
Vol. 44 No. 2 SCIENCE IN CHINA (Series A) February 2001 

Chaos and asymptotical stability in discrete-time recurrent 
neural networks with generalized input-output function 

WANG Jinliang ( .--~-- ~_ ~)~,  CHEN Luonan ( F,~, i$  r~ )2 
& JING Zhujun ( ~ ~ ~ ) " 3  

1. Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China; 
2. Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530, Japan; 
3. Department of Mathematics, Hunan Normal University, Changsha 410081, China 

Received April 4, 2000 

Abstract We theoretically investigate the asymptotical stability, local bifurcations and chaos of dis- 
crete-time recurrent neural networks with the form of 

u , ( t  + 1 ) =  k u , ( t )  + A t ( ~ - ~ a i i v j ( t )  + a , t ,  i = 1 , 2 , ' " , n ,  
\ j l 

where the input-output function is defined as a generalized sJgmoid function, such as vi = tanh(~ju~), 

2 (w)._f,,u, 1 + 1 vj = -~arctan and vj - e-  u/,,  etc. Numerical simulations are also provided to demon- 

strate the theoretical results. 

Keywords: chaos, asymptotical stability, bifurcation, neural network, snap-back repeller. 

Recently the models of nervous system and brain which are called artificial neural net- 

works [1-4] have been widely applied to various information processing problem with considerable 

success. For the continuous-time Hopfield neural networks, Li and Gopalsamy et al. Is,6] investi- 
gated the dynamic properties by studying the qualitative behavior of equilibrium points. For the 

1 xi 
discrete-time neural networks with input-output function as xi  - 1 + e -  Y/~ or Yi = ~In 1 - xi  

Chen et al. ~3,7,s] have both numerically analyzed and theoretically proven asymptotical stability, 
bifurcations and existence of topological chaos, and further shown that the neural models with 
chaotic structure do have globally searching ability. 

This paper aims to extend Chen and Aihara' s works to the generalized input-output functions 

2 ( ~ ) 1 which is continuously dif- such as vi = t a n h (  t ~ i u i ) ,  vi = --arctan~ ~ ~il.ti and vi - 1 + e -  "/~. 

ferentiable and monotonically increasing. Define the region S = [ ( v ~ , ""  , v ,  ) I a <~ vi <~ ~ ; i = 

1 , " "  , n } ,  then S can be divided into vertices Sv = { ( v l , " "  , v , ) I v i  = a or fl; i = 1 , ' " , n } ,  
internal points S t  = { ( V l , " "  , v n )  l a < vi < f l ;  i = 1 ,  " " ,  n t and boundary points = S - Sv - 
$I ,  respectively, x ~ y means that x is directly proportional to y .  

1 Asymptot ical  stabili ty of  discrete- t ime recur ren t  neural  n e t w o r k s  

1.1 Discrete-time recurrent neural networks 

The continuous-time recurrent neural networks or Hopfield neural networks [41 can generally 
be written as 
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d u i ( t )  
bu i ( t )  + ~__jaovj(t) + ai,  i = 1 "'" n (1 1) dt - ' ' ' " j = l  

where b >I 0 and input-output function vi ( t ) = s ( ui ( t ) ) is monotonically increasing with as- 

sumptions (1)  s ( x ) e  C l,  O< s ' ( x ) < ~ M  and (2) s ( x ) =  a + o ( 1 )  (x___~ - ~ ) and s ( x )  

= f l + o ( 1 )  (x---~+ ~ ) .  Obviously, a<~s(x )<<. t~  and inverse function s - l ( y ) i s  also 

monotonically increasing. Note thatassumptions (1)  a n d ( 2 )  i m p l y t h a t s ' ( x ) = o ( 1 )  as x--~ 

. Discretizing eq. ( 1 . 1 )  by Euler method, we have the discrete-time recurrent neural net- 
works as 

k u i ( t ) + A t (  ~ - ] j a o v j ( t ) + a i ) ,  i = l , 2 , ' " , n ,  ( 1 . 2 )  u i ( t  + l )  = 
~ ] j = l  

where k = l -  b A t ,  A t > 0 ,  or 

u ( t  + 1) = k u ( t )  + A t ( A v ( u ( t ) )  + I)  & F ( u ( t ) ) ,  ( 1 . 3 )  
where u ( t )  = ( u , ( t ) , ' " , u , ( t ) )  T, A = (ai j )  . . . .  I =  ( a l , - " , a , ) T a n d  v ( u ( t ) )  = 

( v , ( t ) , ' " , v , ( t ) ) Z =  ( S ( U , ( t ) ) , ' " , S ( U n ( t ) ) )  T. Obviously F E  C 1, and eq. ( 1 . 3 )  can 

be rewritten as 

I Vl( t  + 1) 

v ( t  + 1) = i 
t , v . ( t  + 1) 

where vi = v i ( t ) ,  and i = 1 , 2 , ' " ,  n .  

j = l  

= : 

]=1 

, (1 .4 )  

1.2 Conditions of asymptotical stability 
Synchronously updating is that all neurons are updated in parallel, using only old values as 

input, and asynchronously updating is that neurons are updated one by one, using fresh values of 
previously updated neurons ( see refs. [ 3 ,7  ] ) .  

1 1 - k  1 
Theorem 1 . 1 .  Assume that AT = A and ( 1 ) 0 ~< k ~ 3 ' M > -- mt/~ rain o r  ( 2 )  3 

2k 
k~< l ,  ~ -  > - At2min, where 2rain is the smallest eigenvalue of A.  Then v ( t )  of eq. ( 1 . 4 )  

asymptotically converges to a fixed points, as far as eq. ( 1 . 4 )  is synchronously updated. 
Proof .  The Lyapunov function f ( v )  is used to prove the theorem. Define 

2 v ' $ - 1  ) d x .  ( 1 . 5 )  f ( v )  = - --~At aijvivj - A t  a i v l -  ( k  - 1) (x  
i , j=l  i=1 i=1 0 

T h e n w e h a v e f ( v ( t + l ) ) - f ( v ( t ) ) ~ - ~ - ( A v )  T A t A +  E A v ,  orf (v( t+ l ) ) -  
1 ( 2k ) 

f ( v ( t ) ) < .  - ~ - ( A v )  T AtA + ~ E  A v ,  where A v =  ( A v l , ' " , A v n )  T. For condition ( 1 ) ,  

1 M kE  is positively definite Hence,  using the first inequality we the symmetric matrix A tA + - -  

have f (  v ( t + 1 ) ) - f (  v ( t ) ) ~< 0,  where equality holds only for Av = 0,  which means that v ( t ) 
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has reached a fixed point of the network dynamics. For condition ( 2 ) ,  using the last one, we 
have the same conclusion. 

1 1 - k  
Theorem 1 . 2 .  Assume that A T= A and (1)  0~< k ~< 3 ' M > - At min, ai~, or (2)  

1 2k 
~ < k ~ <  1, ~ - >  - A t  minaii., Then v ( t )  of eq. ( 1 . 4 )  asymptotically converges to a fixed 

point, as long as eq. ( 1 . 4 )  is asynchronously updated. 
Proof .  Without loss of generality, let neuron l be the updated neuron at the iteration 

- ( t + l ) .  Then for condition (1 ) ,  f ( v ( t  + l ) ) - f ( v ( t ) ) < < . ~  Atau+ (Avz)2<O 

(Avl # 0 ) .  We have condition (2)  similar to the derivation of ( 1 ) .  
Next we investigate the correlations between asymptotically stable fixed points and minima of 

the computational energy function f ( v )  (eq .  ( 1 . 5 )  ) .  

L e m m a  1 . 1 .  Assume AT= A. Then (1)  fixed points of v ( t )  for eq. ( 1 . 4 )  are com- 
posed of stationary points of f (  v ) and all of vertices of v ( t ) ,  regardless of synchronously or 
asynchronously updating; (2)  as far as k # 1 or b # 0,  there is no stationary points of f ( v )  on 
vertices or boundary points of v. 

Proof .  The proof is similar to that in ref. [ 7 ] .  
Theorem 1 . 3 .  Under the conditions of Theorems 1.1 and 1 .2 ,  the fixed point of v ( t ) is 

asymptotically stable for eq. ( 1 . 4 )  if and only if this point is a local minimum of f (  v ) for 

aP1 ~ V ~ t~Pl. 

Proof .  By using the definition of the asympotical stability for discrete-time system [7'93 and 
Lemma 1 .1 ,  the proof is easy. 

Corol lary 1 . 1 .  Assume the same conditions of Theorems 1.1 and 1 .2 ,  and assume that 
a i i =  0 for i = 1 ,2 ,  "'", n and k = 1. Then a fixed point v ( t ) is asymptotically stable for eq. 

( 1 . 4 )  if and only if this point is a local minimum of f (  v ) for aP~ <<. v <~ tiP2 on vertices. 
s ' ( u i ( t  + 1))  s ' ( u i ( t  + 1))  

Let bothl im s ' ( u i ( t ) )  and lim s' be finite numbers or oo, we give the 
v~o v ~  ( u i ( t ) )  

following theorem to evaluate the local stability of the fixed points in an exact manner. 

Theorem 1 . 4 .  Assume that A T =  A ,  

(1)  for synchronous updating: a fixed points v " is asymptotically stable if the largest and 

smallest eigenvalues ,~'m~x and A tmi n of matrix diag( k l , ' " ,  kn ) + A t diag( s' ( u i ) , " " ,  s ( u :  ) ) A 

satisfy ] ~'m~x ] < 1 and ] g'mi, [ < 1; on the other hand, v ~ is unstable if either 2'max or 2'min sat- 

isfies [ g'm~x 1> l or ] "~'min t > 1 ,  where v/~ = s( u/~ ) and 
I 1)) . . 

ki = k S,(Ui( t )  ) , i f v i  = a or V i = p ,  

t k , '  ' otherwise; 

(2)  for asynchronous updating: a fixed point v " is asymptotically stable if 

[max{ k i + Ataiis'( u/~ )1 t < 1 and I minl ki + Ataiis'( u[ ) t l  < 1. 
dv ( t  + 1) 

Proof .  Examining whether the absolute values of all eigenvalues of dv ( t )  at u ~ are 

less than 1 or more than 1, we get the conditions of the theorem. 
For input-output function v~ = tanh(,uui) (/~ > 0 ) ,  we have the similar theorem. 
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Theorem 1 . 5 .  Assume A T = A, 

( 1 ) when - 1 < k < 1 and k # 0,  no fixed point on vertices or boundary points is asymptot- 
ically stable. While k = 0 ,  the fixed point on vertices or boundary points is asymptotically stable. 
Asymptotically stable conditions for internal fixed points follow Theorem 1 .4  for both synchronous 
updating and asynchronous updating; 

(2)  for synchronous updating: when k ~< - 1 or k = 1, a fixed point v ~ E S is asymptoti- 
cally stable if the largest and the smallest eigenvalues A"~x and r of matrix diag( k l  , ' " ,  kn ) + 

g A t d i a g ( l - v ; , ' " , l -  Vn ~ ) A  satisfy tA"m~xl < 1 and IA"minl < 1; on the other hand, a 

fixed point v* E S is unstable if either A"m~x or g"in satisfies ]A"~x ] > 1 or I A"in ] > 1, where 

ign k e - u's"( ~' * �9 ")~at  a?~§ k = +  1 ,  v i  = +  1 ,  

ki = k < - 1 ,  v ( = +  1, 

k otherwise ; 

(3)  for asynchronous updating: if k ~< - 1 or k = 1, a fixed point v ~ E S is asymptotically 
stable if 

I maxt ki + / I A t a i i ( 1  - v/~2)t ] < 1 and ]mini k i + / ~ A t a i i ( l  - v/*2)} I < 1. 

P roof .  The proof is similar to that in ref. [7 ] .  

2 Local  bifurcations 

This section examines the generic bifurcations of the fixed points, in particular the stationary 

points of f (  v ,  I ) ,  by taking I as bifurcation parameters, where I = ( a  l , ' " ,  an)W and 

1 2 2 2f = -- - -~At  a~viv j - a t  air i - ( k  - l )  s - l ( x ) d x .  ( 2 . 1 )  
i,j=l i=l i = l  0 

From eq. ( 2 . 1 ) ,  we can easily obtain 

3 f  _ _  A t ( A v  + I )  - ( k  - 1 ) u ( t )  = -  [ u ( t  + l )  - u ( t ) ]  ( 2 . 2 )  
~v - 

and 3 2 f -  - ( k -  1)diag s ' ( u l )  s ' ( - u ~ )  - A t A  where 
O r 2  ' , 

8 V  8 V l  ' S V n  ' 3 V 2  -- n x n  

Eq. ( 2 . 2 )  can be rewritten as 

u ( t  + 1) = u ( t )  - 3 f  ( 2 . 3 )  
Or" 

Then the Jacobian matrix Ju - 
d u ( t  + 1) a2f  

d u ( t )  o f e q .  ( 2 . 3 )  at ( v , l )  becomes Ju = E - 3 v  2 

s ' ( u l ( t  + l ) )  
d v ( t  + 1) _ kdiag s ' ( u , ( t ) )  

S' ( ,Un( t  + 1) )  / 
d i a g ( s ' ( u t ) , ' " , s ' ( u n ) )  and J r -  d v ( t )  ' " "  s(-u.--(-~)) ~ + 

Atdiag( s' ( u l  ( t + 1 ) ) , ' " ,  s' ( Un ( t + 1 ) ) ) A . Obviously, J~ and J~ have the same eigenvalues 

at the fixed point v " , which are all real numbers according to appendix C in ref. [ 7 ] .  

Let u ~ or v ~ ( vi = $ ( U i ) for i = 1 , 2 , ' " ,  n )  be an internal fixed point, which is in fact 

a stationary point of f (  v ,  I )  for AT = A. Let I c be the critical values for bifurcation. Then the 
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f v ( V *  , I ~) = 0 ,  and at least one eigenvalue of J ~ ( v *  , I ~) is g = 1 or - 1. By analyzing the 

fold and flip bifurcation [l~ , we have the following theorem. 

T h e o r e m  2 . 1 .  Let AT ---- A and assume that v * is an internal fixed point of eq.  ( 2 . 3 )  

and f ~  ( v * , I ~ ) has one zero-eigenvalue with normalized left eigenvector $ * and right eigenvec- 
tor $.  Then for synchronous updating, a fold bifurcation (saddle-node bifurcation) occurs if 

~ " f ,~u (~ ,  ~) # 0 .  

For the case that J~ ( v * , F )  has at least one eigenvalue A = - 1, we have the following 
theorem. 

T h e o r e m  2 . 2 .  Let A T = A and assume that v * is an internal fixed point of eqs. (2 .3 )  

or (1 .3 )  and f,~ ( v * ,  P ) diag( s' ( u ~ ) , ' " ,  s' ( u,~ ) ) has at least one eigenvalue A = 2 with nor- 

malized right eigenvector 7/and left eigenvector )7 * . Then for synchronous updating, a flip bifurca- 

. 1 . )2 . 
t i o n o c c u r s i f a = 3 r  / f w ~ u ( r / , r l , r / ) - ~ - ( r /  f~u~( r l , r l )  # 0 ,  and 7] fw,~( z l , r l ) # O .  

3 C h a o s  

This section intends to theoretically prove that there exists a chaotic structure in discrete- 
time recurrent neural networks when At is sufficiently large, and the chaotic structure is actually 
generated by a homoclinic bifurcation (global bifurcation). 

3 .1  Existence of fixed point 
First, we show that eq.  ( 1 . 3 )  possesses a fixed point for sufficient large A t .  
Theorem 3 . 1 .  Assume the following two conditions are satisfied: 

(1)  A is invertible, aPl  < - A - l I  < PP1,  

(2)  0 ~< b ~< M0/A t ,  where M0 ( > 0)  is an arbitrary bounded number. 
Then there exists a positive constant c~, such that for any At > cl the discrete time system of eq. 

( 1 . 3 )  has one fixed point u * which is bounded. Furthermore, u * is a unique bounded fixed 

point if At is sufficiently large, and u ~ = lim u * = { u I v(  u ) = - A - 1 I I .  
A t ~  

Proof .  Def ineu  such t h a t A v ( u ) + I = 0 ,  i . e .  v ( u ) =  - A - X I .  Obviouslyu is inde- 

pendent of At .  Let ~1 be a positive number and U1 = B ~  ~1).  Now, we show that there ex- 

ists c l ( e l ) ( > 0 )  such that eq. ( 1 . 3 )  has one fixed point u* E U1 for any At > C l ( ~ l ) .  
Let 

1 
Q ( u , A t )  = ~ - ~ [ ( k -  1 ) u  + A t ( A v ( u )  + I ) ] .  ( 3 . 1 )  

From condition ( 2 ) ,  we have a,~lim| Q(u  ,A t )  = lirn - ~ t  1 = Po, i . e .  a,-lim| II Q(u  ,A t )  II = 0 which 

means that u = u is an approximate solution of Q( u ,At ) = 0 for sufficiently large number At .  

Next, from eq. ( 3 . 1 ) ,  the Jaeohian matrix is DuQ ( u , A t ) = E + AZ  ( u ) where Z ( u ) = 

s ' ( u n ) ) .  Since l i m ~ @ E  On• aeeordingt0eondition D uv ( U ) = fflag( s' ( u l ) , " " , = , (2 ) ,  then for 

n 

any bounded u E  UI including u we have l i m d e t D , Q (  u , A t )  = detA" I]7 s ' ( u i )  # 0. Thus, 
A t e |  i = l  

there exists cz(e~)  ( > 0)  such that for a sufficiently large number M~, [[ D ~ I Q ( u  , A t )  [[ < MI 



198 SCIENCE IN CHINA (Series A) Vol. 44 

for any At > c2. Furthermore, for positive number ~1 < 1, there is a positive number e2( < e l )  

- /_t  1 
such that ]l D u Q ( u , A t )  - DuQ(u , A t )  II < @,, for any u E  B ( u  ,E2).  

(1-~l)e2 
Let r l s a t i s f y 0 <  r l <  M1 . Then there exists c 3 > O s u e h t h a t  It Q ( u , A t )  tl < rl 

for any At > c3. Let cl ( e l )  = max t c2(e l  ) ,  c3 } �9 Then the following three conditions can be 

held for At > c l ( e ) :  1) g 2 ( e 2 ) =  /u l t l  u - u  II < e z } c U 1 ;  2) II D u Q ( u , A t ) - D , O ( u ,  
tzl rlMl 

at )  II 3) i - ~ ,  < e2 where II Q ( u , A t ) l ]  < rl and [] D u Q - ' ( u , A t ) 1 [  < M1. Ac- 

cording to Urabe' s proposition (see Appendix in ref. [7] ) ,  Q ( u  , a t ) =  0 has a unique solution 

u* E g2(e2) C U1 for all a t  > c l ( e l ) .  That is, 

~ [ ( k -  1) + A t ( A v ( u  ) + I ) ]  = 0 

or u* = ku* + A t (  Av( u* ) + I) , (3 .2 )  

which means that eq. ( 1 . 3 )  has a unique fixed point u * E UI for any a t  > C l (e l )  �9 

Furthermore using the conclusion we have been obtained, we can show that u * is also a 
unique bounded fixed point if a t  is sufficiently large. 

3 .2  Existence of topological chaos 
This subsection will show the existence of the Marotto chaos by identifying a snap-back re- 

peller. From eq. ( 1 . 3 ) ,  it is easy to see that F ( u )  = ku + A t [ A v ( u )  + I ] ,  then we get 
D~F(u)  = kE + A t A Z ( u ) .  Now we establish our principal theorem in this paper. 

Theorem 3 . 2 .  Assume the same conditions as Theorem 3.1  and 
1 

(1) aPl< - - - ~ a P 1 - A - l l  1+ <tiP1, I + a A P I > O ,  k > 0 ,  or 

(2) aP l < - --s I - A -1I  1 + ~ -  < flP I , I + aAP I < O , k < 0 ,  or 

1 _,( 
(3) aPt< -- '~ f lP1-  A I 1+-~- <tiP1, I + ~API >O, k < 0 ,  or 

(4)~e~<-~-pe~-A-~I 1+~- <~P~, i+Ne,<o, k>o. 
Then there exists a positive constant c5 such that for any a t  > c5, eq. ( 1 . 3 )  is chaotic in the 

sense of Marotto, and chaos is generated from a repeller. 

Proof .  For any At > Cl, define A - 1 = H = ( H i ,  ' ' ~  , H n ) T .  For conditions (1) and (2) 

o , ( _ k a _ H T l ( l + k ) )  T h e n v  0 of Theorem 3 . 2 ,  let u ~ = ( u  ~ " " , / z ~  T where u i = S -  . = 

, 
v ( u ~  = - - ~ a P I - A - 1 I  1+ . Note that by conditions (1) and ( 2 ) ,  we have a P l < v ~  

~P1 and v ~ or u ~ has no relation with a t .  Since F (  u ~ -- ku ~ I + kaAP1At , then 

I + aAPIA t (3 .3 )  
F (  u ~ ~ - k 

which is negative because of conditions (1) and ( 2 ) .  

Therefore, lim v( F(  u~ ) = lim ( s( F~( u~ ) , ' " , s (  F , (  u~ ) )W= a e l .  
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Now, we prove that u* is a snap-back repeller. Since l i m v ( u * )  = v ( u ~ )  = - A - 1 I  
At~ , ( 1 )  

whiehis from Theorem 3 . 1  and v ( u  ~ = - ~ a P l  - A - l l  1+--s , then ~,-lim| - 

1 -1 u o 
v ( u ~  = ~ ( a P 1 + A  I ) # P o i . e .  }!m II u" - II # 0 b e c a u s e  u i = $ ( u i ) i s a m o n o t o n i c  

function. Therefore, there exists s 3 > 0 and c6 ( s 3 ) > 0 such that u * ~ B ( u~ r 3) for any At > 

c6 ( r  Let 

1 1 
Q l ( u , A t )  = ~ t [ F ( F ( u ) ) -  u * ]  = ~ - ~ [ F 2 ( u ) -  u * ] .  ( 3 . 4 )  

Then 
U* 2 

k o A ( v ( F ( u O ) )  aP , )  and lim II Q , ( u ~  o, Q l ( u ~  = -  -At + - ~ u  + - ~,~| = 

(3.5) 
which means that u ~ is an approximate solution of Q1 ( u ,  At ) = 0 for sufficiently large number 

At Since D ~ Q I ( u , A t )  = [kE + At A Z ( F ( u ) ) ] [  k 
�9 -~t E + A Z ( u ) ]  and note that A t Z ( F ( u ~  = 

At 
diag( Ats' ( F , (  u~ ) , ' "  ,Ats' ( Fn ( u~ ) ) and l i m A t s ' ( F i ( u ~  lim T-7---~" Fi( u~ ( Fi( u~ ) 

~ , ~  a ,~|  u ) 

= 0 by using assumption (2)  in sec. 1.1 and eq. ( 3 . 3 ) ,  we have lim AtZ ( F ( u ~ ) = On • n. 
At~ 

Obviously, l!na ~ttE = On • n" Hence,  using conditions (1 )  and ( 2 ) ,  we have 

( ( T,( 111 / l i m d e t D ~ Q ~ ( u ~  = k n �9 detA �9 s' s -~ - ~ a  - H 1 + ~ # 0. ( 3 . 6 )  
At~ i=1 

Let U2 = B ~ 1 7 6  from eq. ( 3 . 6 ) ,  there exists a positive constant c7 > 0 such that when 

At > c7, for a sufficiently large constant M2 > 0,  II D u ~ Q I ( u ~  II < M2. Furthermore, for 

0 </12 < 1, there exists a positive number r ( < e3) such that for any u E B ( u ~ e4 ) ,  we have 

/22 ( 1  -- ~ 2 ) s  
II OuQ,( u , A t )  - D ~ Q , ( u ~  l] < ~ 2 "  Selecting r2 such that 0 < r2 < M2 and ac- 

cording to eq. ( 3 . 5 ) ,  there exists a positive constant cs > 0 such that when At > cs ,  H Q~( u ~ 

A t )  II < r2. Let c9 = max{ c l ,  c6, c7, c8} �9 Then the following three conditions hold for At > c9: 

1) ~"](E4)= tulll u - u  ~ II < E 4 t c  u 2 =  B~176  2)  II D u Q , ( u , A t ) -  D ~ Q , ( u ~  

tz2 r2M2 < 54; where II Q l ( u ~  < r2 and II D u l Q l ( u  ~  II < n 2 .  3) l - z 2  
According to Urabe'  s proposition, QI ( u ,  A t )  = 0 has a unique solution u ~ E O (e4 )  C 

B ( u  ~ e3) for all At > c9. From the definition of B ( u  ~ , e3 ) ,  we can see that u ~ # u * . That 

is, u * = F (  F (  u ~ ) )  = F2( u ~ ) .  From Lemma 6 .1  in ref. [ 7 ] ,  there exists a positive con- 

stant Ca such that all eigenvalues of D ~ F ( u )  exceed the unity in norm for any At > c4 and for 

any bounded u .  Let c5 = maxl Ca, c9 t �9 Then u* is a snap-back repeller. By Marotto' s theo- 

rem [HI , the proof for the existence of chaos is straightforward. In the sameway ,  we can give the 

= o )x where proof of the theorem for conditions ( 3 )  and ( 4 ) .  In this case, let u ~ ( u~ "'" , U n 

o - , (  1 HTI( + 
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4 Example  

In this section, we give the simulation results for a two-dimensional case of eq. ( 1 . 3 )  as 
follows to verify theoretical results, where the input-output function vi( t ) = tanh(Atui ( t ) ) ,  b = 

1 , M 0 =  1 , a l l  = 

1.0 

0.5 

~ o 

~ -0.5 

- I . 0  
0 

- 1 , a 1 2  = a21 = - 0 . 5 , a 2 2 =  

: . .  
~  r ~ �9 

, . . .  

�9 . . . j - . .  ~ * . 

, ,  , t  , + + 

<~a) , , , ~w ~. . ";  
0.01 0.02 0.03 0.04 0.05 

At 

1.0 

o 

~ o.5 

g 
~. o 

~ -0.5 

N -I.O 
0 0.01 

- 2 ,  a l =  a 2 = 0 . 8  and At=125  (fig.  1 ) .  

1.0. : ,Jr ._~ I I ~ , r " - " - " .  ~ "[  

�9 ~. ; za , ~  . . . .  "1 ;~. $ + ~ **'~ 
= o. ~/ i t i '~:-  ' .  . : 4  
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Fig. 1. ( a ) - - ( c )  show the outputs of neurons and maximum Lyapunov exponents with increasing discrete time At.  
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