
VOI. 40 NO. 2 SCIENCE IN CHINA (Series A) February 1997 

Analysis of general second-order fluid flow 
in double cylinder rheometer 

HUANG Junqi ( % F @ ) ,  
(Department of Resources and Environmental Sciences, Beijing Normal University, Beijing 100875, China) 

HE Guangyu (@%?I$) 
(Department of Petroleum Engineering, Xi' an Petroleum Institute, Xi' an 730000 , China) 

and LIU Ciqun (?q%%) 
(Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 102801, China) 

Received December 29, 1995; revised May 4, 1996 

Abstract The fractional calculus approach in the constitutive relationship model of second-order fluid is intro- 
duced and the flow characteristics of the viscoelastic fluid in double cylinder rheometer are studied. First, the analytical 
solution of which the derivative order is 1/2 is derived with the analytical solution and the reliability of Laplace numeri- 
cal inversion based on Crump algorithm for the problem is verified, then the characteristics of second-order fluid flow in 
the rheometer by using Crump method is analyzed. The results indicate that the more obvious the viscoelastic proper- 
ties of fluid are, the more sensitive the dependence of velocity and stress on fractional derivative order is. 

Keywords: double cylinder rheorneter, second-order fluid, fractional calculus. 

In many fields, such as oil production, polymer chemistry and pipe line engineerings as well 

as biorheology, it is always an interesting issue to measure the material constants, in which the 

common equipment is the double cylinder rheometer (DCR) . Combining the constitutive relation- 

ship and momentum equation, one can obtain the analytical solution to compute the characteristic 

variables of flow field. These characteristic variables may be compared with the experimental da- 

ta, and through data fitting we can determine the material constants. In 1989, Liu Ciqun and 

Huang ~ u n ~ i " ]  derived the analytical solution based on linear constitutive relationship. Yan 

Zongyi et a1. [21 numerically investigated Maxwell model also based on linear constitutive relation- 

ship. In the research reports of second-order fluid, the employed constitutive relationship has the 

following form : 

a 
r ( t )  = E o e ( t )  + El ~ e ( t ) ,  (1)  

where r is stress, E is strain, Eo and El are constants. Eq. (1)  is a linear relation and derived 

based on the phenomenal theory, which may describe the relationship of stress and strain approxi- 

mately. Since the 1960s, ~ l o n i m s k ~ [ ~ I ,  ~ a ~ l ~ [ ~ ~ ,  ~ o ~ e r s ' ~ ]  and ~r iedr ich '~]  have sequentially in- 

troduced the fractional calculus approach into rheology to study various problems. For numerous 

fluids with character of both elastic and viscous materials the constitutive relationship model has 

advantages over customary linear model. Li Jian and Jiang ~ i ~ i a n ' ~ ]  used the nonlinear model to 

analyze the characteristics of sesbania gum and xanthan gum in their experiment and obtained sat- 

isfactory results 
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Generally the constitutive relationship of viscoelastic second-order fluids has the form as fol- 

10ws[41 : 

where Da is the fractional calculus operator and may be defined as'41 

where l?( . ) is Gamma function. While a = 1,  eq. (2)  may be simplified as eq. ( I ) ,  and while cx 

= 0 ,  the constitutive relationship describes the complete Newtonian fluid. As a matter of fact, 

Eoe  ( t ) is an elastic term and EIDa [ E ( t ) ] is a viscoelastic term. 

This paper will study the rotatory flow of the second-order fluid in DCR. By using Laplace 

and Hankel integral transform to the governing equations, we obtain the image function in 

Laplace domain. As a derivative order a = 1/2 we obtain the analytical solution. There is excel- 

lent agreement between the analytical solution while a = 1/2 and numerical inversion solution that 

is evaluated by  rum^"] method. For any values of cr between zero and unit, with Crump method 

one may obtain satisfactory results. In similar engineering application and experimental analyses, 

the illustration of this report is helpful. In this paper we also investigate the basic properties of the 

nonlinear constitutive relationship and sensitivity of related parameters. 

1 Model formulation and solution 

1 . 1  Basic equation 

The flow in DCR is an axial symmetry. In cylinder coordinate system let z be a vertical axis 

which coincides with the axis of DCR and r be the radial distance. We have the following equa- 

tions : 

constitutive relationship : 

momentum equation : 

By letting 

we have dimensionless form 

where r , ~  is component of stress, V is velocity, t' is time, 70 is viscous parameter, p is vis- 
coelastic parameter, p is density, r,  is radius of inner cylinder. 
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Generally, the inner cylinder is fixed and the outer cylinder makes simple harmonic motion. 

In this case, the initial and boundary conditions are 

u ( x , O )  = 0, I < x < b ,  (8 )  

~ ( 1 ,  t )  = 0, t > 0,  (9 )  
u ( b ,  t )  = cos(wt), t > 0, (10) 

where b = ro/ri, ro = radius of outer cylinder, w = w'rTp/ 70, w' is the frequency factor of simple 

harmonic motion. 

1 . 2  Solution 

Making Laplace transform to problems (7)-(10) we have 

where Z is image of u in Laplace domain, s is Laplace transform parameter. 

The solution of eqs. (11)-(13) is 

With Crump method one can numerically inverse eq. (14) and obtain the distribution of velocity, 

where A = .Js/(l+ R,sa) . Obviously, it is difficult to analytically inverse eq. ( 14) ,  even for 

some special values of a. In order to gain easily the inversed solution, we make Weber transform 

to eqs. (11)-(13) . If the kernel function is taken as 

Weber transform of u may be defined as 

where pi is roots of equation H ( p, , b ) = 0 .  

Through Weber transform, we have 

where 

The inversion transform formula of Weber transform is 
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where 

Substituting eq. ( 17) into ( 19) we have 

where 

1 . 3  Special solution for different a 

By defining the inversion of E ( s ) by 

f ( t >  = L - ' [ E ( S ) I ,  
we obtain the inversion of eq. (21) : 

It is easy to derive the solution for a = O,1 and 1/2.  

(iii) a = 1/2, 

where the sign * represents convolution and 6(  ) is Dirac delta. 

2 Analyses and discussion 

2 . 1  Rc=O 

In this case, eq. (22) can be simplified as 
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To make inverse transform we have 

f( t ) = - p:e-~: * cos( wt ) . (31) 

Substituting eq. (31) into eq. (251, we get the velocity formula for Newtonian fluid. 

2 . 2  The formula of stress 

Dimensionless stress can be represented as 

The Laplace transform of eq. (32) is 

Substituting eq. (21) into eq. (33)  and letting x = 1,  we have 

where 

In the same way we can obtain the inversion of F for the same values of a .  Here we need not give 

unnecessary details. 

2 . 3  Character of velocity at the beginning 

From the theory of Laplace transform we know that as s+m,  the image function represents 

the initial state in the real space. As s + a ,  we can rewrite eq. (19) as 

Inversing eq. (38),  we have 

It can be seen from eq. (39) that as a < 1,  which is the constitutive relationship with fractional 

derivative, the velocity increases gradually from at zero, which indicates the viscoelastic charac- 

ter. While a = 1, that is, with the linear constitutive relationship, the velocity has a step change 

in the initial period. 

2.4 Shear stress on inner cylinder at the beginning 



188 SCIENCE IN CHINA (Series A) Vol. 40 

In the same way as in analyzing velocity, as s + a ,  the stress on inner cylinder can be ex- 

pressed as 

From eq. ( 4 0 )  we know that as a < 1 /2 ,  the stress on inner cylinder changes slowly; as a > 1 / 2 ,  
the stress will be infinite. So in the latter case there is a drawback in describing the constitutive 

relationship with the present formula; at least it is so at the beginning. This problem will also be 

involved in the following computing analyses. 

3 Computing results 

It is difficult to obtain the real time space solution. So we employ the Crump method''] to 
191 evaluate the velocity. We write down the formula of the numerical inversion as follows : 

w 

u ( x ,  t )  = - T -a 2 (r. a )  + c [ ~ e ( u  ( x ,  a  + F ) ) c o s ( F )  I b = l  

where 

where h is the selected parameter greater than the real part of singular point of the inverted func- 

tion. T is half of the maximum computing time, E is the error given by 

The stress is computed by the same formula as eq. ( 4 1 ) .  Sometimes eq. ( 4 1 )  converges slowly. In 

order to save the CPU time we employ the Epsilon algorithm to accelerate the convergence. 

Figure 1  is the history curves of velocity with which we compare the exact and numerical in- 

version solution while a = 0 , 1 , 1 / 2 .  The agreement between both solutions is excellent. In addi- 

tion, from the figure we can see that the effect of a on the velocity is obvious only at the begin- 

ning. With time going on the effect of a disappears. 

Figure 2  is the velocity history at several selected parameters a .  We find that the closer the 

parameter a approaches a unit, the larger the step of velocity is at the beginning. 

Figure 3 is history of velocity for selected parameters R ,  and fixed space point. The figure 

represents the relationship between parameter R ,  and velocity. 

Figure 4  is the velocity distribution between the gap of rheometer for several selected R,. 
The larger the parameter a is, the more uniformly the velocity distributes. 

Figure 5 is the stress histories on the inner cylinder. In the figure, several selected a are in- 

vestigated respectively. Initially, the stress increases with a ,  which verified the former conclusion 

about the step change of velocity at the beginning. This behavior is characterized by general con- 

stitutive relationship. In addition, the phase of stress advances with a .  
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Figure 6 is the stress history curves for different R,. T h e  stress increases with R,, and its 

phase also advances with a . 
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t 

Fig. 1 .  Velocity history at fixed point. The comparison 

of exact and numerical inversion solution.-, exact; A, nu- 

merical. 

Fig. 3. Velocity history for a group of R,. 

Fig. 2 .  Velocity history for a group of a 

Fig. 4 .  Velocity distribution versus a. t = 10'. 

w = 1 . 5 .  R , = 1 . 5 .  

Pig. 5. Stress history versus a .  Fig. 6 .  Stress history versus R,. 
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4 Conclusions 

(i) We have obtained the numerical Laplace inversion solution for general second-order fluid 

flow in double cylinder rheometer, in which the fractional calculus approaching constitutive rela- 

tionship was introduced. Especially while the derivative order a = 1/2, we derived the analytical 

solution. 

(ii) To compare the analytical and numerical inversion solution, we verified the reliability of 

Crump method to the flow model. With Crump method we analyzed the characteristics of second- 

order fluid flow in double cylinder rheometer. 

(iii) The effect of fractional order a in constitutive relationship on flow field is very obvious. 

As a >1/2 the fluid already has obvious pseudo-solid character, and initially the stress on inner 

cylinder may be unlimited. 

(iv) General constitutive relationship model is more useful than linear model for describing 

the properties of second-order fluid. 

(v)  The model and analytical method employed in the paper has been shown to be useful and 

reliable tools for engineering analyses. 
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