,.
Now (c + £)* < C implies that there exists an absolute constant M depending only
on {c + ¢) and f such that

1 é
Mz j fr.(c+ew, )w, rdr> J fir(c+ew, )w, rdr
o 0

ro 1 1/2 1 1/2
>J. f(O,(c+e)(log—) )(log-) rdr
0 ro ro
1 1 1/2 l 1/2 1
= —<log——) h(O, (c+ a)(log——) )exp[b(O)(c +¢)? log——] ra
2 ro ro ro

1/ 1\~ 1)!72 1
—(log—) h(O,(c+a)(log—> )exp[sz(log*)]
>2 To o ro

FE0)-2) ' —®

asro—0.
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Hence C3 < 2/b(0).

Step 2. C3=2/b(0).
Suppose not, then choose ¢ > 0, 6 > 0 such that 6 < min(4,, d,) and for all r in [0, 4],

2—¢

2 2
C§<(Co+ 0P <

Let [[wll, <1, then
1 a 1
J S, (Co + eywwrdr = .[ + ‘[ . (3.56)
V] V] 3
Since |w|l, =1 implies from Lemma (3.1)
1
|w(r)| <log p

hence there exists a constant M, such that

1

sup | Sf(r,(Co+ewwrdr< M, (3.57)
wly=1J8
and
é 3
I S, (Co+e)wywrdr < j h(r,(Co + &)w)[exp(C, + £)*b(r)w? Jwr dr
0 0
é
< J. h(r,(Co + e)w)[exp(2 — eyw? Jwrdr
0
é
<M, j [exp(2 — &/2)w?]rdr
0
é
Ssz 2 ldr< M, (3.58)
0
where

M, = sup h(r,t)texp — ’e.
(r.0eQ; 2

This implies C, > (C, + €) which is a contradiction. Hence C2 = 2/b(0).
Lemma 3.8. Let f in A’ be critical and suppose there exists a to > 0 satisfying

exp —t2 < d,

1/
(o) Yo o( )" o5
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Let a >0 such that

1
sup flr,awwrdr<a {(3.60)
Iwili<1 Jo

then a* < 2/b(0).

Proof. From Lemma (3.7), a2 < 2/b(0). Suppose a® = 2/b(0), then take r, = exp —13,
W, as in (3.55) and from (3.60) we have

2 1/2 ro d
e =4z , a4 ro ,.o?' r
(b(O)) a L flr,aw, w,

> j ’ f(0,aw, )w,, dr
0
2
=10 atolty)

1\r3
=t,h{0, at,)exp 2 log 7

~ 14, h(O(b(O) ) (b(m)z

which is a contradiction. Hence the result.

Lemma 39. Foranye>0,0<a<1,

_pl—a
sup rf(1 4 )sl (3.61)

0<r<1 l—a &

Proof. Let g(r) =rf(1—r'"%/1 —a). Then g(0) = g(1) = 0. Let 0 <r, <1 such that

glro) = sup ¢(r)

0<rg1

then
’ - l—rl-a -a
0= g'(re) = er% ( — )—ra .
Hence
1=rp™® r®
l—a ¢
Therefore
1—ate 1
g < glrg) < <;



Positive solutions of the semilinear Dirichlet

Lemma 3.10. Let fin A’ be critical, then

B,\JBT (‘(BluB?) Bo:

67

(3.62)

Proof. u is in B, U B} implies |u| also in B, uBY and I,(u) =1,(|u|). Let ue B, UBY;

choose a y < 1 such that

1 (!
l|u||2=;j S, ywur dr.
o

Then yu is in 6(B, U BY) and I,(yu) < I,(u). Hence

inf 11 = inf 11 .
B,uB} By UBY)

Now let u >0 is in 6(B; U B¥). Since f is critical, we have for any s > 1

1
f f(r,swurdr < oo.
o

Let v = su, then

o} =s*lul?=s* jlf(r,u)urdr
0

=sJ‘lf<r,E>vrdr<J‘1 f(r,v)ordr
0 s 0

because s> 1 and f(r,t)/t is increasing.
Choose an ¢, > 0 such that for any 0 <e <gg

1 1
lv)? < J f@r,v)ordr < J f(r,v)ordr
3 0

and define

Vg

_ v(e) fO0<r<e
T o) fe<sr<t)

Then from (3.64) v, is in By, .
Now we claim that I,(v,)—> (v} as e 0.

(3.63)

(3.64)

(3.65)

Case 1. Ifvisin B,, then ||v, |, < [|v ], and hence by dominated convergence theorem

1,(v)—1,(v).

Case 2. If v is in B¥, then v,Tv and hence by Monotone convergence theorem,

I,(v,)—1,(v). Hence

infl, <I,{v,)-1,(v) ase—0.
Bo

(3.66)
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[ is critical and is in 4’, we have for 1 <s<?2

S(r, su)su — 2F(r, su) < 2f (r, 2u)u — 2F(r, 2u)
and is in L'. Hence by dominated convergence theorem,

L)—1,u ass—1. (3.67)
Combining (3.66) and (3.67) we have

infl, < inf I,<infl,
Bo: By uBY) Boa

and hence the result.

Proof of theorem (2.1). From Lemma (3.2), there exists ag <1 such that X, is
non-empty for oy <a <1 and {I,} is bounded by 2m? where m is given by (3.3). Let
l=1im,,, !,

Let f satisfies (2.10). Let n>0, y >0, a,— 1, 4, in Z,_ such that

@1, -1 asa,—1

(i) 1, < T, (u) < (1,, +§) (3.68)

(i) (I, +mMb<y<l1.
We claim that
lim, ., u,(1)#0. (3.69)

If not, then u,(1) - 0. Since u,€X, , we have
u(l)=— J: fr,u)ydr—-0 asa,—1.
Since for any 0 <r <1 we have
ruy(r) =u,(1) + f 1 S(t,u)t*dt

we have

sup |ru(r)l-0 asa,—1.
re{0,1]

This shows for any 0 <r, <1,

sup |u,(r)|-0 asa,—1. (3.70)

rosr<1

This in turn implies

1
sup lu,,(r)ng‘ lu,(t)]dt >0 asa,—1. (3.71)

rosr<1
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From (ii) of definition (2.1) and (3.33) we have

do

F(r,u,,)r""'dr+J a—F(r,u,,)r“”"'dr
o Or

do

$05u(00)* =(1 + a..)j‘

0

(1-a)

t—3

do
j uy(r)2r*n dr — 657 F (39, un(8o))
0

2(1+a) J.Jo F(r,u,)rndr — 8 ** F(dy,u,(0)) (3.72)

0

Hence by (3.70) and (3.72) we have
do
f F(r,u,)r*"dr-0 asa,—1. (3.73)
1]

From (3.71) and by dominated convergence theorem

1
J. F(r,u,)r*~dr—-0 asa,—1. (3.74)
do

Combining (3.73) and (3.74) we have

1
f F(r,u,)r*»dr-0 asa,—1. (3.75)
o

Let N, be such that for all n > N,

1
J Fr,u)redr <. (3.76)
o 2

From (ii) and (iii) of (3.68) and (3.76)
1

HulZ, =L, () + f F(r,u,)r*dr
0

<<1,"+§)+g=(l,,+n)

<

o>

Hence

1
(1) < 13 Tog-~

1
<2(1,,+n) log;

1

2y
<=log-. )
- logr 377
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From (3.32), (3.70) and (3.77) we have

u,(0) = 1t‘"(1——~t—1———a—")f(tu )de
O= ) T\ T, )

& _¢l-an 1 __¢l-an
- L t<lr£a—-) f(t,u,)dt + L, t(%-_%—) f(t,u,)dt

d) 1— tl-a,.
<M | (—————) exp (bu?)dt + M,

JO 1"“,,

A T 1
M| ¢ (————) exp (2v log;> dt+ M,

JO l—a,,

(&1 1— tl ~n
<M t“"‘“(——————) de+ M, (3.78)

Jo 1-a,
Now choose ¢ > 0 such that
o,>2y—1+¢ for all n,large.

Then from (3.61) and (3.78) we have

4 1 _ tl —dn
u,,(O)SMf gon = 2r /22 (-———1 )dt+M1
0 Y
‘ 4M
<M ! My <+ M, (3.79)

& £
<oc,,—2y+1—§>

4M
”un”w=un(0)<_8§_+M1'

Hence

Since u, is in ¥, and {]|u, ], } is bounded and hence u, converges strongly in C[0, 1]
and in H} to a function u. From (3.71) u,(r)— 0 as a,— oo for every r # 0, we have
u=0 and hence u,(0)—0. Now choose N large such that |lu, |, <t, for all n>N.
From (iii) of Definition (2.1) we have

1 M1
e, f U, @, r*ndr=— 1 ("¢, Ju,dr
0

V] o
r1

=—| (" u,)¢,,dr
0

1 ~1
Ao, J Uy, rndr=— 1| (r*u,)e,,dr

0 Jo

= J‘l f(r, un)¢a"r¢" dr
[

1
<A, J Uy P, 1o dr.

0
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and hence a contradiction. This proves the claim. Hence by going to a subsequence,
we assume that

lim u,(1) £ 0
=t (3.80)
L, <T, (u,)<2l, <4m?.

Now
1 1
4m2 2 EJ‘ [f(r1 un)un - 2F(r’ u")]ra" dr
0

1 1 . B___2 1
=5L LS up)u, — BE(r,u,)]r "dr+——'f F(r,u,)r*dr

2 Jo

— 1

>M1+<ﬂ—2—2>J F(r,u,)r*dr
0o

where M, is constant independent of n. Hence 3M, > 0 such that

1
J F(ryur*~dr< M,
0

_ 1 (3.81)
o, |2 =I¢"(u,,)+J‘ F(ru)r*~dr<4m? + M,.

an
0

Hence {[lu,ll,,} is uniformly bounded. Hence from (3.80) and Lemma (3.6), u,
converges weakly to a non-zero solution u of (1.2).

From condition (i) of Theorem (2.1), we have for every 1 € p < oo, f(u)eLP(D) (see
Moser [6]). Hence by regularity of elliptic operators, uew*?(D) and hence by Sobolev
imbedding u is in C!'(DY and hence in C?(D). This proves the result.

Remark 3.1. From the proof of Theorem (2.1) it follows that if m > 0 is satisfying
(2.11), then from Lemma (3.2) [, < 2m? and hence ! < 2m?. Therefore if 2m?b < 1 implies
Ib < 1. This proves the criterion (2.10).

Proof of Theorem 2.2. From Lemma (3.2) there exists «, < 1 such that 3", is non-empty
and {a,} is bounded for a; <a < 1. Lemma (3.3) gives (2.15).

Case (I). Let f be super critical and lim,_, a, = a # 0. Then from Lemma (3.4) we have

1
sup f f(r,aw)wrdr <a.
0

fIwlhi <1

contradicting the fact that f is super critical. Hence a =0,

Case 2. 1f f is critical, let a = lim,_, a,. Then from (3.30) it follows that

sup J‘f(r, aw)wrdr<a

wlli=1
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and from Lemma (3.8),
2

fz-b(O) <l (3.82)

Now choose an ¢ and § positive such that

i) fr,) < Mexp[(b(0) +¢)t?] for all (r,1)eQ,.

2 (3.83)
(i) 5 6O+ <1.

Such a choice is possible because of (3.82) and the condition that f is critical.

Since a2/2 =1,, and hence f satisfies (2.10) of Theorem (2.1) with b replaced by
(b(0) + &) and hence there exists a sequence u, in Y, and a weak solution u of (1.2)
such that

2
(iii) 1,"(14,,)—»"7 as o, — |

(iv) u,~»u in H}. (3.84)

(v) lim ‘[IF(r,u,,)r"dr= ‘[IF(r, wrdr.

n~o jO 0

In fact (iii) follows from Lemma (3.6). From weak lower semicontinuity of the norm
we have

lull} < lim Ju,,,

an—1

and hence from (iii) we have
a2
1)< lim L, (u,) =% (3.85)
an—1
Let w be in By,. Choose y, such that
1 1
Iwll = —-J S v,y wywrdr.
Yo Jo

Such a y, exists and lim, .., y, =y, exists and is <1 because w is in B,, and y,w is
in B,. Hence

2
a

2

8

< I(y.w)

Taking the lim as a— 1, we get

<Liw) <1, (w)

ST 8
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This implies

2
"7 <infl,. (3.86)

Boi

From Lemma (3.10), (3.85) and (3.86) and using the fact that u is in B}, we get

2
Lw=2%=infl,
2 Bo:

and a # 0 because u # 0. This proves Theorem (2.2).

Remark 3.2. Suppose f(r,t) <0 for re[0,1] and 0<t<t, and satisfying ali other
hypothesis on. f, then also the Theorems (2.1) and (2.2) are valid.
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